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DYNAMIC FILTERING OF STATIC DIPOLES IN
MAGNETOENCEPHALOGRAPHY
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We consider the problem of estimating neural activity from measure-
ments of the magnetic fields recorded by magnetoencephalography. We ex-
ploit the temporal structure of the problem and model the neural current as a
collection of evolving current dipoles, which appear and disappear, but whose
locations are constant throughout their lifetime. This fully reflects the physi-
ological interpretation of the model.

In order to conduct inference under this proposed model, it was neces-
sary to develop an algorithm based around state-of-the-art sequential Monte
Carlo methods employing carefully designed importance distributions. Pre-
vious work employed a bootstrap filter and an artificial dynamic structure
where dipoles performed a random walk in space, yielding nonphysical arte-
facts in the reconstructions; such artefacts are not observed when using the
proposed model. The algorithm is validated with simulated data, in which
it provided an average localisation error which is approximately half that of
the bootstrap filter. An application to complex real data derived from a so-
matosensory experiment is presented. Assessment of model fit via marginal
likelihood showed a clear preference for the proposed model and the associ-
ated reconstructions show better localisation.

1. Introduction. Magnetoencephalography (MEG) [Hämäläinen et al.
(1993)] is an imaging technique which uses a helmet-shaped array of supercon-
ducting sensors to measure, noninvasively, magnetic fields produced by underlying
neural currents in a human brain. The sampling rate of MEG recordings is typically
around 1000 Hz, which allows observation of neural dynamics at the millisecond
scale. Among other noninvasive neuroimaging tools, only electroencephalogra-
phy (EEG) features a comparable temporal resolution. EEG can be considered
complementary to MEG, due to its different sensitivity to source orientation and
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depth [Cohen and Cuffin (1983)]. Note that estimation of the neural currents from
the measured electric or magnetic fields is an ill-posed inverse problem [Sarvas
(1987)]: specifically, there are infinitely many possible solutions, because there
exist source configurations that do not produce any detectable field outside the
head.

There are two well-established approaches to source modeling of MEG data.
In the distributed source approach, the neural current is modeled as a continu-
ous vector field inside the head, discretized on a large set of voxels; in this case,
the inverse problem is linear, and standard regularization algorithms can be ap-
plied: commonly used methods include Minimum Norm Estimation [Hämäläinen
and Ilmoniemi (1984, 1994)], a Tikhonov-regularized solution corresponding to
the Bayesian maximum a posteriori (MAP) solution under a Gaussian prior, Min-
imum Current Estimation (MCE) [Uutela, Hämäläinen and Somersalo (1999)], an
L1 minimization that corresponds to the MAP associated with an exponential prior
in the Bayesian framework, and beamforming [Van Veen et al. (1997)]. In this
work we use the other approach, a current dipole model, where neural current is
modeled as a small set of point sources, or current dipoles; each dipole represents
the activity of a small patch of the brain cortex as an electric current concentrated
at a single point. A current dipole is a six-dimensional object: three coordinates
define the dipole location within the brain, a further three coordinates define the
dipole orientation and strength (the dipole moment). The dipole model is a use-
ful low-dimensional representation of brain activity: in typical MEG experiments
aimed at studying the brain response to external stimuli [Mauguiere et al. (1997),
Scherg and Von Cramon (1986)], the neural activity is modeled with a very small
number of dipoles, whose locations are fixed but which have activity that evolves
over time. However, estimation of dipole parameters is mathematically more chal-
lenging than estimation of the whole vector field, for at least two reasons: first,
the number of dipoles is generally unknown and must be estimated from the data;
second, the measured signals depend nonlinearly on the dipole location. For these
two reasons, dipole estimation is still largely performed with simple nonlinear op-
timization algorithms that have to be initialized and supervised by expert users,
although a few more advanced methods exist [Jun et al. (2005), Mosher and Leahy
(1999)].

Distributed source methods are more prevalent, and most of them estimate the
source distribution independently at each time point. However, since the time inter-
val between two subsequent recordings is so small—about one millisecond—the
underlying brain activity does not much change between consecutive measure-
ments. Spatio-temporal modeling can incorporate this prior knowledge by requir-
ing that the solution satisfy some form of temporal continuity. The availability of
increasing computational resources has made it possible to explicitly account for
the dynamic nature of the problem; Ou, Hämäläinen and Golland (2009), Tian
and Li (2011), Gramfort, Kowalski and Hämäläinen (2012) and Tian et al. (2012)
employ spatio-temporal regularisation.
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Recently, MEG source estimation has been cast as a filtering problem within
a state-space modeling framework. This approach has the further appeal that, in
principle, it can be used on-line, producing sequential updating of the posterior
distribution that incorporates the new data as they become available at a computa-
tional cost (per measurement update) which does not increase unboundedly over
time. In Long et al. (2006, 2011), a distributed source model was used and infer-
ence obtained with a high-dimensional Kalman filter. In Somersalo, Voutilainen
and Kaipio (2003), Campi et al. (2008), Sorrentino et al. (2009) and Pascarella
et al. (2010) a dipole model was used, and the posterior distribution of the multi-
dipole configuration was approximated either with a bootstrap or with an approxi-
mation to a Rao–Blackwellized bootstrap particle filter; however, the nature of the
approximation to the Rao–Blackwellized filter was such that it yields underesti-
mated uncertainty. However, in the interests of computational expediency, all of
these studies employed an artificial dynamic model in which dipole locations were
modeled as performing a random walk in the brain.

In this study we present a novel state-space model for MEG data, based on
current dipoles. Unlike most other work in this area, the proposed approach ex-
plicitly models the number of dipoles as a random variable, allowing new dipoles
to become active and existing dipoles to stop producing a signal. In contrast to pre-
vious work on Bayesian filtering of multi-dipole models, we treat the location of
a dipole source as fixed over the lifetime of the source. This is in accordance with
the general neurophysiological interpretation of a dipole as arising from the coher-
ent activity of neurons in a small patch of cortex. This is not a minor modification:
it significantly influences the results, their interpretation and the computational
techniques which are required in order to perform inference. The fact that dipole
locations do not change over time raises a computational challenge: while it would
seem natural to adopt a sequential Monte Carlo algorithm to approximate the pos-
terior distribution for our state-space model, it is well known that these methods
are not well suited to the direct estimation of static parameters although a num-
ber of algorithms have been developed to address this particular problem in recent
years [Kantas et al. (2009)]. Standard particle filters are well suited to the estima-
tion of time-varying parameters in ergodic state-space models, as they can exploit
knowledge of the dynamics of the system itself to provide a good exploration of the
parameter space. In order to perform inference for the proposed model effectively,
we adopt a strategy based upon the Resample-Move algorithm [Gilks and Berzuini
(2001)]: we introduce a Markov Chain Monte Carlo move, formally targeting the
whole posterior distribution in the path space, as a means to explore the state space
while working with near-static parameters. We note that the appearance and dis-
appearance of dipoles provides some level of ergodicity and ensures that there are
no truly static parameters within the state vector; this also implies that algorithms
appropriate for the estimation of true static parameters are not applicable in the
current context. The proposed dynamic structure is exploited to allow us to imple-
ment MCMC moves on this space which mix adequately for the estimation task
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at hand without having computational cost which increases unboundedly as more
observations become available. In addition, we improve the basic importance sam-
pling step with the introduction of a carefully designed importance distribution.

The remainder of this paper has the following structure: Section 2 provides a
very brief summary of filtering in general and particle filtering in particular, Sec-
tion 3 introduces the proposed models and associated algorithms, and Sections 4
and 5 provide validation of these algorithms via a simulation study and an illustra-
tion of performance on real data. A brief discussion is provided in the final section.

2. Bayesian and particle filtering. Bayesian filtering is a general approach
to Bayesian inference for Hidden Markov models: one is interested in the se-
quence of posterior distributions {p(j0:t |b1:t )}t=1,...,T , and particularly the as-
sociated marginal distributions {p(jt |b1:t )}t=1,...,T , for the unobserved process
{J1, . . . , Jt , . . .} given realizations of the measurements {B1, . . . ,Bt , . . .}, where
jt and bt are instances of the corresponding random variables. If one assumes that:

• the stochastic process {Jt } is a first order Markov process with initial distribution
p(j0) and homogeneous transition probabilities pt(jt+1|jt ) = p(jt+1|jt ), such
that p(j0:t ) = p(j0)

∏
k p(jk+1|jk); in MEG, this corresponds to the model for

evolution of current dipoles;
• each observation Bt is statistically independent of the past observations given

the current state jt , and has conditional distribution pt(bt |jt ), which it is conve-
nient to treat as time homogeneous, pt(bt |jt ) = p(bt |jt ); in MEG, the observa-
tions are thus assumed to only depend on the current neural configuration.

Then the posterior distribution at time t is given by

p(j0:t |b1:t ) = p(j0:t , b1:t )
p(b1:t )

= p(j0)
∏t

k=1 p(jk|jk−1)p(bk|jk)

p(b1:t )
,(2.1)

and satisfies the recursion

p(j0:t |b1:t ) = p(j0:t−1|b1:t−1)
p(bt |jt )p(jt |jt−1)

p(bt |b1:t−1)
.(2.2)

Unfortunately, this recursion is only a formal solution, as it is not possible to
evaluate the denominator except in a few special cases, notably linear Gaussian
and finite state-space models. It is, therefore, necessary to resort to numerical ap-
proximations to perform inference in these systems. Particle filters [see Gordon,
Salmond and Smith (1993), Carpenter, Clifford and Fearnhead (1999), and Gilks
and Berzuini (2001) for original work of particular relevance to the present paper
and Doucet and Johansen (2011) for a recent review] are a class of methods that
combine importance sampling and resampling steps in a sequential framework, in
order to obtain samples approximately distributed according to each of the filter-
ing densities in turn. These algorithms are especially well suited to applications
in which a time-series of measurements is available and interest is focussed on
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obtaining on-line updates to the information about the current state of the unob-
servable system—such as the current neural activity in the context of MEG.

Importance sampling is one basic element of particle filtering: it is a standard
technique for approximating the expectation

∫
f (x)p(x) dx of a reasonably well-

behaved function f under a density p(x) when i.i.d. samples from p(x) are un-
available; the strategy consists in sampling {xi}i=1,...,N from an importance den-
sity q(x) such that q(x)/p(x) > 0, and then approximating∫

f (x)p(x) dx =
∫

f (x)
p(x)

q(x)
q(x) dx � ∑

i

f
(
xi)wi,(2.3)

where the weights wi ∝ p(xi)/q(xi) correct for the use of the importance density
and are normalized such that

∑
i w

i = 1. Developing good proposal distributions
for the MEG setting is one contribution of the present paper. Conditions of bound-
edness of the weight function p(x)/q(x), and finiteness of the variance of f (X)

for X ∼ p(·), are together sufficient to ensure that this estimator obeys a central
limit theorem with finite variance [Geweke (1989)].

To apply importance sampling to the posterior density, one could sam-

ple Nparticles points (or particles) {j1
0:t , . . . , j

Nparticles
0:t } from a proposal density

q(j0:t |b1:t ) and associate a weight wi
t ∝ p(j i

0:t |b1:t )
q(j i

0:t |b1:t )
to each particle. In the se-

quential framework, importance sampling can be simplified by a proper choice
of the importance density: if the importance density is such that q(j0:t |b1:t ) =
q(j0)

∏
k q(jk|j1:k−1, bk), then given the sample set at time t − 1, {j1

0:t−1, . . . ,

j
Nparticles
0:t−1 }, which is appropriately weighted to approximate p(j0:t−1|b1:t−1), one

can draw {j i
t } from q(jt |j i

0:t−1, bt ) and set j i
0:t = (j i

0:t−1, j
i
t ). Furthermore, thanks

to the recursion (2.2), one can update the particle weight recursively,

wi
t ∝ p(j i

0:t |b1:t )
q(j i

0:t |b1:t )
= p(j i

0:t−1|b1:t−1)p(j i
t |j i

t−1)p(bt |j i
t )/p(bt |b1:t−1)

q(j i
0:t−1)q(j i

t |j i
t−1, bt )

(2.4)

∝ wi
t−1

p(bt |j i
t )p(j i

t |j i
t−1)

q(j i
t |j i

t−1, bt )
.

Resampling is a stochastic procedure which attempts to address the inevitable
increase in the variance of the importance sampling estimator as the length of the
time series being analysed increases by replicating particles with large weights
and eliminating those with small weights. The expected number of “offspring” of
each particle is precisely the product of Nparticles and its weight before resampling.
The unweighted population produced by resampling is then propagated forward by
the recursive mechanism described above. See Douc, Cappé and Moulines (2005)
for a comparison between some of the most common approaches. In the experi-
ments below the systematic resampling scheme of Carpenter, Clifford and Fearn-
head (1999) was employed. The resampling step allows good approximations of
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the filtering density p(jt |b1:t ) to be maintained and helps to control the variance
of the estimates over time [Chopin (2004), Del Moral (2004)].

One issue in the application of particle filtering is the choice of the importance
distribution. The simplest choice, leading to the so-called bootstrap filter, is to
use the prior distribution as an importance distribution, setting q(jt |j0:t−1, bt ) =
p(jt |jt−1). However, when the likelihood is informative, this choice will lead to
an extremely high variance estimator. A good importance density should produce
reasonably uniform importance weights, that is, the variance of the importance
weights should be small. The optimal importance distribution that minimizes the
conditional variance of the importance weights, whilst factorising appropriately, is
given [Doucet, Godsill and Andrieu (2000)] by

q�(jt |bt , jt−1) = p(jt |bt , jt−1) = p(jt |jt−1)p(bt |jt )

p(bt |jt−1)
;(2.5)

in practice, one should always try to approximate this distribution as well as is
computationally feasible. Furthermore, a convenient way to monitor the variance
of the importance weights is by looking at the effective sample size [Kong, Liu
and Wong (1994), ESS], defined as

ESS =
(

N∑
i=1

(
wi

t

)2
)−1

.(2.6)

The ESS ranges between 1 and Nparticles and can be thought of as an estimate (good
only when the particle set is able to provide a good approximation of the poste-
rior density of interest) of the number of independent samples from the posterior
which would be expected to produce an estimator with the same variance as the
importance sampling estimator which was actually used (resampling somewhat
complicates the picture in the SMC setting).

It is possible to obtain an estimate of the marginal likelihood (which, remark-
ably, is unbiased [Del Moral (2004)]) from the particle filter output,

p(b1:t ) = p(b1)

t−1∏
n=1

p(bn+1|b1:n),(2.7)

using the direct approximation of the conditional likelihood,

p(bn+1|b1:n) ≈ ∑
i

w̃i
n+1 ⇒ p(b1:t ) ≈

t∏
n=1

∑
i

w̃i
n,(2.8)

where w̃i
n+1 are the unnormalized weights at time n + 1.
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3. Filtering of static dipoles.

3.1. Statistical model. In MEG, we are given a sequence of recordings of the
magnetic field {bt }t=1,...,T , and wish to perform inference on the underlying neural
current {jt }t=1,...,T that has produced the measured fields.

In this study we model the neural current as a set of current dipoles jt =
{d(1)

t , . . . , d
(Nt )
t }; here and in the rest of the paper, superscripted parenthetical

indices label individual dipoles within a dipole set. Each current dipole d
(i)
t =

(r
(i)
t , q

(i)
t ) is characterized by a location r

(i)
t , within the brain volume, and a dipole

moment q
(i)
t , representing direction and strength of the neural current at that loca-

tion.
In order to perform Bayesian inference, we need to specify two distributions:

the prior distribution for the neural current in time and the likelihood function.

Prior distributions. We specify the prior distribution for the spatio-temporal
evolution of the neural current by providing the prior distribution at t = 0 and
a homogeneous transition kernel p(jt |jt−1). We devise our prior model for the
neural current path following two basic principles:

• at any time point t , the number of active dipoles Nt is expected to be small and
the average dipole lifetime is around 30 milliseconds;

• dipole moments change (continuously) in time, to model increasing/diminishing
activity of a given neural population, but dipole locations are fixed; for this
reason, we term this the Static model.

In addition, for computational reasons we impose an upper bound on the num-
ber of simultaneously active dipoles Nt : in the experiments below we set this upper
bound to Nmax = 7, as our informal prior expectation on the number of dipoles is
markedly less than 7, and this is born out by the data. Finally, for both computa-
tional and modeling reasons, dipole locations are required to belong to a finite set

of predefined values r(i) ∈ Rgrid with Rgrid = {rk
grid}

Ngrid
k=1 . It is customary in MEG

research to use this kind of grid, where points are distributed along the cortical
surface, the part of the brain where the neural currents flow. At the computational
level, the use of these grids allows precalculation of the forward problem, that
is, of the magnetic field produced by unit dipoles, as described later. Automated
routines for segmentation and reconstruction of the cortical surface from Mag-
netic Resonance images have been available for over ten years. In the experiments
below we used Freesurfer [Dale, Fischl and Sereno (1999)] to obtain the tessella-
tion of the cortical surface from the Magnetic Resonance data. We then used the
MNE software package (http://www.martinos.org/mne/) to get a subsample of this
tessellation with a spacing of 5 mm; the resulting grid contains 12,324 distinct
locations.

http://www.martinos.org/mne/
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At time t = 0 the initial number of dipoles N0 is assumed to follow a truncated
Poisson distribution with rate parameter 1 and maximum Nmax; we then specify a
uniform distribution over the grid points for the dipole locations, and a Gaussian
distribution for the dipole moments, leading to the joint prior distribution:

p(j0) = ∑
k

P (N0 = k)

k∏
n=1

URgrid

(
r
(n)
0

)
N

(
q

(n)
0 ;0, σqI

)
,(3.1)

where URgrid(·) is the uniform distribution over the set Rgrid and N (·;μ,�) is the
Gaussian density of mean μ and covariance �.

The transition density accounts for the possibility of dipole birth and dipole
death, as well as for the evolution of individual dipoles. It is assumed that only one
birth or one death can happen at any time point. The transition density is composed
of three summands as follows:

p(jt |jt−1)

= Pbirth × URgrid

(
r
(Nt )
t

)
N

(
q

(Nt )
t ;0,�

) ×
Nt−1∏
n=1

δ
r
(n)
t ,r

(n)
t−1

N
(
q

(n)
t ;q(n)

t−1,�
)

(3.2)

+ Pdeath × 1

Nt−1

Nt−1∑
j=1

Nt−1−1∏
n=1

δ
r
(n)
t ,r

(aj,n)

t−1

N
(
q

(n)
t ;q(aj,n)

t−1 ,�
)

+ (1 − Pbirth − Pdeath) ×
Nt−1∏
n=1

δ
r
(n)
t ,r

(n)
t−1

N
(
q

(n)
t ;q(n)

t−1,�
)
,

where δ·,· is the Kronecker delta function. The first term in equation (3.2) accounts
for the possibility that a new dipole appears, with probability Pbirth; the location
of the new dipole, for convenience the Nt th dipole of the set, is uniformly dis-
tributed in the brain, while the dipole moment has a Gaussian distribution. All
other dipoles evolve independently: dipole locations remain the same as in the
previous time point, while dipole moments perform a Gaussian random walk. The
second summand in equation (3.2) accounts for the possibility that one of the ex-
isting dipoles disappears: one of the dipoles in the set at time t − 1 is excluded
from the set at time t ; all existing dipoles have equal probability of disappearing;
surviving dipoles evolve according to the same rules described earlier. The disap-
pearance of a dipole entails a rearrangement of the dipole labels, namely, the label
of a dipole changes if a dipole with a smaller label disappears from the set. Here
aj,n is the label of the ancestor of the nth dipole after the death of the j th dipole,
and is given by

aj,n =
{

n, if n < j,

n + 1, if n ≥ j .
(3.3)

Finally, in the last term the number of dipoles in the set remains the same.
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The parameters of these prior distributions were set to reflect our informal (and
neurophysiologically-motivated) prior expectations for the number of dipoles and
their temporal evolution. Birth and death probabilities were set, respectively, to
Pbirth = 1/100 and Pdeath = (1− (1−1/30)Nt ), as the expected lifetime of a single
dipole is about 30 time points, since simultaneous deaths are neglected. In addi-
tion, due to the presence of an upper bound to the number of simultaneous dipoles,
the birth probability is zero when Nt is equal to Nmax. Inference is insensitive
to the precise value of Nmax provided that it is sufficiently large. In simulation
experiments we found that estimation was robust to moderate changes in these
parameter values, as long as they remained compatible with the assumption that
the number of sources is small. As a consequence of depending upon a finite sam-
ple approximation of the posterior, better estimation of the precise time of dipole
disappearance could be obtained by increasing the death probability to a substan-
tially larger value. However, such large death probabilities would render the prior
average dipole lifetime unrealistically short and, thus, we preferred to use a value
that makes our prior as close as possible to the underlying physiological process.
The transition density for the dipole moment is Gaussian, but the covariance ma-
trix is not isotropic: the variance is ten times larger in the direction of the dipole
moment itself, thus giving preference to changes in strength relative to changes in
the orientation.

Likelihood. The magnetic field distribution is measured by an array of SQUID-
based (Superconducting QUantum Interference Device) sensors, arranged around
the subject’s head producing, at time t , a column vector bt containing one entry
for each of the Nsensors sensors.

The relationship between the neural current parameters and the experimental
data is contained in the leadfield or gain matrix G. The size of the leadfield matrix
is Nsensors × 3Ngrid: each column contains the magnetic field produced by a unit
dipole placed in one of the Ngrid grid points and oriented along one of the three
orthogonal directions. Calculation of the leadfield matrix involves the simulation
of how the electromagnetic fields propagate inside the subject’s head, hence re-
quiring as accurate as possible models of the conductivity profile inside the head.
In the experiments below, we used a standard 4-compartment model, comprising
the brain, the cerebro-spinal fluid, the skull and the scalp; the boundaries of these
compartments were extracted from the Magnetic Resonance images of the subject,
and the Boundary Element method implemented in MNE was used to calculate
the leadfield. We denote by G(rk) the matrix of size Nsensors × 3 that contains the
fields produced by the three orthogonal dipoles at rk . The measurement model is

bt =
Nt∑
i=1

G
(
r
(i)
t

)
q

(i)
t + εt ,(3.4)
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where εt is an additive noise vector. Assuming that the εt are independent and
Gaussian with covariance �noise leads to the likelihood,

p(bt |jt ) = N
(
bt ;

Nt∑
i=1

G
(
r
(i)
t

)
q

(i)
t ,�noise

)
.(3.5)

3.2. Computational algorithm. The principal difficulty with the development
of effective particle filtering algorithms for the static model described in the pre-
vious section is as follows: the dipole locations, except at the times of appearance
and disappearance, behave as static parameters. Standard sequential Monte Carlo
algorithms operating as filters/smoothers are not well suited to inference in the
presence of static parameters and a variety of techniques have been devised to ad-
dress that particular problem [Kantas et al. (2009)]. If one has a Hidden Markov
model with unknown static parameters, if one simply augments the state vector
with the unknown static parameters and introduces an additional degenerate el-
ement in the transition kernel, then one quickly suffers from degeneracy—in the
case of the sequential importance resampling algorithm, for example, the algorithm
is dependent upon sampling good values for the static parameters at the beginning
of the sampling procedure, as there is no mechanism for subsequently introduc-
ing any additional diversity. The problem is exacerbated by the fact that this initial
sampling stage is extremely difficult in the MEG context, as the state space is large
and the relationship between the likelihood and the underlying states is complex
and nonlinear. Below, we develop strategies which exploit the fact that the dipole
locations are not really static parameters, as they persist for only a random subset
of the time sequence being analysed, together with more sophisticated sequential
Monte Carlo techniques.

Here we propose a computational algorithm characterized by two main features:
First, a mechanism that exploits the Resample-Move idea [Gilks and Berzuini
(2001)] in order to mitigate considerably the degeneracy effect produced by the
static parameters; the idea is to introduce a Markov Chain Monte Carlo move at
each iteration, targeting the whole posterior distribution. Second, a well designed
importance distribution, in which birth locations and deaths are drawn from ap-
proximations to the optimal importance density (2.5).

Resample-Move. The Resample-Move algorithm is an approach for addressing
degeneracy in sequential Monte Carlo algorithms. The idea is to use a Markov
kernel K(j ′

0:t |j0:t ) of invariant distribution p(j0:t |b1:t ) to provide diversity in the
sample set. The underlying computational machinery is still sequential importance
resampling and its validity does not depend upon the ergodicity of Markov chains.
If J0:t is distributed according to p(j0:t |b1:t ), and J ′

0:t |J0:t is distributed according
to K(j ′

0:t |j0:t ), then J ′
0:t is still marginally distributed according to p(j0:t |b1:t ) and,

more generally, the distribution of J ′
0:t cannot differ more from p(j0:t |b1:t ) in total

variation than does the distribution of J0:t .
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In this study, the Markov kernel is constructed following the standard Metropo-
lis Hastings algorithm: proposed samples j ′

0:t are drawn from a proposal distribu-
tion L(j ′

0:t |j0:t ) and then accepted with probability α, with

α = min
(

1,
p(j ′

0:t |b1:t )L(j0:t |j ′
0:t )

p(j0:t |b1:t )L(j ′
0:t |j0:t )

)
.(3.6)

Since the purpose of this move is to introduce diversity for the dipole locations,
we devised a simple proposal distribution that involves only a modification of the
dipole locations, modifying one dipole at a time. Specifically, at every time point
and for each particle we propose sequentially Ni

t moves, where Ni
t is the number of

dipoles in the particle: for each dipole we choose one of its neighbours at random
(one of the grid points within a fixed radius of 1 cm); the proposed particle j ′

0:t
differs from the original particle j0:t only in the location of the proposed dipole;
the acceptance probability α is dominated by the ratio of the likelihood of the
original and the displaced particles, that can only differ for time points after the
appearance of the dipole at (say) time t = t0,

α = min
(

1,
|S|
|S′|

∏t
n=t0

p(bn|j ′
n)∏t

n=t0
p(bn|jn)

)
,(3.7)

where |S| is the number of neighbours of the dipole in j0:t and |S′| is the number
of neighbours of the dipole in j ′

0:t . Note that the |S|/|S′| factor arises from the
asymmetric proposal—although it may, initially, appear symmetric, the restriction
to an irregular discretisation grid induces asymmetry.

Importance distribution. As mentioned in Section 2, having a good importance
distribution is important in order to make a particle filter work in practice. At the
same time, in our case the optimal importance distribution (2.5) is intractable—as
it generally is for realistic models. Here we propose an importance density that
features an acceptable computational cost but substantially improves the statistical
efficiency at two crucial points. When birth is proposed, instead of drawing uni-
formly from the brain, the new dipole location is sampled according to a heuristic
distribution based on the data. Although the closeness of this distribution to the
optimal importance distribution will influence the variance of the estimator, the
importance sampling correction ensures that we obtain consistent (in the number
of particles) estimation under very mild conditions. Conditional on not proposing a
birth, a death is proposed with approximately optimal probability. More precisely,
we propose to use the following importance distribution:

q(jt |jt−1, bt )

= Qbirth × q
(
r
(Nt )
t , q

(Nt )
t |bt , jt−1

) ×
Nt−1∏
n=1

δ
r
(n)
t ,r

(n)
t−1

N
(
q

(n)
t ;q(n)

t−1,�
)

(3.8)
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+ Qdeath(jt−1, bt )

×
Nt−1∑
j=1

Pdying
(
d(j)|jt−1, bt

) ×
Nt−1−1∏

n=1

δ
r
(n)
t ,r

(aj,n)

t−1

N
(
q

(n)
t ;q(aj,n)

t−1 ,�
)

+ (
1 − Qbirth − Qdeath(jt−1, bt )

) ×
Nt−1∏
n=1

δ
r
(n)
t ,r

(n)
t−1

N
(
q

(n)
t ;q(n)

t−1,�
)
.

Birth is proposed at a fixed rate Qbirth, because evaluating the optimal birth
probability would require the evaluation of intractable integrals and even obtain-
ing a reasonable approximation would be computationally prohibitive; we use
Qbirth = 1/3 in our algorithm. In the absence of a (near) optimal proposal, detect-
ing new dipoles is the most challenging task faced by the algorithm; it is therefore
appropriate to dedicate a substantial proportion of the computing resources to this
task and so we use a value rather larger than Pbirth = 1/100. When birth is pro-
posed, the new dipole location is proposed from a heuristic proposal distribution
q(r

(Nt )
t , q

(Nt )
t |bt , jt−1) computed from the data and obtained as follows: consider

the linear inverse problem

bt = GJt + εt ,(3.9)

where G is the whole leadfield matrix and Jt is a vector whose entries J k
t = Jt (rk)

represent the current strength at each point rk of the grid; this inverse problem can
be solved with a Tikhonov regularization method,

Ĵt = RGT (
GRGT + λregI

)
bt ,(3.10)

where R is a weighting matrix which mitigates the bias toward superficial sources
and λreg is the regularization parameter. In the experiments below, R and λ were
chosen according to the guidelines given in Lin et al. (2006). The Tikhonov so-
lution provides a widespread estimate of neural activity within the brain; by nor-
malizing the Tikhonov solution, we obtain a spatial distribution which should be
largest in the regions in which there is the highest probability that a source is
present:

q(r|bt ) = Ĵt (r)/
∑
r ′

Ĵt

(
r ′).(3.11)

Notice that the rescaled Tikhonov inverse used here is simply an importance sam-
pling proposal and the discrepancy between it and the posterior distribution im-
plied by the Bayesian model is corrected for by importance weighting (and re-
sampling, as required). Other heuristic inversion methods could be employed to
provide alternative proposal distributions.
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This density does not depend on the actual particle state, which is a significant
computational advantage: it can be calculated just once per iteration rather than
once per particle per iteration. However, there is a drawback in that its perfor-
mance is expected to worsen as the number of dipoles increases (and much of the
mass associated with q is located close to existing dipoles). We approximate the
optimal death probability via an approximation in which the dipole parameters do
not change from t − 1 to t : death is proposed with probability

Qdeath(jt−1, bt )
(3.12)

= (1 − Qbirth) × 1/Nt−1
∑Nt−1

k=1 p(bt |j (−k)
t−1 )Pdeath

1/Nt−1
∑Nt−1

k=1 p(bt |j (−k)
t−1 )Pdeath + p(bt |jt−1)(1 − Pbirth − Pdeath)

,

where j
(−k)
t−1 = {d(1)

t−1, . . . , d
(k−1)
t−1 , d

(k+1)
t−1 , . . . , d

(Nt−1)

t−1 } is the dipole set at time t −
1 without the kth dipole; if death is proposed, the dipole to be killed is drawn
according to

Pdying
(
d(k)|jt−1, bt

) ∝ p
(
bt |j (−k)

t−1

)
.(3.13)

Otherwise, with probability 1 − Qbirth − Qdeath(jt−1, bt ), the number of dipoles
remains the same. The overall approach is outlined in Algorithm 1.

3.3. Connections with previous work. Application of particle filtering for esti-
mation of current dipole parameters from MEG data has been described in Campi
et al. (2008), Campi et al. (2011), Pascarella et al. (2010), Sorrentino et al. (2009)
and Sorrentino (2010). A fundamental difference between our work and previous
studies is that they all used a Random-Walk model, that is, dipole locations were
allowed to change in time, according to a random walk. In addition, in previous
studies birth and death probabilities were set to Pbirth = Pdeath = 1/3. The compu-
tation was performed with a standard bootstrap particle filter, but a heuristic factor
was used to penalize models with a large number of dipoles: the particle weight,
rather than being proportional to the likelihood alone, was in fact proportional to

1
Ni

t !p(bt |j i
t ), where Ni

t is the number of dipoles.

Our proposed strategy has a number of benefits: it is fully Bayesian and hence
admits a clear interpretation and, most importantly, the statistical model is consis-
tent with the biophysical understanding of the system being modeled. Experimen-
tally, we found that models which incorporated artificial dynamics (random-walk
type models) led to significant artefacts in the reconstruction in which dipoles
moved gradually from one side of the brain to the other in opposition to the in-
terpretation of those dipoles as arising from fixed neural populations. Although
the Resample-Move mechanism and Random-Walk models may appear superfi-
cially similar, they have very different interpretations and consequences: using the
Random-Walk model is equivalent to performing inference under the assumption
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Algorithm 1 Outline of the Resample-Move algorithm
for i = 1, . . . ,N do

draw j i
0 from p(j0);

end for
for t = 1, . . . , T do

for i = 1, . . . ,N do (importance sampling)
draw j i

t from q(jt |j̃ i
0:t−1, bt ),

set j i
0:t = (j i

0:t−1, j
i
t )

compute the unnormalized weights w̃i
t = p(bt |j i

t )p(j i
t |j i

t−1)

q(j i
t |j i

t−1,bt )

end for
for i = 1, . . . ,N do (normalize the weights)

wi
t = w̃i

t /Wt , with Wt = ∑
i w̃

i
t

end for
for i = 1, . . . ,N do (resample)

draw j̃ i
0:t from {j i

0:t }, with P(j̃t = jk
t ) = wk

t ∀k

end for
for i = 1, . . . ,N do (move)

for k = 1, . . . ,Ni
t do

draw r� from the neighbours of r
(k),i
t

accept the jump, replacing r
(k),i
t with r� with probability given by

equation (3.7)
end for

end for
end for

that the dipole location changes from one iteration to the next; using the Resample-
Move algorithm with the Static model leads to inference consistent with a model
in which the dipoles do not move.

Below the Static model is compared with the Random-Walk model described in
previous studies; in our implementation of the Random-Walk model, dipoles can
jump between neighbouring points, with a transition probability proportional to
exp(−d2/2σ 2

d ), where d is the distance between the two points and σd = 0.5 cm
in the simulations below.

The use of improved importance distributions is also possible in the context
of the Random-Walk model and we have employed the importance distributions
described in the following section, which improved its performance in comparison
with the bootstrap approach employed previously.

Importance distributions for the Random-Walk model. In the Random-Walk
model, the transition probability distribution allows current dipole locations to
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jump within the set of neighbouring points; the use of bootstrap proposals to im-
plement this, in conjunction with random change of dipole moment, will certainly
result in a loss of sample points in the high probability region, even in the course
of a single step. In our implementation of the Random-Walk model we use the
following approach in order to improve importance sampling efficiency: for each
dipole contained in the particle—starting from the one most recently born—we
first sample the dipole moment according to the dynamic model, and then calcu-
late the probability that a dipole with the sampled dipole moment is at any of the
neighbouring locations, given the data and the other dipoles. At each step the most
recent values of the remaining parameters are always used, hence, the kth dipole
is sampled conditional on the current values of the dipoles with a larger label and
on the previous values of the dipoles with a smaller label.

The improved birth and death moves developed in the previous section can also
be employed without modification in the Random-Walk model.

3.4. Computational considerations. We end this section with a very brief ex-
amination of various computational aspects of the proposed algorithms. In the
MEG application, likelihood evaluation is responsible for the vast majority of com-
putational effort. The only additional computation in the proposed method apart
from these evaluations is the Tikhonov inverse solution, which is quite fast, and is
carried out once per iteration rather than once per particle per iteration. Because of
this, the relative cost of the Tikhonov inverse computation can be treated as negli-
gible. Consequently, we use the number of likelihood evaluations required by the
proposed algorithms as a proxy for computational effort. We itemize this effort as
follows:

• The total number of likelihood computations required by the bootstrap filter is
T N , where T is the total number of time points and N the number of particles.

• The Resample-Move algorithm requires calculation of the likelihood for the
whole past history of each dipole, hence requiring an additional T NN̄dipTlife/2,
where Tlife is the average lifetime of a dipole.

• The death proposal requires a number of additional likelihood evaluations of
T NN̄dip, where N̄dip is the average number of dipoles.

• Finally, for the Random-Walk model, the proposed conditional importance sam-
pling requires the calculation of a number of likelihoods equal to the average
number of neighbours; this is done at every time step, for each active dipole,
hence bringing an additional cost of T NN̄dipNneighbours.

Relative computational costs depend on the data set, particularly in the case of the
Resample-Move algorithm. Assuming an average number of dipoles of 1, an av-
erage number of neighbours of 25 and an average lifetime of 30 time points, the
Resample-Move algorithm has a computational cost that is approximately 16 times
higher than the bootstrap, while the conditional importance sampling is approxi-
mately 25 times more costly than the bootstrap, when run with the same number
of particles.
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As is usual in filtering settings, the various static parameters (those which do
not change from one time point to another) are assumed known and fixed. These
parameters include the noise variance, �noise, and the probability of dipole birth
and death, Pbirth and Pdeath. Approaches to specifying the physical parameters are
described in the previous section and in the experimental sections which follow.

4. Simulation experiments. In this section simulated data is used to validate
and assess the performance of the proposed method.

In simulation 1 a set of synthetic data is explicitly designed to provide meaning-
ful quantitative measure of performances; we used this set of data to compare the
performances of the Resample-Move algorithm with those of the standard boot-
strap filter for the Static model; we also provide an additional comparison with the
algorithms implementing the Random-Walk model.

In simulation 2 we apply the particle filters to a more realistic data set and
provide a visual comparison with the estimates obtained by well-known, state-of-
the-art methods.

4.1. Simulation 1. We first describe the generation of the synthetic data. Then
we propose a set of estimators for extracting relevant information based on the
approximation to the posterior density provided by the particle filter. Finally, we
present a number of measures for evaluating discrepancies between the estimated
and the target dipole configuration.

4.1.1. Generation of synthetic data. 100 different data sets were produced,
according to the following protocol:

1. The synthetic magnetic field is generated from static dipolar sources through
the assumed forward matrix (which is taken to be the same as is used in the model);
dipoles used to produce the synthetic data set belong to the grid mentioned in
Section 2 and will be referred to as target dipoles.

2. Each data set comprises 70 time points and contains the activity of 5 sources
overall; sources appear one at a time, at regular intervals of 5 time points.

3. Source locations are random, with uniform distribution in the brain, with the
constraint that no two sources in the same data set can lie within 3 centimetres
of one another. The strength of the signal produced by a source depends on the
distance of the source from the sensors, so that randomness of source location
implies that the signal strength—and eventually the detectability of a source—is
itself random.

4. Source orientations are first drawn at random, with uniform distribution in
the unit sphere, and then projected along the plane orthogonal to the radial di-
rection at the dipole location; by “radial direction” we mean the direction of the
segment connecting the dipole location to the center of the sphere best approxi-
mating the brain surface. Radial dipoles in a spherical conductor do not produce a
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FIG. 1. A sample dipole configuration generating one of the 100 data sets: in top left panel, the
number of active sources as a function of time; in the top right panel, individual source waveforms;
in the lower panels, the source locations and the grid points, randomly drawn from the uniform
distribution in the brain.

magnetic field outside of the conductor [Sarvas (1987)], so this projection avoids
the creation of undetectable sources among the target dipoles.

5. The intensity of the dipole moment is kept fixed throughout the lifetime of
each source, as shown in Figure 1 (although fixed intensity clearly does not mimic
the actual behaviour of neural sources, we adopt this simple condition as it helps
to provide a definite measure of the number of active sources at any time).

6. Noise is additive, zero-mean and Gaussian.

4.1.2. Point estimates for the multi-dipole configuration. The posterior distri-
bution of a point process is a multidimensional object that is not easy to inves-
tigate and is hard to represent faithfully by point estimates, a problem which is
well known in the multi-object tracking literature [see, e.g., Vo, Singh and Doucet
(2005) for another setting in which a very similar problem arises]. At the same
time, often in practical applications one is actually interested in point estimates;
here, we are particularly interested in evaluating whether the particle filters pro-
vide good estimates of the dipole configuration that produced the synthetic data.
We therefore propose a set of quantities that can be used for this purpose, bearing
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in mind that they are only low-dimensional projections of the actual output of the
particle filter:

• The number of active sources can be represented via the marginal distribution
for the number of dipoles, which can be computed from the approximation to
the posterior density as

P(Nt = k|b1:t ) = ∑
i

wi
t δk,Ni

t
.(4.1)

• The location of the active sources can be represented via the intensity measure
of the corresponding point process. This provides information about the dipole
location which is highly suited to visual inspection; from the particle filter we
get the following approximation to the intensity measure:

p(rt |b1:t ) � ∑
i

wi
t

Ni
t∑

k=1

δ
rt ,r

i,(k)
t

.(4.2)

In our implementation this approximation is defined for all the locations on the
grid, but not continuously over the entire volume.

• The direction and the intensity of the estimated dipoles, that is, the vectorial
mark of the point process: one way to provide such information is to calculate
the average dipole moment at each location, conditional on having a dipole at
that location:

E[qt |r] = ∑
i

wi
t

Ni
t∑

k=1

q
i,(k)
t δ

r,r
i,(k)
t

.(4.3)

We use the following procedure to obtain a “representative set” of dipoles from
the approximated posterior distribution:

1. estimate the number of dipoles in the set by taking the mode of the posterior
distribution (4.1);

2. find the N highest peaks of the intensity measure (4.2): a peak is a grid point
where the intensity measure is higher than that of its neighbours; we take these
peaks as point estimates of the dipole locations;

3. for each estimated dipole location, the estimated dipole moment will be the
average dipole moment at that location, as in (4.3).

As an alternative to the optimization in step (2), we also tried a clustering ap-
proach based on a Gaussian mixture model augmented with a uniform component,
devised to model possible outliers; in the simulations below, the two approaches
produced essentially the same results (not shown). While these measures are only
low-dimensional projections and cannot replace the rich information contained in
the posterior distribution, we feel they capture the most important features relevant
to the neuroscientist.
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4.1.3. Discrepancy measures. Once this typical set has been estimated, the

discrepancy between the estimated dipole set ĵt = {d̂(1)
t , . . . , d̂

(N̂t )
t } and the target

dipole set jt = {d(1)
t , . . . , d

(Nt ))
t } can be computed. However, measuring the dis-

tance between two point sets is a nontrivial task even in the simple case when
the two sets contain the same number of points, and it becomes even more com-
plicated when the two sets contain a different number of points. Furthermore, in
the application under study the points also have marks, or dipole moments, which
should be taken into account. In the following, we list several useful measures of
discrepancy between the target and the estimated dipole configurations:

• Average distance from closest target (ADCT): At first we may be interested in
answering this question: how far, on average, is the estimated dipole from any of
the target dipoles? To answer this question, we can calculate the ADCT, defined
as

ADCT(t) = 1

N̂t

N̂t∑
k=1

min
j

∣∣̂r(k)
t − r

(j)
t

∣∣,(4.4)

where | · | denotes the Euclidean norm.
• Symmetrized distance (SD): We may also want to incorporate in the distance

measure the presence of undetected sources. To do this, we calculate a sym-
metrized version of the ADCT,

SD(t) = 1

N̂t

N̂t∑
k=1

min
j

∣∣̂r(k)
t − r

(j)
t

∣∣ + 1

Nt

Nt∑
j=1

min
k

∣∣̂r(k)
t − r

(j)
t

∣∣.(4.5)

• Optimal SubPattern assignment metric (OSPA): If two estimated dipoles are
both close to the same target dipole, neither ADCT nor SD will notice it.
The OSPA metric [Schuhmacher, Vo and Vo (2008)] overcomes this limitation
by forcing a one-to-one correspondence between the estimated and the target
dipoles; the OSPA metric is defined as

OSPA(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
min

π∈�N̂t ,Nt

1

N̂t

N̂t∑
k=1

∣∣̂r(k)
t − r

(π(k))
t

∣∣, if N̂t ≤ Nt,

min
π∈�Nt ,N̂t

1

Nt

Nt∑
k=1

∣∣̂r(π(k))
t − r

(k)
t

∣∣, if N̂t > Nt ,

(4.6)

where �k,l is the set of all permutations of k elements drawn from l elements.
Note that this metric only calculates the discrepancy between the dipoles in
the smaller set and the subset of dipoles in the larger set that has the smaller
discrepancy with those in the smaller set.
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• Widespread measure (WM): Finally, we want to combine discrepancies in the
source location with discrepancies in the dipole moment. The following mea-
sure does this by replacing each dipole (both in the target dipole set and in the
estimated dipole set) with a Gaussian-like function in the brain, centered at the
dipole location, with fixed variance and height proportional to the dipole mo-
ment; the difference between the two spatial distributions is then integrated in
the whole brain:

WM(t) =
∫ ∣∣∣∣∣

[
N̂t∑

k=1

∣∣q̂(k)
t

∣∣N
(
r; r̂ (k)

t σ
) −

Nt∑
k=1

∣∣q(k)
t

∣∣N
(
r; r(k)

t , σ
)]∣∣∣∣∣dr,(4.7)

where the integral must in practice be approximated by numerical methods.

4.1.4. Results. We ran the Resample-Move particle filter on the 100 synthetic
data sets described at the beginning of this section. We also ran a bootstrap filter
on the same data to evaluate its ability to sample the Static model’s posterior. In
addition, we ran both a standard bootstrap and an improved filter, as described in
the previous section, implementing the Random-Walk model.

All filters were run with 10,000 particles. In addition, in order to compare
the performances for approximately equal computational cost, we ran both the
Resample-Move filter and the improved filter for the Random-Walk model with
500 particles. All filters were run with the same parameter values: the standard
deviation of the Gaussian prior for the dipole moment was set to σq = 1 nAm; the
noise covariance matrix was diagonal, with the same value σ 2

noise for each channel
and estimated from the first 5 time points. This was done in analogy with typical
MEG experiments with external stimuli, where a pre-stimulus interval is typically
used to estimate the noise variance.

We computed the discrepancy measures proposed in Section 4. The results are
shown in Figure 2; the widespread measure provided results that are very similar
to those of the OSPA metric, hence, for brevity it is not shown here. In Figure 3
we show the estimated number of sources, the effective sample size, as given by
equation (2.6), and the conditional likelihood as a function of time.

All the discrepancy measures indicate that the Resample-Move particle filter
provides a substantial improvement over the bootstrap filter. The use of three dif-
ferent measures, in conjunction with the observation of the estimated number of
sources in Figure 3, gives more insights about the qualitative nature of the im-
provements. First of all, the ADCT indicates that the dipoles estimated with the
Resample-Move are on average much closer to the target sources; in addition, there
is a rather small difference between the results obtained running the Resample-
Move with 10,000 particles and with 500 particles. The average localization error
is about 7 mm with the new model in contrast to the bootstrap particle filter which
achieves an average localization error of 1.4 cm. The SD provides a slightly dif-
ferent result: there is more difference here between 500 and 10,000 particles; this
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FIG. 2. Simulation 1. Discrepancy measures for the Static model (left column) and the Ran-
dom-Walk model (right column).

is due to the fact that using a higher number of particles allows the algorithm to
explore the state space better. In addition, the relatively small difference with the
bootstrap filter here is due to the fact that the Resample-Move algorithm tends to

FIG. 3. Simulation 1. Estimated number of sources, effective sample size and conditional likelihood
for the Static model (left column) and the Random-Walk model (right column).
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slightly underestimate the number of sources, which is penalized by the SD. Fi-
nally, in terms of the OSPA measure, the Resample-Move provides a rather large
improvement over the bootstrap: that the difference is so large is due to the fact that
the bootstrap filter tends to overestimate the number of dipoles, in the proximity of
a target dipole (as it is unable to update dipole locations and the likelihood strongly
supports the presence of some additional signal source). This does not have a big
impact on the ADCT, but is highly penalized by the OSPA. Observation of the ESS
and of the conditional likelihood in Figure 3 strengthens the previous results. The
Resample-Move algorithm maintains a higher ESS throughout the whole temporal
window, in which the number of dipoles increases from zero to five and then re-
turns to zero. The conditional likelihood further adds to the general evidence that
the Resample-Move algorithm has better explored the state space whilst the boot-
strap algorithm has missed a substantial part of the mass of the posterior. This plot
also demonstrates that, as one would expect, better performance is obtained with
a larger number of particles. However, with just 500 particles the Resample-Move
algorithm provides better localisation performance than the bootstrap filter with
10,000 particles—as demonstrated by the various discrepancy measures.

Finally, we compare the performance of the Static model and the Random-Walk
model. Noting that the bootstrap algorithm is unable to provide adequate inference
for this model, as shown in Figure 2, we consider the proposed Resample-Move
algorithm which is designed specifically to address the limitations of the simpler
algorithm in this setting. The discrepancy measures indicate that the two models
perform rather similarly in terms of average localization accuracy; this has to be
regarded as a positive fact, since the localization accuracy of the Random-Walk
model was already recognized as being satisfactory [Sorrentino et al. (2009)], and
the Static model is in fact a model for which inference is harder. However, in most
experimental conditions, the Random-Walk model is not believed to be as physi-
ologically plausible as the Static model. Notably, in this synthetic experiment in
which we know that the dipoles are actually static, we observe that the Static model
leads to higher conditional likelihood than the random walk model. As in the con-
text of Bayesian model selection, this implies that the data supports the Static
model in preference to the Random-Walk model. However, some caution should be
exercised in interpreting these results, as we are not dealing with the full Bayesian
marginal likelihood: in both cases the true static parameters (noise variance, scale
of random walk) have been fixed and so the time integral of these conditional like-
lihoods can only be interpreted as a marginal profile likelihood (it is not currently
feasible to consider the penalisation of more complex models afforded by a fully
Bayesian method in which the unknown parameters were marginalized out).

4.2. Simulation 2. We consider a simulated data set designed to mimic a real
evoked response experiment, with the typical bell-shaped source time courses and
real noise superimposed.
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FIG. 4. Simulation 2. Source locations (top row S1 and S2, bottom row S3 and S4), source time
courses and generated noisy field.

4.2.1. Generation of synthetic data. We generated the synthetic data shown in
Figure 4. A first source (S1) in the central occipital area has peak strength at 30 ms
after the hypothetical stimulus; a second occipital but more lateral and ventral
source (S2) peaks at 50 ms; then one temporo-parietal source on the lateral surface
(S3) and one parietal source on the medial surface (S4) peak at 80 and 90 ms,
respectively, with a substantial temporal overlap. Noise free measurements were
generated from the sources displayed in Figure 4 through the lead field matrix. In
order to mimic a real-world data set, these noise-free data were added to the pre-
stimulus signal from a real experiment, involving the same subject that was used to
create the lead field matrix. The resulting noisy data are shown in the same figure.

4.2.2. Comparison with other methods. We compare the Resample-Move par-
ticle filter implementing the Static model with the particle filter implementing
the Random-Walk model, as well as with three state-of-the-art methods for MEG
source estimation:

• the recursively applied multiple signal classification (RAP-MUSIC) algorithm
[Mosher and Leahy (1999), Mosher, Lewis and Leahy (1992)] is perhaps the
most popular method for automatic estimation of current dipole parameters from
MEG data, and is widely used as a reference method for both MEG and EEG
dipole modeling [de Hoyos et al. (2012), Wu et al. (2012)]. After selection of
a suitable number of components to identify a signal subspace, RAP-MUSIC
computes an index at each point within the brain, representing the subspace
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correlation [Golub and Van Loan (1984)] between the leadfield at that point and
the signal subspace. Peaks of this function are often used as point estimates of
dipole locations;

• dynamic Statistical Parametric Mapping (dSPM) [Dale et al. (2000)] is a well-
known method, whereby Tikhonov regularization is applied at each time point
independently, and the so-obtained estimate of the electrical current distribution
is divided by a location-dependent estimate of the noise variance; the resulting
quantity, also named activity estimate, has a t-distribution under the null hy-
pothesis of no activity. In the experiments below, we used the dSPM algorithm
contained in the MNE software;

• L1L2 [Gramfort, Kowalski and Hämäläinen (2012), Ou, Hämäläinen and Gol-
land (2009)] is a spatio-temporal regularization method, whereby the penalty
term has a mixed norm: an L1 norm in the spatial domain, encouraging spar-
sity of the estimated current distribution, and an L2 norm in the temporal do-
main, encouraging continuity of the source waveforms. In the experiments be-
low, we used the L1L2 algorithm contained in the EMBAL Matlab toolbox
(http://embal.gforge.inria.fr/).

We notice that the proposed comparison is necessarily a comparison of nonho-
mogeneous methods: while RAP-MUSIC is fundamentally a dipole localization
method, L1L2 produces estimates of a continuous current distribution, and dSPM
provides a statistical measure of activity; the particle filters, on the other hand, pro-
duce a dynamic approximation to the posterior distribution for a multiple current
dipole model. For these reasons, a quantitative comparison resembling that of the
previous section would be questionable and would fail to illustrate the fundamen-
tal differences between these methods. Therefore, in the following we provide a
visual comparison of the main ouputs: the posterior intensity function for the par-
ticle filters; the subspace correlation index for RAP-MUSIC; the activity estimate
for dSPM; the electrical current estimate for L1L2.

4.2.3. Results. In Figure 5 we show the results provided by the different meth-
ods at selected time points. Light and dark grey represent here the anatomical de-
tails, while color represents the estimated quantities, with values increasing from
a threshold, red, to a maximum value, yellow. The color scale is different for each
method: for the particle filters the threshold is 10−5 and the maximum is 0.1; for
dSPM the threshold is 5 and the maximum is 15; for RAP-MUSIC the threshold
is 70 and the maximum is 100; for L1L2 the threshold is 1 and the maximum
is 30. We notice that the correlation index provided by RAP-MUSIC is in fact not
time-dependent; it is only for presentation purposes that we repeat the same fig-
ures at rows 3–4 and rows 5–6. The visualization of the brain is also worth a brief
comment. The smooth brain surface in these images is indeed a computer repre-
sentation in which the highly folded cortical surface is “inflated” in such a way
that the activity in the sulci becomes easily visible. As a consequence, spatially

http://embal.gforge.inria.fr/
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FIG. 5. Simulation 2. Comparison of the maps produced by the Static model particle filter (first
column), the Random-Walk model particle filter (second column), dSPM (third column), RAP-MUSIC
(fourth column) and L1L2 (fifth column) at different time points: 30 ms (first row), 50 ms (second
row), 75 ms (third and fourth rows), 90 ms (fifth and sixth rows). Black circles mark the locations of
the true sources.

adjacent volumes—for example, the portion of the cortex in two adjacent sulci—
may be moved apart, therefore, the presence of multiple close-by peaks or blobs
in these images is most often an artefact due to the visualization, rather than an ac-
tual multi-modality of the three-dimensional spatial distribution of the displayed
quantity.
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At t = 30 ms, source 1 is recovered by all methods, the L1L2 solution being
only slightly more superficial than the actual source; this happens despite the use
of the same depth weighting method proposed in Lin et al. (2006) and described
earlier in this paper. A direct comparison of the Static model with the Random-
Walk model illustrates that the Static model tends to produce sparser probability
maps: this is due to the Resample-Move algorithm being able to accumulate in-
formation on the source location with time. At t = 50 ms, source 2 is correctly
recovered by all methods, except L1L2; L1L2 does not produce any detectable
output in the ventral area where source 2 is. In fact, we were able to estimate this
source with L1L2 by modifying the value of the regularization parameter, but this
came at the cost of making the solution at all time points notably less sparse, and
much more similar to the one provided by dSPM. At t = 75 ms, source 3 is re-
covered by all methods, with L1L2 providing a particularly accurate and sparse
solution. However, source 4 is not recovered by L1L2 nor by dSPM; tweaking the
parameters did not work for either method. On the other hand, the subspace cor-
relation computed by RAP-MUSIC does have a local maximum around source 4,
but its value of about 0.8 is not “close to 1,” hence, whether source 4 will be de-
tected depends on the subjective choice of a threshold. The same comment applies
to t = 90 ms, where, in addition, we notice that, as already noted, the Static model
implemented in the Resample-Move particle filter produces a more focal posterior
map as time goes on, as a consequence of the accumulation of information on the
source, while the Random-Walk model does not.

5. Application to real data. We applied the Resample-Move algorithm to
real MEG recordings which were obtained during stimulation of a large nerve
in the arm. This choice is motivated by the fact that the neural response to this
type of somatosensory stimulation is relatively simple and rather well understood
[Mauguiere et al. (1997)], and therefore allows a meaningful assessment of perfor-
mance.

5.1. Experimental data. We used data from a Somatosensory Evoked Fields
(SEFs) mapping experiment. The recordings were performed after informed con-
sent was obtained, and had prior approval by the local ethics committee. Data
were acquired with a 306-channel MEG device (Elekta Neuromag Oy, Helsinki,
Finland) comprising 204 planar gradiometers and 102 magnetometers in a helmet-
shaped array. The left median nerve at the wrist was electrically stimulated at the
motor threshold with an interstimulus interval randomly varying between 7.0 and
9.0 s. The MEG signals were filtered to 0.1–200 Hz and sampled at 1000 Hz.
Electrooculogram (EOG) was used to monitor eye movements that might produce
artefacts in the MEG recordings; trials with EOG or MEG exceeding 150 mV or
3 pT/cm, respectively, were excluded and 84 clean trials were averaged. To re-
duce external interference, the signal space separation method [Taulu, Kajola and
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Simola (2004)] was applied to the average. A 3D digitizer and four head posi-
tion indicator coils were employed to determine the position of the subject’s head
within the MEG helmet with respect to anatomical MRIs obtained with a 3-Tesla
MRI device (General Electric, Milwaukee, USA).

5.2. Results. The Resample-Move particle filter implementing the Static
model was applied to the MEG recordings; for the sake of comparison, we also
applied the particle filter based on the Random-Walk model and the conditional
sampling, as well as dSPM, RAP-MUSIC and L1L2, the methods already used
and briefly described in simulation 2. Both particle filters were run with the same
parameter values. The standard deviation of the Gaussian prior for the dipole mo-
ment was set to σq = 50 nAm, which is a physiologically plausible value; varying
the value of this parameter did not qualitatively alter the reconstructions obtained.
The noise covariance matrix was diagonal, the diagonal entries assuming either of
two values, one for gradiometers and one for magnetometers; these values were
obtained by averaging, across homogeneous channels, the channel-specific esti-
mates of the standard deviation obtained from the pre-stimulus interval.

Figure 6 illustrates the localization provided by the five methods. We show snap-
shots at three time points. The very first response in the primary somatosensory
area SI, at 25 ms, is localized by both the Static and the Random-Walk particle fil-
ters in a very similar way. The correlation index in RAP-MUSIC—which we recall
is not time varying—clearly has a peak around the same location; the L1L2 activity
estimate is slightly more superficial but still very close, while the dSPM estimate
is rather widespread and indicates activity in slightly more frontal areas. At time
t = 50 ms after stimulus, the Static and the Random-Walk model are showing the
same behaviour already observed in simulation 2: as the SI area has been active for
the past 25 ms, the posterior map of the Static model is much more concentrated
now, having accumulated information on the source location; the Random-Walk
model indicates activity in the same area but provides a more blurred image. The
estimate of dSPM is now closer to the probability maps provided by the two fil-
ters, while L1L2 does not show significant changes from the previous snapshot. At
time t = 85 ms, finally, we observe more activation in SI, and the additional activ-
ity in the ipsilateral and contralateral SII: observing the posterior maps provided
by the Static model we observe, as in Mauguiere et al. (1997), that the contralateral
SII activation is more frontal than the ipsilateral SII activation. The Random-Walk
model provides, again, more blurred images. The dSPM estimate is again more
widespread. RAP-MUSIC has local maxima around 0.85 in a similar area as the
particle filters for the right hemisphere, while there is a slight disagreement on
the left hemisphere; finally, the source distribution in L1L2 is not much changed
on the right hemisphere, while on the left hemisphere it provides a slightly more
posterior localization with respect to the one provided by the particle filter.

In Figure 7 we show the cumulative marginal likelihood (2.7) and the effective
sample size for the two particle filters. While the effective sample size produces
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FIG. 6. SEF data. Comparison of the maps produced by the Static model particle filter (first col-
umn), the Random-Walk model particle filter (second column), dSPM (third column), RAP-MUSIC
(fourth column) and L1L2 (fifth column) at different time points: 25 ms (first row), 50 ms (second
row), 85 ms (right hemisphere on the third row, left hemisphere on the fourth row).

rather similar results for the two models, the marginal likelihood indicates that af-
ter approximately t = 60 ms the Static model provides higher likelihood than the
Random-Walk model. Importantly, the cumulative likelihood at time t is the likeli-
hood of the whole time series up to time t . The fact that the difference between the
two models tends to increase with time indicates that, as more data are gathered,
the Static model is increasingly preferentially supported by the measurements. The
ratio of the two likelihoods at the terminal time point indicates that the whole time
series is several orders of magnitude more likely under the Static model than un-
der the Random-Walk model, thus providing confirmation that the Static model is
a much better representation of the underlying neurophysiological processes than
the Random-Walk model. An additional point that deserves to be highlighted here
is that not only are the probability maps provided by the Static model sparser than
those provided by the Random-Walk, but also (as one might reasonably expect)
they show less temporal variation. To illustrate this point, in Figure 8 we show two
maps that have been obtained by integrating over time the dynamic probability
maps provided by the Static and the Random-Walk filters: while the Static model
has high probability in few small areas and negligible probability elsewhere, the
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FIG. 7. The effective sample size and the marginal likelihood, as obtained with the Static and the
Random-Walk model with the SEF data.

Random-Walk model provides a flatter image, with rather homogeneous probabil-
ity values in a larger area, a consequence of the fact that the Random-Walk model
attaches a large part of its posterior probability mass to dipoles which move around
the brain.

As we run several independent realizations of the filters with the same param-
eter values and 100,000 particles, we observed that for t > 75 ms not all the runs
provide exactly the same estimates. While in the majority of the runs the mode of
the posterior distribution consistently presents the source configuration depicted in
Figure 6, in approximately 10% of the runs the ipsi-lateral and contra-lateral SII

FIG. 8. Time-integrated probability maps: the Static model (left column) exhibits less temporal
variation than the Random-Walk model (right column).
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sources are replaced with a pair of sources in between the two hemispheres, one at
the top in the motor area and one rather deep and central; the two SII areas are still
represented in the posterior distribution, but with slightly lower mass, and may
not appear in low-dimensional summaries of the posterior. As noted previously,
accurately summarising high-dimensional multi-object posteriors is known to be a
rather difficult problem. Finally, we note that if too small a sample size was em-
ployed, then we found that the quality of the approximation of the posterior could
deteriorate to the point that the posterior did not contain mass in a neighbourhood
of the configuration shown in Figure 6. Naturally, sample-based approximations to
high-dimensional distributions fail to accurately capture the important features of
those distributions if the sample is too small. In the case of a sample of size 10,000
we observed this failure mode in less than 10% of the runs. In practice, such a
phenomenon should be easily detected by replicating the estimation procedure a
number of times.

6. Discussion. In this study we have presented a new state-space model for
dynamic inference on current dipole parameters from MEG data with particle fil-
tering. The model has been devised to reflect the common neurophysiological in-
terpretation of a current dipole as the activity of a small patch of cortex: the number
of dipoles is time-varying, as dipoles can appear and disappear, and dipole loca-
tions are fixed during the dipole life time. Standard sequential Monte Carlo algo-
rithms are not well suited to “filtering” of static parameters; for the same reasons
simple sequential importance resampling is not able to efficiently approximate the
posterior distributions associated with these near-static objects. We have developed
a Resample-Move type algorithm with carefully designed proposal distributions
which are appropriate for inference in this type of model.

We have used synthetic data to show that the average localization error pro-
vided by the Resample-Move algorithm is close to 5 mm, that is, the average grid
spacing, even when the data are produced by five simultaneous dipoles. In addi-
tion, the effective sample size remains high even when the filter explores the high-
dimensional parameter space of five dipoles, consistent with a good approximation
of the posterior distribution. Although the quality of the approximation naturally
depends on the sample size, we demonstrated good results can be obtained with
a realistic computational cost. Finally, comparison of the conditional likelihood
of our Static dipole model with that of a Random-Walk model indicates that the
proposed method is actually capable of providing a better explanation of the data.

We have used a second simulation study to assess the localization capability of
the particle filter in comparison with dSPM, RAP-MUSIC and L1L2. The activity
maps showed that both particle filters were able to identify all the four sources
in the simulation, while dSPM and L1L2 missed at least one, and RAP-MUSIC
provided local peaks but with low intensity for one source. In addition, compari-
son of the probability maps provided by the Static and the Random-Walk models
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shows that the Static model coherently accumulates information on the source and
provides more focal maps with time, while the Random-Walk does not.

Application of the proposed method to an experimental data set has produced
similar results: the effective sample size and the conditional likelihood remain high
throughout the whole time series; the posterior probability maps are well in accor-
dance with what is understood to be the usual brain response to median nerve
stimulation. The Static model leads to physiologically-interpretable output which
is consistent with the biomedical understanding of the dipole model. We did not
observe the type of artefacts found with the Random-Walk model in which dipoles
slowly moved across the brain surface when using this model.

Future research will concentrate on increasing the number of samples and de-
creasing the computational time. Implementation on GPUs should provide a viable
way to reduce the computational time exploiting massive parallelization and given
performance improvements observed in similar settings [Lee et al. (2010)], thereby
facilitating real-time implementation. This together with the bounded per-iteration
computational cost of the filtering algorithm is a significant motivation of the ap-
proach. Improving the efficiency of the MCMC step is also of interest. Other pos-
sible interesting research directions include the use of smoothing [Briers, Doucet
and Maskell (2010)] techniques and estimation of the static parameters (which
were here fixed a priori using approaches prevalent in the literature) both online
[Kantas et al. (2009)] and offline [Andrieu, Doucet and Holenstein (2010), Chopin,
Jacob and Papaspiliopoulos (2011)], as well as generalization of the source model.
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