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The two-phase sampling design is a cost-efficient way of collecting ex-
pensive covariate information on a judiciously selected subsample. It is nat-
ural to apply such a strategy for collecting genetic data in a subsample en-
riched for exposure to environmental factors for gene-environment interac-
tion (G x E) analysis. In this paper, we consider two-phase studies of G x E

interaction where phase I data are available on exposure, covariates and dis-
ease status. Stratified sampling is done to prioritize individuals for genotyp-
ing at phase II conditional on disease and exposure. We consider a Bayesian
analysis based on the joint retrospective likelihood of phases I and II data.
We address several important statistical issues: (i) we consider a model with
multiple genes, environmental factors and their pairwise interactions. We em-
ploy a Bayesian variable selection algorithm to reduce the dimensionality of
this potentially high-dimensional model; (ii) we use the assumption of gene–
gene and gene-environment independence to trade off between bias and ef-
ficiency for estimating the interaction parameters through use of hierarchi-
cal priors reflecting this assumption; (iii) we posit a flexible model for the
joint distribution of the phase I categorical variables using the nonparametric
Bayes construction of Dunson and Xing [J. Amer. Statist. Assoc. 104 (2009)
1042–1051]. We carry out a small-scale simulation study to compare the
proposed Bayesian method with weighted likelihood and pseudo-likelihood
methods that are standard choices for analyzing two-phase data. The moti-
vating example originates from an ongoing case-control study of colorectal
cancer, where the goal is to explore the interaction between the use of statins
(a drug used for lowering lipid levels) and 294 genetic markers in the lipid
metabolism/cholesterol synthesis pathway. The subsample of cases and con-
trols on which these genetic markers were measured is enriched in terms of
statin users. The example and simulation results illustrate that the proposed
Bayesian approach has a number of advantages for characterizing joint ef-
fects of genotype and exposure over existing alternatives and makes efficient
use of all available data in both phases.
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1. Introduction. Case-control studies are popular analytical tools, particu-
larly in cancer epidemiology, for assessing gene-disease association where the
allele/genotype frequencies at a bi-allelic single nucleotide polymorphism (SNP)
locus are compared between cases and controls. Recent genomewide case-control
association studies (GWAS) have been remarkably successful in identifying sus-
ceptibility loci for many cancers [Yeager et al. (2007), Hunter et al. (2007),
Amundadottir et al. (2009)]. A large fraction of variability in the different can-
cer traits still remain unexplained, with the identified SNPs contributing modestly
to prediction of disease risk [Wacholder et al. (2010), Park et al. (2010)]. In search
of the missing heritability, it is thus natural to study the genetic architecture of a
cancer phenotype in conjunction with the known environmental risk factors (en-
vironmental toxins, dietary exposures, physical activity levels, medication use and
other behavioral risk factors). In the post-GWAS era, more efficient statistical ap-
proaches to characterize such complex gene-environment (G x E) interactions, in
terms of both design and analytic tools, have become a pressing need in cancer
epidemiology research.

Variants of the case-control sampling design have been often employed in epi-
demiologic studies. Two-phase stratified sampling [Neyman (1938)] is an efficient
alternative to the traditional cohort and case-control designs [Cochran (1963)]
from cost and resource-saving perspectives. A typical application of two-phase
sampling is for collecting expensive covariate information, for example, novel
biomarkers or genotype data on a prioritized subsample of the initial study base.
In particular, we will consider the following setup: the binary disease outcome or
case-control status D, some relatively inexpensive covariates (S) and environmen-
tal data (E) are collected at phase I (P1). At phase II (P2), genotype data (G) is
collected on a subset selected from the phase I sample. To select this phase II
subsample, stratified sampling with strata defined by phase I data (D, E and pos-
sibly S) is implemented.

There is a large amount of literature on two-phase designs, using different like-
lihood based approaches [Horvitz and Thompson (1952), Flanders and Greenland
(1991), Breslow and Cain (1988)] or estimating score approaches [Reilly and Pepe
(1995), Chatterjee, Chen and Breslow (2003), Robins, Rotnitzky and Zhao (1994)].
Maximum likelihood inference for such problems was considered in the pioneer-
ing work of Scott and Wild (1997) and Breslow and Holubkov (1997a, 1997b).
Lawless, Kalbfleisch and Wild (1999) and Breslow and Chatterjee (1999) com-
pare and contrast several approaches for analyzing two-phase data. It has been
noted that adding more phases can lead to further efficiency gains, consequently,
the two-phase design has been generalized to multi-phase designs [Whittemore
and Halpern (1998), Lee, Scott and Wild (2010)]. Haneuse and Chen (2011) pro-
pose an intermediate phase between phases I and II to reduce participation bias
caused by differential participation.

The potential for such sampling designs for G x E studies has been indicated in
Durt (2010). Many GWAS adopt this sampling at the design phase, but little atten-
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tion is paid at the analysis stage to address the sampling design, thus potentially
leading to biased estimates. To the best of our knowledge, literature on two-phase
studies of G x E interaction is very limited. Chatterjee and Chen (2007) proposed
maximum likelihood inference using a novel regression model for G x E interac-
tion studies where second stage sampling was carried out based on disease out-
come and family history. Asymptotic theories were established under the assump-
tion of independence of the genetic and environmental factors in the population.

Multiple papers [Piegorsch, Weinberg and Taylor (1994), Umbach and Wein-
berg (1997), Chatterjee and Carroll (2005)] attest the phenomenon of gaining ef-
ficiency in studies of G x E by exploiting independence between the genetic and
environmental factors under case-control sampling. Under such constraints, it is
beneficial to use the retrospective likelihood for estimating interaction parame-
ters instead of standard prospective logistic regression. However, with departures
from these constraints, biases in estimating the interaction parameter can occur
under retrospective methods. Several researchers have addressed this issue and
proposed more robust strategies for testing G x E interaction [Mukherjee et al.
(2008, 2010), Mukherjee and Chatterjee (2008), Vansteelandt, VanderWeele and
Robins (2008), Li and Conti (2009), Murcray, Lewinger and Gauderman (2009)].
There is no standard multivariate tool for handling multiple genetic markers simul-
taneously for G x G and G x E studies that data-adaptively exploits gene–gene
and gene-environment independence for gaining efficiency in estimating multiple
SNP x E interaction parameters in a potentially high-dimensional model.

Bayesian literature on two-phase studies, even beyond the context of G x E

studies, is also very limited. Haneuse and Wakefield (2007) presented the first hi-
erarchical Bayesian work that closely relates to such data structure. The Bayesian
framework presented in this paper appears to be a natural route to explore for mul-
tiple reasons. First, Bayesian estimation can lead to efficient computational algo-
rithms, as the two-phase likelihood is naturally a missing data likelihood. Second,
for G x E studies, Bayesian methods provide data-adaptive shrinkage to leverage
the constraints of gene-environment independence by imposing informative priors
around this assumption. Third, we incorporate Bayesian variable selection features
which help us to handle a potentially high-dimensional disease risk model with
main effects and interactions of multiple genes and environmental factors simulta-
neously. Fourth, we use the clever nonparametric Bayesian construction of Dunson
and Xing (2009) as a substitute for profile likelihood in the frequentist setting to
construct the retrospective likelihood under two-phase sampling. The current paper
thus contributes to analysis of G x E studies with multiple markers/environmental
exposures under an outcome-exposure stratified two-phase sampling design by of-
fering a new Bayesian treatment of the problem. Our data analysis and simula-
tion studies illustrate that for characterizing subgroup effects of the environmental
exposure across genotype categories, our method provides gain in efficiency com-
pared to other alternatives. Moreover, there are no comparable alternatives that can



546 AHN, MUKHERJEE, GRUBER AND GHOSH

offer the flexibility of our method in terms of multi-marker models and efficient
G x E analysis under the two-phase design.

The paper is largely motivated by an example that originates from a popula-
tion based case-control study of colorectal cancer (CRC) in Israel, namely, the
Molecular Epidemiology of Colorectal Cancer (MECC) study. Statins (our envi-
ronmental factor E) are a class of lipid-lowering drugs used by more than 25 mil-
lion individuals worldwide for reducing cardiovascular disease risk. The MECC
study was the first to establish a chemoprotective association of statins with risk
of CRC [Poynter et al. (2005)]. Follow-up individual studies and a meta analysis
of 18 studies have confirmed this association [Hachem et al. (2009)]. The bene-
fit of statins for reducing CRC risk has been shown to vary with genetic varia-
tions in the HMGCR (3-Hydroxy-3-methylglutaryl coenzyme A reductase) gene,
a gene involved in cholesterol synthesis [Lipkin et al. (2010)]. To understand the
mechanism of effect modification further, investigators measured 294 SNPs in 40
genes, including HMGCR (our set of genetic factors G), selected in the cholesterol
synthesis/lipid metabolism pathway. The subsample selected for genotyping from
the study population of all cases and controls was chosen by stratified sampling
conditional on statin use (E) and case-control status (D) where statin users were
purposefully oversampled. This sampling strategy was adopted due to limited bud-
getary resources and DNA samples. Complete statin use (E) data and other basic
demographic covariates (S) were available on the entire study base (phase I or P1),
and genetic data on these 294 SNPs were only available for the phase II subsam-
ple (P2).

In addition, in the MECC study, due to experimental and laboratory logistics,
genotype data were missing on a subset of individuals selected in P2 on a group of
genes (G1, say) and on a different subset of individuals on another group of genes
(G2, say). This led to a nonmonotone missing data structure with some individuals
in P2 having observations on both (G1,G2) [subset denoted by P2(G1,G2)] and
some only on G1 [subset denoted by P2(G1)] and some only on G2 [subset denoted
by P2(G2)]. Figure 1 is a flow diagram of the sampling scheme and missingness
pattern in the data.

The rest of the paper is organized as follows. In Section 2 we present the model
ingredients: the likelihood, priors and posteriors. In Section 3 we discuss the anal-
ysis of statin x gene interaction in the MECC study. In Section 4 we conduct a
simulation study to compare the various maximum likelihood and score based ap-
proaches with the Bayesian approach. Section 5 concludes with a discussion.

2. Proposed methods.

2.1. The likelihood. We refer to Figure 1 for understanding the data structure
and construction of our likelihood. Let u and D denote the subject indicator and
disease status, respectively. Here, E is environmental exposure and S are basic
demographic covariates as described before. Let W = (E,S). There are N indi-
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FIG. 1. Data structure under two-phase sampling with partial missingness in phase II genetic
covariates from the Molecular Epidemiology of Colorectal Cancer study.

viduals in phase I and M individuals in phase II. To simplify notation, we write
the retrospective likelihood corresponding to a two-gene model (G1, G2), with
the understanding that the methods/notation can be directly extended to gene-sets
(G1,G2) where each contain multiple SNPs. The two-phase likelihood has the fol-
lowing form to capture the sampling phases and the missingness patterns in G
(Figure 1):

LTP = ∏
u∈P1\P2

P(Wu|Du) × ∏
u∈P2(G1)

P(G1u,Wu|Du)

× ∏
u∈P2(G2)

P(G2u,Wu|Du) × ∏
u∈P2(G1,G2)

P(G1u,G2u,Wu|Du).

Each term in LTP can be factorized by using P(G1,G2,W |D) = {P(D|G1,

G2,W) P(G1,G2|W)P(W)}/P(D). This retrospective likelihood is then marginal-
ized over the missing data in each term. We assume missing completely at random
[Little and Rubin (2002)] for the genotype data collected at phase II. The likeli-
hood is then expressed as

LTP = ∏
u∈P1\P2

∑
g1,g2

P(Du|g1, g2,Wu)P(g1, g2|Wu)P(Wu)/P(Du)

× ∏
u∈P2(G1)

∑
g2

P(Du|G1u, g2,Wu)P(G1u, g2|Wu)P(Wu)/P(Du)(2.1)
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× ∏
u∈P2(G2)

∑
g1

P(Du|g1,G2u,Wu)P(g1,G2u|Wu)P(Wu)/P(Du)

× ∏
u∈P2(G1,G2)

P(Du|G1u,G2u,Wu)P(G1u,G2u|Wu)P(Wu)/P(Du),

where P(Du) = ∑
g1,g2

∫
w P(Du|g1, g2,w)P(g1, g2|w)P(dw) with the integral re-

placed by the sum when components of W are discrete. Corresponding to this
likelihood, there are three model ingredients:

1. A DISEASE RISK MODEL. We assume P(D = 1|G1 = g1,G2 = g2,W =
w;β) = H [{β0 + m(g1, g2,w;β)}], where H is the logistic function H(u) =
{1 + exp(−u)}−1. Typical choice of m involves, say, for two genes G1 and
G2, m(g1, g2,w;β) = βG1g1 + βG2g2 + βEe + β�

S s + βG1G2g1g2 + βG1Eg1e +
βG2Eg2e, noting that w = (e, s).

2. A MODEL FOR (G1,G2|W = (E,S)). For genotype data at a bi-allelic lo-
cus, Gj can take three possible values (“g0 = aa,” “g1 = Aa” and “g2 = AA”).
We assume, P(G1 = gj ,G2 = g′

j |W = w;λ) = qjj ′(w;λ), j, j ′ = 0,1,2. This
specification will require a joint model for multivariate categorical data (trinary
for SNP data at a bi-allelic locus). Under gene–gene and gene-environment inde-
pendence, the model can in general be factorized conditional on covariates S, for
j, j ′ = 0,1,2,

P
(
G1 = gj ,G2 = g′

j |E = e,S = s;λ) = P(G1 = gj |S = s,λ1)P
(
G2 = g′

j |S = s,λ2
)

︸ ︷︷ ︸
under G-G and G-E independence

.

Instead of the above fully nonparametric model, we explore a parametric model
for the joint distribution P(G1,G2|W). We consider a class of log-linear models
with linear by linear structure [Agresti (2002)] for parsimonious modeling of the
(G1,G2|W) associations,

log
{
μ

(
G1 = gj ,G2 = g′

j |E = e,S = s;λ)}
= λ0 + λG1gj + λG2g

′
j + λEe + λ�

S s(2.2)

+ λG1G2gjgj ′ + λG1Egje + λG2Egj ′e + λ�
G1S

gj s + λ�
G2S

gj ′s,

where gj are chosen ordinal scores, typically 0, 1, 2 [Agresti (2002)]. This is
the common allelic dosage coding under a log-additive genetic susceptibility
model. Our method could easily be extended to a co-dominant coding of the ge-
netic factor using two dummy variables. Since log-additivity is often assumed
for screening interactions, and for simplicity of presentation in terms of one pa-
rameter estimate as opposed to two, we proceed with this additive coding. Ad-
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ditionally, even if the true genetic susceptibility model is co-dominant with the
disease-causing allele, for a tagging marker which is correlated to this causal al-
lele, one would not a’priori know the direction of association of the marker al-
lele and causal allele. Pfeiffer and Gail (2003) show that the additive scores are
more robust to choice of marker allele and varying correlation scenarios. In case
of high-dimensional G, we can further reduce the dimensionality of the problem
by assuming common association parameters λGE and λGS between similar func-
tional groups of SNPs. As discussed in Agresti (2002), this Poisson log-linear
model has a corresponding multinomial representation. Thus, the probability of
PG1,G2(gj , g

′
j |λ) = P(G1 = gj ,G2 = g′

j |E = e,S = s) can be written in terms of
the multinomial probabilities,

PG1,G2

(
gj , g

′
j |λ

)
= exp

(
λG1gj + λG2g

′
j + λG1G2gjgj ′

+ λG1Egje + λG2Eg′
j e + λ�

G1S
gj s + λ�

G2S
g′

j s
)

×
( 2∑

l=0

2∑
l′=0

exp
(
λG1gl + λG2g

′
l + λG1G2glg

′
l′

+ λG1Egle + λG2Eg′
l′e + λ�

G1S
gls + λ�

G2S
g′

l′s
))−1

.

Note that gene–gene and gene-environment independence in the above model
(2.2) will imply λG1E ≡ λG2E ≡ λG1G2 ≡ 0.

3. A MODEL FOR W = (E,S). A nonparametric and flexible model for the
distribution of W is desired. Recall that W can be a mixed set of quantitative
and categorical variables. For the MECC example W is a set of categorical co-
variates, which will be our primary focus in this paper. The approach for mod-
eling the joint distribution of a set of categorical variables that we follow for W

can also be applied to the the joint distribution of the trinary genotype variables
G1 and G2 in (2.2) as well. However, reflecting prior faith on the gene–gene and
gene-environment independence assumptions through direct priors on parameters
λG1E,λG2E,λG1G2 in the log-linear model is more straightforward for a practi-
tioner (2.2). This is the primary reason for using (2.2) for the second component
P(G1,G2|W = (E,S)).

Let Wu = (Eu,Su) denote the W data corresponding to subject u, u = 1, . . . ,N .
Here Wu is p × 1 vector of p categorical variables, that is, Wu = (wu1, . . . ,wup)

for a subject u. Assume that the j th component of W can have dj values j =
1, . . . , p. In order to parsimoniously model this (d1 × d2 × · · · × dp) joint dis-
tribution, DX first note that the joint distribution of two categorical variables can
always be expressed as a finite mixture of product-multinomial distributions. Ex-
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tending this idea, DX introduce a latent class index variable zu ∈ {1, . . . , k}, such
that wur,wut , r, t ∈ {1, . . . , p}, r �= t , are conditionally independent given zu. Then
the joint distribution for wu has this finite mixture representation,

PW(wu1 = c1, . . . ,wup = cp)

=
k∑

h=1

P(wu1 = c1, . . . ,wup = cp|zu = h)P (zu = h)(2.3)

=
k∑

h=1

P(zu = h)

p∏
j=1

P(wuj = cj |zu = h).

For notational convenience, we rewrite (2.3) as

PW(wu1 = c1, . . . ,wup = cp) = πc1···cp =
k∑

h=1

νh

p∏
j=1

ψ
(j)
hcj

,

(2.4)
d1∑

c1=1

· · ·
dp∑

cp=1

πc1···cp = 1,

where ν = (ν1, . . . , νk)
� is a probability vector with νh = P(zu = h) and ψ

(j)
hcj

=
P(wuj = cj |zu = h) is a dj ×1 probability vector, that is, the conditional probabil-
ity of wuj = cj , given that subject u is in latent class h for j = 1, . . . , p. We will
discuss the choice of k through a Dirichlet process prior structure on this latent
class probability model in the next section.

REMARK 1. While Chatterjee and Chen (2007) and Chatterjee and Carroll
(2005) use profile likelihood for handling the distribution of W nonparametrically,
it has been a challenging task in the Bayesian framework to posit a flexible model
for W = (E,S) which could be a mixture of categorical and continuous covariates.
In this mixed case, Müller et al. (1999) model the joint distribution of the contin-
uous covariates through a Dirichlet process mixture of normals. Then, conditional
on the continuous covariates, the categorical variables have a joint multivariate
probit distribution. A recent paper by Bhattacharya and Dunson (2012) extends
the above DX construction for categorical data to handle joint distribution mod-
eling of more complex data, including continuous and discrete data. They extend
the conditional independence idea and replace the product-multinomial structure
in (2.4) by a product of various kernels, such as Gaussian, Poisson and more com-
plex univariate or multivariate distributional kernels. The MECC example does not
require going beyond the original DX construction, but with continuous E, this is
what we would adopt.
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REMARK 2. If the phase I sample is a cohort study, with disease endpoint D,
then the corresponding likelihood is proportional to

Lcohort,TP ∝ ∏
u∈P1\P2

∑
g1,g2

P(Du|g1, g2,Wu)P(g1, g2|Wu)

× ∏
u∈P2(G1)

∑
g2

P(Du|G1u, g2,Wu)P(G1u, g2|Wu)

(2.5)
× ∏

u∈P2(G2)

∑
g1

P(Du|g1,G2u,Wu)P(g1,G2u|Wu)

× ∏
u∈P2(G1,G2)

P(Du|G1u,G2u,Wu)P(G1u,G2u|Wu).

Similarly, if environmental data E is collected in phase II as well, the first term
representing the phase I cohort likelihood can also involve an integral over the
missing E data with respect to a probability distribution dF(E), exactly as in
equation (3) of Chatterjee and Chen (2007). A surrogate measure of E, namely,
E∗, may be available in phase I and a measurement error model relating E and E∗
can also be used to construct a joint likelihood of phases I and II data.

2.2. Priors. As mentioned before, for this complex retrospective likelihood
formulation, we have three sets of parameters from the above three ingredients of
the likelihood. For β in the disease risk model, we use a spike and slab type mixture
prior to handle variable selection in a high-dimensional disease risk model with
multiple markers. For λ in the multivariate gene model, the Bayesian hierarchical
approach provides a flexible way to allow for uncertainty around the assumption
of gene–gene and gene-environment independence, through prior on λG1G2, λG1E

and λG2E . When sparsity occurs in a certain configuration of (G1,G2,W) or di-
mension of (G1,G2,W) grows, the frequentist profile likelihood estimation may
become unstable and the log-linear model with shared parameters across gene-
sets and the DX latent mixture construction aid with such situations. We follow
the same sequence as in the previous section to describe the prior structure on the
parameters.

1. In the presence of multiple genes in G1 and G2, the logistic disease risk
model can potentially have many pairwise and higher order interaction terms. We
implement a scalable variable selection framework via spike and slab type priors
[Mitchell and Beauchamp (1988), George and Mcculloch (1993)] on the param-
eters β in the disease risk model P(D|G1,G2,W ;β). We impose mixture prior
distributions on each component of β , say, (β0, βG1, βG2, βE,βS,βG1G2, βG1E ,
βG2E) for a two-gene model. In general, we denote this vector by βnβ×1 = {βr, r =
1, . . . , nβ}. Given a latent variable p0 representing the mixture weight on the “not
informative” regression coefficients, we describe the hierarchical prior structure as
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follows:

βr |fr, τr
ind∼ N

(
0, frτ

2
r

)
, r = 1, . . . , nβ,

fr |v0,p0
i.i.d.∼ p0δv0(·) + (1 − p0)δ1(·),

τ−2
r |a1, a2

i.i.d.∼ Gamma(a1, a2),

p0
i.i.d.∼ Beta(a, b).

As discussed in Ishwaran and Rao (2003), v0 in the above specification is assumed
to be a small positive value near 0. Note that fr can assume two values v0 or 1. At
each iteration of posterior sampling, fr takes value 1 if sampled βr is significantly
away from zero, implying that the r th covariate is potentially informative. Note
that a key feature of this prior specification is that the marginal prior variance of
βr is calibrated as var(βr) = frτ

2
r and has a bimodal distribution. Large var(βr)

can occur when fr = 1 and τ 2
r is large, inducing large values of βr , identifying

potentially informative covariates. Small values of var(βr) occur when fr assumes
value v0, leading to values of βr that are near zero, suggesting that βr is potentially
uninformative. The value of p0 controls how likely it is for fr to be v0 or 1, thus
controlling how many βr are nonzero or the complexity of the model. The Gamma
parameters (a, b) control the degree of parsimony through the prior on p0. We
set (a, b) = (1,1), that is, a uniform prior on p0, for the analysis we present in the
main text. Note that (a1, a2) determines the prior on τ 2

r and thus the variance of βr .
We fix (a1, a2) at (5,50) to allow the possibility of large prior variances on β . The
values used for the hyperparameters in the hierarchy are exactly as recommended
in Ishwaran and Rao (2003).

2. In the joint log-linear model (2.2), we typically assume vague normal priors
with large variance on the parameters (λG1, λG2, λG1S , λG2S). In our data exam-
ple, we have used a N(0,104) prior. On the other hand, for the G-E pairwise
association parameters (λG1G2, λG1E,λG2E), we reflect a priori information on
G-G or G-E independence via a normal prior centered at zero but with two differ-
ent choices for the prior variance. In the first set of priors we reflect the belief that
with 95% probability the association parameter lies between log(0.8) and log(1.2).
This leads to an approximate SD = 0.1 under a normal distribution and, thus, we
assume an informative prior of N(0,10−2). In the second choice, following the
empirical Bayes estimation of Mukherjee and Chatterjee (2008), we compute as-
sociation parameters for G1-G2, G1-E, and G2-E in the control subjects in the
data, say, θ̂ , and use a data-driven prior N(0, θ̂2) on λG1G2 , λG1E and λG2E .

3. The mixture representation in (2.4) requires determining the number of latent
classes k. Following DX, instead of selecting a fixed k, a Bayesian nonparametric
approach is carried out through the Dirichlet process prior specification on ν:

π =
∞∑

h=1

νhψh, ψh = ψ
(1)
h ⊗ · · · ⊗ ψ

(p)
h , h = 1, . . . ,∞,
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ψ
(j)
h ∼ Dirichlet(aj1, . . . , ajdj

) independently for j = 1, . . . , p,

νh =
∞∑

h=1

Vh

∏
l<h

(1 − Vl), Vh ∼ Beta(1, α),

α ∼ Gamma(aα, bα),

where ⊗ is the outer product. The parameter α is a hyper-parameter that controls
the rate of decrease from the stick-breaking process [Sethuraman (1994)]. For ex-
ample, in the case of small values of α, νh decreases toward zero quickly with
increasing h, thus putting most of the weight on the first few components, leading
to a sparse representation. The hyperprior on α allows one to data-adaptively deter-
mine the degree of sparseness or the number of components needed. As discussed
in Dunson and Xing (2009), we set (aα, bα) = (1/4,1/4) for a vague prior which
implies the probability of independence across components of w in the product
multinomial model to be 0.5. We set uniform priors for each category probability
ψ with aj1 = · · · = ajdj

= 1, for j = 1, . . . , p and let the data dominate over pri-
ors. To minimize large numbers of mixture components instead of using infinite
mixtures, we truncate the maximum of the number of mixture components k at 30
in the real data example [Ahn et al. (2013)]. We study sensitivity with respect to
this truncation threshold in Table 1.

2.3. Posterior sampling. In the full likelihood (2.1), we would like to point out
that the three components are linked with each other through the sum over each
component in the expression for P(D) in the denominator. We denote the two-
phase likelihood in (2.1) by LTP which involves the parameters (β,λ,ψ,V, α).
The full conditionals are not reducible to a simpler closed form and are best repre-
sented by the following proportionality relations:

βr |· ∝ LTP × exp
(
− β2

r

2frτ 2
r

)
, r = 1, . . . , nβ,

τ−2
r |· ∝ Gamma

(
a1 + 0.5, a2 + β2

r

2fr

)
,

fr |· ∝ {
I (fr = v0)p0 + I (fr = 1)(1 − p0)

} × exp
(
− 1

2frτ 2
r

β2
r

)
× f −0.5

r ,

p0|· ∝ Beta

(
a +

nβ∑
r=1

I (fr = v0), b +
nβ∑
r=1

I (fr = 1)

)
,

λl|· ∝ LTP × exp
(
− λ2

l

2σ 2

)
, l = 1, . . . , nλ,

where nβ and nλ again represent the number of parameters in (β,λ), respectively.
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Posterior sampling corresponding to P(W): Let us recapitulate the model struc-
ture for W which is essentially a Dirichlet process mixture of discrete Dirichlet
kernels. For u = 1, . . . ,N and j = 1, . . . , p,

wuj ∼ Multinomial
({1, . . . , dj },ψj

zu,1, . . . ,ψ
j
zu,dj

)
,

zu ∼ Vh

∏
l<h

(1 − Vl)δh, Vh ∼ Beta(1, α), α ∼ Gamma(aα, bα).

DX present an efficient data-augmented Gibbs sampling algorithm by augmenting
the likelihood with latent constructs following Walker (2007). The details of the
updating steps are described in the supplemental article [Ahn et al. (2013)].

Note that while the entire likelihood in DX is constituted of W data only,
in our problem, P(W) is embedded as a component in the joint retrospec-
tive likelihood LTP in (2.1). Thus, for updating the parameters involved in
P(W), say, θ(={ψ,V, α}), we use the Metropolis Hastings algorithm. Only the
terms

∏
u P(Wu)/P(Du) from the full likelihood (2.1) involve θ , where P(Du) =∑

g1,g2

∑
w P(Du|g1, g2,w) P(g1, g2|w)P(w). We draw θ following the DX algo-

rithm and for the proposal density of θ we consider the implied full conditional
q(θnew|W) as determined by this algorithm. Then given λ,β , we repeat the fol-
lowing updates of θ :

• At iteration l, sample a vector θnew from q(θnew|W) as described in the Dunson
and Xing (2009) algorithm.

• Compute the acceptance ratio

r
(
θnew, θ l

) = min
[
1,

∏
u P(Du|θ l ,λ,β)∏

u P(Du|θnew,λ,β)

]
.

In calculating the acceptance ratio, we note that the numerator and denomina-
tor

∏
u{P(Wu|θnew)}p(θnew) q(θ l|W)/

∏
u{P(Wu|θ l)}p(θ l)q(θnew|W) are can-

celed out where p(θ) is a prior for θ .
• If r(θnew, θ l) < U where U ∼ unif(0,1), we set θ l+1 = θnew. Otherwise, the

candidate vector θnew is rejected and θ l+1 = θ l .
• Repeat the steps until the posterior chains converge.

Given the full conditionals, we implement the Gibbs sampler [Geman and Ge-
man (1984)] with Metropolis Hastings updates to sample from respective full con-
ditional distributions. For each parameter, we iterate 50,000 times and discard the
first 40,000 iterations as “burn-in.” We check convergence of the chains using
trace plots and the numerical diagnostic statistic “potential scale reduction fac-
tor” [David (1992)] using the R package CODA [Plummer et al. (2009)]. Auto and
cross-correlation checks are performed and a thinning of every tenth observation is
carried out. Remaining posterior samples are used to construct estimated posterior
summaries needed for Bayesian inference.
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3. The Molecular Epidemiology of Colorectal Cancer study. In this section
we describe the motivating example from the MECC study in detail and present
analysis results. We use data on 1746 cases and 1853 controls with completely
observed response to the question whether statins were used for more than 5 years.
The binary variable “statin use of at least 5 years” (E) is the environmental factor
of interest with 91% “NO” and 9% “YES.”

We adjust for completely observed confounders and precision variables (S): age
(S1), gender (S2), ethnicity (S3), physical activity (S4), family history of CRC (S5),
vegetable consumption (S6), NSAID usage within 3 year (S7) and Aspirin usage
within 3 year (S8). Age and ethnicity variables were dichotomized as Age ≥ or <

50 (94% and 6%, resp.), and “Ashkenazi” and “Non-Ashkenazi” (68% and 32%,
resp.). Gender (S3) was coded as 1 (50%) for male and 0 (50%) for female. The
remaining binary factors (S4, S5, S6, S7, S8) are classified to 1 or “YES” with the
proportions of (0.36, 0.09, 0.31, 0.02, 0.20), respectively.

For genotyping at phase II, stratified-sampling based on the disease status
(D) and statin use (E) was carried out. All case-control subjects with statin use
(“YES”) were included at the phase II sample. We have 1200 cases and 1200 con-
trols at phase II with data available on 294 trinary SNPs G = (G1, . . . ,G294).
Genotype data are not completely observed even at phase II due to technical geno-
typing failures for a limited number of SNPs. Among 2400 case-control subjects
at phase II, 56 subjects and 20 had partial genotype information on two subsets of
SNPs. We did not have a dense set of markers typed across the genome to success-
fully impute these missing genotypes, thus we consider a marginalized likelihood
as in (2.1).

Among 294 SNPs, we first illustrate our methods with two SNPs on two genes,
RS1800775 on CETP (G1) and RS1056836 on CYP1B1 (G2), where both SNPs
exhibit significant interactions with statin use in an initial single marker interac-
tion analysis. We compare our methods for this simple two SNP model to some
of the alternative methods that can only handle single marker interaction anal-
ysis. The raw frequencies of the cross-classification of case-control status (D),
statins (E), genotypes G1 and G2 are shown in online supplementary Table 1 [Ahn
et al. (2013)]. Simple logistic regression analysis was carried out to examine G1-
E and G2-E association among control subjects and yielded odds ratios of 1.11
and 1.01 and corresponding p-values of 0.30 and 0.91, respectively. Based on a
chi-squared test for independence, G1-G2 reveals no association (p-value of 0.90)
These tests suggest that the data support G1-E, G2-E and G1-G2 independence
assumption.

We report the results of the multivariate analysis in Table 1. Along with the two-
phase full Bayes approach (TPFB), we consider five alternative methods. Unfortu-
nately, none of these competing methods use the data in both phases and make use
of the independence constraints. The first three use phase II data only (i) uncon-
strained maximum likelihood (UML), a retrospective analysis that does not specify
any constraints on P(G1,G2|E,S), (ii) constrained maximum likelihood (CML),



556
A

H
N

,M
U

K
H

E
R

JE
E

,G
R

U
B

E
R

A
N

D
G

H
O

SH

TABLE 1

(a) Analysis results for the MECC study data with statins (E), G1 RS1800775 on CETP and G2 RS1056836 on CYP1B1. The model adjusts age (S1,
“>50” = 1, “≤50” = 0), gender (S2, male = 1, female = 0), ethnicity (S3, Ashkenazi = 1, Non-Ashkenazi = 0), sports activity (S4, Yes = 1, No = 0),
vegetable consumption (S5, High = 1, Low = 0), family history of CRC (S6, Yes = 1, No = 0), the use or nonuse of NSAID within 3 years (S7, Yes = 1,
No = 0), the use or nonuse of Aspirin within 3 years (S8, Yes = 1, No = 0). Under the TPFB method the “est.” corresponds to the posterior mean, whereas
PSD corresponds to posterior standard deviation. The methods that yield the smallest PSD are in bold font in each row

TPFB TPFBemp WL PL UML CML EB
est.(PSD) est.(PSD) est.(se) est.(se) est.(se) est.(se) est.(se)

Exposure variables
G1 0.04 (0.09) 0.01 (0.09) 0.00 (0.09) 0.00 (0.09) 0.00 (0.09) 0.00 (0.08) −0.07 (0.08)
G2 −0.04 (0.10) −0.06 (0.10) −0.13 (0.10) −0.13 (0.10) −0.13 (0.10) −0.12 (0.08) −0.12 (0.08)
Statin use −1.29 (0.30) −1.32 (0.27) −1.30 (0.30) −1.30 (0.30) −1.40 (0.30) −1.54 (0.28) −1.51 (0.29)

G1 x G2 0.01 (0.07) 0.03 (0.05) 0.05 (0.08) 0.06 (0.08) 0.06 (0.08) 0.06 (0.06) 0.06 (0.06)

G1 x statin use 0.34 (0.17) 0.34 (0.15) 0.25 (0.18) 0.25 (0.18) 0.25 (0.18) 0.38 (0.15) 0.34 (0.17)

G2 x statin use 0.33 (0.16) 0.33 (0.16) 0.38 (0.18) 0.38 (0.19) 0.38 (0.20) 0.38 (0.18) 0.38 (0.19)

Gene-statin and gene–gene association parameters from P(G1,G2|E,S)

λG1G2 0.02 (0.05) 0.00 (0.05)

λG1E 0.05 (0.07) 0.08 (0.06)

λG2E 0.01 (0.07) 0.01 (0.07)

(b) Sensitivity analysis with respect to the maximum number of allowable mixture components kmax, and the prior on G-G and G-E association param-
eters λ

G1 G2 Statin use G1 x G2 G1 x statin use G2 x statin use

kmax = 10 TPFB 0.05 (0.10) −0.03 (0.10) −1.29 (0.30) 0.01 (0.07) 0.36 (0.16) 0.32 (0.17)
TPFBemp 0.01 (0.09) −0.06 (0.10) −1.32 (0.29) 0.03 (0.07) 0.31 (0.15) 0.32 (0.16)

kmax = 30 TPFBnon 0.05 (0.11) −0.03 (0.11) −1.29 (0.31) 0.01 (0.07) 0.34 (0.19) 0.34 (0.21)

TPFB, TPFBemp, TPFBnon: Two-phase full Bayes [with informative prior N(0,10−2), using empirical estimates for prior variances, with noninformative

prior N(0,104)] on G-E association parameters; UML: unconstrained maximum likelihood, CML: constrained maximum likelihood, EB: empirical-
Bayes, WL: weighted likelihood and PL: pseudo-likelihood.
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that imposes the Hardy–Weinberg equilibrium as well as G1-E/G1-G2 indepen-
dence, (iii) empirical-Bayes (EB), using data-adaptive “shrinkage estimation” be-
tween the constrained and unconstrained ML estimates. Since methods (ii) and (iii)
are developed for single marker analysis, G2-E independence cannot be enforced
in existing software [we used the “CGEN” package by Bhattacharjee, Chatterjee
and Wheeler (2011)]. These three methods completely ignore biased sampling at
phase II and may thus lead to biased estimation of the main effect of E, particu-
larly if the exposure sampling rates were the differential among cases and controls.
The next two approaches use information from both phases under a prospective
likelihood framework: (iv) a Horvitz–Thompson estimator, typically known as a
weighted likelihood (WL) approach [Manski and Lerman (1977), Breslow and
Chatterjee (1999)]. This approach uses sampling fractions nij /Nij , where nij and
Nij are the number of subjects corresponding to D = i,E = j at phases II and I,
respectively. The sampling fraction serves as weights in the likelihood to adjust
for biased sampling [we used the svyglm function in the “survey” package in R by
Lumley (2011)]. Finally, (v) a pseudo-likelihood (PL) approach which also adjusts
for biased sampling probabilities in a likelihood framework [Schill et al. (1993)].
Briefly, if we denote Pij = P(D = i|E = j) = exp(iαj )/{1 + exp(αj )} where αj

is the log-odds for D = 1 when E = j , then the pseudo-likelihood is defined as∏
i,j P

Nij

ij

∏
i,j,k pijk . Here,

pijk = nij exp{i(β0 − αj + sijkβ)}
n0j + n1j exp(β0 − αj + sijkβ)

,

where sijk denotes covariate values for a subject with D = i and E = j .
Note that all of these five methods use completely observed phase II data on G1

and G2 as opposed to our proposed method that includes partially observed data
by marginalization of the likelihood in terms of G1 and G2 when needed.

As previously explained, we present our method (TPFB) corresponding to two
different priors on the G-E and G-G association parameters in model (2.2). First,
we consider informative prior N(0,10−2) that enforces fixed prior belief around
G-E and G-G independence; we denote this by TPFB. The analysis using an
alternative prior where the prior variances on λGG and λGE are estimated based on
observed association in the data is denoted by TPFBemp. In Table 1, the variable
selection scheme is excluded in the TPFB and TPFBemp by assuming all fr = 1,
r = 1, . . . , nβ , so that all covariates are included across all methods. This is done
so that the method can be fairly compared to other alternatives which do not have
the variable selection feature.

Under all methods, note in Table 1 that the estimated coefficients corresponding
to statin-use suggest strong negative association with CRC status. The estimated
effect size varies depending on whether the method accounts for biased sampling
and/or gene-environment independence. In the presence of interactions, we cannot
really interpret the main effect estimates and need to combine the model results
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to present estimated subgroup effects. Recall that G1-E and G2-E independence
does appear to be plausible in light of this data. Note that while G2 x E interac-
tion is detected by all methods, G1 x E interaction can only be detected by CML,
EB, TPFB and TPFBemp, that is, methods that use the independence assumption.
The TPFB estimates of terms involving E are slightly different in effect sizes with
smaller standard errors when compared to the other methods. Smaller standard er-
rors corresponding to interaction parameters are noted in all retrospective methods
that explicitly model (G1,G2,E) dependence structure.

We also carried out a sensitivity analyses with respect to the choice of threshold
to truncate the maximum value of k in the DX construction and the prior on G-E
and G-G association. As can be seen from Table 1(b), the results are almost iden-
tical with a smaller number (kmax = 10) of components in the mixture distribution
for W . This suggests further computational efficiency gain is possible by impos-
ing more parsimonious constraint on k. In another sensitivity analysis, when the
prior on G-E association is noninformative N(0,104), we notice TPFB estimates
slightly drift toward the estimates from PL and WL while losing some efficiency
on the G1 x E and G2 x E terms.

To reflect our main interest in subgroup effects of statin across genotype config-
urations, we report effects of statin across genotype subgroups of one SNP, holding
the other SNP fixed at the common genotype category for that second SNP (coded
as 0) in Table 2. It seems that statin effect is strongly modified by G1 and G2. Ac-

TABLE 2
Odds ratio estimates (confidence interval or credible interval) for CRC corresponding to statin

users vs nonusers across genotype subgroups. Under all five methods, a model with main effect of
G1,G2,E controlling for S was fit as in Table 1. Common alleles in G1 (RS1800775 on CETP)

and G2 (RS1056836 on CYP1B1) are A and C, respectively, and minor alleles in G1 and G2 are C
and G, respectively

Statins

G1 A/A A/C C/C A/A A/A
G2 C/C C/C C/C G/C G/G

TPFB 0.27 (0.15, 0.39) 0.35 (0.22, 0.44) 0.48 (0.26, 0.65) 0.38 (0.24, 0.51) 0.48 (0.30, 0.77)
TPFBemp 0.26 (0.15, 0.42) 0.36 (0.23, 0.45) 0.49 (0.31, 0.69) 0.37 (0.23, 0.50) 0.50 (0.31, 0.79)
WL 0.27 (0.15, 0.49) 0.35 (0.22, 0.55) 0.45 (0.26, 0.77) 0.40 (0.26, 0.62) 0.59 (0.34, 1.02)
PL 0.27 (0.15, 0.49) 0.35 (0.22, 0.55) 0.45 (0.26, 0.79) 0.40 (0.25, 0.63) 0.59 (0.33, 1.05)

UML 0.25 (0.14, 0.44) 0.32 (0.20, 0.50) 0.41 (0.23, 0.72) 0.36 (0.23, 0.57) 0.53 (0.29, 0.95)
CML 0.22 (0.12, 0.37) 0.33 (0.21, 0.51) 0.49 (0.29, 0.83) 0.34 (0.20, 0.48) 0.46 (0.26, 0.80)
EB 0.22 (0.13, 0.39) 0.31 (0.20, 0.49) 0.43 (0.24, 0.79) 0.32 (0.21, 0.49) 0.47 (0.27, 0.82)

TPFB, TPFBemp: Two-phase full Bayes (with empirical estimates for prior variances), UML: uncon-
strained maximum likelihood, CML: constrained maximum likelihood, EB: empirical-Bayes, WL:
weighted likelihood, and PL: pseudo-likelihood.
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FIG. 2. The left figure shows the posterior densities of the odds ratio estimates of CRC correspond-
ing to statin users versus nonusers across three genotypes in RS1800775 on CETP(G1), holding
the genotype in RS1056836 on CYP1B1 at the most frequent category, that is, (G2) = (C/C). Simi-
larly, the right figure shows the posterior densities of the odds ratio estimates corresponding to statin
users versus nonusers across three genotypes in RS1056836 of CYP1B1(G2), holding the genotype
in RS1800775 of CETP fixed at the most frequent category, that is, (G1) = (A/A).

cording to TPFBemp estimates, keeping the G2 genotype fixed at C/C, the benefit
of taking statins to reduce the risk of CRC is maximum in the A/A genotype of
G1 with the posterior estimate (and 95% HPD) of the odds-ratios (corresponding
to statin users versus nonusers) being 0.26 (0.15, 0.42). The corresponding ORs
in genotype category A/C and C/C are 0.36 (0.23, 0.45) and 0.49 (0.31, 0.69),
respectively. Figure 2 illustrates estimated posterior densities of the odds ratios
corresponding to statin-use across each genotype of G1 (left) or G2 (right), re-
spectively, while holding the other SNP fixed at the most common category. This
figure indicates that the protective effect of statin in CRC is diminishing as the
allelic dosage for the minor allele increases in both G1 and G2. Overall, the TPFB
approaches provide much narrower credible intervals compared to PL and WL by
exploiting G1-E and G2-E independence. The estimates from methods that use
phase II data only, like CML, UML and EB, are numerically slightly different.

VARIABLE SELECTION: We explore how variable selection feature performs in
this example for the TPFB method. Previous research by Ishwaran and Rao (2003)
discussed the performance of spike and slab prior for general variable selection.
We introduce three SNPs (RS5925224, RS10174721, RS10077453) and all possi-
ble pairwise G x G and G x E interactions to the previous two SNP model as fit
in Table 1. The dimension of the disease risk model is now 34. None of the main
effects and interactions corresponding to these three additional SNPs were found
significant in an initial single marker analysis.
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We set fr = 1 for S1 through S8 to always keep the confounders and preci-
sion variables in the model. The tuning parameters v0 are fixed at 0.0001 for this
application with sensitivity analysis results presented for v0 = 0.001 in Table 3.
We would like to see if the variable selection can still detect a significant G1 x E

and G2 x E interaction. Moreover, we would like to assess if the three additional
SNPs and the corresponding interactions we added (with null effects as observed
in our initial analysis) are also identified to be not informative by this process.
We tabulate the posterior distribution of fr = 1 among f = (f1, . . . , fnβ ) which
indicate “in-and-out” frequencies of the corresponding parameters. These poste-
rior frequencies of fr = 1 can be used to define a ranking of important predictors.
An alternative is to rank the top models (not just the predictors individually). Be-
fore implementing the TPFB, we reduced the dimensionality of parameters in the
model P(G|W) where G = (G1,G2,G3,G4,G5) by assuming common λGG and
λGE association parameters across all SNPs. We use N(0,0.12) prior on this com-
mon parameter. In addition, we further assume a single common parameter λGS for
all G-S associations with a vague normal prior N(0,104). These are assumptions
that may be stringent in certain situations, but to reduce estimation burden in the
log-linear model, we do need to make these assumptions for the TPFB methods.
For SNPs on a same functional pathway like in our example, it may not be too
unrealistic to assume a shared association parameter across SNPs.

In Table 3, we present numerical results on model and predictor ranking as well
as the Bayesian Information Criterion (BIC) corresponding to each model. We
only present the top 10 models. According to the result, the model with main ef-
fects of E and G2 x E interactions seems to be the most preferred model (posterior
probability 13.1%) followed by the model with E and both G1 x E and G2 x E

interactions (posterior probability 9.2%). With v0 = 0.001, the ranking of predic-
tors is slightly different, as the main effects of G1 through G5 are now selected
more often. The bottom panel of Table 3 shows the frequency of retaining a pre-
dictor in the model according to the posterior distribution of f. The main effect of
E appears most of the times (100%) with large selection probabilities for G1 x E

and G2 x E interactions (36.8% and 64.0%), respectively. Overall, nonsignificant
interactions/main effects are well filtered under this variable selection scheme.

4. Simulation study. In this section we assess the performance of the pro-
posed method by conducting a simulation study. We mainly consider two as-
pects: (i) varying gene-gene/gene-environment association structure and (ii) when
phase II sampling is the differential between cases and controls. We compare our
method with the five alternative methods mentioned before: WL, PL, UML, CML
and EB in terms of the average bias and mean squared errors (MSE), based on
1000 simulated data sets.
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TABLE 3

(a) The top 10 promising models in terms of estimated posterior probabilities of the models. All S
adjustment variables are retained in the model by default and variable selection is performed only
on the five genetic and environmental factors and all possible pairwise interactions. Bayesian Infor-
mation Criterion (BIC) is provided for each model. Results in parentheses represent the sensitivity
analysis carried out with v0 = 0.001

Model Posterior probability % BIC

[E][All S][G2 x E] 13.1% (12.5%) 43,992 (43,967)
[E][All S][G1 x E][G2 x E] 9.2% (6.3%) 43,993 (43,978)
[E][All S][G1 x E] 7.7% (5.1%) 43,994 (43,967)
[E][All S] 7.5% (10.6%) 43,997 (43,977)
[E][All S][G2 x E][G3 x E] 3.9% (4.6%) 44,004 (43,977)
[E][All S][G2 x E][G4 x E] 2.4% (2.2%) 44,002 (43,974)
[E][All S][G2 x E][G3 x G4] 2.1% (1.5%) 43,998 (43,971)
[E][All S][G1 x E][G3 x E] 2.1% (2.2%) 44,005 (43,974)
[E][All S][G1][G2 x E] 1.8% (0.7%) 43,996 (43,976)
[E][All S][G1 x E][G2 x E][G5 x E] 1.6% (2.0%) 44,010 (43,974)

BIC represents Bayesian Information Criterion.

(b) The estimated posterior probabilities of appearance corresponding to G and E main effects and
their interactions are shown under the identical setting as in Table 3(a). Results in parentheses repre-
sent the sensitivity analysis carried out with v0 = 0.001

G1 G2 G3 G4 G5 E E x G1 E x G2 E x G3 E x G4 E x G5

6.7 5.0 4.3 4.1 7.6 100.0 36.8 64.0 18.4 10.1 13.9
(5.6) (6.8) (10.6) (7.3) (9.4) 100.0 (29.5) (55.4) (19.9) (9.7) (9.5)

We first describe the data generation procedure. We consider two genes G1
and G2, and one environment factor E, with disease status D, all binary. We gen-
erate data from the following log-linear model [Li and Conti (2009)]:

log(μ|D,G1,G2,E) = γ0 + γG1G1 + γG2G2 + γEE + γDD

+ λG1EG1E + λG2EG2E + λG1G2G1G2
(4.1)

+ βG1G1D + βG2G2D + βEED

+ βG1EG1ED + βG2EG2ED + βG1G2G1G2D,

where μ denotes expected cell counts corresponding to the (D,G1,G2,E) con-
figuration. Under this model, we are capable of fixing G1-E, G2-E and G1-G2 as-
sociation under controls by setting values of λG1E,λG2E and λG1G2 , respectively.
These parameters are approximately equivalent to those in model P(G1,G2|W)

(2.2) when the disease is rare. Similarly, we can set βG1E,βG2E or βG1G2 , cor-
responding to the G x E or G x G interactions in the disease risk model. The
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parameters (γ0, γG1, γG2, γE) control the marginal frequencies of G1, G2 and E

in controls. A large negative value of γD ensures that the disease is rare.
For the model parameters in (4.1), we fixed (γ0, γG1, γG2, γE, γD) = (−6,−0.5,

−0.5,−2.0,−4.5) that produces approximately 2.5% of the cases, frequency of
G1 = 1 and G2 = 1 both at 45% while the prevalence of E = 1 is 15%. We assign
(βG1E,βG2E, βG1G2) = (0, log(2), log(2)) in (4.1). For setting parameters cor-
responding to G-E/G-G association, we set (λG1G2, λG1E,λG2E) = (log(2),0,
log(1.5)) to reflect G1-G2 and G2-E dependence, and (0,0,0) for the indepen-
dence scenario.

Now we turn our attention to the sampling design. We randomly generate 1000
cases and 1000 controls with complete (D,G1,G2,E) data. We then carry out
(D,E)-stratified sampling as follows. We select 600 cases and 600 controls in
phase II. We consider two scenarios regarding this the stratified sampling strategy:
(a) all subjects with a positive E(=1), in cases and controls, are automatically
included in phase II; (b) all subjects with a positive E(=1) in cases are included in
phase II, however, 600 controls for phase II are randomly selected regardless of E

status. Finally, information on G1 and G2 from phase I subjects, that is, 400 cases
and 400 controls, is treated as missing by design. We iterate this step to generate
1000 replicate data sets under each sampling scheme.

Tables 4 and 5 display the simulation results based on two different sampling
schemes (a) and (b), respectively. We follow the convention that ⊥ and ∼ rep-
resent independence and dependence between two variables, respectively. Under
G1 ⊥E,G2 ⊥E and G1 ⊥G2 the CML method yields the smallest MSE with re-
spect to G1 x E and G1 x G2 interaction followed by TPFB, TPFBemp and EB ,
while WL, PL and UML present relatively larger MSE. Here we need to note
that the current implementation of CML and EB can only use G1-E and G1-G2
independence, but not G2-E independence. As phase II sampling becomes dif-
ferential between cases and controls from scenario (a) (Table 4) to (b) (Table 5),
we notice the substantial increase in the bias for estimating the main effect of E

from CML, UML and EB as expected, while WL, PL, TPFB and TPFBemp pro-
vide relatively less biased estimates. This trend remains present in the case where
G1 ⊥E,G2 ∼ E and G1 ∼ G2. Beyond the bias in βE from CML, UML and
EB, we note that under the departure from the independence assumption, namely,
G1 ⊥G2, there is a dramatic increase in the bias corresponding to the G1 x G2 in-
teraction under CML and to some extent in TPFB. TPFBemp and EB are more ro-
bust to this assumption. Both TPFB show gain in efficiency for interaction estima-
tion compared to PL and WL. Overall, our proposed methods, especially TPFBemp,
yield obvious gain in efficiency compared to PL and WL in terms of the G x E or
G x G interactions in the presence of independence. On the other hand, TPFBemp
provides less biased estimates of the E effect compared to UML, CML and EB
which use only phase II data. When the subsampling ratio is 80%, the pattern re-
mains the same as seen in online supplemental Table 2 [Ahn et al. (2013)]. We
also provide the sum of the MSEs across all parameters in order to capture the
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TABLE 4

Simulation results under exposure enriched sampling with all E = 1 in phase I data selected in phase II for both cases and controls. We consider two
association scenarios: (1) G1 ⊥E, G1 ⊥G2 and G2 ⊥E association, (2) G1 ⊥E, G1 ∼ G2 and G2 ∼ E. The results are based on 1000 replicated data

sets, each with 1000 cases and 1000 controls in phase I and 600 cases and 600 controls in phase II. The approaches listed, TPFB, TPFBemp, WL, PL,
UML, CML and EB, each represent two-phase full Bayes (with empirically obtained prior variance), weighted likelihood, pseudo-likeliohod,

unconstrained maximum likelihood, constrained maximum likelihood, and empirical-Bayes, respectively. The CML imposes G1-E and G1-G2
independence, however, no constraints on G2-E association. We set (βE,βG1G2 , βG1E,βG2E) = (−1.5,0, log(2), log(2))

for all scenarios. The rows with the smallest two sum (MSE) are in bold

G1 ⊥E, G1 ⊥G2, G2 ⊥E G1 ⊥E, G1 ∼ G2, G2 ∼ E

Stratified sampling (a)† E G1 x G2 G1 x E G2 x E Sum (MSE)∗ E G1 x G2 G1 x E G2 x E Sum (MSE)∗
(λG1G2 , λG1E,λG2E) = (0,0,0) (λG1G2 , λG1E,λG2E) = (log(2),0, log(1.5))

TPFB Bias −0.024 −0.017 0.020 −0.017 −0.056 0.166 −0.022 0.119
(MSE) (0.093) (0.044) (0.120) (0.135) (0.392) (0.117) (0.081) (0.091) (0.122) (0.411)

TPFBemp Bias 0.007 −0.019 −0.021 −0.062 −0.033 0.043 −0.029 0.026
(MSE) (0.089) (0.025) (0.111) (0.126) (0.351) (0.113) (0.064) (0.091) (0.120) (0.388)

WL Bias −0.038 −0.025 0.043 0.009 −0.038 0.011 0.011 0.006
(MSE) (0.099) (0.058) (0.144) (0.157) (0.458) (0.105) (0.057) (0.101) (0.121) (0.384)

PL Bias −0.038 −0.026 0.043 0.009 −0.038 0.011 0.011 0.006
(MSE) (0.098) (0.056) (0.144) (0.157) (0.455) (0.105) (0.056) (0.101) (0.121) (0.383)

UML Bias −0.093 −0.026 0.043 0.009 −0.096 0.011 0.011 0.006
(MSE) (0.110) (0.056) (0.144) (0.157) (0.467) (0.116) (0.056) (0.101) (0.121) (0.394)

CML Bias −0.085 −0.020 0.026 0.003 −0.100 0.700 0.011 0.009
(MSE) (0.099) (0.025) (0.083) (0.155) (0.362) (0.112) (0.520) (0.070) (0.116) (0.818)

EB Bias −0.087 −0.025 0.036 0.004 −0.099 0.089 0.010 0.008
(MSE) (0.099) (0.036) (0.099) (0.155) (0.389) (0.112) (0.069) (0.075) (0.116) (0.392)

†All subjects with E = 1 in case and control are subsampled for phase II.∗The combined MSEs as summed over all four parameters.

TPFB uses the informative prior N(0,10−2) on G-G and G-E associations in the model (2.2). TPFBemp uses the prior N(0, θ̂2) on G-G and G-E

associations in the model (2.2) where θ̂2 is empirically estimated as the G-G or G-E association parameter under the controls.
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TABLE 5
Simulation results under exposure enriched sampling with all E = 1 in phase I data selected in phase II for cases but a random sample of controls are
selected in phase II. We consider two association scenarios: (1) G1 ⊥E, G1 ⊥G2, and G2 ⊥E association, (2) G1 ⊥E, G1 ∼ G2, and G2 ∼ E. The

results are based on 1000 replicated data sets, each with 1000 cases and 1000 controls in phase I and 600 cases and 600 controls in phase II. The
approaches listed, TPFB, TPFBemp, WL, PL, UML, CML, and EB, each represent two-phase full Bayes (with empirically obtained prior variance),

weighted likelihood, pseudo-likeliohod, unconstrained maximum likelihood, constrained maximum likelihood, and empirical-Bayes,
respectively. The CML imposes G1-E and G1-G2 independence, however, no constraints on the G2-E association. We set

(βE,βG1G2 , βG1E,βG2E) = (−1.5,0, log(2), log(2)) for all scenarios. The rows with the smallest two sum (MSE) are in bold

G1 ⊥E, G1 ⊥G2, G2 ⊥E G1 ⊥E, G1 ∼ G2, G2 ∼ E

Stratified sampling (b)† E G1 x G2 G1 x E G2 x E Sum (MSE)∗ E G1 x G2 G1 x E G2 x E Sum (MSE)∗
(λG1G2 , λG1E,λG2E) = (0,0,0) (λG1G2 , λG1E,λG2E) = (log(2),0, log(1.5))

TPFB Bias 0.007 0.022 −0.007 −0.022 −0.105 0.160 0.032 0.128
(MSE) (0.081) (0.040) (0.113) (0.124) (0.358) (0.125) (0.073) (0.106) (0.128) (0.432)

TPFBemp Bias 0.039 0.015 −0.054 −0.073 −0.027 0.036 0.024 0.000
(MSE) (0.086) (0.031) (0.127) (0.122) (0.366) (0.121) (0.058) (0.115) (0.135) (0.429)

WL Bias −0.012 0.016 0.021 0.024 −0.044 0.004 0.076 −0.014
(MSE) (0.098) (0.059) (0.165) (0.167) (0.489) (0.133) (0.056) (0.150) (0.147) (0.486)

PL Bias −0.012 0.015 0.020 0.025 −0.046 0.002 0.077 −0.013
(MSE) (0.097) (0.059) (0.164) (0.166) (0.486) (0.132) (0.055) (0.149) (0.146) (0.482)

UML Bias 0.538 0.015 0.020 0.025 0.520 0.002 0.077 −0.013
(MSE) (0.395) (0.059) (0.164) (0.166) (0.784) (0.407) (0.055) (0.149) (0.146) (0.757)

CML Bias 0.544 0.017 −0.002 0.018 0.530 0.699 0.046 −0.013
(MSE) (0.384) (0.030) (0.088) (0.161) (0.663) (0.399) (0.515) (0.073) (0.141) (1.128)

EB Bias 0.543 0.016 0.008 0.018 0.528 0.078 0.059 −0.013
(MSE) (0.385) (0.039) (0.112) (0.161) (0.697) (0.401) (0.066) (0.097) (0.141) (0.705)

†All cases with E = 1 are included in phase II, however, controls are randomly selected for phase II.∗The combined MSEs over all four parameters.

TPFB uses the informative prior N(0,10−2) on the G-G and G-E associations in the model (2.2). TPFBemp uses the prior N(0, θ̂2) on G-G and G-E

associations in the model (2.2) where θ̂2 is empirically estimated as the G-G or G-E association parameter under the controls.
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accuracy of estimating subgroup effects defined by different G-E configurations.
This summary measure in the last columns of Tables 4 and 5 clearly suggests that
our methods yield more efficient characterization of the joint effect of exposure
and genetic factors.

Table 3 in the supplemental article [Ahn et al. (2013)] presents simulation re-
sults under the traditional or unstratified case-control design when a random sam-
ple of cases and controls are taken irrespective of E status. We can note clear
efficiency gains from stratified sampling when comparing Table 4 to Table 3 in the
supplemental article for estimating the interaction parameters.

5. Discussion. We presented a flexible Bayesian approach to estimate gene–
gene (G x G) and/or gene-environment (G x E) interactions under two-phase sam-
pling with multiple markers. The proposed approach can handle multiple genetic
and environmental factors. The method can trade off between bias and efficiency
by incorporating uncertainty around gene-environment independence through the
hierarchical structure in a data-adaptive way. The underlying ingredients of this
hierarchy are the disease risk model, the multivariate gene model and the joint
model for the environment factors/covariates, respectively. Our method can also
handle potential missingness in genetic information due to technical inconsistency
or due to merging different studies or cohorts, leading to nonmonotone missing
data structure at the phase II subsample. This paper is the first Bayesian paper
with retrospective modeling for G x E studies under two-phase sampling that can
handle multiple markers.

We compared our method to simpler alternatives such as UML, CML and EB
that use gene-environment independence but only based on phase II data, ignor-
ing biased sampling. We also considered methods that account for biased sam-
pling at phase II: weighted likelihood and pseudo-likelihood, but do not leverage
the independence assumption. Our method provides a framework that integrates
both of these features. In a clinical study like the MECC example, where inter-
est lies in estimating the differential effect of statin use across genetic subgroups
for devising targeted prevention strategies, estimates of main effects as well as
gene-environment interaction are equally important, thus both estimates need to
be assessed. In terms of aggregate MSE, our method has superior performance
across a wide range of scenarios over the competing method.

There are some limitations of the current paper that need to be expanded and
explored in future studies. First, we do not fully address the performance of our
method in the presence of a truly high-dimensional gene model through simulation
studies. The method is scalable to handle up to 294 SNPs and pairwise interactions
in our data example, but we have not carried out a simulation study due to compu-
tation time. We also need to deal with the exponentially increasing number of G x
E and G x G interactions in the disease risk model as well as G-E/G-G/G-S asso-
ciations in the multivariate gene model, as we add more G-variables in the model.
We address this by Bayesian variable selection and assuming a common parameter
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for G-E/G-G/G-S association on genes in the same pathway in the multivariate
gene model. The latter is a rather ad-hoc strategy for reducing the dimension and is
a limitation of our method. Bias in parameter estimates is expected to arise under
departures from this assumption. Calculation of P(D) in the denominator of the
likelihood could also pose challenges with truly high-dimensional data. Second,
we have not tested the Bhattacharya and Dunson (2012) algorithm for the mixed
set of discrete and continuous covariates in W . Future research will focus on the
higher-dimensional G and E settings, more general structure of the W vector as
well as the possibility of capturing higher order interactions, not just pairwise in-
teractions.

For practitioners who want to choose a design strategy to enhance the power
of screening G x E effects with a relatively rare exposure, exposure enrichment
of cases and controls for collecting genotype data is a better strategy than random
sampling. The tools we developed in the paper provides a way to account for the
biased sampling. The approach also allows one to explore a multivariate model
with multiple SNPs and environmental exposure and identify potentially informa-
tive predictors. If the interest lies in characterizing subgroup effects of E across
different subgroups defined by G, this design and analysis strategy is particularly
powerful. We recommend the use of default prior choices in the codes available
at http://www.umich.edu/~jaeil/tp.zip and recommend using TPFBemp as the anal-
ysis to be reported. For prescribing a preventive medicine prophylactically, like
use of statins for colorectal cancer, identifying genetic subgroups that will receive
the most benefit from such a therapy is particularly helpful. Characterizing G x E

effects furthers our understanding of such subgroup effects for tailoring targeted
prevention strategies.

SUPPLEMENTARY MATERIAL

Bayesian semiparametric analysis for two-phase studies of gene-environ-
ment interaction (DOI: 10.1214/12-AOAS599SUPP; .pdf). We consider two-
phase studies of G x E interaction where phase I data is available on exposure,
covariates and disease status and stratified sampling is done to prioritize individu-
als for genotyping at phase II. We consider a Bayesian analysis based on the joint
retrospective likelihood of phases I and II data that handles multiple genetic and
environmental factors, data adaptive use of gene-environment independence.
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