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A REFERENCE-INVARIANT HEALTH DISPARITY INDEX BASED
ON RÉNYI DIVERGENCE
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One of four overarching goals of Healthy People 2020 (HP2020) is to
achieve health equity, eliminate disparities, and improve the health of all
groups. In health disparity indices (HDIs) such as the mean log deviation
(MLD) and Theil index (TI), disparities are relative to the population av-
erage, whereas in the index of disparity (IDisp) the reference is the group
with the least adverse health outcome. Although the latter may be preferable,
identification of a reference group can be affected by statistical reliability. To
address this issue, we propose a new HDI, the Rényi index (RI), which is
reference-invariant. When standardized, the RI extends the Atkinson index,
where a disparity aversion parameter can incorporate societal values associ-
ated with health equity. In addition, both the MLD and TI are limiting cases of
the RI. Also, a symmetrized Rényi index (SRI) can be constructed, resulting
in a symmetric measure in the two distributions whose relative entropy is be-
ing evaluated. We discuss alternative symmetric and reference-invariant HDIs
derived from the generalized entropy (GE) class and the Bregman divergence,
and argue that the SRI is more robust than its GE-based counterpart to small
changes in the distribution of the adverse health outcome. We evaluate the
design-based standard errors and bootstrapped sampling distributions for the
SRI, and illustrate the proposed methodology using data from the National
Health and Nutrition Examination Survey (NHANES) on the 2001–04 preva-
lence of moderate or severe periodontitis among adults aged 45–74, which
track Oral Health objective OH-5 in HP2020. Such data, which use a binary
individual-level outcome variable, are typical of HP2020 data.

1. Background and introduction. The measurement, tracking, and elim-
ination of health disparities are central to the U.S. Healthy People initiative;
see Green and Fielding (2011). One of two overarching goals of Healthy Peo-
ple 2010 (HP2010) was to “eliminate health disparities” [U.S. Department of
Health and Human Services (2000, 2006); National Center for Health Statistics
(2011)], and one of four overarching goals of Healthy People 2020 (HP2020)
is to “achieve health equity, eliminate disparities, and improve the health of all
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groups” (http://healthypeople.gov). There are several concepts and definitions as-
sociated with the terms health disparities and health equity, which are reviewed in
Braveman (2006). In this paper, we do not discuss how to measure or assess health
equity. Instead, we restrict our attention to the measurement of health disparities,
although, as seen below, measures of health disparities are inevitably tied to nor-
mative or societal values associated with health equity. Our working definition of
health disparity is that of Keppel, Pearcy and Klein (2004), who state that “in the
context of public health, a disparity is the quantity that separates a group from a
reference point on a particular measure of health that is expressed in terms of a
rate, proportion, mean, or some other quantitative measure.”

When there are three or more population groups, for example, population break-
down by race and ethnicity, education, or income, the differences among those
groups in the magnitude of their disparities relative to the reference point can be
summarized using a between-group index. Such between-group health disparity
indices (HDIs) have been reviewed in Wagstaff, Paci and van Doorslaer (1991),
Mackenbach and Kunst (1997), and Pearcy and Keppel (2002). Their character-
istics and limitations have been investigated in Keppel, Pearcy and Klein (2004),
Keppel et al. (2005), Levy, Chemerynski and Tuchmann (2006), and Harper et al.
(2008, 2010).

For a population that is partitioned into m mutually exclusive groups of sizes
n1, n2, . . . , nm, with n = ∑m

j=1 nj , we study the distribution of a particular adverse
health outcome, which, at the individual level, is given by yij , say, for individual i

in group j . Specifically, our goal is to compare the aggregate health outcomes
y·j = ∑nj

i=1 yij , j = 1,2, . . . ,m, across groups. When the variable yij is a binary
variable, indicating presence or absence of the adverse health outcome for individ-
ual i, the aggregate y·j is simply the frequency count of the number of individuals
in group j with the adverse health outcome.

We look upon (between-group) HDIs as measures of generalized relative en-
tropy (or divergence) between two nonnegative mass functions p = (p1,p2, . . . ,

pm) and q = (q1, q2, . . . , qm). In the analysis of health disparities, the quantities
pj can be weights that the analyst assigns to each population group j. The groups
are said to be “equally-weighted” if they are assigned equal weights (e.g., 1/m)
and “population-weighted” if they are assigned weights that are proportional to
their size (e.g., nj/n). On the other hand, the qj can quantify the disease burden
in group j. Various HDIs differ in the specification of the qj . Entropy-based HDIs
commonly specify qj as a function of the ratio between the group average (ȳ·j )
and a fixed reference for measuring disparities. The reference can be the popu-
lation average (ȳ··), the least adverse health outcome (min1≤k≤m ȳ·k), a Healthy
People target, or any other reference.

In this paper, we introduce a new class of HDIs, the Rényi index (RI), which
is based on a generalized Rényi (or alpha–gamma) divergence. Generalized Rényi
divergence was considered by Fujisawa and Eguchi (2008) in the context of robust
parameter estimation in the presence of outliers and is reviewed in Cichocki and

http://healthypeople.gov
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Amari (2010). The RI is a class of HDIs that are invariant to the choice of the
reference used for evaluating disparities. This invariance property—also known as
“strong scale-invariance”—is relevant to Healthy People, as well as to other initia-
tives that monitor health disparities, because the identification of a reference group
can be affected by statistical reliability; see National Center for Health Statistics
(2011). Reference-invariance is not unique to the RI. As discussed in Section 3,
the well-known generalized entropy (GE) class, for one, can be modified for strong
scale-invariance. Nonetheless, the robustness of the RI makes it less sensitive than
its GE-based counterpart to small changes in the distribution of the adverse health
outcome.

Looking at HDIs as measures of generalized relative entropy (or divergence)
between two nonnegative mass functions p and q—not necessarily probabilities—
provides a common mathematical framework within which various HDIs can be
compared. In particular, this unified framework enables a sensitivity analysis for
the effect of changing the reference used for evaluating disparities (e.g., average
versus best group rate) as well as the effect of modifying the weighting distribu-
tion pj (equally-weighted versus population-weighted), which are issues of con-
cern; see Harper et al. (2010).

The RI is a class of HDIs, {RIα :α ∈ R}. When the parameter α > 0 increases,
the rescaled index α RIα is nondecreasing; therefore, α can be interpreted as a
disparity aversion parameter in a manner akin to the Atkinson index [Atkinson
(1970)]. Indeed, for α > 0, the Atkinson index simply is obtained via the standard-
izing exponential transformation 1−e−α RIα . The disparity aversion parameter can
reflect a range of societal values attached to inequality. In Levy, Chemerynski and
Tuchmann (2006), the Atkinson index is shown to fulfill some of the core axioms
of health benefits analysis, for example, Pigou–Dalton transfer principle and sub-
group decomposability. The authors also argue that, unlike some indices in the GE
class, the Atkinson index avoids a value judgment about the relative importance of
transfers at different percentiles of the distribution of the adverse health outcome.

In this paper, we illustrate the proposed methodology using data from the
National Health and Nutrition Examination Survey (NHANES) on the 2001–04
prevalence of moderate or severe periodontitis among U.S. adults aged 45–74.
These binary individual-level data track Oral Health objective OH-5 in HP2020.
NHANES is the data source for approximately 1 in 7 population-based objec-
tives in HP2020. Close to half of the (approximately) 1200 objectives in HP2020
are population-based, and most, though not all, such objectives track a propor-
tion or a rate where the underlying individual-level variable has a binary outcome.
See http://healthypeople.gov. The supplement to this article in Talih (2013b) pro-
vides further illustration of the proposed methodology with continuous individual-
level data on total blood cholesterol levels among adults aged 20 and over, from
NHANES 2005–08. These data track Heart Disease and Stroke objective HDS-8
in HP2020.

http://healthypeople.gov
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1.1. Common practice. The most commonly used between-group HDIs are
weighted sums of the form

∑m
j=1 pjf (rj ), where rj = qj/pj , for some func-

tion f (r); see Firebaugh (1999).

Population average as reference. When the distributions p and q are given by
pj = nj/n, qj = pj rj , and rj is the ratio of the average ȳ·j of the adverse health
outcome in group j relative to the population average ȳ··,

rj = ȳ·j /ȳ··,(1.1)

the resulting class of HDIs, with f (r) = fα(r) := (1 − r1−α)/[α(1 − α)], is the
generalized entropy (GE) class, which extends the mean log deviation [MLD;
f1(r) = − ln r] and the Theil index [TI; f0(r) = r ln r]; see Haughton and Khander
[(2009); Chapter 6].

That the GE HDIs are nonnegative, that equal zero only when rj = 1 for all j ,
follows from the convexity of the function fα(r) specified above and the fact that
the pj and qj sum to one—GE is a class of Csiszár f -divergences; see Ali and Sil-
vey (1966). However, the requirement that the distributions p and q be probability
mass functions can be restrictive.

Least adverse health outcome as reference. Keppel et al. (2005) recommend
measuring disparities relative to the group with the least adverse health outcome.
Instead of (1.1), this would result in rj ’s of the form

rj = ȳ·j
min1≤k≤m ȳ·k

.(1.2)

Clearly, with the rj as in (1.2) and the pj = 1/m or nj/n, the qj = pj rj no longer
define a probability mass function.

The health inequality paradox. There are two essentially distinct approaches
to evaluating health disparities overall, each of which makes an explicit value
judgment regarding the trade-off between an individual’s burden of disease and
a group’s burden of disease. Used in the GE class, which includes the MLD and
TI, the population-weighted distribution pj = nj/n is consistent with individu-
als in the population being equally-weighted—with weights 1/n—regardless of
their group membership. In contrast, the equally-weighted distribution pj = 1/m,
which is used in the index of disparity (IDisp) of Keppel et al. (2005), results in
more weight being given to individuals in smaller population groups than in larger
ones. [Keppel et al. use weights 1/(m − 1) instead of 1/m, since there are only
m − 1 comparisons relative to the group with the least adverse health outcome.]

Because of this trade-off between the individual’s burden of disease and the
group’s burden of disease, potential impact of public health interventions is modi-
fied by the specific measure of health disparities used. When all groups are equally-
weighted, an intervention that targets a relatively small group with a relatively
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large burden of disease can prove very effective in reducing overall disparity. On
the other hand, when groups are population-weighted, that same intervention will
not have as much impact on reducing overall disparity, and other interventions
might be desired; see Harper et al. (2010), Frohlich and Potvin (2008), and Rose
(1985). The aforementioned trade-off between individual’s health and population’s
health is, perhaps, what differentiates most strikingly analyses of health disparities
from studies of wealth inequalities—the latter having provided the impetus for the
development of the GE and related families of inequality indices. When possible,
methods used for comparing health outcomes should similarly be differentiated
from those used for comparing income distributions.

1.2. Organization of the paper. The paper is organized as follows.
In Section 2 we introduce the generalized Rényi divergence as the basis for

developing the RI. A critical property of the generalized Rényi divergence is its
invariance to scaling of either of the two distributions whose divergence is be-
ing evaluated; see Section 2.1. Thus, when monitoring health disparities, the RI
remains the same, regardless of whether we use: the population average as the de-
nominator for the relative disparities rj , as in (1.1); the group with the least adverse
health outcome as the denominator, as in (1.2); or use a Healthy People or some
other target as the denominator.

The RI extends the MLD and TI. The MLD is mostly influenced by groups with
large population shares pj = nj/n, whereas the TI is mostly influenced by groups
where the adverse health outcome is more frequent or severe (qj = y·j /y··); see
Section 2.2. In Section 2.3 we show that the RI can be symmetrized, which yields
a symmetric measure in the two distributions whose relative entropy is being eval-
uated. Thus, when pj = nj/n, qj = pjrj , and the rj are as in (1.1), the resulting
symmetrized Rényi index (SRI) generalizes the symmetrized Theil index (STI) of
Borrell and Talih (2011).

In Section 2.4 we show that, for α > 0, the Atkinson index simply is obtained
via the standardizing exponential transformation 1−e−α RIα . Hence, the parameter
α > 0 is a disparity aversion parameter for α RIα and it can reflect a range of
societal values attached to inequality.

Because of scale invariance, the RI and SRI only depend on the relative dispar-
ities rj in (1.1) or (1.2) through the numerator ȳ·j . Thus, in Section 2.5, we ex-
press the between-group RI and SRI as functions of the group sizes nj and means
ȳ·j , both when groups are population-weighted (pj = nj/n) and when groups are
equally-weighted (pj = 1/m).

In Section 3 we discuss two potential alternatives to the RI based on the GE
(Section 3.1) and Bregman class (Section 3.2). In Section 3.3 we compare the
(reference-invariant) SRI with a symmetrized reference-invariant GE under simple
hypothetical scenarios and argue that the SRI is less sensitive to small changes in
the distribution of the adverse health outcome.
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In Section 4 we proceed as in Borrell and Talih (2011) and Biewen and Jenkins
(2006) to derive design-based standard errors for the (between-group) RI and SRI
using Taylor series linearization. To validate our derivation, we implement in the
supplemental R code the balanced repeated replication and bootstrap methods,
introduced by McCarthy (1969) and Rao and Wu (1988), respectively; see Talih
(2013c). Rescaled bootstrap enables the design-based estimation of the sampling
distribution of the RI and SRI. Further, we examine the effect of the weighting
distribution p, comparing the population-weighted (pj = nj/n) to the equally-
weighted case (pj = 1/m).

In Section 5 we illustrate the proposed methodology using periodontal disease
data from NHANES. Section 6 concludes.

The technical appendix includes a detailed discussion of the decomposability of
the RI and SRI; see Talih (2013a). Decomposability is the separation of the total
or aggregate HDI into between- and within-group components; see Bourguignon
(1979). Just like for the GE class of HDIs, decomposability allows for multiple pre-
dictors of individual-level disparities to be considered in succession, as in multi-
way analysis of variance. We examine the decomposition of the total RI and SRI
when groups are population-weighted (e.g., pj = nj/n)—which, as mentioned
earlier, is consistent with individuals being equally-weighted—as well as when
groups are equally-weighted (e.g., pj = 1/m). In the latter case, only a weak de-
composition of the aggregate RI and SRI holds. The technical appendix also con-
tains the derivation of the designed-based standard errors for the total or aggregate
RI and SRI and their within-group components; see Talih (2013a).

2. An entropy-based reference-invariant health disparity index. Consider
two nonnegative (yet, not necessarily probability) mass functions p and q . Suppose
they are defined on a common set of integers {1,2, . . . ,m}, which we take to be
group membership indicators for different socioeconomic and demographic groups
in a larger population. In analyses of health disparities, pj typically denotes the
relative population share of group j , whereas qj denotes its relative disease burden
(or, inversely, the relative health advantage). However, as discussed in Section 1,
other choices for the quantities pj and qj may be desired. From the mathematical
point of view, investigating health disparities within the population amounts to
ascertaining the discrepancy between the two distributions p and q.

DEFINITION. Based on a divergence proposed by Fujisawa and Eguchi (2008)
for robust parameter estimation in the presence of outliers, and for rj = qj/pj and
a scalar α �= 0,1, Cichocki and Amari (2010) define the generalized Rényi (or
alpha–gamma) divergence as

Rα(p ‖ q) = 1

α(1 − α)
ln

{
(
∑m

j=1 pj )
α(

∑m
j=1 pjrj )

1−α∑m
j=1 pj r

1−α
j

}
.(2.1)
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REMARK. Our approach, reflected in (2.1) and throughout the paper, differs
from the standard information theoretic approach in that we introduce depen-
dence between the distributions p and q. The former is a weighting distribution—
typically, the pj are the relative sizes of groups in the population. The latter is
constructed from qj = pjrj . Each rj specifies the disparity for group j relative to
a common reference point, as explained in Section 1.1.

2.1. Scale invariance and relation to Rényi divergence. Due to the form of the
argument of the logarithm in (2.1), the generalized Rényi divergence Rα(p ‖ q) is
invariant to rescaling of either the p or the q distributions. Indeed, for any positive
scalars c1 and c2,

Rα(c1p ‖ c2q) = Rα(p ‖ q).

In particular, for p̄j = pj/
∑

p, q̄j = qj/
∑

q , and r̄j = q̄j /p̄j we have

Rα(p ‖ q) = Rα(p̄ ‖ q̄) = − 1

α(1 − α)
ln

{
m∑

j=1

p̄j r̄
1−α
j

}
.(2.2)

When α > 0, the divergence αRα(p̄ ‖ q̄) is the Rényi divergence between two
probability mass functions—here, p̄ and q̄—introduced by Rényi (1960).

Nonnegativity. When α > 0 and α �= 1, Jensen’s inequality ensures that Rα(p̄ ‖
q̄) ≥ 0, with equality if and only if p = cq for some positive scalar c; see, for
example, van Erven [(2010); Chapter 6]. By skew-symmetry [see (2.5) below], it
follows that Rα(p ‖ q) ≥ 0 for all α �= 0,1.

Monotonicity. Jensen’s inequality also ensures that the Rényi divergence
αRα(p ‖ q) is nondecreasing when α > 0 increases; see van Erven (Chapter 6).
Thus, when α > 0, α can be looked upon as an inequality (or divergence) aversion
parameter for the Rényi divergence.

Practical relevance of scale invariance. Henceforth, we refer to the HDI that is
derived from (2.2) as the Rényi index (RIα , or RI, for short). Scale invariance is
appropriate when it is believed that uniform proportional changes across the pop-
ulation should leave the HDI unchanged; see Levy, Chemerynski and Tuchmann
(2006). Scale invariance is especially desirable when seeking HDIs that are invari-
ant to the choice of the reference for evaluating disparities, because, as seen in
the Healthy People 2010 Final Review, identification of a reference group can be
affected by statistical reliability. In this respect, the RI remains the same, whether
we use the population average as the denominator for the relative disparities rj , as
in (1.1), the group with the least adverse health outcome, as in (1.2), or take any
pre-set (positive) target, for example, a HP2010 or HP2020 target.

2.2. Limiting cases. The generalized Rényi divergence is extended by conti-
nuity to the limiting cases α → 1 and α → 0 (l’Hôpital’s rule):

R1(p ‖ q) := −
m∑

j=1

p̄j ln r̄j and R0(p ‖ q) :=
m∑

j=1

p̄j r̄j ln r̄j .(2.3)



1224 M. TALIH

When pj = nj/n, qj = pj rj , and the rj are as in (1.1), these special limiting cases
of the RI with α → 1 and α → 0 are the MLD and the TI, respectively; see Borrell
and Talih (2011).

Interpretation of the MLD and the TI. The MLD and the TI were originally pro-
posed as measures of income inequality by Theil (1967). Both the MLD and the
TI are well-established measures of relative entropy between two probability dis-
tributions, due to Kullback and Leibler (1951). The general form of the Kullback–
Leibler (K–L) divergences is

KL(p ‖ q) =
m∑

j=1

pj (rj − 1 − ln rj ) and

(2.4)

KL(q ‖ p) =
m∑

j=1

pj (1 − rj + rj ln rj ).

When pj = nj/n, qj = pj rj , and the rj are as in (1.1), MLD = KL(p ‖ q),
whereas TI = KL(q ‖ p). Thus, the MLD and the TI summarize the dispropor-
tionalities between the relative sizes of groups in the population and those groups’
shares of an adverse health outcome. In this regard, from (2.3), the MLD is seen
as a log-likelihood ratio test statistic for the null hypothesis that group shares of
the adverse health outcome have been “allocated” according to the relative sizes
of the groups in the population. Similarly, the TI tests the null hypothesis that
group shares of the total population have been “allocated” according to the groups’
shares of the adverse health outcome. This interpretation of the MLD and TI as log-
likelihood ratio tests will be revisited in the case study of Section 5 to assess the
statistical significance of the symmetrized Rényi index.

2.3. Symmetrized Rényi index. Generalized Rényi divergence in (2.2) is asym-
metric in the two distributions whose generalized relative entropy is being eval-
uated: Rα(p ‖ q) will be mostly influenced by groups with large values of pj ,
whereas Rα(q ‖ p) will be mostly influenced by groups with large values of qj .

Borrell and Talih (2011) discuss this issue of lack of symmetry in the context of
the special cases R1(p̄ ‖ q̄) = KL(p̄ ‖ q̄) (MLD) and R0(p̄ ‖ q̄) = KL(q̄ ‖ p̄) (TI),
with pj = nj/n, qj = pjrj , and the rj as in (1.1). Yet,

Rα(q ‖ p) = R1−α(p ‖ q).(2.5)

Thus, a symmetrized generalized Rényi divergence, SRα(p, q), is obtained from
[Rα(p ‖ q) + R1−α(p ‖ q)]/2. For p̄j = pj/

∑
p, q̄j = qj/

∑
q , and r̄j = q̄j /p̄j ,

SRα(p, q) is given by

SRα(p, q) = SRα(p̄, q̄) = − 1

2α(1 − α)
ln

{(
m∑

j=1

p̄j r̄
1−α
j

)(
m∑

j=1

p̄j r̄
α
j

)}
.(2.6)
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We refer to the HDI that is derived from (2.6) as the symmetrized Rényi index
(SRI).

Limiting case. As in Section 2.2, SRα(p, q) is extended by continuity to the
cases α → 1,0:

SR1(p, q) := 1

2

m∑
j=1

p̄j (r̄j − 1) ln r̄j =: SR0(p, q).(2.7)

The divergence in (2.7) is a symmetrized Kulback–Leibler divergence, also known
as half the Jeffrey’s divergence; see, for example, Pollard (2002). When pj = nj/n

is the population share for group j , the rj are as in (1.1), and qj = pjrj is the
disease share y·j /y··. Borrell and Talih (2011) coin the symmetrized divergence
in (2.7) the symmetrized Theil index (STI).

2.4. Standardization and relation to the Atkinson index. For α > 0, a stan-
dardized generalized Rényi divergence, with values between 0 and 1, and which
we denote by Aα(p ‖ q), can be defined for any nonnegative (not necessarily prob-
ability) distributions p and q:

Aα(p ‖ q) = 1 − e−αRα(p‖q).(2.8)

Thus, when α > 0, we have

Aα(p ‖ q) = 1 −
(

m∑
j=1

p̄j r̄
1−α
j

)1/(1−α)

.

For pj = nj/n, qj = pjrj , and the rj as in (1.1), this is the (between-group)
Atkinson index, introduced by Atkinson (1970) for measuring income inequalities,
with parameter α > 0 quantifying society’s aversion to inequality.

Standardized SRI. Applying a standardizing exponential transformation similar
to the one in (2.8), we construct a standardized SRI, with values between 0 and 1,
as follows:

SAα(p, q) =
{

1 − e−αSRα(p,q), when α ≥ 1/2,

1 − e−(1−α)SRα(p,q), when α < 1/2.
(2.9)

This construction preserves symmetry of the SRI around the parameter value
α = 1/2. Since αSRα(p, q) is nondecreasing for α ≥ 1/2, α is a disparity aver-
sion parameter for the standardized SRI. By symmetry, 1−α is a disparity aversion
parameter when α < 1/2. The value α = 1/2 can be interpreted as the most con-
servative choice for disparity aversion in the standardized SRI, in that it gives a
lower bound for the index.
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2.5. The RI and SRI as between-group HDIs. By construction, we have qj =
pjrj and, from (1.1) or (1.2), rj ∝ ȳ·j . From (2.1) and (2.6), we have expressions
for the between-group RI and SRI in terms of the group sizes nj and means ȳ·j ,
which we list next for α �= 0,1. Henceforth, to distinguish the between-group RI
(resp., SRI) from the within-group RI (resp., SRI) and the aggregate or total RI
(resp., SRI) that are discussed in the technical appendix [Talih (2013a)], we use
the notation [RI]B (resp., [SRI]B):

• Population-weighted group contributions pj = nj/n,

[RIα]B = 1

α(1 − α)
ln

{
nα(

∑m
j=1 nj ȳ·j )1−α∑m
j=1 nj ȳ

1−α
·j

}
,(2.10)

[SRIα]B = 1

2α(1 − α)
ln

{
n

∑m
j=1 nj ȳ·j

(
∑m

j=1 nj ȳ
1−α
·j )(

∑m
j=1 nj ȳ

α·j )

}
.(2.11)

• Equally-weighted group contributions pj = 1/m,

[
RI′α

]
B = 1

α(1 − α)
ln

{
mα(

∑m
j=1 ȳ·j )1−α∑m

j=1 ȳ1−α
·j

}
,(2.12)

[
SRI′α

]
B = 1

2α(1 − α)
ln

{
m

∑m
j=1 ȳ·j

(
∑m

j=1 ȳ1−α
·j )(

∑m
j=1 ȳα·j )

}
.(2.13)

Limiting cases. The expressions for the RI and SRI when α → 1 or α → 0 are
obtained by taking limits in (2.10)–(2.13) above. We list them here for ease of
reference. Equation (2.10) with α → 1 yields the MLD,

[RI1]B := −1

n

m∑
j=1

nj ln ȳ·j + ln ȳ··,

whereas α → 0 yields the TI,

[RI0]B := 1

nȳ··

m∑
j=1

nj ȳ·j ln ȳ·j − ln ȳ··.

As well, (2.11) with either α → 1 or α → 0 yields the STI,

[SRI1]B := 1

2nȳ··

m∑
j=1

nj (ȳ·j − ȳ··) ln ȳ·j =: [SRI0]B.

On the other hand, taking the limit when α → 1 in (2.12) results in

[
RI′1

]
B := − 1

m

m∑
j=1

ln ȳ·j + ln

[
1

m

m∑
j=1

ȳ·j
]
,
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while the limit when α → 0 is

[
RI′0

]
B := 1∑m

k=1 ȳ·k

m∑
j=1

ȳ·j ln ȳ·j − ln

[
1

m

m∑
j=1

ȳ·j
]
.

Thus, the limit in (2.13) when α → 1 or 0 is

[
SRI′1

]
B := 1

2
∑m

k=1 ȳ·k

m∑
j=1

[
ȳ·j − 1

m

m∑
k=1

ȳ·k
]

ln ȳ·j =: [
SRI′0

]
B.

3. Alternatives to the Rényi index.

3.1. Generalized entropy class. A class of measures that originate in the mea-
surement of income inequalities is the generalized entropy (GE) class, which spec-
ifies pj = nj/n and the ratios rj as in (1.1); see Biewen and Jenkins (2006), Elbers
et al. (2008), and references therein. The GE class is a special case of alpha diver-
gence. The latter was introduced by Chernoff (1952) to evaluate the asymptotic
efficiency of likelihood ratio tests. Cressie and Read (1984) also discuss such mea-
sures for multinomial goodness-of-fit tests. Using the parameterization in Cichocki
and Amari (2010), alpha divergence is defined for any nonnegative mass functions
p and q and any real number α, α �= 0,1, as

Dα(p ‖ q) = 1

α(1 − α)

m∑
j=1

pj

[
α + (1 − α)rj − r1−α

j

]
,(3.1)

where, as before, the rj are the ratios rj = qj/pj . Just like the generalized Rényi
divergence, Dα(p ‖ q) can be extended by continuity to the limiting cases α → 1
and α → 0, yielding the K–L divergences in (2.4). It is well known that alpha
divergence Dα(p ‖ q) remains nonnegative, Dα(p ‖ q) ≥ 0, with equality if and
only if pj = qj for each j in 1,2, . . . ,m. When p and q are probability mass
functions, that is,

∑m
j=1 pj = 1 and

∑m
j=1 qj = 1, alpha divergence is a Csiszár

f -divergence; see Ali and Silvey (1966).
We refer to the index that is derived from (3.1) as the GE index. Just like with the

Rényi index, a symmetrized GE index is obtained simply by taking the arithmetic
average of Dα(p ‖ q) and D1−α(p ‖ q):

SDα(p, q) = 1

2α(1 − α)

m∑
j=1

pj

(
1 + rj − r1−α

j − rα
j

)
.(3.2)

In addition, the symmetrized GE index in (3.2) can be standardized to take values
between 0 and 1 using the exponential transformation in (2.9). Further, whereas
alpha divergence is not scale-invariant—it only holds that, for a positive scalar c,
Dα(cp ‖ cq) = cDα(p ‖ q)—a reference-invariant GE index Dα(p̄ ‖ q̄) can be
constructed easily using the normalized distributions p̄ and q̄ , because c1p = p̄
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and c2q = q̄ for any positive scalars c1 and c2. (As before, p̄j = pj/
∑

p, q̄j =
qj/

∑
q , and r̄j = q̄j /p̄j .) Thus,

SDα(p̄, q̄) = 1

α(1 − α)

[
1 − 1

2

m∑
j=1

p̄j

(
r̄1−α
j + r̄α

j

)]
.(3.3)

We refer to this HDI as the symmetrized reference-invariant GE index.

PROPOSITION. For nonnegative mass functions p and q on {1,2, . . . ,m},
let p̄j = pj/

∑
p, q̄j = qj/

∑
q , and r̄j = q̄j /p̄j . For SRα(p̄, q̄) in (2.6) and

SDα(p̄, q̄) in (3.3):

αSRα(p̄, q̄) ≤ αSDα(p̄, q̄) when α > 1;(3.4)

αSRα(p̄, q̄) ≥ αSDα(p̄, q̄) when α < 1 and α �= 0;(3.5)

with equality when α → 1 or α → 0.

PROOF. Without loss of generality, let α > 1. The proof follows from the ap-
plication of the arithmetic-geometric mean inequality and the fact that x −1 ≥ lnx

for all x > 0. �

In Section 3.3 we show not only that the SRI is more conservative than the
symmetrized reference-invariant GE index for α > 1, as implied by (3.4), but also
that the SRI is more robust to small changes in the disease distribution q , which
renders it a more desirable HDI.

The GE class is well-studied in the economics literature. The GE class is con-
sistent with a certain set of axiomatic properties that are relevant for income dis-
tributions; see, for example, Cowell, Davidson and Flachaire (2011), Cowell and
Kuga (1981), and Shorrocks (1980). Even though such axioms are not sufficient
for health benefits analyses, the GE class remains a widely used class for construct-
ing HDIs; see Levy, Chemerynski and Tuchmann (2006). In addition to the K–L
divergences (α → 1 or 0), special cases of alpha divergence in (3.1) are the Pear-
son (α = −1) and Neyman (α = 2) chi-squared statistics and the squared Hellinger
distance (α = 0.5).

3.2. Bregman class. Bregman divergences are generated from any twice dif-
ferentiable and strictly convex function � as follows:

B�(p ‖ q) =
m∑

j=1

[
�(qj ) − �(pj ) − (qj − pj )�

′(pj )
]
.

A common choice for the generating function �, for β �= 0,1, is

�(u) = β + (1 − β)u − u1−β

β(1 − β)
,
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which yields the beta divergence, defined for β �= 0,1 and rj = qj/pj ,

Bβ(p ‖ q) = 1

β(1 − β)

m∑
j=1

p
1−β
j

[
β + (1 − β)rj − r

1−β
j

]
,(3.6)

and appropriate extensions by continuity when β → 0 or 1; see Cichocki and
Amari (2010). As before, the limiting case β → 0 reduces to the Kulback–Leibler
divergence KL(q ‖ p) in (2.4). However, the case β → 1 is no longer KL(p ‖ q),
but, instead, the so-called Itakura–Saito (IS) divergence, given by

IS(p ‖ q) =
m∑

j=1

(rj − 1 − ln rj ).

Beta divergence in (3.6) provides a class of HDIs that are worth investigating
in future work. For instance, a symmetrized reference-invariant beta divergence is
obtained from [Bβ(p ‖ q) + Bβ(q ‖ p)]/2, resulting in

SBβ(p̄, q̄) = − 1

2β

m∑
j=1

p̄
1−β
j (1 − r̄j )

(
1 − r̄

−β
j

)
.

However, as explained in Section 1, the pj are weights that are assigned by the an-
alyst to each population group j , commonly using either equal weights (e.g., 1/m)
or size-based weights (e.g., nj/n). Therefore, in the context of this paper, the ana-
lyst would need to provide additional justification for the logarithmic rescaling of
the pj in (3.6) by the factor 1 −β , which is not the case for alpha divergence (3.1)
or generalized Rényi divergence (2.2).

Magdalou and Nock (2011) derive the Bregman class as the unique class of mea-
sures that are consistent with certain inequality measurement principles, including
the transfer principle (albeit modified) and decomposability. By the authors’ own
assessment, the key to their derivation is a new principle of “judgment separa-
bility” that they introduce for the analysis of income inequalities. In this paper,
we restrict attention to reference-invariant HDIs (i.e., strong scale-invariant mea-
sures), whereby judgment separability is not necessary, because it reduces to the
weaker principle of “indiscernability of identicals.” The latter postulates simply
that an inequality measure D satisfies D(p ‖ p) = 0 for any distribution p.

For those reasons, we do not discuss beta divergence in Section 3.3; we compare
the SRI only with the symmetrized reference-invariant GE index.

3.3. SRI and changes therein. To illustrate the robustness of the SRI (2.6) to
small changes in the distribution q = pr , for a fixed p, and in comparison with
the symmetrized reference-invariant GE index in (3.3), we examine the SRI under
simple scenarios borrowed from Harper et al. (2010).

In Table 1 we consider a population that is divided into four groups of equal
size, so that the population-weighted distribution pj = nj/n is the same as the
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TABLE 1
Baseline and three hypothetical scenarios to examine changes in the SRI and its GE-based

counterpart

Group (j) A B C D

Relative size nj /n 25% 25% 25% 25%
Baseline

Group rate ȳ·j 50% 40% 30% 10%
Scenario 1

Group rate ȳ·j 50% 30% 30% 10%
Scenario 2

Group rate ȳ·j 40% 40% 30% 10%
Scenario 3

Group rate ȳ·j 50% 40% 40% 10%

equally-weighted distribution pj = 1/4. At baseline, group D has the least ad-
verse health outcome, with a rate of 10%, whereas group A has the most adverse
outcome, with a rate of 50%. Groups B and C have rates of 40% and 30%, respec-
tively. In scenarios 1 and 3, the groups with the least and most adverse outcomes
remain the same, but in scenario 1 the rate for group B decreases 10 percentage
points from baseline, whereas in scenario 3 the rate for group C increases 10 per-
centage points from baseline, in both scenarios achieving equal rates for groups B
and C. In scenario 2, the rate for group A decreases 10 percentage points while
the other group rates remain unchanged. Because in scenario 3 group D (the “best-
off” group) is further separated from the other groups, with a 30 percentage points
difference from the next best (group C), compared to a 20 percentage points differ-
ence at baseline, we expect that disparities will increase overall. In scenario 2, the
gap between the best-off group (group D) and the worst-off group (group A) has
decreased, therefore, we expect an overall decrease in disparities. In scenario 1, we
similarly expect a decrease in disparities because the rate for group B has moved
closer to the best rate.

The top- and bottom-left panels in Figure 1 compare the symmetrized reference-
invariant GE and the symmetrized Rényi indices under the above scenarios for
different values of the disparity aversion parameter α. Only values of α ≥ 0.5 are
shown due to symmetry. As confirmed in (3.4), the standardized SRI is seen to
be more conservative for values of α > 1; moreover, the SRI is seen to better dis-
criminate between the different scenarios in Table 1 for large values of α. Indeed,
observe how the symmetrized reference-invariant GE can no longer distinguish
between the various scenarios for large values of α, whereas the SRI still can. This
is observed both in the absolute scale, in the top- and bottom-center panels, as well
as the relative scale, in the top- and bottom-right panels. Furthermore, for α ≤ 3
(approximately), the change in the SRI is considerably smaller than the change
in the symmetrized reference-invariant GE, both in the absolute as well as in the
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FIG. 1. Comparison of the symmetrized Rényi index (SRI) with the symmetrized reference-invari-
ant GE index. The top- and bottom-left panels show the symmetrized reference-invariant GE and
the SRI, respectively, under the scenarios described in Table 1 for different values of the disparity
aversion parameter α. Only values of α ≥ 0.5 are shown due to symmetry. As confirmed in (3.4), the
standardized SRI is more conservative for parameter values α > 1. In addition, the SRI is seen to
better discriminate between the different scenarios in Table 1 for large values of α. Furthermore, for
α ≤ 3 (approximately), the change in the SRI is considerably smaller than the change in the sym-
metrized reference-invariant GE, both in the absolute as well as the relative scales, which illustrates
the robustness of the SRI to small changes in the distribution of the adverse health outcome.

relative scales, which illustrates the robustness of the SRI to small changes in the
distribution of the adverse health outcome.

4. Design-based standard errors. Martínez-Camblor (2007) establishes a
central limit theorem for the total TI under simple random sampling. Cowell,
Davidson and Flachaire (2011) use similar empirical processes techniques to ana-
lyze the asymptotic distribution of goodness-of-fit statistics that are derived from
the GE class. Using Taylor series linearization, Biewen and Jenkins (2006) derive
the sampling variances for both the total TI and MLD—as well as the GE class of
total HDIs—for complex survey data. Borrell and Talih (2011) extend the Taylor
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series linearization method to the case of grouped complex survey data to obtain
the sampling variance of the total STI and its between-group and within-group
components. Borrell and Talih (2011) validate the sampling variances obtained
via linearization by comparing them to the ones obtained via balanced repeated
replication and rescaled bootstrap, which are developed in McCarthy (1969), Fay
(1989), Judkins (1990), Rao and Wu (1988), Rao, Wu and Yue (1992), and dis-
cussed in the context of health inequality measures in Harper et al. (2008) and
Cheng, Han and Gansky (2008). In this paper, we adopt a strategy similar to the one
in Borrell and Talih (2011), using Taylor series linearization, balanced repeated
replication, and the rescaled bootstrap to evaluate and validate the design-based
standard errors for the RI (and, by extension, the SRI) and its between- and within-
group components. Below, we only show the calculations for the between-group
component [RIα]B. The calculations for the sampling variance for the within-
group component [RIα]W are shown in the technical appendix; see Talih (2013a).
Also, because SRIα = (RIα +RI1−α)/2, the sampling variance for the SRI and its
between- and within-group components easily follows. R code for computing the
total RI and SRI, together with their group-specific, between-, and within-group
components in grouped complex survey data, as well as their design-based stan-
dard errors, is provided as a supplement; see Talih (2013c).

Define, for any real number a,

Ua,j =
S∑

s=1

Cs∑
c=1

lcs∑
i=1

δicsjwicsy
a
ics,(4.1)

Ua,· =
m∑

j=1

Ua,j .(4.2)

In the above, S is the number of strata; Cs is the number of PSU’s in stratum s;
lcs is the number of sample observations in the PSU-stratum pair (c, s); wics is
the sampling weight for sample observation i in the PSU-stratum pair (c, s); yics

is the severity of the adverse health outcome for sample observation i in the PSU-
stratum pair (c, s); δicsj = 1 when observation i [in PSU-stratum pair (c, s)] be-
longs to group j and δicsj = 0 otherwise; and j ranges from 1 to m, where m

is the number of groups in the population. With the notation introduced in (4.1)
and (4.2), we have n = U0,·, nj = U0,j , y·· = U1,·, y·j = U1,j , ȳ·· = U1,·/U0,·, and
ȳ·j = U1,j /U0,j .

4.1. Population-weighted groups: pj = nj/n. From (2.10), we see that the
between-group component [RIα]B can be written as a function solely of the suf-
ficient statistics Ua,k in (4.1). Thus, when α �= 0,1, the partial derivatives with
respect to U0,k and U1,k are

∂

∂U0,k

[RIα]B = 1

1 − α

{
1

n
− ȳ1−α

·k∑m
j=1 nj ȳ

1−α
·j

}
,(4.3)
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∂

∂U1,k

[RIα]B = 1

α

{
1

nȳ··
− ȳ−α

·k∑m
j=1 nj ȳ

1−α
·j

}
.(4.4)

The partial derivatives for the between-group component for the SRI, which is
given by [SRIα]B = ([RIα]B + [RI1−α]B)/2, easily follow.

Limiting cases. When pj = nj/n, rj ∝ ȳ·j , and qj = pj rj , the distributions
p̄ = p/

∑
pj and q̄ = q/

∑
qj are given by p̄j = nj/n and q̄j = p̄j r̄j , respec-

tively, with r̄j = ȳ·j /ȳ··, as in (1.1). Thus, the limiting cases when α → 1 or 0
in (4.3)–(4.4) reduce to the partial derivatives of the between-group MLD and TI,
respectively; see (2.3). These were computed in Borrell and Talih (2011). We group
them here for completeness:

∂

∂U0,k

[RI1]B = 1

n2

m∑
j=1

nj ln(ȳ·j /ȳ·k),

∂

∂U1,k

[RI1]B = 1

nȳ··
(1 − ȳ··/ȳ·k),

∂

∂U0,k

[RI0]B = 1

n
(1 − ȳ·k/ȳ··),

∂

∂U1,k

[RI0]B = − 1

(nȳ··)2

m∑
j=1

nj ȳ·j ln(ȳ·j /ȳ·k).

Introduce an artificial variable σicsk that represents the variance contribution
from each sample observation. The σicsk are obtained by taking the dot product of
the vector of partial derivatives from (4.3)–(4.4) with the vector of summands in
the sufficient statistics in (4.1):

σicsk = δicskwics

{
∂[RIα]B

∂U0,k

+ yics

∂[RIα]B

∂U1,k

}
.(4.5)

Thus, an estimate of the sample variance of [RIα]B is given by the sampling vari-
ance of the total statistic

∑m
k=1

∑lcs
i=1 σicsk. The latter is readily available, for ex-

ample, using the command for survey estimation of variances of totals (“svytotal”)
in the R package “survey”; see Lumley (2004, 2011) and R Development Core
Team (2011).

4.2. Equally-weighted groups: pj = 1/m. From (2.12) and (4.1), when α �=
0,1, the partial derivatives with respect to U0,k and U1,k are given by

∂

∂U0,k

[
RI′α

]
B = − 1

αnk

{
ȳ·k∑m

j=1 ȳ·j
− ȳ1−α

·k∑m
j=1 ȳ1−α

·j

}
,(4.6)

∂

∂U1,k

[
RI′α

]
B = 1

αnkȳ·k

{
ȳ·k∑m

j=1 ȳ·j
− ȳ1−α

·k∑m
j=1 ȳ1−α

·j

}
.(4.7)
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The partial derivatives for the between-group component for the SRI, which is
given by [SRI′α]B = ([RI′α]B + [RI′1−α]B)/2, also follow.

Limiting cases. Limiting expressions for the partial derivatives in (4.6)–(4.7) of
the between-group component [RI′α]B are obtained as follows:

• When α → 1,

∂

∂U0,k

[
RI′1

]
B = − 1

nk

{
ȳ·k∑m

j=1 ȳ·j
− 1

m

}
,

∂

∂U1,k

[
RI′1

]
B = 1

nkȳ·k

{
ȳ·k∑m

j=1 ȳ·j
− 1

m

}
.

• When α → 0 (l’Hôpital’s rule),

∂

∂U0,k

[
RI′0

]
B = − ȳ·k

nk

∑m
j=1 ȳ·j

{
ln ȳ·k −

∑m
j=1 ȳ·j ln ȳ·j∑m

j=1 ȳ·j

}
,

∂

∂U1,k

[
RI′0

]
B = 1

nk

∑m
j=1 ȳ·j

{
ln ȳ·k −

∑m
j=1 ȳ·j ln ȳ·j∑m

j=1 ȳ·j

}
.

5. Case study from NHANES. HP2020 objective OH-5 in the Oral Health
Topic Area aims to reduce the proportion of U.S. adults aged 45–74 with moderate
or severe periodontitis. Table 2 presents estimated prevalence (and standard errors)
from NHANES 2001–04. The gradient associated with socioeconomic status and
the differences by sex and by race/ethnicity are well documented; see, for example,
Borrell and Talih (2012).

Figure 2 compares the standardized SRI for values of the parameter α when
groups are population-weighted and when groups are equally-weighted. As seen
in Section 2.5, the population-weighted SRI uses the estimated distributions (dis-
played in the table within each figure panel) for the relative shares of population
(pj = nj/n) and of disease (qj = y·j /y··) in the symmetrized Rényi divergence
Sα(p, q), whereas the equally-weighted SRI uses pj = 1/m. Due to symmetry of
the SRI around the parameter value 0.5, only values of α ≥ 0.5 are shown. For
values of α ≥ 0.5, the parameter α is a disparity aversion parameter for the stan-
dardized SRI: the standardized SRI is nondecreasing in α for α ≥ 0.5. The rescaled
bootstrap method allows the design-based estimation of the sampling distribution
of the index. The box plots in Figure 2 represent the bootstrapped sampling distri-
butions for the different values of α and types of indices shown.

As mentioned earlier, design-based standard errors obtained via Taylor series
linearization can be validated against—and are generally in agreement with—the
ones that are obtained via balanced repeated replication and rescaled bootstrap, as
shown in Table 3 for the analysis by race/ethnicity.

Notice how the two indices in Figure 2 agree perfectly for the analysis by sex,
since males and females are represented almost equally in the population. On the
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TABLE 2
Prevalence (in percent) of moderate or severe periodontitis among U.S. adults aged 45–74,

2001–041

Percent SE2 95% CI3

Total 12.8 0.755 11.2 14.3
Sex

Male 16.3 0.941 14.3 18.2
Female 9.4 0.882 7.6 11.2

Race/Ethnicity
White only, non-Hispanic 10.5 0.861 8.8 12.3
Black only, non-Hispanic 22.1 1.863 18.3 25.9
Mexican-American 18.1 2.829 12.3 23.9

Other4 20.3 3.637 12.9 27.8
Educational attainment

Less than high school 26.8 1.974 22.8 30.9
High school graduate 14.6 1.811 10.9 18.3
Some college or AA degree 11.3 0.899 9.5 13.2
College graduate or above 6.5 1.191 4.0 8.9

Family income (percent FPL5)
Less than 100 28.2 3.305 21.4 34.9
100–199 24.1 2.134 19.7 28.4
200–399 10.8 1.413 8.0 13.7
400–499 8.4 1.504 5.3 11.4
500 or above 8.5 1.089 6.3 10.7

N/A6 13.3 3.362 6.5 20.2
Country of birth

U.S. 11.8 0.713 10.4 13.3
Outside U.S. 19.2 2.622 13.9 24.6

1Data are from the National Health and Nutrition Examination Survey (NHANES) 2001–02 and
2003–04. The case definitions adopted by the CDC working group for use in population-based
surveillance of periodontitis are as follows: for severe periodontitis, it is required that two or more
interproximal sites have clinical attachment loss (CAL) ≥ 6 mm, not on the same tooth, and one or
more interproximal sites have pocket depth (PD) ≥ 5 mm; for moderate periodontitis, it is required
that either two or more interproximal sites have CAL ≥ 4 mm, not on the same tooth, or two or
more interproximal sites have PD ≥ 5 mm, not on the same tooth. Page and Eke (2007) explain the
rationale for those cutoff values.
2Designed-based standard errors (SE) obtained via Taylor linearization (e.g., SUDAAN or R “sur-
vey” package).
3Lower and upper confidence limits, respectively, for a 95 percent confidence interval (CI).
4The category Other consists of Hispanic or Latino other than Mexican-American and non-Hispanic
of races other than black and white, including multiracial adults. The category Other is listed to
provide a complete partition of the population into mutually exclusive groups, but it is not part of the
HP2020 population template for objectives monitored using NHANES 1999 and later.
5Family income as a percent of the federal poverty level (FPL), also known as the poverty income
ratio (PIR).
6Adults whose family PIR is not available (N/A), listed to maintain a complete partition of the
population.
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FIG. 2. Standardized between-group SRI by population characteristic for the prevalence of mod-
erate or severe periodontitis among U.S. adults aged 45–74, 2001–04. Due to symmetry of the SRI
around the parameter value 0.5, only values of α ≥ 0.5 are shown. For values of α ≥ 0.5, the pa-
rameter α is a disparity aversion parameter for the standardized SRI: the standardized SRI is non-
decreasing in α for α ≥ 0.5; see (2.9). The population-weighted SRI uses the estimated distributions
(displayed in the table within each figure panel) for the relative shares of population (pj = nj /n, re-
stricting to individuals with valid periodontal data) and of disease (qj = y·j /y··) in the symmetrized
Rényi divergence Sα(p,q), whereas the equally-weighted SRI uses pj = 1/m. The box plots are
design-based, obtained via rescaled bootstrap with 500 replications.

other hand, when the “Other” category is taken into account in the analysis by
race/ethnicity, the population-weighted SRI tends to be larger than the equally-
weighted SRI for all values of the parameter α, whereas when “Other” is excluded,
this ordering is reversed. This suggests that the analyst should carefully assess the
interaction between the groups’ weighting scheme and the partitioning of the pop-
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FIG. 2. (Continued).

ulation. Still, unlike in Harper et al. (2010), where the effect of weighting relative
to population size versus weighting equally was examined using different classes
of indices—the MLD for the former (a GE-based HDI with the average health
outcome as the reference), but the IDisp for the latter (a nonentropy based HDI
with the least adverse health outcome as the reference)—the SRI class of HDIs
introduced in this paper provides a unified framework for such comparative anal-
yses, controlling more effectively for other characteristics of the index. However,

TABLE 3
Standardized between-group SRI (in percent) for the analysis by race/ethnicity of moderate or

severe periodontitis prevalence among U.S. adults aged 45–74, 2001–04: Comparison of standard
error (SE) for various design-based estimation methods

Parameter value (α) 0.5 1 2 4 8 16 32 64 128

Population weighted
Index 1.85 3.67 7.25 13.82 21.76 26.56 28.84 29.93 30.45
Taylor linearization SE 0.711 1.395 2.662 4.509 5.244 4.738 4.349 4.063 3.846
Balanced repeated

replication SE 0.678 1.330 2.530 4.188 4.704 4.388 4.224 4.142 4.098
Rescaled bootstrap SE 0.728 1.428 2.707 4.393 4.838 4.449 4.234 4.137 4.091

Equally weighted
Index 2.19 4.33 8.34 14.87 21.96 26.47 28.78 29.90 30.43
Taylor linearization SE 0.822 1.604 3.013 4.948 5.783 5.412 5.003 4.560 4.060
Balanced repeated

replication SE 0.665 1.297 2.420 3.888 4.495 4.331 4.206 4.137 4.096
Rescaled bootstrap SE 0.693 1.352 2.516 3.981 4.532 4.355 4.200 4.122 4.084
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FIG. 3. Standardized between-group SRI for the analysis of moderate or severe periodontitis
prevalence by race/ethnicity among U.S. adults aged 45–74, 2001–04. The population-weighted SRI
uses the estimated distributions (displayed in the offset table) for the relative shares of population
(pj = nj /n) and of disease (qj = y·j /y··) in the symmetrized Rényi divergence Sα(p,q), whereas
the equally-weighted SRI uses pj = 1/m. The box plots are design based, obtained via rescaled
bootstrap with 500 replications. The null hypothesis of “no disparities” is tested with simulated
data for which the null distribution q0j of disease burden is (approximately) equal to the population
shares pj = nj /n.

we concur with Harper et al. (2010) that researchers should recognize that relying
on only one HDI inevitably endorses normative judgments of one nature or an-
other. Though they are mostly in agreement, here, it is clear from Figure 2 that it is
incumbent on researchers to consider both the population-weighted and equally-
weighted SRIs, as well as the gradient that corresponds to increasing values of the
disparity aversion parameter.

In Figure 3, the sampling distribution of the index is compared to one that
is obtained under a null hypothesis of “no disparities.” For the analysis by
race/ethnicity, and without disrupting the survey design structure, a dummy disease
indicator variable is simulated such that the relative shares of disease, qj = y·j /y··,
are (approximately) equal to the given relative population shares, pj = nj/n.

As seen in Figure 3, the resulting null and alternative distributions using the
population-weighted SRI are well separated, indicating that the null hypothesis
of “no disparities” would be rejected for all values of the parameter α. Further,
even if we were to use the equally-weighted SRI instead (i.e., pj = 1/m instead
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of p0j = nj/n), we would still reject the null; the overlap between the null and
alternative distributions remains minimal.

The case study in Section 5 illustrates how the SRI can help examine dispari-
ties in the prevalence of moderate or severe periodontitis among adults aged 45–74
with data from NHANES 2001–04. This case study is relevant to HP2020 because,
as stated in Section 1, most population-based objectives in HP2020 track a propor-
tion or a rate where the underlying individual-level variable has a binary outcome,
and because NHANES is the data source for approximately 1 in 7 population-based
objectives in HP2020. The supplementary case study in Talih (2013b) provides fur-
ther illustration of the proposed methodology with continuous individual-level data
on total blood cholesterol levels among adults aged 20 and over from NHANES
2005–08. These data track Heart Disease and Stroke objective HDS-8 in HP2020.

Caveat. The stratified multistage probability sampling design structure of
NHANES is well documented; see http://www.cdc.gov/nchs/nhanes.htm. While
the sample weights provided in the NHANES public-use data files reflect the un-
equal probabilities of selection, they also reflect nonresponse adjustments and ad-
justments to independent population controls. Therefore, strictly speaking, they
are not the true sampling weights wics in (4.1).

6. Conclusion. In this paper we introduce a new class of HDIs, the Rényi in-
dex (RI), which is based on a generalized Rényi divergence. When standardized,
the RI generalizes the Atkinson index, thus, a disparity aversion parameter can in-
corporate societal values associated with health equity. In addition, both the MLD
and TI, which belong to the GE class of HDIs, are limiting cases of the RI. Like
the MLD and TI, the RI can be symmetrized, resulting in the symmetrized Rényi
index (SRI). We use Taylor series linearization, balanced repeated replication, and
rescaled bootstrap to examine the design-based standard errors and bootstrapped
sampling distributions for the between-group RI and SRI in complex survey data
such as NHANES. A critical property of the RI and SRI is their invariance to the
choice of the reference used for evaluating disparities, which implies that the in-
dex remains the same, regardless of whether we use the population average as the
reference, the group with the least adverse health outcome, a Healthy People tar-
get, or some other reference. This invariance property is critical to initiatives that
monitor health disparities because the identification of a reference group can be
affected by statistical reliability. An important property of the SRI is its robustness
when compared with its GE-based counterpart.

Unlike in past comparative studies, the SRI class of HDIs introduced here pro-
vides a unified framework for ascertaining the effect of weighting groups relative
to population size versus weighting groups equally, while controlling more ef-
fectively for other characteristics of the index. Nonetheless, we concur with past
studies that relying on only one HDI inevitably endorses some normative judg-
ments. Thus, it is incumbent on the analyst who would use the SRI to consider
both population- and equally-weighted values, together with the disparity aversion

http://www.cdc.gov/nchs/nhanes.htm
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gradient. This would enable sensitivity analyses that support development of policy
recommendations that are more robust to the numerous value judgments, both im-
plicit and explicit, in the measurement of health disparities. Further, although the
disparity aversion parameter α in the standardized SRI is treated in this paper as
a “tuning” parameter, future work could, instead, determine the parameter α from
global variables such as cost of treatment, availability of health care resources, and
other structural factors discussed in Fleurbaey and Schokkaert (2009).
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SUPPLEMENTARY MATERIAL

Supplement A: Technical appendix: Decomposability (DOI: 10.1214/12-
AOAS621SUPPA; .pdf). Expressions and variance calculations for the total or
aggregate RI and SRI and their within-group components when individual-level
data are continuous.

Supplement B: Additional case study from NHANES (DOI: 10.1214/12-
AOAS621SUPPB; .pdf). Disparities in mean total blood cholesterol levels (μg/dL)
in U.S. adults aged 20 and over, 2005–08.

Supplement C: R syntax and output files (DOI: 10.1214/12-
AOAS621SUPPC; .zip). Syntax and output from case studies comparing the
equally-weighted and population-weighted RI and SRI; their group-specific,
between-, and within-group components; and their design-based standard errors
and sampling distributions, obtained via Taylor series linearization, balanced re-
peated replication, and rescaled bootstrap. Syntax is reverse-compatible with that
in Borrell and Talih (2011, 2012).
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