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DYNAMICAL FUNCTIONAL PREDICTION AND CLASSIFICATION,
WITH APPLICATION TO TRAFFIC FLOW PREDICTION1

BY JENG-MIN CHIOU

Academia Sinica

Motivated by the need for accurate traffic flow prediction in transporta-
tion management, we propose a functional data method to analyze traffic flow
patterns and predict future traffic flow. In this study we approach the prob-
lem by sampling traffic flow trajectories from a mixture of stochastic pro-
cesses. The proposed functional mixture prediction approach combines func-
tional prediction with probabilistic functional classification to take distinct
traffic flow patterns into account. The probabilistic classification procedure,
which incorporates functional clustering and discrimination, hinges on sub-
space projection. The proposed methods not only assist in predicting traffic
flow trajectories, but also identify distinct patterns in daily traffic flow of typ-
ical temporal trends and variabilities. The proposed methodology is widely
applicable in analysis and prediction of longitudinally recorded functional
data.

1. Introduction. Traffic flow is an important macroscopic traffic characteris-
tic in transportation systems. The measurement and forecasting of traffic flow are
crucial in the design, planning and operations of highway facilities [Zhang and Ye
(2008)]. Traffic flow can be measured automatically using various types of vehicle
detectors such as the commonly used dual loop detectors, which are installed in
certain roads at regular intervals. Real-time traffic flow information in conjunc-
tion with historical traffic flow records makes it possible to predict traffic flow in
the short term. The importance of traffic prediction for intelligent transportation
systems has long been recognized in many applications, including the develop-
ment of traffic control strategies in advanced traffic management systems and real-
time route guidance in advanced traveler information systems [Zheng, Lee and
Shi (2006)]. However, dynamic features of traffic flow, along with unstable traffic
conditions and unpredictable environmental factors, contribute to the challenge of
pursuing accuracy in predictions.

Short-term traffic flow prediction has been intensively investigated for more
than two decades and various types of methodologies have been developed. These
include time series models [e.g., Williams and Hoel (2003), Stathopoulos and Kar-
laftis (2003)], Kalman filtering methods [e.g., Xie, Zhang and Ye (2007), Okutani
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and Stephanides (1984)], local linear regression models [Sun et al. (2003)], neu-
ral network based methods [e.g., Chen and Grant-Muller (2001), Zheng, Lee and
Shi (2006), Çetiner, Sari and Borat (2010)] and fuzzy neural models and fuzzy
logic system methods [Yin et al. (2002), Zhang and Ye (2008)], among oth-
ers. In addition, there are many articles comparing parametric time series mod-
els, nonparametric regression models and neural networks in traffic prediction,
such as in Kirby, Waston and Dougherty (1997), Smith and Demetsky (1997) and
Smith, William and Oswald (2002). More recently, Kamarianakis, Shen and Wyn-
ter (2012) discussed road traffic forecasting for highway networks using fully para-
metric regime-switching space–time models, coupled with a penalized estimation
scheme. To our knowledge, a functional data approach to predicting traffic flow
has not yet been investigated in the literature.

1.1. Illustration of traffic flow prediction and the proposed functional data
method. Motivated by a practical need for accurate traffic flow prediction, we
develop a novel functional data method for predicting future, or unobserved, daily
traffic flow for an up-to-date and partially observed traffic flow trajectory. Figure 1
illustrates a sample of daily traffic flow trajectories. The data were collected by a
dual loop vehicle detector located near Shea-San Tunnel on National Highway 5 in
Taiwan in 2009 and are based on the flow rates (vehicle count per min) over 15-min
time intervals, a metric suggested in Highway Capacity Manual 2000 for opera-
tional analyses [Zheng, Lee and Shi (2006)]. The trajectories sample 70 days as the
training data, while the remaining 14 days are used as the test data to validate the
prediction performance. The aim is to predict the unobserved traffic flow trajectory
for a partial trajectory with updated flow information up to the “current time” τ ,
which is given as a time of day. In Figure 2, the raw trajectories (gray lines) be-
fore τ = 8, 12 and 16:00 are observations from the test data, superimposed on the
curves (dotted lines) fitted by functional principal component analysis. After the
last observation time point τ , the predicted traffic flow trajectories (solid lines) are

FIG. 1. Daily traffic flow trajectories (training data) with the estimated mean function superim-
posed on the observed trajectories.
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FIG. 2. Two samples of trajectories from the test data set [(a)–(c) for Test sample 1; (d)–(f) for
Test sample 2]. The fitted curves (dotted lines before times τ ) and the predicted curves (solid curves
after times τ ) with 95% prediction intervals for a partially observed trajectory available up to times
τ = 8, 12 and 16:00, superimposed on the complete trajectory (gray line).

obtained by the proposed functional mixture prediction model coupled with the
95% bootstrap prediction intervals. The real data trajectories after times τ (gray
lines) are unobserved in the prediction scenario and are displayed for comparative
purposes. The prediction for the trajectory is dynamically updated as the “current
time” τ progresses.

We note that the aforementioned methods in the literature were largely de-
veloped based on “short-term” or “next-step” traffic prediction modeling, where
“short-term” refers to a forecast horizon of a time interval. A 15-min interval is
commonly used as the forecast horizon for traveler-oriented applications and oper-
ational analysis [Zhang and Ye (2008)]. In contrast to the “next-interval” prediction
methods in the existing literature, our functional data method is more flexible, as il-
lustrated in Figure 2, allowing valid prediction periods extended from the “current
time” to the end of the day and thus providing more information to relevant users.

Since future traffic conditions and temporal traffic flow patterns play a critical
role in traffic prediction [e.g., Smith, William and Oswald (2002), Vlahogianni,
Karlaftis and Golias (2008)], to take into account distinct daily traffic flow patterns,
we propose a functional mixture prediction approach that combines functional pre-
diction with a probabilistic classification procedure. Specifically, we propose to
implement functional cluster analysis of past traffic flow trajectories to obtain typ-
ical daily traffic flow patterns or clusters, followed by a probabilistic classification
for the traffic flow trajectory observed thus far. Based on the traffic flow patterns or
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clusters identified by the proposed method, we can predict the unobserved traffic
flow trajectories by a functional prediction model in conjunction with the estimated
posterior membership probabilities of traffic flow clusters. Although motivated by
traffic flow analysis and prediction, the proposed methodology is by no means
restricted to this particular field and is generally applicable to a wide variety of
longitudinally recorded functional data.

In many real applications, clustering of curve data can be challenging and mis-
classification of an up-to-date and partially observed trajectory can cause loss
of prediction accuracy. Hence, a simple “prediction-after-classification” approach
based on hard clustering results may not be the best approach. This will be illus-
trated in our numerical studies including the real data application and simulations.
In contrast, the proposed functional mixture prediction framework addresses chal-
lenges related to prediction of complex functional data, such as those containing
heterogeneous patterns and large variability over time. The proposed functional
mixture prediction approach to traffic flow prediction has the following features:

• It is the first approach to employ functional data techniques to address traffic
flow prediction applications, which are critical in many intelligent transportation
systems.

• The functional data approach allows for interval prediction in contrast to “next-
step” traffic flow prediction applications found in the literature.

• The proposed functional mixture prediction model plays a central role in pre-
dicting the future trajectory for an up-to-date and partially observed trajectory
and takes distinct traffic flow patterns into account to improve prediction accu-
racy. This study extends the idea of the subspace projected functional clustering
method of Chiou and Li (2007) to identify distinct patterns of daily traffic flow
from the past data, coupled with the forward functional testing procedure of Li
and Chiou (2011) to determine the number of clusters, which lays the ground-
work for the functional mixture prediction approach.

• The probabilistic classification approach, including functional clustering and
discrimination, is new. It allows for the prediction of posterior membership
probabilities using partial information up to the current time, in contrast to clus-
ters constructed by complete trajectories from past data.

• The predictive function in the functional mixture prediction model is built on an
existing functional linear model, which is widely used in functional regression
modeling [e.g., Ramsay and Dalzell (1991), Müller, Chiou and Leng (2009)]
and is easy to implement.

1.2. Literature review of relevant functional data methods. Statistical tools
for functional data analysis have been extensively developed during the past
two decades to deal with data samples consisting of curves or other infinite-
dimensional data objects. Systematic overviews of functional data analysis are
provided in the monographs of Ramsay and Silverman (2002, 2005) and Ferraty
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and Vieu (2006) and in the review articles of Rice (2004), Zhao, Marron and Wells
(2004) and Müller (2005, 2009). Functional data analysis provides a wide range
of applications in many disciplines. These include biomedical and environmental
studies [Di et al. (2009), Gao and Niemeier (2008)], analysis of time-course gene
expression profiles [Müller, Chiou and Leng (2008), Coffey and Hinde (2011)],
linguistic pitch analysis [Aston, Chiou and Evans (2010)] and demographic and
mortality forecasting [Hyndman and Shahid Ullah (2007), Chiou and Müller
(2009), D’Amato, Piscopo and Russolillo (2011)], among many others. In rela-
tion to functional data prediction, Müller and Zhang (2005) proposed a functional
data approach to predicting remaining lifetime and age-at-death distributions from
individual event histories observed up to the current time. More recently, Zhou,
Serban and Gebraeel (2011) proposed a functional data approach to degradation
modeling for the evolution of degradation signals and the remaining life distribu-
tion. These are relevant works that contain novel functional data techniques with
interesting applications to the prediction of an unobserved event for a partial tra-
jectory observed up to the current time.

Among the various settings in functional regression analysis [Müller (2005)],
models with both the response and predictor variables as functions serve this
study’s purpose with regard to prediction. Functional regression models of this
kind have been considered, for example, in Yao, Müller and Wang (2005b), Chiou
and Müller (2007), Müller, Chiou and Leng (2008) and Antoch et al. (2010). Meth-
ods of functional data clustering that are found in the literature include the use of
multivariate clustering algorithms on the finite-dimensional coefficients of basis
function expansions [e.g., Abraham et al. (2003), Serban and Wasserman (2005)],
model-based functional data clustering [e.g., James and Sugar (2003), Ma and
Zhong (2008)], a general descending hierarchical algorithm [Chapter 9 of Ferraty
and Vieu (2006)] and various depth-based classification methods [Cuevas, Febrero
and Fraiman (2007), López-Pintado and Romo (2006)], among others. Of particu-
lar interest with regard to functional prediction models are the methods that define
clusters via subspace projection [Chiou and Li (2007, 2008)]. The subspace pro-
jection method considers cluster differences not only in mean functions, but also
in eigenfunctions of covariance kernels that takes into account individual random
process variations, making it suitable for interpreting the stochastic nature of traffic
flow and suggesting a natural link with functional regression models.

This article is organized as follows. In Section 2 we represent traffic flow tra-
jectories as a mixture of stochastic processes and discuss functional clustering and
classification methods to take traffic flow patterns into account. Section 3 discusses
the functional mixture prediction model, including the algorithm for implement-
ing functional mixture prediction. Sections 4 and 5 illustrate the empirical analysis
of traffic flow patterns and results of predicting traffic flow trajectories. Section 6
presents a simulation study to evaluate the performance of the functional mix-
ture prediction in comparison with related methods. Concluding remarks and dis-
cussion are provided in Section 7. More information in selecting the number of
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clusters, the bootstrap prediction intervals and additional details in the simulation
design and results are deferred to Supplementary Materials [Chiou (2012)].

2. Modeling traffic flow trajectories and clustering traffic flow patterns.
Previous studies in traffic flow prediction and modeling have revealed that traf-
fic condition data is characteristically stochastic, as opposed to chaotic [Smith,
William and Oswald (2002)]. The stochastic features of traffic flow trajectories
are suggestive of a functional data approach. In the functional data framework, we
adopt the notion that each daily traffic flow trajectory is a realization of a random
function sampled from a mixture of stochastic processes. Let Z denote the random
function for the daily traffic flow trajectory in the domain U = [0, T ]. Here, the
random function Z is square integrable with the inner product of any two func-
tions f1 and f2 defined as 〈f1, f2〉U = ∫

U f1(t)f2(t) dt with the norm ‖f1‖U =
〈f1, f1〉1/2

U . It is assumed that the random function Z(t) has a smooth mean func-
tion EZ(t) = μZ(t) and covariance function cov(Z(s),Z(t)) = GZ(s, t), for s

and t in U .

2.1. Functional clustering of historical traffic flow trajectories. While tem-
poral traffic flow patterns are critical in traffic prediction, the underlying traf-
fic flow structures and number of typical patterns are unknown and remain to
be explored. We assume the mixture process Z consists of K subkprocesses,
with each subprocess corresponding to a cluster. The random cluster variable C

for each individual cluster membership is randomly distributed among clusters
with label c ∈ {1, . . . ,K}. For each subprocess associated with cluster c, define
the conditional mean function E(Z(t) | C = c) = μ(c)(t) and covariance func-
tion cov(Z(s),Z(t) | C = c) = G(c)(s, t), for c ∈ {1, . . . ,K}. Let (λ

(c)
j , ϕ

(c)
j ) be

the corresponding eigenvalue–eigenfunction pairs of the covariance kernel G(c),
where λ

(c)
j are in nonascending order. Assume, under mild conditions, each sub-

process possesses a Karhunen–Loève expansion for the daily traffic flow trajectory
Z given by

Z(c)(t) = μ(c)(t) +
∞∑

j=1

ξ
(c)
j ϕ

(c)
j (t),(2.1)

where ξ
(c)
j = 〈Z −μ(c), ϕ

(c)
j 〉U with 〈ϕ(c)

j , ϕ
(c)
l 〉U = 1 for j = l and 0 otherwise. In

practice, it is often the case that the representation only requires a small number of
components to approximate the trajectories. In general, trajectories with simpler
structure require fewer components as compared to more complex trajectories.

Following the conventional approach, the best cluster membership c∗ given Z

is determined by maximizing the posterior probability PC|Z(· | ·) such that

c∗(Z) = arg max
c∈{1,...,K}

PC|Z(c | Z).(2.2)
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We propose estimating the posterior membership probability P(C = c | Z) using
the so-called discriminative approach, as opposed to the generative approach [see,
e.g., Dawid (1976), Bishop and Lasserre (2007)]. While there is no general con-
sensus for choosing between generative and discriminative approaches [Ng and
Jordan (2002), Xue and Titterington (2008)], the former requires a priori knowl-
edge on the class-conditional probability density functions, information that is dif-
ficult to justify incorporating for the traffic flow trajectories. It is easier to use the
discriminative approach that directly estimates the class-membership probabilities
without attempting to model the underlying probability distributions of the ran-
dom functions. Following this line, the multiclass logit model is a popular method
for estimating the posterior membership probabilities. We propose incorporating a
distance measure between Z and its projection associated with each cluster as the
covariate in the multiclass logit model.

Consider the relative L2 distance as the distance measure based on cluster sub-
space projection as

d(c) = ‖Z − Z̃(c)‖2∑K
k=1 ‖Z − Z̃(k)‖2

,(2.3)

where Z̃(c)(t) = μ(c)(t) + ∑Mc

l=1 ξ
(c)
l ϕ

(c)
l (t), with ξ

(c)
l = 〈Z − μ(c), ϕ

(c)
l 〉U . The

value Mc is finite and is chosen data-adaptively so that Z is well approxi-
mated by Z(c) by the Mc components. Let d = (1, d(1), . . . , d(K−1))� and γ c =
(γ0c, γ1c, . . . , γ(K−1)c)

�. Taking the vector d as the covariate, we can estimate the
posterior cluster membership probability using the multiclass logit model,

P(C = c | Z) = exp{γ �
c d}∑K

k=1 exp{γ �
k d}(2.4)

for c = 1, . . . ,K − 1 and P(C = K | Z) = 1 − ∑K−1
c=1 P(C = c | Z) with the K th

cluster being the baseline. The vector of regression coefficients γ c remains to be
estimated.

Clusters defined by criterion (2.2) are based on subspace projection. Let S
(c)
M

be the linear span of the set of eigenfunctions {ϕ(c)
1 , . . . , ϕ

(c)
Mc

}, c = 1, . . . ,K . For
identifiability, it is assumed that for any two clusters c and d the following two
conditions do not hold simultaneously: (i) S

(c)
M belongs to S

(d)
M , (ii) μ(c) = μ(d),

or μ(c) ∈ S
(d)
M and μ(d) ∈ S

(c)
M . These conditions were derived in Theorem 1 of

Chiou and Li (2007) for identifiability of clusters defined via subspace projection.
Criterion (2.2) leads to clusters with similar curves that are embedded in the clus-
ter subspace spanned by the cluster center components, the mean function and
the eigenfunctions of the covariance kernel that represent the functional principal
component subspace.

In addition, the number of clusters is unknown, and must be determined in
practice. The method used to determine the number of clusters in this study is
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based on a sequence of tests on cluster structures done to ensure statistical signifi-
cance in the difference between cluster types as proposed in Li and Chiou (2011).
The number of clusters K is determined by testing a sequence of null hypotheses
H01 :μ(c) = μ(d) and H02 :S(c)

M = S
(d)
M , for 1 ≤ c 
= d ≤ K . The forward functional

testing procedure aims to search for the maximum number of clusters while re-
taining differences with statistical significance among the clusters. The procedure
is especially suitable for the subspace projected functional clustering method. The
sequence of the functional hypothesis tests helps identify significant differences
between cluster structures and provides additional insight into further cluster anal-
ysis. Since the hypothesis tests are based on bootstrap resampling methods, it takes
substantial computational time to construct the reference distribution. Details of
the procedure are discussed in Li and Chiou (2011) and we have briefly summa-
rized them in Supplementary Material A [Chiou (2012)].

2.2. Probabilistic functional classification of traffic flow patterns. For the pur-
pose of prediction, the time domain U of the process Z is decomposed into two
exclusive time domains S(τ ) = [0, τ ] and T (τ ) = [τ, T ]. Now, let Z∗ be a newly
observed trajectory of the process Z, denoted by Z∗

S(τ ) as observed up to time τ .
We predict the cluster membership probability of the trajectory Z∗ based on the
known trajectory Z∗

S(τ ) observed until time τ , which will then be used to predict
the unobserved trajectory Z∗

T (τ ).

We define the relative L2 distance in a manner similar to (2.3) via cluster sub-
space projection, but it is based on the partially observed Z∗

S(τ ) rather than the en-
tire Z∗ since the part Z∗

T (τ ) is not yet observed. Suppose that the cluster subspaces

μ(c) and {ϕ(c)
S(τ ),j }, c = 1, . . . ,K , are being identified as in Section 2.1. Then, the

relative L2 distance is defined as

d
∗(c)

S(τ ) = ‖Z∗
S(τ ) − Z̃

∗(c)
S(τ )‖2∑K

k=1 ‖Z∗
S(τ ) − Z̃

(k)
S(τ )‖2

,(2.5)

where Z̃
∗(c)

S(τ )(s) = μ(c)(s) + ∑Mc

l=1 ξ
∗(c)

S(τ ),lϕ
(c)

S(τ ),l(s), with ξ
∗(c)

S(τ ),l = 〈Z∗
S(τ ) −

μ(c), ϕ
(c)

S(τ ),l〉S(τ ). Here, the set of eigenfunctions {ϕ(c)
S(τ ),l} corresponds to the co-

variance kernel G
(c)
S(τ ) of the random process ZS(τ ). Taking d∗

S(τ ) = (1, d
∗(1)

S(τ ), . . . ,

d
∗(K−1)

S(τ ) )� as the covariate, we can predict the cluster membership probability
based on the newly observed Z∗

S(τ ) using the multiclass logit model

P
(
C = c | Z∗

S(τ )

) = exp{γ �
c d∗

S(τ )}∑K
k=1 exp{γ �

k d∗
S(τ )}

(2.6)

for c = 1, . . . ,K − 1, and P(C = K | Z∗
S(τ )) = 1 − ∑K−1

c=1 P(C = c | Z∗
S(τ )) with

the K th cluster being baseline. We note that the vector of coefficients γ c here is
the same as that in (2.4) based on the historical or training data.
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2.3. Estimation for probabilistic functional classification. In practice, the ob-
served trajectories may be contaminated with random measurement errors. Let
Yi(tij ) be the j th observation of the ith individual flow trajectory from the un-

derlying process Z
(c)
i of cluster c observed at time tij , 0 ≤ tij ≤ T , such that

Yi(tij ) = Z
(c)
i (tij ) + εij , where Z

(c)
i is the underlying random function such that

Z
(c)
i (t) = μ(c)(t) + ∑∞

k=1 ξ
(c)
ki ϕ

(c)
k (t), and the random measurement errors εij are

independent of ξ
(c)
ki with mean zero and variance σ 2.

To identify the structures of cluster subspaces, {μ̂(c), {ϕ̂(c)
k }k=1,...,Mc,}, c =

1, . . . ,K , we follow the idea of defining clusters via subspace projection and ap-
ply the proposed subspace-projected functional clustering procedure to the training
data set. In the initial step, since cluster membership is unknown, the clustering is
based on functional principal component scores of an overall single random pro-
cess. Details of the initial clustering refer to Section 2.2.1 of Chiou and Li (2007).
In the iterative updating step, cluster membership is determined by criterion (2.2)
in a hard clustering manner. The clustering procedure is implemented iteratively in
identifying between (i) cluster subspaces and (ii) cluster memberships until con-
vergence.

Cluster subspaces. Given the observations {(tij , Yi(tij )), i = 1, . . . , n, j =
1, . . . ,m}, from the historical or training data, and the cluster memberships of the
trajectories, using the observations belonging to cluster c, the mean function μ(c)

can be estimated by applying the locally weighted least squares method while the
estimates of the components ϕ

(c)
k and ξ

(c)
ik rely on the covariance estimate Ĝ(c) by

applying the smoothing scatterplot data (Yij − μ̂(c)(tij ))(Yil − μ̂(c)(til)) to fit a lo-
cal linear plane. Details of this estimation can be found in Chiou, Müller and Wang
(2003) and Yao, Müller and Wang (2005a), for example. The smoothing param-
eters in the mean and covariance estimation steps are chosen data-adaptively via
the 10-fold cross-validation method. An estimate of ξ

(c)
ik can be obtained by the

conditional expectation approach of Yao, Müller and Wang (2005a) for the case
of sparse designs. Here, we simply obtain the estimate ξ̂

(c)
ik = 〈Yi − μ̂(c), ϕ̂k(c)〉U

by numerical approximation for the case of dense designs of traffic flow record-
ing. The value Mc is selected as the minimum that reaches a certain level of the
proportion of total variance explained by the Mc leading components such that

Mc = arg min
L:L≥1

{
L∑

l=1

λ̂
(c)
l

/ ∞∑
l=1

λ̂
(c)
l 1{λ̂(c)

l >0} ≥ δ

}
,(2.7)

where δ = 90% in this study. These cluster structure estimates are used in turn to
estimate the vector of regression coefficients γ k in (2.8) below.

Cluster memberships. Given the structure of each cluster based on the training
data, we then use the discriminative approach to fit the posterior probabilities of
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cluster membership P(C = c | Yi) such that

P̂ (C = c | Yi) = exp{γ̂ �
c d̂i}∑K

k=1 exp{γ̂ �
k d̂i}

, c = 1, . . . ,K − 1,(2.8)

and P̂ (C = K | Yi) = 1 − ∑K−1
k=1 P̂ (C = k | Yi), taking the K th cluster as the

baseline. Here, the relative L2 distance vector d̂i = (1, d̂
(1)
i , . . . , d̂

(K−1)
i )� serves

as the predictor variable and is calculated by

d̂
(c)
i = ‖Yi − Ẑ

(c)
i ‖2∑K

k=1 ‖Yi − Ẑ
(k)
i ‖2

, c = 1, . . . ,K − 1,(2.9)

where Ẑ
(c)
i (s) = μ̂(c)(s) + ∑Mc

j=1 ξ̂
(c)
ij ϕ̂

(c)
j (s), with ξ̂

(c)
ij defined above. The coeffi-

cient estimates γ̂ c = (γ0c, γ1c, . . . , γ(K−1)c) are obtained by the conventional iter-
ated reweighted least squares method [McCullagh and Nelder (1983)]. The result-
ing estimate (2.8) is used to determine the cluster membership according to (2.2).

Now, given a newly observed trajectory Y ∗ up to time τ , denoted by Y ∗
S(τ ), we

obtain the covariate vector d̂∗
S(τ ) = (1, d̂

∗(1)
S(τ ), . . . , d̂

∗(K−1)
S(τ ) )�, where

d̂
∗(c)

S(τ ) = ‖Y ∗
S(τ ) − Ẑ

∗(c)
S(τ )‖2∑K

k=1 ‖Y ∗
S(τ ) − Ẑ

(k)
S(τ )‖2

, c = 1, . . . ,K − 1.(2.10)

Here, Ẑ
∗(c)

S(τ )(s) = μ̂(c)(s) + ∑Mc

j=1 ξ̂
∗(c)

S(τ ),j ϕ̂
(c)

S(τ ),j (s), and ξ̂
∗(c)

S(τ ),j can be obtained by

a numerical approximation to 〈Z∗
S(τ ) − μ̂

(c)
S(τ ), ϕ̂

(c)
S(τ ),j 〉S(τ ). To obtain {ϕ̂(c)

S(τ ),j }, we

simply decompose the covariance estimate Ĉ(c) into blocks corresponding to the
time domains S(τ ) and T (τ ) without re-estimating the covariance function, mak-
ing the dynamical prediction step easy to implement for any given τ . We predict
the cluster membership for the newly observed Y ∗

S(τ ) by the posterior probability

P̂
(
C = c | Y ∗

S(τ )

) = exp{γ̂ �
c d̂∗

S(τ )}∑K
k=1 exp{γ̂ �

k d̂∗
S(τ )}

, c = 1, . . . ,K − 1,(2.11)

and P̂ (C = K | Y ∗
S(τ )) = 1 − ∑K−1

c=1 P̂ (C = c | Y ∗
S(τ )).

3. Functional mixture prediction of future traffic flow trajectories. To ac-
curately predict traffic flow trajectories under various traffic conditions, we com-
bine the functional prediction model with functional clustering and classification
methods. Given a newly observed trajectory Z∗

S(τ ) of the process Z as observed up
to time τ , we propose a functional mixture prediction model to predict the trajec-
tory of Z∗ on the time interval T (τ ) = [τ, T ], denoted by Z∗

T (τ ) as

E
(
Z∗

T (τ )(t) | Z∗
S(τ )

) =
K∑

c=1

P
(
C = c | Z∗

S(τ )

)
Z̃

∗(c)
T (τ )(t),(3.1)
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where Z̃
∗(c)

T (τ )(t) = E(Z∗
T (τ )(t) | Z∗

S(τ ),C = c) is the predictive function condi-
tional on cluster C = c, and P(C = c | Z∗

S(τ )) is the posterior probability of cluster
membership given the newly observed trajectory Z∗

S(τ ) up to time τ . The functional
mixture prediction model (3.1), obtained by the law of iterated expectation on the
random cluster membership variable C, E{E(Z∗

T (τ )(t) | Z∗
S(τ ),C)}, minimizes the

expected risk, E{L(Z∗
T (τ ), Z̃

C
T (τ ))}, where Z̃C

T (τ )(t) = E(Z∗
T (τ )(t) | Z∗

S(τ ),C) and

the loss function is defined as L(Z∗
T (τ ), Z̃

c
T (τ )) = ∫

T (τ ){Z∗
T (τ )(t) − Z̃

∗(c)
T (τ )(t)}2 dt .

3.1. Functional linear regression of traffic flow trajectories. In a regression
setting, the process Z(s), for s ∈ S(τ ) denoted by ZS(τ ), serves as the pre-
dictor function and the process Z(t), for t ∈ T (τ ) denoted by ZS(τ ), is the
response function. The subspace projected functional clustering method devel-
oped above is well suited to identifying clusters in conjunction with functional
prediction. For each cluster subspace, Z(c) is decomposed into Z

(c)
S(τ )(s) and

Z
(c)

T (τ )(t) whose Karhunen–Loève expansions can be obtained such that Z
(c)

S(τ )(s) =
μ(c)(s)+∑∞

j=1 ξ
(c)

S(τ ),jϕ
(c)

S(τ ),j (s) and Z
(c)

T (τ )(t) = μ(c)(t)+∑∞
j=1 ξ

(c)
T (τ ),jϕ

(c)
T (τ ),j (t),

where the notation ξ
(c)

S(τ ),j , ϕ
(c)

S(τ ),j , ξ
(c)

T (τ ),j and ϕ
(c)

T (τ ),j are defined analogously to
those on the entire domain U , but they correspond to the sub-domains S(τ ) and
T (τ ).

We consider a functional linear regression model [e.g., Ramsay and Dalzell
(1991), Müller, Chiou and Leng (2008)] conditional on cluster membership,

E
(
ZT (τ )(t) | ZS(τ ),C = c

)
(3.2)

= μ(c)(t) +
∫

S(τ )
β(c)

τ (s, t)
{
ZS(τ )(s) − μ(c)(s)

}
ds

for all t ∈ T (τ ). Here, given a fixed value of τ , assume the bivariate
regression function β

(c)
τ (s, t) is smooth and square integrable, that is,∫

T (τ )

∫
S(τ ) β

(c)
τ (s, t) ds dt < ∞. Under the smoothness assumption on the un-

derlying random process, we further assume that the bivariate regression func-
tion β

(c)
τ (s, t) is a smooth function of τ for all s and t . Using the eigen-

basis expansion for the regression coefficient function such that β
(c)
τ (s, t) =∑∞

k=1
∑∞

j=1 β
(c)
τ,kjϕ

(c)
S(τ ),j (s)ϕ

(c)
T (τ ),k(t), model (3.2) can be expressed as

E
(
ZT (τ )(t) | ZS(τ ),C = c

) = μ(c)(t) +
∞∑

j=1

∞∑
k=1

β
(c)
τ,kj ξ

(c)
S(τ ),jϕ

(c)
T (τ ),k(t),(3.3)

where ξ
(c)

S(τ ),j = 〈ZS(τ ) − μ(c), ϕ
(c)

S(τ ),j 〉S(τ ) and β
(c)
τ,kj = E(ξ

(c)
S(τ ),j ξ

(c)
T (τ ),k)/

E{(ξ (c)
S(τ ),j )

2} are the regression parameters to be estimated. Under the smooth-

ness assumption on β
(c)
τ (s, t) along with τ , it follows that β

(c)
τ,kj is also smooth in

τ for all k and j .



TRAFFIC FLOW PREDICTION 1599

3.2. Functional linear prediction model for future traffic flow. Given Z∗
S(τ ),

we aim to predict the values of Z∗
T (τ ). Suppose that the cluster structures μ(c) and

{ϕ(c)
S(τ ),j } and the regression coefficients β

(c)
τ,kj are given. In practice, these esti-

mates can be obtained from the functional clustering and the functional regression
analysis using the historical or training data as described in Section 2. Then, the
functional prediction model below is used to predict the unobserved trajectory con-
ditional on a specific cluster:

E
(
Z∗

T (τ )(t) | Z∗
S(τ ),C = c

) = μ(c)(t) +
∞∑

j=1

∞∑
k=1

β
(c)
τ,kj ξ

∗(c)
S(τ ),jϕ

(c)
T (τ ),k(t)(3.4)

for all t ∈ T (τ ), where ξ
∗(c)

S(τ ),j = 〈Z∗
S(τ ) − μ(c), ϕ

(c)
S(τ ),j 〉S(τ ) and will be obtained

by numerical approximation.
Finally, given a partially observed trajectory Z∗

S(τ ), the unobserved trajectory
Z∗

T (τ ) can be predicted by the functional mixture prediction model (3.1) using
the results of the functional prediction model (3.4) in conjunction with the mul-
ticlass logit model (2.6). However, the components in these models remain to be
estimated. The estimation procedure for the functional linear model is briefly sum-
marized below.

3.3. Estimation for functional mixture prediction models. We note that the es-
timation of βτ,kj in (3.3) and (3.4) can further be simplified using a simple linear
regression approach [Müller, Chiou and Leng (2008)], such that

E
(
ξ

(c)
T (τ ),k | ξ (c)

S(τ ),j

) = β
(c)
τ,kj ξ

(c)
S(τ ),j

for all pairs of (k, j). Therefore, functional linear regression can be decomposed
into a series of simple linear regressions of functional principal component scores
of the response processes in relation to those of the predictor processes.

For our predictions, given the cluster membership information and the subspace
structure of each cluster, we estimate β

(c)
τ (s, t) in the functional linear regression

model (3.2) based on the training data. Given the estimated principal component
functions ϕ̂

(c)
S(τ ),j (t) and ϕ̂

(c)
T (τ ),k(t) and the principal component scores ξ̂

(c)
S(τ ),j and

ξ̂
(c)

T (τ ),k , the estimate of β
(c)
τ,kj can be obtained by

β̃
(c)
τ,kj = {

(nc − 1)λ
(c)
S(τ ),j

}−1
nc∑

i=1

(
ξ̂

(c)
S(τ ),i,j − ξ

(c)
S(τ ),j

)(
ξ̂

(c)
T (τ ),i,k − ξ

(c)
T (τ ),k

)
,(3.5)

where ξ
(c)
S(τ ),j and ξ

(c)
T (τ ),k are sample averages of ξ̂

(c)
S(τ ),i,j and ξ̂

(c)
T (τ ),i,k , respec-

tively.
To take advantage of smoothness in prediction as the value τ progresses, we

further smooth the estimates {β̃(c)
τ,kj , τ = τ1, . . . , τQ} over τ to obtain the smooth
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estimates β̂
(c)
τ,kj , where Q is the number of time points at which predicting the

future trajectory is of interest. Here, we use the local linear smoothing method with
cross-validated bandwidth [see, e.g., Fan and Gijbels (1996)]. Accordingly, using
β̂

(c)
τ,kj and the estimates μ̂(c)(t) and ϕ̂

(c)
T (τ ),k(t), we obtain the predicted trajectory

conditional on cluster c by

Ẑ
∗(c)

T (τ )(t) = Ê
(
Z∗

T (τ )(t) | Y ∗
S(τ ),C = c

)
(3.6)

= μ̂(c)(t) +
Mc∑
j=1

Mc∑
k=1

β̂
(c)
τ,kj ξ̂

∗(c)
S(τ ),j ϕ̂

(c)
T (τ ),k(t)

for all t ∈ T (τ ). Here, Mc is determined by (2.7). Finally, combining the results
of (3.6) with (2.11), we obtain the predicted unobserved traffic flow trajectory

Ẑ∗
T (τ )(t) = Ê

(
Z∗

T (τ )(t) | Y ∗
S(τ )

) =
K∑

c=1

Ẑ
∗(c)

T (τ )(t)P̂
(
C = c | Y ∗

S(τ )

)
.(3.7)

3.4. Implementation algorithm of functional mixture predictions. Suppose
there is a newly observed trajectory {(t∗j , Y ∗(t∗j )); t∗j < τ }, denoted by Y ∗

S(τ ) for
short. The algorithm for functional mixture prediction that combines the func-
tional classification procedure with the functional prediction model is summarized
as follows.

Step 1. Identification of cluster subspaces. Perform the subspace-projected func-
tional clustering procedure according to criterion (2.2) to identify cluster sub-
spaces, {μ̂(c), {ϕ̂(c)

k }k=1,...,Mc}, c = 1, . . . ,K , based on the training data set as
discussed in Sections 2.1 and 2.3.

Step 2. Model fitting based on the historical or training data.
(i) Obtain the multiclass logit model for cluster membership distributions. Ob-

tain from Step 1 the regression coefficient estimates γ̂ c in (2.8).
(ii) Fit the functional linear regression model. Fit the cluster-specific func-

tional linear regression models and obtain the regression coefficient esti-
mates β̂

(c)
τ,kj as a smoothed version of (3.5).

Step 3. Prediction of the future traffic flow trajectory for a new and partially ob-
served Y ∗

S(τ ) conditional on clusters.
(i) Predict the posterior membership probability of Y ∗

S(τ ) associated with

each cluster. Calculate the relative L2 distances d
∗(c)

S(τ ) for the given Y ∗
S(τ )

in (2.10) and obtain the posterior probability P̂r(C = c | Y ∗
S(τ )) in (2.11).

(ii) Predict the unobserved trajectory Y ∗
T (τ ) conditioning on each of the clus-

ters. Obtain the cluster-specific functional prediction model fit Ê(Y ∗
T (τ ) |

Y ∗
S(τ ),C = c) in (3.6).
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Step 4. Prediction of traffic flow trajectory by the functional mixture prediction
model. Calculate the predicted trajectory Ê(Y ∗

T (τ ) | Y ∗
S(τ )) in (3.7) using the re-

sults of P̂r(C = c | Y ∗
S(τ )) and Ê(Y ∗

T (τ ) | Y ∗
S(τ ),C = c) and obtain the bootstrap

prediction intervals.

Details in constructing the bootstrap prediction intervals in Step 4 are provided in
Supplementary Material B [Chiou (2012)].

4. Analysis of traffic flow patterns. The sample data set of daily traffic flow
trajectories from Section 1.1 is divided into a training data set (70 days) and a test
data set (14 days) to examine the predictive performance of our model. Clusters
of the traffic flow patterns from the training data are identified based on subspace
projection using the proposed subspace-projected functional clustering method ac-
cording to criterion (2.2). The implementation of the functional forward testing
procedure of Li and Chiou (2011) leads to the choice of 3 clusters. Table 1 sum-
marizes the empirical probabilities of rejecting the null hypotheses for K = 2,3,4,
based on 200 bootstrap samples. The p-values with reference to the predetermined
level of significance 0.05, adjusted for multiple comparisons, indicate that when
K = 2 and 3, the clusters are all significantly distinct, while Clusters 1 and 4
when K = 4 are not significantly different in terms of the mean functions and
the eigenspaces.

The cluster memberships displayed in Figure 3 show that Cluster 1 contains
mostly weekends (left panel), with 90% being holidays including weekends (right
panel). Cluster 2 completely comprises weekdays including Mondays through
Thursdays. Cluster 3 comprises mostly weekdays, especially Fridays (left panel).
The mean functions of the three clusters and the overall trajectories are displayed
in Figure 4. While Cluster 1 has a higher mean traffic flow rate than the other

TABLE 1
Empirical probabilities of rejecting the null hypotheses H01 and H02, respectively, based on 200

bootstrap samples

Number of clusters Clusters H01 :μ(c) = μ(d) H02 :S(c) = S(d)

2 1 vs. 2 0.000 0.010

3 1 vs. 2 0.000 0.005
1 vs. 3 0.000 0.005
2 vs. 3 0.005 0.015

4 1 vs. 2 0.000 0.055
1 vs. 3 0.000 0.030
1 vs. 4 0.155 0.025
2 vs. 3 0.000 0.160
2 vs. 4 0.000 0.035
3 vs. 4 0.000 0.000
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FIG. 3. Frequency plots of cluster labels by days of the week (left panel) and by non- and holidays
(right panel) for Clusters 1, 2 and 3 (left, middle and right groups).

two clusters, Clusters 2 and 3 have relatively close mean flow rates in terms of
shape and magnitude until 11:00, and they diverge thereafter with a higher mean
flow rate in Cluster 3. The observed trajectories along with the corresponding co-
variance functions and leading eigenfunctions are shown in Figure 5. The vari-
ability of Cluster 1 is higher than the other two clusters, while Cluster 2 has
the lowest variability. The peak flow rate in Cluster 1 lasts from 07:00 to 17:00
and the three leading principal component functions explain 77.16%, 11.14%
and 5.57% of total variability. The trajectories in Cluster 2 have a relatively
uniform pattern with the major peak flow rate at around 11:00. Cluster 3 indi-
cates a high variability of flow rates occurring after 18:00. The mean integrated
prediction errors are defined as nc

−1 ∑nc

i=1 T −1 ∫ T
0 (Ẑ

(c)
i (t) − Yi(t))

2 dt , where

Ẑ
(c)
i (t) = μ̂(c)(t) + ∑Mc

j=1 ξ̂
(c)
ij ϕ̂

(c)
j (t), Yi(t) is the observed trajectory and nc is

the number of trajectories in Cluster c. These are 327.3, 78.8 and 122.4 for Clus-
ters 1–3, respectively. Prediction using the overall trajectories without clustering,

FIG. 4. Overall and cluster-specific mean functions of the training data of daily traffic flow rates.
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FIG. 5. Estimated mean functions (left column) superimposed on the observed trajectories, covari-
ance functions (middle column) and the corresponding eigenfunctions (right column) of Clusters 1–3
(from top to bottom) based on the training data of daily traffic flow trajectories.

in contrast, returned an error of 300.5, indicating that there is a huge reduction in
prediction errors when heterogeneity of cluster patterns are taken into account.

The model fits of the multiclass logistic regression listed in Supplementary Ma-
terial C [Chiou (2012)] are used in predicting the unobserved trajectory for an
up-to-date and partially observed trajectory. Given a newly observed trajectory
from the test data up to the current time τ , to consider different flow patterns, we
predict the posterior probabilities for each of the associated clusters by functional
classification based on the multiclass logistic regression model in (2.11), using the
fitted regression coefficients in (2.8) with the relative L2 distances (2.10) as the
covariate. The posterior probabilities for some test samples are illustrated in Fig-
ure 6 with the values of τ progressing from 08:00 to 20:00 by 15-min intervals.
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FIG. 6. The predicted cluster membership distribution for Clusters 1–3 (indicated in blue, green
and red) as a function of the “current time” τ (per 15 min) for samples from the test data based on
the trajectories observed up to τ .

In Figure 6(a), the predicted membership probabilities of Test sample 1 degener-
ate to one for all values of τ . The associated predicted trajectories are shown in
Figure 2(a)–(c). The time-varying prediction intervals, which are wider closer to
τ and taper off toward the end, depend on Cluster 1’s variability pattern as illus-
trated in Figure 5 (top panels). In contrast, Figure 6(b) for Test sample 2 indicates
a more complex situation where the predicted membership distributions change
with τ , with the associated predicted trajectories shown in Figure 2(d)–(f). In this
case, using the early trajectory information up to τ = 8:00 may lead to misclas-
sification, which makes it difficult to predict its future trajectory accurately. This
issue is resolved as τ moves onward. The wider prediction bands with τ at 12:00
and 16:00, in comparison with that at 8:00, reflect the fact that the variability of
Cluster 3’s traffic flow trajectories is larger in the afternoon as illustrated in Fig-
ure 5 (bottom panels). Figure 6(c) indicates that the posterior cluster membership
probabilities of Test sample 3 alternate between Clusters 2 and 3, owing to certain
similarities in these two cluster patterns, and the predicted cluster membership re-
mains with Cluster 3 after around 18:00. Given that the actual cluster memberships
are unknown, the accuracy of functional classification for the up-to-date and par-
tially observed trajectories in the test data will be investigated via a simulation
study in Section 6.

5. Traffic flow prediction. In predicting the unobserved traffic flow trajecto-
ries, we also investigate the effects on the prediction performance of the interval
length prior to time τ and the future interval length after it. To this end, we define

S(τ ;ω) = [max(0, τ − ω), τ ], where ω is the length of the known interval to be
used in prediction calculations and T (τ ;κ) = [τ,min(τ + κ,T )], where κ is the
length of the unknown interval to be predicted from time τ onward. In the test data,
given a sample Y ∗

i observed up to time τ , denoted by Y ∗
i,S(τ ), we define the mean

integrated prediction error (MIPE) as the the performance measure of predict-
ing Y ∗

i,T (τ ). This is expressed as MIPE(τ,ω, κ) = m−1
p

∑mp

i=1 κ−1 ∫ κ
0 {Ẑ∗

i,T (τ )(t) −
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Y ∗
i,T (τ )(t)}2 dt , where Y ∗

i,T (τ )(t) = Y ∗
i (τ + t), Ẑ∗

i,T (τ )(t) is obtained by (3.7) and
mp is the number of trajectories in the test data. For ease of comparisons across
different values of τ , let τs = max(0, τ − ω) and τe = min(τ + κ,T ), for ω > 0
and κ > 0. We define the total mean integrated prediction error (TMIPE) for the
overall prediction performance by

TMIPE(ω, κ) =
∫ τe

τs

MIPE(τ,ω, κ) dτ,(5.1)

where τs and τe are the smallest and the largest values, respectively, selected with
respect to the times, τ , on the domain [0, T ]. In this study, T = 24 (hours) and
we set τs = 8 and τe = 20. For notational convenience, we let κ∗ = 24 − τ and
ω∗ = τ , τs ≤ τ ≤ τe, such that κ∗ denotes the interval length from the current time
to the end of the day and ω∗ denotes the maximal length of the past trajectory
information available for prediction.

5.1. Results and comparisons of traffic flow prediction. In this study we in-
vestigate the prediction performance by comparing the following methods:

• FP: Functional prediction based on functional linear regression using the same
setting described in Section 3.1 but without considering clusters of different
traffic flow patterns;

• FMPH : Functional prediction using the proposed functional mixture prediction
model except that the posterior membership probabilities (2.6) degenerate to
zero or one such that

∑K
c=1 P(C = c | Z∗

S(τ )) = 1 (where the subscript H reflects
the so-called hard classification);

• FMPS : Functional prediction using the proposed functional mixture prediction
model (where the subscript S reflects the so-called soft classification or proba-
bilistic classification).

To examine prediction performance under various situations, we consider a wide
range of values τ along with various values of ω and κ as defined in S(τ ;ω) and
T (τ ;κ). Table 2 indicates that the proposed FMPS is robust, generally outperform-
ing the other two (FP and FMPH ) under various values of ω and κ . Figure 7 (left
panel) indicates that small values of ω (1,2,4) give a similar performance and it is
not surprising that the performance for larger values of κ is worse. For fixed values
of κ (right panel), TMIPE as a function of ω generally shows a positive slope as it
moves away from the origin, with a minimum at ω = 5 (for κ = 4,8,ω∗) or ω = 6
(for κ = 1) from Table 2. The trend is relatively flat, but becomes steeper when
ω = ω∗. This discrepancy is more pronounced with increasing κ . A possible ex-
planation is that the flow trajectory patterns in Clusters 2 and 3 are close in shape
and magnitude until noon and diverge thereafter and, thus, using larger ω with
more past information may not significantly improve the overall prediction accu-
racy. In the literature, Sentürk and Müller (2010) considered the length of past data
to be used for prediction and suggested the optimal length using a data-adaptive
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FIG. 7. Performance comparisons for FMPS , based on TMIPE (5.1), displayed as a function of κ

(left) with ω fixed at 1, 2, 4 and ω∗ and as a function of ω (right) with κ fixed at 1, 4, 7, 10 and κ∗.

criterion that minimizes the absolute prediction error. Our empirical results also
suggest the use of a data-adaptive criterion to choose the length of past data. Ad-
ditionally, comparisons for the prediction performance between the methods with
fixed values of ω as illustrated in Figure 8 (with ω = 1 on the left and ω = ω∗
on the right) reinforce the conclusion that FMPS outperforms FP and FMPH . In
addition to the 3-cluster prediction performance illustrated above, results of the
2- and 4-cluster prediction performances are illustrated in Supplementary Mate-
rial C [Chiou (2012)] for comparisons. These results also support our choice of the
3-cluster model, which outperforms the 2- and 4-cluster models.

TABLE 2
Performance comparisons for FP, FMPH and FMPS based on TMIPE (×103) under various values

of κ and ω

ω

κ 1 2 3 4 5 6 ω∗

FP 1 4.12 4.92 4.84 4.92 5.30 5.68 5.82
4 7.42 7.71 7.69 8.10 8.60 9.06 8.95
8 9.92 10.26 10.35 10.79 11.27 11.71 11.65
κ∗ 12.34 12.79 12.94 13.41 13.91 14.36 14.30

FMPH 1 3.48 3.22 3.20 3.33 3.53 3.52 3.14
(3 clusters) 4 5.00 4.62 4.73 4.91 5.20 5.26 4.79

8 8.88 8.44 8.48 8.68 8.97 9.07 8.81
κ∗ 12.24 11.82 11.87 12.06 12.36 12.47 12.33

FMPS 1 3.31 3.26 3.07 2.93 2.87 2.80 2.81
(3 clusters) 4 4.37 4.14 4.05 3.98 3.80 3.86 4.18

8 5.80 5.64 5.54 5.49 5.41 5.61 6.68
κ∗ 7.97 7.94 7.84 7.86 7.71 7.89 9.95
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FIG. 8. Performance comparisons for FP, FMPH and FMPS , based on TMIPE (5.1), displayed as
a function of κ , with ω = 1 (left) and ω = ω∗ (right).

5.2. Comparisons with other methods. We compare the functional mixture
prediction approach with an existing method that could also be fitted into our
functional mixture prediction framework. One possible approach is to treat the
unobserved future trajectory for a partially observed trajectory as missing in the
entire trajectory. That is, we may replace (3.6) in Step 3(ii) with the model

Ẑ
∗(c)

T (τ )(t) = Ê
(
Z∗

T (τ )(t) | Y ∗
S(τ ),C = c

) = μ̂∗(c)(t) +
Mc∑
j=1

ξ̂
∗(c)
j ϕ̂

∗(c)
j (t)(5.2)

for all t ∈ T (τ ), where the estimated mean function μ̂∗(c)(t) and the estimated
eigenfunctions of the covariance kernel ϕ̂

∗(c)
j (t) of cluster c are obtained by the

training data set in the clustering step with the corresponding domain T (τ ). The
key step is to estimate the functional principal component scores, ξ̂

∗(c)
j , which

cannot be obtained easily since the trajectory is only partially observed. An ex-
isting method that can deal with this situation makes use of the expectation of
the posterior distribution in Proposition 1 of Zhou, Serban and Gebraeel (2011),
assuming that the prior distribution of the scores is Gaussian, for an application
to degradation modeling. This formula coincides with the conditional expectation
approach in equation (4) of Yao, Müller and Wang (2005a) under Gaussian as-
sumptions, although they are different in terms of statistical inference. We term
this method the Functional Principal Component Prediction (FPCP) approach. We
apply FPCP to the proposed functional mixture prediction algorithm including the
cases with and without clustering/classification considerations for comparisons, in-
cluding FPCP, FPCPH and FPCPS that are parallel to FP, FMPH and FMPS . The
results shown in Table 3, in comparison with the results in Table 2, indicate that
the functional mixture prediction approach in conjunction with functional linear
regression outperforms the FPCP approach. Additional results for the 2- and the
4-cluster models are also provided in Supplementary Material C [Chiou (2012)]
for comparison.
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TABLE 3
Performance comparisons for FPCP, FPCPH and FPCPS based on TMIPE (×103) under various

values of κ and ω

ω

κ 1 2 3 4 5 6 ω∗

FPCP 1 14.30 13.94 13.63 12.62 10.49 8.48 7.69
4 17.43 16.70 15.37 13.57 11.90 11.11 10.77
8 17.97 16.98 15.96 14.93 14.10 13.73 13.30
κ∗ 19.27 18.59 17.88 17.13 16.50 16.19 15.66

FPCPH 1 7.83 8.62 8.90 8.90 10.57 10.67 2.85
(3 clusters) 4 10.72 11.35 11.99 11.63 11.21 9.75 4.80

8 12.57 12.62 12.28 11.94 12.05 11.65 9.19
κ∗ 14.35 14.36 14.24 14.13 14.14 13.94 12.48

FPCPS 1 6.26 7.29 7.54 7.73 9.41 9.44 3.07
(3 clusters) 4 8.73 9.84 10.79 10.86 10.61 9.86 4.87

8 10.13 11.16 11.66 11.65 11.60 11.28 8.80
κ∗ 12.12 12.95 13.23 13.12 13.14 13.14 12.37

6. Simulation. We implement a Monte Carlo simulation to evaluate the per-
formance of the functional clustering and classification procedures as well as
the functional prediction accuracy. We simulate the scenario of the real traffic
flow trajectories analyzed in the previous sections. We generate a training data
set and a test data set for each simulation run using the estimated results of the
3-cluster traffic flow trajectories as the true models with a total of 100 simu-
lation replicates. The numbers of curves nc are 21, 31 and 18 for Clusters 1–
3 in each training data set and are 3, 8 and 3 in each test data as in the pre-
vious analysis. The synthetic curves of cluster c are generated by the model

y
(c)
i (tj ) = μ(c)(tj ) + ∑M̃c

j=1 ξ
(c)
ij φ

(c)
j (tj ) + ε

(c)
ij , for i = 1, . . . , nc, where ξ

(c)
ij are

normal random variates with a mean of zero and variance λ(c) and the random
measurement errors ε

(c)
ij are independent and follow a normal distribution with a

mean of zero and variance σ 2
(c). The recording times tj = j/4 for j = 1, . . . ,96

mimic the 15-min recording time interval. The quantities μ(c), φ
(c)
j , λ

(c)
j and σ 2

(c)

use the model estimates of our real traffic flow data analysis. The numbers of com-
ponents M̃c are determined by the numbers of the estimated λ

(c)
j that are strictly

positive. Further details of the simulated models regarding the underlying func-
tions μ(c) and φ

(c)
j , along with a sample of synthetic trajectories, are displayed in

Supplementary Material D [Chiou (2012)]. The clustering results of this simulated
sample, including the estimated mean function and the eigenfunctions along with
the covariance functions, are also illustrated.
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TABLE 4
Average TMIPE (×103) (with s.e. in parentheses) for FP, FMPH , FMPS and FMP∗

S under various
values of κ and ω based on 100 simulation replicates

ω

κ 1 2 4 6 ω∗

FP 1 2.99 (0.03) 3.44 (0.05) 3.90 (0.07) 4.40 (0.08) 4.87 (0.11)
4 5.53 (0.09) 5.72 (0.10) 6.18 (0.12) 6.70 (0.14) 7.18 (0.17)
8 6.77 (0.13) 6.92 (0.15) 7.33 (0.17) 7.80 (0.20) 8.26 (0.21)
κ∗ 7.50 (0.18) 7.67 (0.20) 8.08 (0.22) 8.52 (0.24) 8.97 (0.25)

FMPH 1 2.88 (0.04) 3.17 (0.05) 3.42 (0.07) 3.58 (0.08) 3.61 (0.09)
4 4.98 (0.11) 5.14 (0.12) 5.44 (0.15) 5.65 (0.17) 5.77 (0.18)
8 6.00 (0.15) 6.12 (0.16) 6.42 (0.19) 6.66 (0.22) 6.89 (0.24)
κ∗ 7.18 (0.27) 7.47 (0.33) 8.02 (0.50) 8.41 (0.57) 8.80 (0.53)

FMPS 1 2.80 (0.04) 3.09 (0.05) 3.30 (0.07) 3.49 (0.07) 3.49 (0.07)
4 4.88 (0.09) 4.91 (0.10) 5.26 (0.11) 5.44 (0.13) 5.42 (0.13)
8 5.90 (0.14) 5.99 (0.14) 6.34 (0.16) 6.38 (0.17) 6.59 (0.18)
κ∗ 6.90 (0.19) 7.07 (0.19) 7.25 (0.22) 7.58 (0.23) 7.86 (0.25)

FMP∗
S 1 2.60 (0.03) 2.81 (0.04) 3.03 (0.05) 3.13 (0.06) 3.13 (0.06)

4 4.11 (0.06) 4.18 (0.07) 4.40 (0.09) 4.48 (0.10) 4.46 (0.11)
8 4.57 (0.09) 4.59 (0.09) 4.74 (0.11) 4.78 (0.12) 4.73 (0.13)
κ∗ 4.58 (0.10) 4.57 (0.10) 4.65 (0.12) 4.68 (0.13) 4.62 (0.13)

The average clustering error rates are 6.48% (with standard error 1.28%), 1.68%
(0.45%) and 8.39% (2.01%) for Clusters 1–3 based on the 100 simulated training
data sets. The accuracy of classification for the future trajectory to be predicted
for a partially observed trajectory in the test data depends on the values τ , the
“current” time observed thus far. The average classification error rate decreases
with τ , ranging from 27.5% at 8:00 to 7.7% at 20:00, implying that prediction
accuracy increases with τ . Additional details regarding accuracy of clustering and
classification are compiled in Supplementary Material D [Chiou (2012)].

The prediction performances based on the proposed functional mixture predic-
tion (FMP) approach are summarized in Table 4. The method FMP∗

S is the same
as FMPS , apart from that FMP∗

S assumes the cluster/classification memberships
are known, serving as the gold standard for prediction performance comparisons.
The results clearly demonstrate that FMPS outperforms FP and FMPH , with rela-
tively smaller values of TMIPE and the associated standard errors indicating that
FMPS has better prediction accuracy and is quite robust. In FMPS , the prediction
errors using ω = 1 and ω = 2 are close to each other and perform the best under
various values of κ . The optimal selection of ω appears to be different from those
obtained from our real traffic flow data. Although the generated data based on the
model estimates may reach a high level of realism to traffic flow data, they may
not be able to capture the entire data features such as outlying curves that could
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influence the prediction performance. In addition, classification errors of the par-
tially observed trajectory may also play a role in prediction. We also compare the
FMP method with the FPCP approach. The simulation results are listed in Sup-
plementary Material D [Chiou (2012)]. The results suggest larger values of ω for
minimal prediction errors. The intuition behind these results is that FPCP treats
the partial trajectory to be predicted as missing values, especially when the data
are more homogeneous within clusters and contain less outlying curves as in the
simulated data. Overall, the results demonstrate that the proposed FMP approach
outperforms the FPCP approach.

7. Concluding remarks and discussions. This study presents a methodolog-
ical framework for uncovering traffic flow patterns and predicting traffic flow. The
proposed functional data approaches, including classification and prediction, iden-
tify clusters with similar traffic flow patterns, facilitating accurate prediction of
daily traffic flow. Although motivated by the subject of traffic flow prediction, the
proposed methodology is generally applicable and transferable to the analysis and
prediction of any longitudinally collected functional data, such as city electric-
ity usage or degradation studies in manufacturing systems. The empirical results
demonstrate that our proposed method, functional mixture prediction, which com-
bine functional prediction with probabilistic functional classification, can work
reasonably well to predict traffic flow. We conclude that taking traffic flow patterns
into account can greatly improve prediction performance as long as the traffic flow
patterns can be satisfactorily identified.

In the literature of intelligent transportation systems, conditional expectation is
commonly used as the measure of traffic flow prediction/forecast of a future tra-
jectory at a future time point or short period. However, it may be interesting to
consider probabilistic forecasts [Gneiting (2008)], which take the form of proba-
bility distributions over future trajectories. A probabilistic forecast may engender a
new way of thinking about traffic flow prediction, which may give a better account
of uncertainty in potential flow trajectories. In this study, our focus was on predict-
ing a future trajectory in the form of conditional expectation for an up-to-date and
partially observed trajectory. Under the functional mixture prediction framework,
a mixture of predictive distributions of the potential trajectories could instead serve
as an ensemble for probabilistic forecasting. However, substantial efforts would be
needed to accomplish the goal of probabilistic forecasting for traffic flow trajecto-
ries.

In addition to predictive accuracy, the real-time feature of traffic flow informa-
tion is important in traffic management. Given that the components of our proposed
model are estimated based on historical data, as in the training data, the proposed
method also serves as a real-time prediction approach for predicting the future un-
observed traffic flow trajectory for a partially observed flow trajectory. The fact
that real-time information is quickly and easily updated will facilitate the estab-
lishment of effective reporting systems for traffic flow prediction. Furthermore,
this article discussed single-detector traffic prediction, a category crucial in sup-
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porting demand forecasting as required in practice by operational network models.
Future research might extend to multiple-detector traffic prediction and will be
important in working toward the goal of better road network management.
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