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A topological multiple testing approach to peak detection is proposed for
the problem of detecting transcription factor binding sites in ChIP-Seq data.
After kernel smoothing of the tag counts over the genome, the presence of a
peak is tested at each observed local maximum, followed by multiple testing
correction at the desired false discovery rate level. Valid p-values for candi-
date peaks are computed via Monte Carlo simulations of smoothed Poisson
sequences, whose background Poisson rates are obtained via linear regression
from a Control sample at two different scales. The proposed method identifies
nearby binding sites that other methods do not.

1. Introduction. The problem of detecting signal peaks in the presence of
background noise appears often in the analysis of high-throughput data. In ChIP-
Seq data, the problem of finding transcription factor binding sites along the
genome translates to a large-scale peak detection problem with a one-dimensional
spatial structure, where the number, locations and heights of the peaks are un-
known. Recently, Schwartzman, Gavrilov and Adler (2011) (hereafter SGA) intro-
duced a topological multiple testing approach to peak detection where, after kernel
smoothing, the presence of a signal is tested not at each spatial location but only at
the local maxima of the smoothed observed sequence. In this paper, we show how
that approach can be used to formalize the inference problem of finding binding
sites in ChIP-Seq data. To achieve this, we also propose a new regression-based
method for estimating the local background binding rate from a Control sample.

1.1. ChIP-Seq data. ChIP-Sequencing or ChIP-Seq is an experimental
method that is often used to map the locations of binding sites of transcription
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factors along the genome in vivo [Barski and Zhao (2009), Park (2009)]. Transcrip-
tion factors control the transcription of genetic information from DNA to mRNA
in living cells, and abnormalities in this process are often associated with cancer.
Given a particular transcription factor of interest, ChIP-Seq combines chromatin
immunoprecipitation (ChIP) with massively parallel DNA sequencing, allowing
enrichment of the DNA segments bound by the transcription factor and mapping
of their locations along the genome. The result is a long list of sequenced forward
and reverse tags, also called reads, each associated with a specific genomic ad-
dress. After alignment of these tags, the data consists of a sequence of tag counts
along the genome, with a tendency to a higher concentration of tags near the tran-
scription factor binding sites. An example of a data fragment is shown in Rows 1
and 2 of Figure 1. (Note that not all ChIP-Seq data follow this pattern, e.g., histone
modification data.)

The goal of the analysis is to identify the true binding sites. This translates to
finding genomic locations where the binding rate is higher than it would be if the
transcription factor were not present. To this end, Johnson et al. (2007) suggested
sequencing a Control input sample to provide an experimental assessment of the
background tag distribution, helping reduce false positives. The cost currently as-
sociated with this technology often does not allow more than a single ChIP-Seq
sample, also called an IP sample, and a single Control sample. To illustrate the
usefulness of the Control, Rows 1 and 2 of Figure 1 show a short fragment of the
raw data after alignment in the Control and IP samples, respectively, for the same
positions in the genome. The interesting peaks are marked by red circles in Row 3,
corresponding to sites with high binding rate in the IP sample but lower rate in the
Control. Other candidate peaks, marked in blue, do not have a significantly higher
binding rate in the IP sample than in the Control.

As an additional condition, it is necessary that a site has a high binding rate in
absolute terms to avoid spurious high fold enrichments due to high variability at
low coverage (e.g., 3-fold enrichment resulting from 3 reads in treatment vs. 1 read
in control).

1.2. Testing of local maxima. The search for binding sites may be set up as
a large-scale multiple testing problem where, at each genomic location, a test is
performed for whether the binding rate is higher than the background. Testing
at each genomic location is statistically inefficient because it requires a multiple
testing correction for a very large number of tests over the entire length of the
genome. In ChIP-Seq, the binding rate at a true binding site has a unimodal peak
shape that spreads into neighboring locations, caused by the variability in the start
and end points of the sequenced segments. Thus, as argued by SGA, it is enough
to test for high binding rates only at locations that resemble peaks, that is, local
maxima of the smoothed data. In this sense, the local maxima serve as topological
representatives of the candidate binding sites.
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FIG. 1. A fragment of the Fox A1 aligned data featuring a few representative peaks found by our
method. Row 1: Control sample. Row 2: IP sample, same fragment as the Control. Row 3: Smoothed
IP sample; significant peaks are indicated in red, nonsignificant ones in blue. Row 4: Estimates of the
background Poisson rate λ0(t) at local maxima of the smoothed IP sample. Row 5: Signal-to-noise
ratio (SNR), equal to peak height divided by background rate (log 10 scale). Row 6: P -values (log 10
scale). Notice the difference in vertical scales between the left and right panels.

Peak detection on the aligned data is carried out using the Smooth and Test
Local Maxima (STEM) algorithm of SGA. It consists of the following:

(1) kernel smoothing;
(2) finding the local maxima as candidate peaks;
(3) computing p-values for the heights of the observed local maxima; and
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(4) applying a multiple testing procedure to the obtained p-values.

For Step 1, following the “matched filter principle” recommended by SGA, we
use a symmetric unimodal kernel that roughly matches the shape of the peaks to
be detected. This shape corresponds to the spatial spread of tag locations around
a true binding site and is assumed to be the same for all binding sites, up to an
amplitude scaling factor dictated by the physics and chemistry of the experimental
protocol. This shape, up to an amplitude scaling factor, is estimated from the data
during the alignment process. In Step 2, local maxima are defined as smoothed
counts that are higher than their neighbors after correcting for ties. In Step 3, p-
values test the hypothesis that the local binding rate is less or equal to the local
background rate or a minimally interesting binding rate. The required distribution
of the heights of local maxima is computed via Monte Carlo simulations. Finally,
Step 4 is carried out using the Benjamini–Hochberg (BH) procedure [Benjamini
and Hochberg (1995)], although, in general, other multiple testing algorithms may
be used instead.

The STEM algorithm is promising for ChIP-Seq data because it was shown
in SGA to provide asymptotic error control and power consistency under simi-
lar modeling assumptions. Like in ChIP-Seq data, SGA assumed that the signal
peaks are unimodal with finite support and that the search occurs over a long
observed sequence. Further assuming additive Gaussian stationary ergodic noise,
SGA proved that the BH procedure controls the false discovery rate (FDR) of de-
tected peaks, defined as the expected ratio of falsely detected peaks among detected
peaks, where a detected peak is considered true (false) if it occurs inside (outside)
the support of any true peak. In SGA, the control is asymptotic as both the search
space and the signal strength increase, where the former may grow exponentially
faster than the latter, and the detection power tends to one under the same asymp-
totic conditions. In ChIP-Seq data, the definitions of true and false detected peaks
apply within the spatial extent of the true peak shape, which is estimated here
during the alignment process.

1.3. Estimation of the background rate and Monte Carlo calculation of p-
values. ChIP-Seq data differs from the modeling assumptions of SGA in that
ChIP-Seq data consists of a long sequence of positive integer counts, often as-
sumed to follow a Poisson distribution [Mikkelsen et al. (2007)]. Moreover, the
process generating the background noise counts is not globally stationary [Johnson
et al. (2007)]. To make inference possible, we assume the background Poisson rate
to vary over the genome but not too fast so that it is approximately constant in
the immediate vicinity of any candidate peak. The background Poisson rate at any
given location is estimated as a linear function of the local Control counts at two
different spatial scales, 1 kilo base-pairs (kb) and 10 kb. The linear coefficients are
estimated from the data by multiple regression, automatically solving the normal-
ization problem of having different sequencing depths between the IP and Control
samples.
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Finally, as required by Step 3 of the STEM algorithm above, for an observed
local maximum of the smoothed ChIP-Seq data at a given location, its p-value
is computed via Monte Carlo simulation using the background Poisson parameter
estimated for that location. Note that the STEM algorithm requires an estimate of
the background, but does not depend on how that estimate was obtained. Here we
propose a regression method, but that method could be changed without changing
the basic operation of the STEM algorithm.

1.4. Other methods. Several ChIP-Seq data analysis methods have been pro-
posed in the literature; cf. MACS [Zhang et al. (2008)], cisGenome [Ji et al.
(2008)], QuEST [Valouev et al. (2008)] and FindPeaks [Fejes et al. (2008)]. While
these methods also view the problem of detecting binding sites as a peak detec-
tion problem, use statistical models and estimate error rates, most of them do
not formally state the statistical inference problem. Exceptions are PICS [Zhang
et al. (2011)] and BayesPeak [Spyrou et al. (2009)], which are both Bayesian ap-
proaches, whereas we adopt a frequentist point of view. QuEST [Valouev et al.
(2008)] also finds local maxima as candidate peaks but uses a narrow Gaussian
kernel rather than a matched filter and estimates the FDR by comparing the num-
ber of peaks called in the IP and Control sequences rather than estimating the
background and formally testing using p-values. T-PIC [Hower, Evans and Pachter
(2011)] also takes a topological approach, but rather than heights of local maxima
it measures the depth of trees built from excursion regions of the coverage function
of the data, so our method is simpler.

Here we attempt to frame the ChIP-Seq analysis problem as a formal infer-
ence problem in multiple testing relying on the error control properties proven
in SGA and using a new regression method to estimate the background binding
rate. As a reference, we compare the results of our analysis to those of MACS,
cisGenome and QuEST on two different data sets. By focusing on detecting peaks
rather than regions and using a matched filter, our approach has the ability to dis-
tinguish nearby binding sites that MACS and ciSGenome do not, and in a less
fragmented fashion than QuEST.

1.5. Data sets. We demonstrate our approach on two different ChIP-Seq data
sets. In the first, ChIP-Seq targeting the transcription factor FoxA1 was performed
on the breast cancer cell line MCF-7 [Zhang et al. (2008)]. This data set includes
a ChIP-Seq sample (hereafter IP), in which the FoxA1 antibody was used, and a
Control input sample, in which the procedure was repeated without the antibody.
Sequencing covered the entire genome, producing about 3.9 million tags in the IP
sample and about 5.2 million tags in the Control sample. The second data set con-
cerns the growth-associated binding protein (GABP) [Valouev et al. (2008)]. This
larger data set consists of an IP sample with about 7.8 million tags and a Control
sample with about 17.4 million tags. The methods in this paper were developed
on the FoxA1 data set and later applied to the GABP data set as an independent
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testbed. In both data sets, the goal of the analysis is to detect genomic loci in the
IP sample that have a significantly high number of tags both in absolute terms and
relative to the Control sample.

It should be noted that the goal of this paper is not to propose a new peak
finding tool, but rather to show how a topological inference approach can be used
to provide formal statistical inference in ChIP-Seq data, with the view that its
basic principles can be generalized to other genomic search problems [Jaffe et al.
(2012)]. The methods in this paper were implemented in R.

2. Peak detection for ChIP-Seq data.

2.1. Alignment and estimation of the peak shape. Before statistical analysis,
we follow the approach in MACS of first aligning the forward and reverse tags,
after which tags can be treated indistinctively. The alignment process, described
in the Appendix, also allows us to estimate the amount by which tags need to be
shifted and the shape of the spatial spread of the shifted tag counts around a peak.

For illustration, Figure 2(a) shows the spatial distributions of the forward and
reverse tags in the IP sample of the FoxA1 data set before alignment, obtained from
1000 strong and easily detectable peaks in chromosome 1. These distributions are
displaced with respect to one another. The optimal shift found in this case was 62
base pairs (bp), almost the same as the estimated shift of 63 found by MACS for
the same data. Shifting the distributions by this amount produces the black-dashed
overlap distribution shape.

FIG. 2. (a) Estimated distribution of tag counts in the forward strand (red) and in the reverse strand
(blue) of the FoxA1 data set (chromosome 1). Aligning the distributions and averaging the counts
results in the joint count distribution and peak shape (black dashed). The peak shape is multiplied by
a quartic biweight function (black solid). (b) Sample mean vs. sample variance of the aligned Control
sequence in bins of size 1 Kb. The blue line has slope 1.
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As a further refinement, Figure 2(a) shows that the binding rate is approximately
constant beyond about 400 bp away from the peak center, and hence should not be
included as part of the peak. As a correction, the support of the estimated peak
shape was reduced by multiplying the black-dashed shape by a quartic biweight
function of size W = 801, producing the estimate in solid black. This peak shape,
normalized to unit sum, is used as a smoothing kernel in the STEM algorithm for
peak detection. The quartic biweight function has the effect of providing the kernel
with continuous derivatives at the edges, a desirable property to avoid spurious
local maxima at that step of the algorithm.

2.2. The Poisson model and the STEM algorithm. After alignment, the data
consists of a table of genomic locations, each with an associated tag count. The
remaining genomic locations are assumed to have a count of zero. Since the data is
given as positive integer counts, it is reasonable to model them as Poisson variables
[Mikkelsen et al. (2007)]. Specifically, we assume that the IP and Control counts
IP(t) and C(t) at locations t are independent Poisson sequences

IP(t) ∼ Po
[
λIP(t)

]
, C(t) ∼ Po

[
λC(t)

]
, t ∈ Z,(1)

where λIP(t) ≥ 0 and λC(t) ≥ 0 denote the mean rates at location t , which may
vary over t . The values of the processes IP(t) and C(t) are assumed independent
over t given λIP(t) and λC(t).

As model validation, Figure 2(b) shows a graph of the sample mean vs. sample
variance of the aligned Control sequence in the FoxA1 data set, computed in bins
of size 1 kbp. The two quantities are nearly proportional with a proportionality
constant of 1, as expected from the Poisson model (1). The IP sample exhibits a
similar pattern (not shown).

Regions of high binding frequency are represented by peaks in the mean Poisson
rates. The goal is to find regions where λIP(t) is higher than the local background
rate λ0(t), but also higher than a minimal constant binding rate λL. The lower
bound λL avoids detecting spurious weak peaks in the presence of an even weaker
local background. Here λL is set to the global average rate, equal to the total num-
ber of aligned tags in the IP sequence divided by the total length of the genome.
Taking the latter as 3.018 × 109 [Sakharkar, Chow and Kangueane (2004)], the
global average rate for the FoxA1 data set is λL = (3.57 × 106)/(3.018 × 109) =
0.00118.

At every t , the above comparison translates to testing whether λIP(t) ≤ λ0(t)

and λIP(t) ≤ λL, that is, λIP(t) ≤ max{λ0(t), λL}. To gain efficiency, rather than
testing at every single location t , tests are performed at only local maxima of the
smoothed IP sequence. This is carried out formally using the following adaptation
of the STEM algorithm from SGA.
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ALGORITHM 1 (STEM algorithm).

(1) Let w(t) be a unimodal kernel of length W . Apply kernel smoothing to the
IP sequence to produce the smoothed sequence

ĨP(t) = w(t) ∗ IP(t) = 1

W

(W+1)/2∑
s=−(W−1)/2

w(s) IP(t − s).(2)

(2) Find all local maxima of ĨP(t) as candidate peaks. Let T̃ denote the set of
locations of those local maxima.

(3) For each local maximum t ∈ T̃ , compute a p-value p(t) for testing the null
hypothesis

H0(t) :λIP(t) ≤ λ+
0 (t) vs. λIP(t) > λ+

0 (t)(3)

in a neighborhood of t , where λ+
0 (t) = max{λ0(t), λL}.

(4) Let m̃ be the number of local maxima. Apply a multiple testing procedure
on the set of p-values and declare significant all peaks whose p-values are smaller
than the threshold.

Details on each of the steps are given in the following sections.

2.3. Smoothing and local maxima. According to SGA, the best smoothing
kernel for the purposes of peak detection is that which maximizes the signal-to-
noise ratio (SNR) after convolving the peak shape, assumed to underly the signal
peaks in the data, with the smoothing kernel. This is achieved by choosing the
smoothing kernel to be equal to the peak shape itself (up to a scaling factor),
a principle long known in signal processing as “matched filter theorem” [North
(1943), Pratt (1991), Simon (1995), Turin (1960)]. Note that this is not the same
as the optimal kernel in nonparametric regression [Wasserman (2006)].

In ChIP-Seq data, binding rate peaks corresponding to different binding sites for
the same transcription factor are assumed to have the same shape in terms of spatial
spread, but may have different heights. The common peak shape is estimated in
the alignment process (solid curve in Figure 2). It is unimodal, constrained to be
symmetric, and has heavier tails than the Gaussian density. In Step 1 of the STEM
algorithm (Algorithm 1), smoothing was carried out setting w(t) equal to the solid
curve in Figure 2, normalized to have unit sum, with W = 801.

Rows 2 and 3 in Figure 1 compare the raw and smoothed IP data. The smoothed
data is high at locations where the density of tag counts is high. Notice that kernel
smoothing produces positive counts locations where the unsmoothed IP data may
have no counts.

In Step 2 of the STEM algorithm (Algorithm 1), local maxima of the smoothed
sequence ĨP(t) are defined as values ĨP(t) that are greater than their immediate
neighbors ĨP(t − 1) and ĨP(t + 1). If the maximum is tied between neighboring
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values, then the peak location is assigned the lower genomic address. A useful
property of the kernel that avoids producing spurious local maxima is to have con-
tinuous derivatives. This was ensured by multiplication of the estimated peak shape
by a quartic biweight function, as described in Section 2.1 above.

Restricting the analysis to local maxima reduces the amount of data to process
further. In the aligned IP sample of the FoxA1 data set, the number of local maxima
found was about 2.7 million, down from about 3.9 million original mapped tags.

2.4. Estimation of the local background rate. Computation of p-values in
Step 3 of the STEM algorithm (Algorithm 1) requires knowledge of the back-
ground Poisson rate λ0(t) under the null hypothesis. Estimation of λ0(t) is difficult
because it varies with t in an unknown fashion [Johnson et al. (2007)]. Here we
propose a simple method to estimate the background rate from the local Control
data, as follows.

Since the Control sample is intended to represent the background process in
the IP sample, it is reasonable to assume that the local background rate λ0(t) in
the IP sample is proportional to the corresponding local background rate λC(t)

in the Control sample, reflecting the ratio in sequencing depth of the background
between the two samples. In the FoxA1 data, the IP sample has about 3.9 million
tags, while the Control sample has about 5.2 million counts.

The local Control rate λC(t), in turn, may be estimated as the average tag count
in the Control sample within a certain window centered at t , as in kernel-based
nonparametric regression methods [Wasserman (2006)]. The window size estab-
lishes a bias-vs.-variance trade-off in the estimation. While the background rate
may change fast, 1 Kb is about the smallest window size that allows comparison
of peaks, usually of size a few hundred bp, against the background. Because counts
are often sparse, to add stability to the parameter estimates, we consider the local
rate to be also linearly related to the corresponding rate in the Control within a
window of size 10 Kb centered at t .

To illustrate these relationships, Figure 3(a) shows a graph of the 1 Kb bin aver-
ages in the Control sample of the FoxA1 data set against the 1 Kb bin averages in
the IP sample. While there is a lot of variability, the main trend is seen to be linear,
captured in the figure by a marginal linear fit. The outliers in the upper left corner
correspond vaguely to the peaks sought. However, their relatively small number
introduces little bias in the regression. A similar trend is observed when plotting
the 1 Kb bin averages in the IP sample as a function of the 10 Kb bin averages in
the Control sample (not shown).

Summarizing, λ0(t) is estimated from local windows of sizes 1 Kb and 10 Kb
centered at t via

λ̂0(t) = a1λ̂C,1k(t) + a2λ̂C,10k(t),(4)

where λ̂C,1k(t) and λ̂C,10k(t) are the Control averages in windows of size 1 Kb and
10 Kb centered at t , and a1, a2 are global parameters. Note that the combination
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FIG. 3. Marginal distributions of the 1 Kb bin averages in the IP sample of the FoxA1 data set as
a function of: (a) The 1 Kb bin averages in the Control sample; (b) Histogram of estimated values of
λ̂0 in the FoxA1 data set. As a reference, the global average rate is 0.00118 (red).

of the 1 Kb and 10 Kb windows plays the role of trapezoidal kernel whose shape is
optimally determined by the data-determined coefficients a1 and a2. To estimate a1
and a2, we set up a global linear regression as in (4), except that the predictors and
the response are replaced by the 1 Kb and 10 Kb bin averages, as in Figure 3(a).

Applying this regression in the FoxA1 data set gave estimates â1 = 0.307 ±
0.001 and â2 = 0.482 ± 0.001, giving more weight to the 10 Kb window than the
1 kb window. The coefficients automatically account for sequencing depth: if the
binding rate in the Control were constant, then the background estimate for the IP
would be approximately equal to the Control rate multiplied by the sum of the two
window coefficients, equal to 0.789. This factor is slightly smaller than the overall
ratio between the total number of aligned counts in the IP sample and in the Control
sample, equal to 0.805. The extra counts in the IP sequence are precisely the signal
we wish to detect.

The multi-window model makes the estimate adaptive to the local variability in
the background rate. As an example, Row 4 of Figure 1 shows the local estimates
λ̂0(t), roughly following the tag pattern observed in Row 1. Row 5 shows the SNR,
defined as the ratio between the peak height ĨP(t) and the estimated background
rate λ̂0(t). Figure 3(a) shows the distribution of the estimated values of λ̂0(t) over
the entire genome for the FoxA1 data set.

2.5. Computing p-values. In Step 3 of Algorithm 1, the p-value p(t) of an
observed local maximum of the smoothed sequence ĨP(t) at a location t is defined
as the probability to obtain the observed height of the local maximum or higher
under the least favorable null hypothesis λIP(t) = λ+

0 (t) in (3). The null hypothesis
need only be assumed in a local neighborhood of each candidate peak because
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ĨP(t) depends only on the data within a local neighborhood, as dictated by the
smoothing kernel w(t). In this section we assume that λ0(t) and λL are known,
having been estimated according to the methods described in Section 2.4 above.

In SGA, the background noise process was assumed stationary. In ChIP-Seq
data, in contrast, the background rate λ0(t) is not constant. However, if the back-
ground process is locally stationary, then the background process in the neighbor-
hood of a given location t = t̃ may be assumed to have similar statistical proper-
ties in that neighborhood as a stationary sequence with constant background rate
λ ≡ λ0(t̃). In particular, the height of a local maximum of the smoothed sequences
at t̃ would have approximately the same distribution in both cases.

Specifically, suppose X(t;λ) is a sequence of i.i.d. Poisson random variables
with constant mean rate λ. Smoothing of X(t;λ) with the kernel w(t) as in Step 1
of Algorithm 1 produces the smoothed sequence

X̃(t;λ) = w(t) ∗ X(t;λ) = 1

W

(W+1)/2∑
s=−(W−1)/2

X(t − s;λ).(5)

The height of a local maximum of the stationary sequence X̃(t;λ) has the survival
function

F(u;λ) = P
[
X̃(t;λ) ≥ u|t is a local maximum, λ

]
.(6)

Then, the null distribution of the height of a local maximum of ĨP(t) at t may be
approximated by the distribution F(u;λ) (6) corresponding to the constant rate
λ ≡ λ0(t). Finally, given the observed height ĨP(t) at t , its p-value under the null
hypothesis (3) is defined as

p(t) = F
(
ĨP(t);λ+

0 (t)
)
.(7)

The distribution (6) is difficult to compute analytically. Instead, we resort to
Monte Carlo simulations, where for each given value of λ, a long sequence X(t;λ)

of i.i.d. Poisson variables is generated, smoothed using the kernel w(t), and its
local maxima found. The distribution (6) is then estimated empirically from the
obtained heights of the local maxima of the smoothed simulated sequence X̃(t;λ)

(5).
To reduce computations, rather than performing a new simulation for each new

background rate λ+
0 (t), a table of survival functions (6) is prepared in advance for

a set of values of u and λ that covers the range of possible values to be found in
the data. Then, to evaluate F̂ (u;λ) in (7) for any particular pair of values of ĨP(t)

and λ0(t), bilinear interpolation is used between the closest grid points.
In the FoxA1 data set, the smallest and largest values of λ̂0(t) found were 1.67×

10−5 and 7.40× 10−2, respectively, giving values of λ̂+
0 (t) in the range 0.00118 to

0.0740. Taking a safety margin of 25%, we performed the Monte Carlo simulation
described above for 300 values of λ equally spaced on a logarithmic scale between
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FIG. 4. Survival functions F̂ (u;λ) of the height u of local maxima, approximated by Monte Carlo
simulation. (a) Viewed in gray scale as a function of the background rate λ. (b) Specific survival
functions for λ = λL = 0.0018 (green), λ = 0.020 (red), and λ = 0.056 (blue).

0.00089 and 0.0925. The length of the simulated Poisson sequences was set to
be as long as needed to obtain at least 100 nonzero counts, but not smaller than
1 × 105. In order to reduce the variability from the simulation, the table of survival
functions F̂ (u,λ) was smoothed over λ for each fixed u via linear regression using
5 B-spline basis functions. The 25% safety margins ensured that none of the values
of λ actually needed were near the edges of the table for the purposes of spline
smoothing.

Figure 4 shows the obtained function F̂ (u;λ) (6), given as a table of size 300
values of λ by 200 values of u and for a few particular values of λ. As an example,
Row 6 of Figure 1 shows the calculated p-values p(t) in the corresponding data
segments. Because of numerical precision in the Monte Carlo simulations, very
low p-values could not be distinguished from zero, and in the figures they are
drawn as if they were equal to 10−10.

Notice in Figure 4 that the smallest value of u is 0.0076, which corresponds to
the height of a local maximum obtained from a single tag. Any isolated tag (farther
than 1 kb from any other tag) constitutes the smallest possible local maximum and
thus gets a p-value of 1 regardless of the estimated background rate. In this sense,
using the global average rate λL = 0.00118, corresponding to about 1 tag per 1 Kb,
as an absolute reference, is not restrictive. However, the results are sensitive to the
choice of λL in the sense that, if λL is larger than the estimated background rate
λ0(t) at any location t , then λ+

0 (t) = λL is used as the rate for the null hypothesis
rather than the estimated local background rate λ0. This can affect the significance
of stronger peaks and it is therefore preferable to choose a value of λL that is not
large, as it is done here.
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FIG. 5. Marginal distribution of p-values in the FoxA1 data set: (a) observed (black) and esti-
mated under the global null hypothesis empirically (red) and theoretically (blue); (b) specific null
distributions for λ = 0.0012 (blue), λ = λL = 0.0018 (green), and λ = 0.0030 (red).

2.6. Multiple testing. Following SGA, we applied the BH procedure on the se-
quence of m̃ = 2,643,095 p-values from the FoxA1 data set, each corresponding to
a local maximum of the smoothed sequence ĨP(t). Of these local maxima, 21,986
were declared significant at an FDR level of 0.01. Their associated addresses t are
effectively point estimates of the locations of the binding sites they represent.

As an example, in Row 3 of Figure 1, the significant local maxima are indicated
by red circles. As final results, the detected peaks were ranked according to their
p-values. Of the 21,986 significant peaks, the top 7284 had p-values that could
not be distinguished from 0 because of the numerical accuracy of our Monte Carlo
simulations. These peaks were ranked according to their SNR.

To assess the validity of the procedure, Figure 5(a) compares the observed
marginal distribution of p-values to the expected marginal distribution under the
complete null hypothesis in the FoxA1 data set. The observed marginal distribution
of p-values [shown in black in Figure 5(a)] is given by the empirical distribution

Ĝ(p) = 1

m̃

∑
t∈T̃

1
[
p(t) ≤ p

]
, 0 ≤ p ≤ 1,(8)

where T̃ is the set of m̃ locations of the local maxima of ĨP(t), with p-values given
by (7). The marginal distribution under the complete null hypothesis is estimated
in two different ways, one purely empirical and one more theoretical.

The empirical estimate [shown in red in Figure 5(a)] was obtained by running
the entire analysis on the Control sample as if it were the IP, that is, searching
for peaks in the Control sample using the same Control sample for estimating the
background. The obtained null distribution of p-values lies below the diagonal
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as required for validity, and it exhibits a high frequency of p-values equal to 1,
corresponding to peaks with only one tag in them.

The theoretical estimate [shown in blue in Figure 5(a)] was obtained as fol-
lows. Recall that for a smoothed stationary Poisson sequence X̃(t;λ) with constant
rate λ, the distribution of the height of a local maximum at t ∈ T̃ is given by (6).
Analogous to (7), define the corresponding null p-value as p0(t) = F(X̃(t);λ) for
t ∈ T̃ . Its distribution G0(p;λ) = P(p0(t) ≤ p) for any t is given by

G0(p;λ) =
{

1, F (u1;λ) ≤ p,
F(uk;λ), F (uk;λ) ≤ p < F(uk−1;λ), k = 2,3, . . . ,

(9)

where uk , k = 1,2, . . . , are the discrete values taken by the smoothed process
X̃(t;λ) at the local maxima. Note that G0(p;λ) is independent of t for t ∈ T̃ be-
cause of stationarity. In the ChIP-Seq problem, we approximate the null distribu-
tion of the p-value at t ∈ T̃ by the null distribution G0(p; λ̂+

0 (t)) corresponding to
a stationary process with constant rate λ = λ̂0(t), which depends on t only through
the value of λ. Since each of the observed p-values in (8) corresponds to a differ-
ent background rate λ̂0(t), the estimated marginal distribution under the global
null hypothesis is given by the mixture distribution

Ĝ0(p) = 1

m̃

∑
t∈T̃

G0
(
p; λ̂+

0 (t)
)
, 0 ≤ p ≤ 1.(10)

Referring back to Figure 5(a), the observed distribution is always above the null
distribution, and the large derivative at zero indicates the presence of a strong sig-
nal, which explains the large number of significant peaks found. Note that the null
distribution is not uniform but stochastically larger. To better understand the mix-
ture (10), Figure 5(b) shows three examples of the individual null distributions (9).
All are discrete and stochastically larger than the continuous uniform distribution.
For small λ, the most common p-value is 1, as most local maxima take the small-
est possible value u1, equal to the mode of the kernel w(t), obtained when there
is an isolated count of 1 in a neighborhood of zeros. This explains the large jump
at 1 in panel (a). As λ gets larger, the distribution becomes closer to the continuous
uniform distribution.

3. Comparison to other methods. As a reference, we compared our method
to MACS, cisGenome and QuEST on both the FoxA1 and GABP data sets. While
the FoxA1 data set was used in the development of MACS and our method, the
GABP data set was not used in the development of any of the three methods,
providing an independent test of performance. All methods were applied using
the default values and an FDR cutoff of 0.01. Table 1 indicates the number of
significant peaks obtained in each case. The methods are compared by a motif
analysis and in terms of their mutual agreement below.
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TABLE 1
Number of significant peaks called by all methods at FDR level 0.01

Dataset STEM + Regr MACS cisGenome QuEST

FoxA1 21,986 13,639 5725 20,161
GABP 3309 13,828 4275 6442

3.1. Motif analysis. As biological validation, a motif analysis was performed
where, for each peak declared significant, the number of motifs related to the ap-
propriate transcription factor was counted within 100 bp and 400 bp of the es-
timated peak location. The distance of 400 bp approximately corresponds to the
spatial spread of the measurements belonging to a binding site, as determined by
the estimate in Figure 2(a).

Table 2 shows the average number of motifs and the proportion of peaks with at
least one motif within those distances for the top 5725 peaks found by each method
in the FoxA1 data set and the top 3309 peaks found by each method in the GABP
data set. These numbers are the minima of the rows in Table 1. Taking the same
number of top peaks in each list makes the averages and proportions in the table
comparable, as the peak lists are ordered and the various methods use different
criteria for their list cutoffs. Our method, labeled “STEM + Regr” for simplicity,
shows a similar performance to the other methods. Given the standard errors, it is
difficult to claim superiority of any method over the others.

TABLE 2
Motif analysis comparing the performance of the proposed method against MACS and cisGenome
on two different data sets. Results are for the top 5725 peaks in each method for the FoxA1 data set
and the top 3309 peaks in each method for the GABP data set. Standard errors are all between 1%

and 2% of the number shown

Average number of Proportion with at
motifs within least one motif within

Dataset Method 100 bp 400 bp 100 bp 400 bp

FoxA1 STEM + Regr 0.916 1.868 0.623 0.837
MACS 0.917 1.849 0.625 0.835

cisGenome 0.915 1.833 0.619 0.830
QuEST 0.844 1.784 0.576 0.816

GABP STEM + Regr 0.880 1.708 0.573 0.788
MACS 0.875 1.703 0.579 0.792

cisGenome 0.862 1.658 0.562 0.766
QuEST 0.868 1.725 0.578 0.804
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TABLE 3
Percentage of peaks from the methods listed in the columns that were also found by the methods

listed in the rows within a distance of 100 bp and 400 bp. Results are for the top 5725 peaks from
each method in the FoxA1 data set and the top 3309 peaks from each method in the GABP data set

% found within 100 bp % found within 400 bp

Dataset Method ST
E

M
+

R
eg

r

M
A

C
S

ci
sG

en
om

e

Q
uE

ST

ST
E

M
+

R
eg

r

M
A

C
S

ci
sG

en
om

e

Q
uE

ST

FoxA1 STEM + Regr 100 81.0 76.8 64.1 100 84.4 79.5 64.5
MACS 79.6 100 84.4 70.8 80.1 100 84.9 71.0

cisGenome 75.1 84.4 100 68.8 75.4 84.9 100 68.8
QuEST 64.2 71.5 70.5 100 69.3 80.5 77.9 100

GABP STEM + Regr 100 90.1 83.7 89.8 100 92.8 86.5 89.9
MACS 90.1 100 84.7 87.8 90.4 100 85.8 87.9

cisGenome 83.7 84.7 100 80.8 84.1 85.8 100 80.8
QuEST 90.1 87.8 80.8 100 93.9 94.1 86.7 100

3.2. Peak overlap and discrepancies. To help explain the previous results, Ta-
ble 3 compares the percentage of peaks from the top 5725 from each method in the
FoxA1 data set or the top 3309 from each method in the GABP data set, that were
also found by each of the other methods within a distance of 100 bp and 400 bp.
The matrices in the table are not symmetric because the correspondence between
peaks is not one-to-one; peaks found by one method may be represented by two or
more peaks found by another method. The table shows that there is a fair amount
of overlap between the methods, particularly in the GABP data set where the peak
lists are smaller (Table 1).

To better understand the discrepancies, Figure 6 shows two examples of ge-
nomic segments from the GABP data set after alignment. The left panel shows
one of the 32 peaks produced by our method that were not found among the peaks
produced by MACS or cisGenome. Our method detected a secondary peak within
567 bp of a major peak (Row 3), in a binding region that was counted as a single
region by both MACS and cisGenome. All the other peaks in this group of 32 were
found to be secondary peaks or sometimes tertiary peaks, with distances between
385 bp and 1113 bp from their closest neighbor.

These secondary peaks, not distinguished by MACS or cisGenome, may be sep-
arate binding sites. The ability to resolve them is a consequence of our method
searching for binding sites rather than binding regions. These secondary sites were
also found by QuEST, but were often represented by perhaps too many peaks.
For example, the secondary peak in the left panel of Figure 6 was identified by
QuEST as two peaks, but being within only 131 bp of each other, they may not
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FIG. 6. Left: A fragment of the aligned GABP data featuring a secondary peak called by our method
but not MACS or cisGenome. Right: A fragment of the aligned GABP data featuring a peak called
by MACS and cisGenome but not by our method. The variables plotted are the same as in Figure 1.
Notice the difference in vertical scales between the left and right panels.

belong to separate sites. The ability to represent a single site by a single peak is a
consequence of our method using a matched filter rather than a narrow Gaussian
filter.

The right panel of Figure 6 shows one of the 575 of the peaks that were produced
by MACS and called by cis Genome and QuEST but were not among the top
3309 produced by our method. This peak was not called significant by our method
because its associated p-value was not low enough (Row 6). This is because the
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peak height is low (Row 3), while the estimated local background rate is high
(Row 4), resulting in a relatively low SNR (Row 5). Other peaks in this group of
575 were similar. This example illustrates the importance of the estimation of the
local background rate in the analysis.

4. Simulations. In order to evaluate the accuracy of the background rate es-
timation method and the performance of the STEM algorithm for peak detection,
we performed the following spike-in simulated experiment. In each simulated data
set, two independent Poisson sequences of length L = 107 base pairs representing
an aligned IP sequence and an aligned control sequence were generated according
to model (1). The control background rate λC(t) was obtained from chromosome 2
of the FoxA1 data set in a way similar to model (4) as

λC(t) = a1λ̂C,1k(t) + a2λ̂C,10k(t),

where λ̂C,1k(t) and λ̂C,10k(t) are the Control averages in windows of size 1 Kb
and 10 Kb centered at t , a1 = 0.3 and a2 = 0.7. To simulate a different enrichment
between the IP and control sequences, the IP background rate was set to λ0(t) =
0.8λC(t). Then the actual IP rate was set to λIP (t) = λ0(t)+Sλ+(t), where λ+(t)

is a sequence of 20 spikes with shape equal to the solid curve in Figure 2 but
normalized so that the area under each peak is equal to the mean of λ0(t). Because
of this normalization, the factor S can be interpreted as the signal-to-noise ratio
and it was set to values between 5 and 15.

Figure 7(a) shows the realized FDR and detection power (defined as the fraction
of detected peaks) averaged over 10 independent data sets simulated as described
above. The proposed STEM+Regr algorithm shows similar performance and error
control as cisGenome. MACS’s apparent low power may be rather an indication
that the algorithm is not intended to be applied to short sequences like the ones
used in this simulated experiment. Results for QuEST were not obtained because
the need for user input makes the software not conducive for repeated simulation
experiments of this kind.

Looking closer at the regression method for estimating the background rate
λ0(t), Figure 7(b) shows that the regression method is able to follow the general
trend of the local background rate despite it varying quickly. To reduce variabil-
ity, the method automatically performs a bias-variance trade-off, where the coef-
ficients C × a1 = 0.24 and C × a2 = 0.56 are estimated on average as 0.096 and
0.678, respectively. The overall correlation between the simulated and predicted
background rate is 0.73.
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FIG. 7. Spike-in simulated experiment in a section of Chromosome 2. (a) Detection performance
of the three methods: STEM + Regr (red), cisGenome (blue) and MACS (green). Detection power
is shown with solid lines, FDR with dotted lines. Black dashed line is the nominal FDR level 0.1.
(b) Estimation of the background rate λ0(t) as a function of genomic location t (selected fragment):
simulated (black) and estimated (red).

5. Discussion.

5.1. Methodological considerations. We have presented a method for detec-
tion of peaks in ChIP-Seq data based on the STEM algorithm of SGA with promis-
ing results. The applicability of SGA to ChIP-Seq data relied on the common as-
sumption that the signal peaks, represented by a mean function, are unimodal and
have the same shape up to an amplitude scaling factor. The adaptation to ChIP-Seq
data required two main modifications: (1) estimation of the local background rate;
(2) use of Monte Carlo simulations of Poisson sequences to compute p-values.

From a methodological point of view, estimation of the background rate λ0(t)

is arguably the most crucial step in the analysis, as the inference for a particular
local maximum is highly dependent on the background rate at that location. In this
paper, we have focused on the inference aspects of detecting peaks with a spatial
structure via the STEM algorithm. Estimation of the local background rate (the
particle “Regr” in the acronym “STEM + Regr”) is not part of the original STEM
algorithm, but is necessary for the analysis of ChIP-Seq data because the noise pro-
cess is not stationary. This conceptual separation is helpful in that the background
estimation method could be replaced by a different method if desired, without af-
fecting the general implementation of the STEM algorithm for peak detection.

Statistical methods for estimating the variable rate λ(t) in dynamic Poisson
models or nonhomogeneous Poisson sequences have been developed in other con-
texts. Bayesian methods [Bolstad (1995), Harvey and Durbin (1986), West, Harri-
son and Migon (1985)] are computationally intensive, estimating λ(t) at each lo-
cation t based on the estimates at locations 1,2, . . . , t − 1. This is computationally
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infeasible for long genomic sequences as in ChIP-Seq data. Other methods require
either repeated realizations [Arkin and Leenis (2000)] or a more specific structure
of the process [Helmers, Mangku and Zitikis (2003), Zhao and Xie (1996)], which
are not available in ChIP-Seq data.

In this paper we have proposed a simple solution to local background estima-
tion based on multiple linear regression using the Control sample as a covariate. If
desired, other covariates could be included such as other window sizes and the lo-
cal GC content. Estimating the regression coefficients from the data automatically
adjusts for sequencing depth, and the estimated relative weighting between the var-
ious window sizes allows the method to adaptively estimate the local background
at each location. In this sense, the regression model solves the normalization prob-
lem and gives a partial answer to the question of how slowly λ0(t) varies with t .
Because the GABP data set is richer in number of reads, the regression method
automatically accounts for it and allows estimation of the background rate at a
smaller spatial scale by giving a higher weight to the 1 kb window relative to the
10 kb window than in the FoxA1 data set.

Often in ChIP-Seq data a Control sample is unavailable. In such cases, the re-
gression model (4) could have the 10 Kb averages from the IP sample itself as
predictors instead of those from the Control, with the 1 Kb window not included
in the model. This would allow estimation of the background from the neighbor-
hood of each peak, albeit with some positive bias. Fortunately, the positive bias
would make the inference more conservative, affecting the detection power more
than its validity.

In the comparison with the other methods, it was observed that the STEM algo-
rithm performs competitively in terms of nearby motifs. In the data sets analyzed,
all methods found many of the same strong peaks. However, our method found
secondary and terciary peaks near other strong peaks that were not distinguished
by MACS and cisGenome and were too fragmented by QuEST. This is a result
of our method searching for localized binding sites using an appropriately chosen
matched filter rather than binding regions of arbitrary size.

On the other hand, our method did not call significant other peaks that were
called by the other methods. These peaks were not strong enough when compared
to their corresponding background estimate at that location, at least according to
the background estimation method used here. It is possible that a different back-
ground estimation method would have caused these peaks to be called significant.
In fact, the other methods did because they had different assumptions about what
represents a strong peak.

In this paper, we have attempted to frame the ChIP-Seq problem as a formal
multiple testing problem. The significance results and FDR levels may be trusted
under the proposed model, however, the biological validity of the results is lim-
ited by the validity of the modeling assumptions. Particularly difficult is the back-
ground estimation, for which no good model exists to date. Because of its impor-
tance, background estimation is where future research in ChIP-Seq analysis should
focus its attention.
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5.2. Computational considerations. In addition to the modelling considera-
tions mentioned above, the final ranking of the detected peaks depends on the
numerical accuracy with which p-values are computed. In the Monte Carlo simu-
lations for computing the distribution of the heights of local maxima, the estima-
tion is more accurate for high values of λ, as these produce more observations. In
the simulations, we set the simulation length to be at least 105, or as long as is
needed to obtain at least 100 Poisson counts. The latter condition was necessary
for very low Poisson rates, but cannot be considered sufficient. The random vari-
ability was attenuated by B-spline smoothing across λ in order to obtain the table
in Figure 4(b).

In the analysis results, we observed that a large number of detected peaks had a
p-value of zero, meaning that the Monte Carlo simulation did not have enough nu-
merical resolution to distinguish between their p-values. These peaks were ranked
sub-optimally by SNR. More accurate calculation of p-values could be achieved
with longer Monte Carlo simulations or by more sophisticated simulation tech-
niques, such as Importance Sampling.

Computational complexity is also important in ChIP-Seq analysis because of the
large amount of data to be processed. The methods in this paper were implemented
in R to ease their development and sharing among researchers, but at the expense
of computational speed. The main computational bottleneck of our method is ker-
nel smoothing, taking about 6 ∼ 8 hours to run over the entire genome on a Dell
Power Edge R710 server with CPU speed 2.67 GHz, 48 GB of memory and a
Linux CentOS 5.5 operating system. All the other processing steps together take
about another hour. Kernel smoothing is mathematically simple, yet unfortunately
inefficient in R for very long sequences. Computing time for kernel smoothing in-
creases linearly with the kernel and the sequence size. In our implementation, the
data was divided into subgroups of tags no more than 104 bp apart, trading off the
length of the groups and their number. Computational time was also reduced by
reducing the length of the kernel by multiplying it by a quartic biweight function
of smaller support and using run length encoding in the search for local maxima.
In the future the ideas proposed here could be made computationally competitive
by implementing them in C.

We do not intend that the method proposed in this paper is viewed as a com-
petitor to other existing methods for analyzing ChIP-Seq data, but rather as a sug-
gestion of how multiple testing theory for spatial domains, such as in SGA, can
inform the inference procedure in the detection of peaks. While competitive in
terms of detection performance, the strength of our method relies mainly on the
potential generalization of these ideas to other domains in spatial inference, both
in bioinformatics and beyond.

APPENDIX: ALIGNMENT DETAILS

A.1. Raw data. The FoxA1 raw data consists of a table of about 3.9 million
rows for the IP sample and a table of about 5.2 million rows for the Control sample.
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Each row corresponds to a mapped tag of length 35 bp and contains the beginning
and end genomic addresses for the tag and an indicator of whether the tag belongs
to the forward (+) or reverse (−) DNA strand. We define the location of a tag
to be given by its beginning address, corresponding to the lower address for the
forward (+) tags and the higher address for the reverse (−) tags. The GABP data
set, containing about 7.8 million tags in the IP sample and about 17.4 million
tags in the Control sample, was converted to the same format before processing.
Genomic locations not listed in the table were assumed to have an associated tag
count of zero. Duplicate tags were considered measurement artifacts and were
removed from the analysis.

In order to be counted together, the tags from the two strands need to be aligned
with each other. We followed an alignment method similar to that in MACS, shift-
ing all tags by the same amount in the 3’ direction of the tag sequence toward the
most likely binding site: forward (+) tags toward higher genomic addresses and
reverse (−) tags toward lower genomic addresses. Once shifted, tags coinciding
at the same location are counted together. The result of this process is a table of
genomic locations, each with an associated tag count. This aligned data is used as
the input for peak detection, described in Section 2.

A.2. Estimation of the tag shift and peak shape. As in MACS, we estimate
the size of the shift from the tag count distributions corresponding to a set of strong
and easily detectable peaks, as described below. We performed the shift estimation
on Chromosome 1 because of its likelihood to contain enough such strong peaks,
but other long chromosomes could be used instead. As part of the process, the shift
estimation also allows us to estimate the distribution of shifted tags counts around a
peak. This peak shape, normalized to unit sum, is used later as a smoothing kernel
in the STEM algorithm for peak detection. The estimation proceeds as follows.

ALGORITHM 2 (Estimation of shift size and peak shape).

(1) Temporarily shift all tags [(+) forward and (−) back] by a tentative shift
amount (default 100 bp). This produces a table of genomic locations, each with an
associated tag count.

(2) Perform peak detection on the count data from the previous step and select
a set of strong peaks (details given below). Let t1, . . . , tN be their locations.

(3) Set a window size W (an odd number, default 2001 bp). The distribution of
the forward tags is a vector of length W whose ith entry is equal to the average
number of forward tags at a constant distance (W + 1)/2 − i from the peak, that
is, at locations tj − (W + 1)/2 + i, j = 1, . . . ,N . Repeat for the reverse tags.

(4) Fit a spline to the distribution of forward tags and record its mode. Repeat
for the reverse tags. The estimated shift is half the distance between the two modes,
rounded to the nearest integer.
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(5) To estimate the peak shape, shift the original forward and reverse distribu-
tions by the estimated shift, symmetrize the joint distribution by averaging both
the forward and reverse tag distributions and their mirror images with respect to
the center of the window, and fit a spline.

The peak detection step (Step 2) above need not be exact. Since the tag distri-
bution is evaluated in a window around the strong peaks, it is enough that the true
location of those peaks is contained somewhere near the center of that window. To
achieve this, we apply the first half of the STEM algorithm, as follows.

(2a) Set a tentative unimodal symmetric kernel (default Gaussian with standard
deviation 50) and perform kernel smoothing on the count data from Step 1. (Im-
plementation details given in Section 2.3).

(2b) Find the local maxima of the smoothed count sequence. (Implementation
details given in Section 2.3).

(2c) Select the N highest local maxima (default 1000).

At the end of this process, the data consists of a long sequence of genomic
addresses and associated counts 0, 1 or 2, ready for peak detection analysis. The
maximal count of 2 is a result of the elimination of duplicates from the original list
of tags. Because binding rates are generally low, truncation at 2 does not greatly
affect the Poisson model used thereafter.
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