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ROBUST VIF REGRESSION WITH APPLICATION TO VARIABLE
SELECTION IN LARGE DATA SETS

BY DEBBIE J. DUPUIS1 AND MARIA-PIA VICTORIA-FESER2
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The sophisticated and automated means of data collection used by an in-
creasing number of institutions and companies leads to extremely large data
sets. Subset selection in regression is essential when a huge number of covari-
ates can potentially explain a response variable of interest. The recent statis-
tical literature has seen an emergence of new selection methods that provide
some type of compromise between implementation (computational speed)
and statistical optimality (e.g., prediction error minimization). Global meth-
ods such as Mallows’ Cp have been supplanted by sequential methods such
as stepwise regression. More recently, streamwise regression, faster than the
former, has emerged. A recently proposed streamwise regression approach
based on the variance inflation factor (VIF) is promising, but its least-squares
based implementation makes it susceptible to the outliers inevitable in such
large data sets. This lack of robustness can lead to poor and suboptimal fea-
ture selection. In our case, we seek to predict an individual’s educational at-
tainment using economic and demographic variables. We show how classical
VIF performs this task poorly and a robust procedure is necessary for policy
makers. This article proposes a robust VIF regression, based on fast robust
estimators, that inherits all the good properties of classical VIF in the ab-
sence of outliers, but also continues to perform well in their presence where
the classical approach fails.

1. Introduction. Data sets with millions of observations and a huge number
of variables are now quite common, especially in business- and finance-related
fields, as well as computer sciences, health sciences, etc. An important challenge
is to provide statistical tools and algorithms that can be used with such data sets.
In particular, for regression models, a first data analysis requires that the num-
ber of potential explanatory variables be reduced to a reasonable and tractable
amount. Consider p potential explanatory variables [1 x1 · · ·xp]T = x and a re-
sponse variable y observed on n subjects. The classical normal linear model sup-
poses y|x ∼ N(xT β;σ 2) with slope parameters β = [β0, β1, . . . , βp]T . The aim is
to find a subset of explanatory variables that satisfies a given criterion and such
that the regression model holds.
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The selection criteria are numerous and can be based on prediction, fit, etc. The
available selection procedures can be broadly classified into three classes accord-
ing to their general strategy and, as a result, their computational speed. A first class
considers all the possible combinations of covariates as potential models, evaluates
each according to a fixed criterion, and chooses the model which best suits the se-
lected criterion. A second class is formed of sequential selection procedures in
which a covariate at a time is entered in (or removed from) the model, based on
a criterion that can change from one step to the next and that is computed for all
potential variables to enter (or to exit) until another criterion is reached. Finally,
the third class of selection procedures is also sequential in nature, but each co-
variate is only considered once as a potential covariate. For the first class, we find
criteria such as the AIC [Akaike (1973)], BIC [Schwarz (1978)], Mallows’ Cp

[Mallows (1973)], cross-validation, etc. [see also Efron (2004)]. These methods
are not adapted to large data sets since the number of potential models becomes
too large and the computations are no longer feasible. For the second class, we
find, for example, the classical stepwise regression which can be considered as a
simple algorithm to compute the estimator of regression coefficients β that min-
imizes an lq penalized sum of squared errors ‖y − Xβ‖2

2 + λq‖β‖lq , with q = 0
and X = [1 xj ]j=1,...,p and 1 a vector of ones, that is, ‖β‖l0 = ∑p

j=1 η(βj �= 0)

[see Lin, Foster and Ungar (2011)], with η(βj �= 0) = 1 if βj �= 0 and 0 other-
wise. Fast algorithms for stepwise regressions are available, for example, Foster
and Stine (2004). Procedures for the l1 problem are also available, for example,
Lasso/LARS [Efron et al. (2004)], the Dantzig Selector [Candes and Tao (2007)],
or coordinate descent [Friedman, Hastie and Tibshirani (2010)]. But these algo-
rithms may also become very slow for large data sets, not only because all re-
maining variables are evaluated at each stage, but also because the penalty λq

needs to be computed, and often via cross-validation. The last class is a variation
of stepwise regression in which covariates are tested sequentially but only once
for addition to the model. An example is the streamwise regression of Zhou et al.
(2006), which uses the α-investing rule [Foster and Stine (2008)], is very fast, and
guards against overfitting. An improved streamwise regression approach was re-
cently proposed in Lin, Foster and Ungar (2011) where a very fast to compute test
statistic based on the variance inflation factor (VIF) of the candidate variable, given
the currently selected model, is proposed. The approach takes into account possi-
ble multicollinearity, seeking to find the best predictive model, even if it is not the
most parsimonious. Comparisons in Lin, Foster and Ungar (2011) establish that
the method performs well and is the fastest available.

Our concern in this paper is to provide model selection tools for the regression
model that are robust to small model deviations. As argued in Dupuis and Victoria-
Feser (2011) [see also Ronchetti and Staudte (1994)], spurious model deviations
such as outliers can lead to a completely different, and suboptimal, selected model
when a nonrobust criterion, like Mallows’ Cp or the VIF, is used. This happens be-
cause under slight data contamination, the estimated model parameters, using, for



ROBUST VIF REGRESSION WITH APPLICATION TO VARIABLE SELECTION 321

example, the least squares estimator (LS) and, consequently, the model choice cri-
terion, can be seriously biased. The consequence is that when the estimated criteria
are compared to an absolute level (like a quantile of the χ2 distribution), the deci-
sions are taken at the wrong level. For the first class of selection procedures, robust
criteria have been proposed such as the robust AIC of Ronchetti (1982), the robust
BIC of Machado (1993), the robust Mallows’ Cp of Ronchetti and Staudte (1994),
and a robust criterion based on cross-validation (CV) in Ronchetti, Field and Blan-
chard (1997). Since standard robust estimators are impossible to compute when the
number of covariates is too large, Dupuis and Victoria-Feser (2011) proposed the
use of a forward search procedure together with adjusted robust estimators when
there is a large number of potential covariates. Their selection procedure, called
Fast Robust Forward Selection (FRFS), falls in the second class of selection pro-
cedures. FRFS outperforms classical approaches such as Lasso/LARS when data
contamination is present and outperforms, in all studied instances, a robust version
of the LARS algorithm proposed by Khan, Van Aelst and Zamar (2007).

However, although FRFS is indeed very fast and robust, it too can become quite
slow when the number of potential covariates is very large, as all covariates are
reconsidered after one is selected for entry in the model. It is therefore important
to have a robust selection procedure in the streamwise regression class so that very
large data sets can be analyzed in a robust fashion. In this paper we develop a
robust VIF approach that is fast, very efficient, and clearly outperforms nonrobust
VIF in the presence of outliers.

The remainder of the paper is organized as follows. In Section 2 we review the
classical VIF approach and present our robust VIF approach. A simulation study
in Section 3 shows the good performance of the new approach. In Section 4 we
analyze educational attainment data and show how policy makers are better served
by robust VIF regression than by classical VIF or Lasso. In Section 5 we present
a shorter analysis of a large crime data set that highlights more problems with
classical VIF for real data. Section 6 contains a few closing remarks.

2. Robust VIF regression.

2.1. The classical approach. Lin, Foster and Ungar (2011) propose a proce-
dure that allows one to sweep through all available covariates and to enter those
that can reduce a statistically sufficient part of the variance in the predictive model.
Let XS be the design matrix that includes the selected variables at a given stage,
and X̃S = [XS zj ] with zj the new potential covariate to be considered for inclu-
sion. Without loss of generality, we suppose all variables have been standardized.
Consider the following two models:

y = XSβS + zjβj + εstep, εstep ∼ N
(
0, σ 2

stepI
)
,(1)

rS = zj γj + εstage, εstage ∼ N
(
0, σ 2

stageI
)
,(2)



322 D. J. DUPUIS AND M.-P. VICTORIA-FESER

where rS = (I − XS(XT
S XS)−1XT

S )y are the residuals of the projection of y on XS .
All known estimators of the parameters βj , σ

2
step and γj , σ

2
stage will provide differ-

ent estimates when the covariates present some degree of multicollinearity, and,
consequently, significance tests based on estimates of βj or γj do not necessarily
lead to the same conclusions. While in stepwise regression the significance of βj

in model (1) is at the core of the selection procedure, in streamwise regression one
estimates more conveniently γj . Lin, Foster and Ungar (2011) show that, when
LS are used to estimate, γ̂j = ρβ̂j where ρ = zT

j (I − XS(XT
S XS)−1XT

S )zj . They

then compare Tγ = γ̂j /(ρ
1/2σ), with suitable estimates for ρ and σ , to the stan-

dard normal distribution to decide whether or not zj should be added to the current
model. The procedure is called VIF regression since Marquardt (1970) called 1/ρ

the VIF for zj .

2.2. A robust weighted slope estimator. Since the test statistic Tγ is based on
the following, (1) the LS estimator γ̂j , (2) ρ, in turn based on the design ma-
trix XS and zj , and (3) the classical estimator of σ , it is obviously very sensitive
to outliers, a form of model deviation. An extreme response or a very badly placed
design point can have a drastic effect on Tγ . The latter is then compared to the null
distribution: the correct asymptotic distribution under the hypothesis that the re-
gression model holds. With model deviations, the null distribution is not valid and,
hence, selection decisions (to add the covariate or not) are taken rather arbitrarily.
We propose here to limit the influence of extreme observations by considering
weighted LS estimators of the form

β̂ = (
XwT Xw)−1XwT yw,(3)

with Xw = diag(
√

w0
i )X and yw = diag(

√
w0

i )y. The weights w0
i depend on the

data and are such that extreme observations in the response and/or in the design
have a nil or limited effect on the value of β̂ . Dupuis and Victoria-Feser (2011)
propose Tukey’s redescending biweight weights

wi(ri; c) =
⎧⎨
⎩

((
ri

c

)2

− 1
)2

, if |ri | ≤ c,

0, if |ri | > c,
(4)

where ri = (yi − xT
i β)/σ are standardized residuals that are computed in practice

for chosen estimators of β and σ (see below). The constant c controls the effi-
ciency and the robustness of the estimator. Indeed, the most efficient estimator is
the LS estimator, that is, (3) with all weights equal to one (i.e., c → ∞), but it is
very sensitive to (small) model deviations, while a less efficient but more robust
estimator is obtained by downweighting observations that have a large influence
on the estimator, that is, by setting c < ∞ in (4). The value c = 4.685 corresponds
to an efficiency level of 95% for the robust estimator compared to the LS estimator
at the normal model and is the value used throughout the paper.
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We follow Dupuis and Victoria-Feser (2011) and use for the weights w0
i =

wi(r
0
i ; c) in (3), where the residuals r0

i = (yi − xT
i β̂0)/σ̂ 0 and σ̂ 0 =

1.483 med |r̃0
i − med(r̃0

i )|, the median absolute deviation (MAD) of the resid-
uals r̃0

i = yi − xT
i β̂0. The slope estimates are β̂0 = [(Xw

0 )T Xw
0 ]−1(Xw2

0 )T y,
with Xw

0 = [1 √
wi1xi1 · · · √

wipxip] and Xw2
0 = [1 wi1xi1 · · · wipxip], i =

1, . . . , n, with weights wij , for all j = 1, . . . , p, computed using (4) at the resid-
uals rij = (yi − β̂0j − xij β̂j )/σ̂j , with σ̂j = MAD(yi − β̂0j − xij β̂j ). The slope
estimators β̂1, . . . , β̂p and the intercept estimators β̂01, . . . , β̂0p are computed on
the p marginal models y = β01 + x1β1 + ε1, . . . , y = β0p + xpβp + εp using a
robust weighted estimator defined implicitly through

n∑
i=1

wi(ri; c)rixi = 0.(5)

Here we consider Huber’s weights given for the regression model by

wi(ri; c) = min
{

1; c

|ri |
}
,(6)

with c = 1.345. Estimators in (5) belong to the class of M-estimators [Huber
(1964, 1967)]. With (6) in (5), the marginal intercepts and slope estimators are
simpler (and faster) to compute than the ones based on Tukey’s biweight weights
as originally proposed in Dupuis and Victoria-Feser (2011). For the scale in the
weights in (5), we propose to use the MAD of the residuals.

The estimator in (3) is a one-step estimator that is actually biased when there
is multicollinearity in the covariates. Dupuis and Victoria-Feser (2011) show that
the bias can be made smaller and even nil if β̂ = β̂1 is iterated further to get,
say, β̂k , computed at the updated weights w1

i , . . . ,w
k−1
i based on the residuals

r
(1)
i = (yi − xT

i β̂(1))/σ̂ (1), . . . , r
(k−1)
i = (yi − xT

i β̂(k−1))/σ̂ (k−1). In the simulation
study in Section 3, however, we find that the bias is very small even with relatively
large multicollinearity, so that in practice there is often no need to proceed with
this iterative correction.

Finally, β̂0 is a coordinate-wise robust estimator and Alqallaf et al. (2009)
show, through the computation of a generalized version of the influence function
[Hampel (1968, 1974)] and different contamination schemes in the multivariate
normal (MVN) setting, that coordinate-wise robust estimators can be less sensitive
to extreme observations when they occur independently at the univariate level.

2.3. Robust VIF selection criterion. Let Xw
S = diag(

√
w0

iS)XS be the weighted
design matrix at stage S with, say, q columns (hence q − 1 covariates), and
zw
j = diag(

√
wij )zj the new candidate covariate that is evaluated at the current

stage S + 1. One could use the weights w0
iS for zw

j instead of the weights wij

computed at the marginal models with only zj as a covariate, but this would re-
quire more computational time. The simulation results in Section 3 show that one
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gets very satisfactory results with wij . Let also X̃w
S = [Xw

S |zw
j ] and define β̂w

j as

the last element of the vector [X̃wT
S X̃w

S ]−1X̃wT
S yw with yw = diag(

√
w0

iS)y. β̂w
j

is actually a robust estimator of βj in (1). Let Hw
S = Xw

S (XwT
S Xw

S )−1XwT
S and

β̂S = (XwT
S Xw

S )−1XwT
S yw , then

β̂w
j = −(

zwT
j zw

j − zwT
j Hw

S zw
j

)−1zwT
j Xw

S

(
XwT

S Xw
S

)−1XwT
S yw

+ (
zwT
j zw

j − zwT
j Hw

S zw
j

)−1zwT
j yw

= (
zwT
j zw

j − zwT
j Hw

S zw
j

)−1zwT
j

(
yw − Xw

S β̂S

)
= (

zwT
j zw

j − zwT
j Hw

S zw
j

)−1zwT
j rw

S

= (
zwT
j zw

j − zwT
j Hw

S zw
j

)−1(
zwT
j zw

j

)(
zwT
j zw

j

)−1zwT
j rw

S ,

where rw
S are the residuals of the weighted fit of yw on Xw

S . Let

ρw = (
zwT
j zw

j

)−1(
zwT
j zw

j − zwT
j Hw

S zw
j

)
,

then

β̂w
j = (

ρw)−1
γ̂ w
j ,

with γ̂ w
j = (zwT

j zw
j )−1zwT

j rw
S , that is, the weighted estimator of the fit of zw

j on the
weighted residuals rw

S , that is, model (2). Note, however, that β̂w
j is not equal to

the last element of β̂1
S+1 unless the weights w0

iS are used for zw
j . Note also that we

can write

ρw = 1 − Rw2
jS ,

with

Rw2
jS = zwT

j Hw
S zw

j

(
zwT
j zw

j

)−1(7)

a robust estimate of the coefficient of determination R2. Renaud and Victoria-Feser
(2010) propose a robust R2 based on weighted responses and covariates and (7) is
equivalent to their proposal (with a = 1, see their Theorem 1) but with other sets
of weights. Moreover, ρw is the partial variance of zw

j given Xw
S [see Dupuis and

Victoria-Feser (2011)].
Lin, Foster and Ungar (2011) note that using all the data to compute ρ (in the

classical setting) is quite computationally expensive and they propose a subsam-
pling approach. For the same reason, we also propose to actually estimate ρw by
computing (7) on a randomly chosen subset of size m = 200.

To derive the t-statistic based on γ̂ w
j , we follow Lin, Foster and Ungar (2011)

who base their comparison on the expected value of the estimated variance of,
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respectively, β̂w
j and γ̂ w

j . Let σ̂ 2
step and σ̂ 2

stage be, respectively, robust residual vari-
ance estimates for models (1) and (2). Let also A(i)(j) denote the element (i, j) of
matrix A. For β̂w

j , supposing that wij/w
0
i ≈ 1, we can use

̂Var
(
β̂w

j

) ≈ σ̂ 2
step

[
X̃wT

S X̃w
S

]−1
(q+1)(q+1)e

−1
c

= σ̂ 2
step

(
zwT
j zw

j − zwT
j Hw

S zw
j

)−1
e−1
c

= σ̂ 2
step

(
ρw)−1(

zwT
j zw

j

)−1
e−1
c

= σ̂ 2
step

n

(
ρw)−1

(
1

n

∑
i

(
zw
ij

)2
)−1

e−1
c ,

with

ec =
[∫ c

−c

(
5
(

r

c

)4

− 6
(

r

c

)2

+ 1
)

d�(r)

]2/∫ c

−c
r2

((
r

c

)2

− 1
)4

d�(r)(8)

and � the standard normal cumulative distribution [see Heritier et al. (2009), equa-
tion (3.20)]. For γ̂ w

j , based on the model with rw
S as the response and zw

j as the
explanatory variable (without intercept), we have

̂Var
(
γ̂ w
j

) ≈ σ̂ 2
stage

(
zwT
j zw

j

)−1
ẽ−1
c

= σ̂ 2
stage

n

(
1

n

∑
i

(
zw
ij

)2
)−1

ẽ−1
c ,

with ẽ−1
c the efficiency of a robust slope estimator computed using Huber’s weights

relative to the LS, which is not equal to e−1
c , the efficiency of a robust slope

estimator computed using Tukey’s weights relative to the LS. We will see be-
low that the computation of the former is not needed. Hence, approximating
σ̂ 2

step ≈ σ̂ 2
stage = σ̂ 2, we have

̂Var
(
β̂w

j

) ≈ (
ρw)−1

̂Var
(
γ̂ w
j

)
(ec/ẽc)

−1.

An honest approximate robust test statistic Tw is then given by

β̂w
j√

Var(β̂w
j )

≈ (ρw)−1γ̂ w
j√

(ρw)−1 ̂Var(γ̂ w
j )(ec/ẽc)−1

,

that is,

Tw = (
ρw)−1/2 γ̂ w

j√
σ̂ 2/n(1/n

∑
i z

w2
ij )−1e−1

c

,(9)
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with σ̂ 2 a robust mean squared error for the model with rw
S as response

and zw
j as explanatory variable [i.e., model (2)]. We use σ̂ = MAD(rw

S −
zw
j (zwT

j zw
j )−1zwT

j rw
S ).

Our fast robust evaluation procedure is summarized by the following five steps.
Suppose that we are at stage S and a set of q − 1 covariates has been chosen in the
model. We are considering covariate zj for possible entry. We are working with
c = 4.685 and have computed ec and the weights wij and w0

iS :

(1) Obtain the residuals rw
S = yw − Xw

S (XwT
S Xw

S )−1XwT
S yw .

(2) Set zw
j = diag(

√
wij )zj . Compute γ̂ w

j = (zwT
j zw

j )−1zwT
j rw

S and σ̂ =
MAD(rw

S − zw
j (zwT

j zw
j )−1zwT

j rw
S ).

(3) Sample a small subset I = {i1, . . . , im} ∈ {1, . . . , n} of the observations and
let I x denote the corresponding subsample from the regressor x.

(4) Let I Hw
S = I Xw

S (I XwT
S I Xw

S )−1I XwT
S , compute Rw2

jS = I zwT
j I Hw

S I zw
j ×

(I zwT
j I zw

j )−1, and find ρw = 1 − Rw2
jS .

(5) Compute the approximate t-ratio Tw = (ρw)−1/2γ̂ w
j /

√
σ̂ 2(

∑
i z

w2
ij )−1e−1

c

and compare it to an adapted quantile to decide whether or not to add zj to the
current set.

A more detailed algorithm in which the decision rule (whether or not to add the
new variable) is also specified is given in the Appendix. Note that in Step 5 above,
the rejection quantile, or corresponding probability αj , is adapted at each step j so
that αj increases/decreases if a rejection is made/not made. As explained in Lin,
Foster and Ungar (2011), one can think of αj as a gambler’s wealth and the game
is over when αj ≤ 0.

2.4. Comparison with the robust t-statistic of FRFS. The t-statistic proposed
by Dupuis and Victoria-Feser (2011) [equation (5)] and used to test whether a
candidate covariate is entered in the current model can be written as

T 2 = 1

σ 2ρw

n∑
wij

ecywT
j zw

j

(
zwT
j zw

j

)−1zwT
j

(
I − Hw

S

)
yw
j

with yw
j = diag(

√
wij )y. Supposing that yw

j ≈ yw and n/
∑

wij ≈ 1, then

T 2 ≈ 1

σ 2ρw
ecywT zw

j γ̂ w
j

= (γ̂ w
j )2

σ 2ρw(zwT
j zw

j )−1
ec

1

γ̂ w
j

ywT zw
j

(
zwT
j zw

j

)−1(10)

= (γ̂ w
j )2

σ 2ρw(zwT
j zw

j )−1
ec

ywT zw
j

zwT
j (I − Hw

S )yw
.
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Hence, T 2
w in (9) and T 2 in (10) differ by a multiplicative factor of

κ = ywT
j zw

j

zwT
j (I − Hw

S )yw
j

,

which is the ratio of the robustly estimated covariance between zj and y, and the
robustly estimated partial covariance between zj and y given XS . One can notice
that in the orthogonal case (and standardized covariates), we have zwT

j Hw
S ≈ 0 so

that κ ≈ 1. The value of κ was computed in some of the simulations outlined in the
following section. While κ maintained a median value of 1 when aggregating over
the 200 simulated data sets at a given setting, its variability changed with the the-
oretical R2 and the absence or presence of outliers. For example, the interquartile
range went from a value near 0 for R2 = 0.20 and no outliers, to 5 for R2 = 0.80
and 5% outlying responses with high leverage in the p = 100 case. There can thus
be a considerable difference in the two test statistics.

3. Simulation study. We carry out a simulation study to assess the effective-
ness of the model selection approaches outlined above. First, we create a linear
model

y = X1 + X2 + · · · + Xk + σε,(11)

where X1,X2, . . . ,Xk are multivariate normal (MVN) with E(Xi) = 0,
Var(Xi) = 1, and corr(Xi,Xj ) = θ , i �= j, i, j = 1, . . . , k, and ε an indepen-
dent standard normal variable. We choose θ to produce a range of theoretical
R2 = (Var(y) − σ 2)/Var(y) values for (11) and σ to give t values for our tar-
get regressors of about 6 under normality as in Ronchetti, Field and Blanchard
(1997). The covariates X1, . . . ,Xk are our k target covariates. Let ek+1, . . . , ep be
independent standard normal variables and use the first 2k to give the 2k covariates

Xk+1 = X1 + λek+1, Xk+2 = X1 + λek+2,

Xk+3 = X2 + λek+3, Xk+4 = X2 + λek+4,

...

X3k−1 = Xk + λe3k−1, X3k = Xk + λe3k;
and the final p − 3k to give the p − 3k covariates

Xi = ei, i = 3k + 1, . . . , p.

Variables Xk+1, . . . ,X3k are noise covariates that are correlated with our target co-
variates, and variables X3k+1, . . . ,Xp are independent noise covariates. Note that
the covariates X1, . . . ,Xp are then relabeled with a random permutation of 1 : p

so that the target covariates do not appear in position 1 : k, but rather in arbitrary
positions. This is necessary to test the effectiveness of the streamwise variable
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selection, as covariates considered early on are favored for entry when many co-
variates are correlated.

We consider samples without and with contamination. Samples with no con-
tamination are generated using ε ∼ N(0,1). To allow for 5% outliers, we gen-
erate using ε ∼ 95%N(0,1) + 5%N(30,1). These contaminated cases also have
high leverage X-values: X1, . . . ,Xk ∼ MVN as before, except Var(Xi) = 5, i =
1, . . . , k. This represents the most difficult contamination scheme: large residu-
als at high leverage points. We also investigate the less challenging cases of 5%
outlying in response only and 5% high leverage only. We choose λ = 3.18 so
that corr(X1,Xk+1) = corr(X1,Xk+2) = corr(X2,Xk+3) = · · · = corr(Xk,X3k) =
0.3.

In all simulations we simulated n independent samples, with or without con-
tamination, to use for variable selection. Then, another n independent samples
without contamination were simulated for out-of-sample performance testing. The
out-of-sample performance was evaluated using the mean sum of squared errors
(MSE),

∑2n
i=n+1(yi − xT

i β̂)2/n, where β̂ is the estimated coefficient determined
by the classical and robust VIF regression selection procedures or FRFS applied
to the training set. Because the true predictors are known, we also compute the
out-of-sample performance measure using the true β . Classical VIF selection was
carried out using the VIF package for R and default argument settings. Robust
VIF was also implemented in R and code is available at http://neumann.hec.ca/
pages/debbie.dupuis/publicVIFfncs.R. FRFS is also implemented in R as outlined
in Dupuis and Victoria-Feser (2011).

It should be noted that when evaluating the performance of a given criterion
(here a selection procedure), the evaluation measure should be chosen in accor-
dance with the performance measure [see Gneiting (2011)]. In our case, although
the data are generated from contaminated conditional Gaussian models, the core
model is still Gaussian and we wish to find the model that best predicts the con-
ditional mean response. Consequently, a suitable performance measure is the ex-
pected squared error. However, when estimating the expected squared error from
data, one can resort to the mean (i.e., the MSE) only if the data are purely issued
from the postulated (core) Gaussian model. If this is not the case, or if there is
no guarantee that this is the case, like, for example, with real data, then a more
robust performance measure such as the median absolute prediction error (MAPE)
should be chosen. Hence, in the simulations we use the MSE, while with real data
sets we use the MAPE to estimate the evaluation measure for the comparison of
the variable selection methods.

Simulations results for n = 1000, k = 5, and p = 100 and p = 1000, are pre-
sented in Table 1 and Figures 1 and 2, respectively. Entries in the top panel of the
table give the percentage of runs falling into each category. The category “Correct”
means that the correct model was chosen. “Extra” means that a model was cho-
sen for which the true model is a proper subset. “Missing 1” means that the model

http://neumann.hec.ca/pages/debbie.dupuis/publicVIFfncs.R
http://neumann.hec.ca/pages/debbie.dupuis/publicVIFfncs.R
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TABLE 1

Model selection results. Simulated data, as described in Section 3, have n = 1000 observations with p = 100 and p = 1000 potential regressors,
including k = 5 target regressors. Correlation among target regressors is θ = 0.1 (R2 = 0.20) and θ = 0.85 (R2 = 0.80). Correlation among each target
regressor and two other regressors is 0.3 in all cases. Remaining regressors are uncorrelated. Methods are classical (C) and robust (R) VIF regression,
and FRFS-Marginal (F). Table entries are % of cases in categories listed in the first column. Empirical mFDR appears in the second to last row. Mean
execution times (in seconds) appear in the last row. Data were either not contaminated, had 5% high leverage only (hl only), or 5% outliers (outlying

response and high leverage). Results are based on 200 simulations for each configuration

R2 = 0.20 R2 = 0.80

No contam. 5% hl only 5% outliers No contam. 5% hl only 5% outliers

C R F C R F C R F C R F C R F C R F

p = 100
%Correct 13.5 33 68.5 17.5 24.5 61 0 20 76.5 11.5 18.5 86 6.5 15.5 83.5 0 15 88.5
%Extra 83.5 58 29.5 59.5 40 24.5 0 65.0 20 86.5 76.5 12.5 27.5 62.5 12.5 0 73.5 7.5
%Missing 1 1.5 3.5 1 4.5 10 10 0 6.5 3.5 0.5 1 1.5 7.5 5.5 4 0 3 4
%Missing 2 0 0.5 0 0.5 3 0 1 0.5 0 0 0 0 2.5 0 0 1.5 0 0
%Missing 3 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 11 0 0
%Other 1.5 5 1 18 22.5 4.5 97 8 0 1.5 4 0 56 16.5 0 87.5 8.5 0
%mFDR 11.0 6.3 2.2 9.9 6.4 2.2 6.1 9.3 1.4 16.1 13.2 0.9 16 13.1 1.0 10.7 13.8 0.5
Time 0.63 1.11 25 0.45 0.87 25 0.54 1.09 25 0.69 1.20 25 0.48 0.93 25 0.59 1.20 25

p = 1000
%Correct 30 32 66.5 14.5 8 44 0 25 66.5 14.5 16 81 1.5 8.5 69 0 10 72
%Extra 53 27 26.5 15.5 5 15.5 0 26 17.5 77 54 12.5 13.5 29 12 0 43 9.5
%Missing 1 5.5 17 6 25.5 24 30.5 0 20 12 3 7.5 6.5 5 9 18 0 6 18.5
%Missing 2 1 5.5 0 8.5 24 3 0 6 2 0 0 0 7 2 1 1.5 1.5 0
%Missing 3 0 0.5 0 1.5 6.5 0 0 1 0 0 0 0 0.5 0 0 13 0 0
%Other 10.5 18 1 34.5 32.5 7 100 22 2 5.5 22.5 0 72.5 51.5 0 85.5 39.5 0
%mFDR 7.0 4.4 2.4 5.4 3.5 2.0 4.6 6.0 1.4 15.5 13.6 1.0 15.6 12.9 0.9 6.2 13.5 0.7
Time 5.8 10.8 253 4.4 8.9 250 6.1 11.7 238 5.86 10.9 251 4.6 9.3 254 5.47 11.3 243
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FIG. 1. Out-of-sample mean square errors of the models chosen by classical and robust VIF regres-
sion, and FRFS-Marginal. Simulated data, as described in Section 3, have n = 1000 observations
with p = 100 potential regressors, including k = 5 target regressors. Correlation among target re-
gressors is θ = 0.1 (R2 = 0.20) and θ = 0.85 (R2 = 0.80). Correlation among each target regressor
and two other regressors is 0.3 in all cases. Remaining regressors are uncorrelated. Results are based
on 200 simulations for each configuration.
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FIG. 2. Out-of-sample mean square errors of the models chosen by classical and robust VIF regres-
sion, and FRFS-Marginal. Simulated data, as described in Section 3, have n = 1000 observations
with p = 1000 potential regressors, including k = 5 target regressors. Correlation among target re-
gressors is θ = 0.1 (R2 = 0.20) and θ = 0.85 (R2 = 0.80). Correlation among each target regressor
and two other regressors is 0.3 in all cases. Remaining regressors are uncorrelated. Results are based
on 200 simulations for each configuration.
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chosen differed from the true model only in that it was missing one of the target co-
variates; “Missing 2” and “Missing 3” are defined analogously. The Monte Carlo
standard deviation of entries is bounded by 3.5%. We also report the empirical
marginal false discovery rate (mFDR) ̂mFDR = ̂E(V )/( ̂E(V )+ ̂E(S)+η), where
̂E(S) is the average number of true discoveries, ̂E(V ) is the average number of
false discoveries, and η = 10 is selected following Lin, Foster and Ungar (2011).
We also report the required computation time. Note the particularly frugal robust
approach to VIF regression: the cost of robustness is no more than a doubling of
the computation time.

Both VIF algorithms do not perform well in terms of the proportion of cor-
rectly selected models and the FRFS-Marginal procedure clearly outperforms in
this respect. The execution time of the FRFS-Marginal procedure, the faster of the
two FRFS approaches presented in Dupuis and Victoria-Feser (2011), is roughly
25 times longer than that of the robust VIF procedure for these sizes of data sets.
Both VIF algorithms do, however, choose a model for which the true model is
a subset when there are no outliers. The classical VIF approach fails miserably
in the presence of outliers (outlying response/high leverage), while the robust VIF
approach is only slightly affected by the presence of outliers. The classical VIF ap-
proach is less affected by the presence of high leverage points only, but the effect is
increased under more highly correlated regressors or a higher number of potential
regressors. Results (not shown) for response variable only outliers are very similar
to outlying response/high leverage outliers. Finally, other simulations (not shown)
reveal that for less outlying contamination, the robust approaches always maintain
good performance, while the negative impact on classical VIF is proportional to
the level of outlyingness.

As the simulated data sets have noise covariates that are correlated with tar-
get covariates, the poor performance in terms of %Correct is expected given the
streamwise approach of VIF regressions. But as pointed out by Lin, Foster and
Ungar (2011), the goal here is different: good fast out-of-sample prediction, that
is, one sacrifices parsimony for speed. The streamwise approach is fast and the
main purpose of an α-investing control is to avoid model overfitting. We assess
the latter through out-of-sample performance. Figure 1 shows out-of-sample MSE
for the case p = 100. Robust VIF is as efficient as classical VIF when there are
no outliers (top panel) and clearly outperforms classical VIF when there is 5%
contaminated observations (bottom panels). Robust VIF also loses very little with
respect to FRFS-Marginal. Note that classical VIF seems to offer some resistance
to contamination by high-leverage points only (as was also seen in Table 1), but
completely falls apart in the presence of outlying response values, and this whether
the outlying responses appear at high-leverage points or not. Much of the same can
be seen in Figure 2 where results for the case p = 1000 are shown.

4. College data. Understanding the factors impacting an individual’s educa-
tional attainment is a preoccupation for many governmental and nongovernmental
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organizations. For example, a nation’s government that recognizes the potential
economic benefits of higher education will seek to write public policies to pro-
mote it. Private industry that benefits from a well-educated labor market will let
it affect decision making, for example, a company may choose to establish itself
where lifelong education is easily accessible to its personnel. Finally, an individ-
ual’s family who associates personal achievement with higher levels of education
may also act accordingly.

Since the first work by Wetterlind (1976) on projecting community college
enrollments in Arizona, many researchers have sought to identify the factors
impacting educational attainment; see, for example, Pennington, McGinty and
Williams (2002), Petrongolo and San Segundo (2002), Kienzl, Alfonso and Mel-
guizo (2007), and Clark (2011) (and references therein) for a list of various studies.

The data analyzed here are in the R package AER and are a subset of the data
previously analyzed in Rouse (1995). There are 4739 observations on 14 variables.
The variables are listed in Table 2. We seek to predict the number of years of ed-
ucation using 13 economic and demographic variables. There are continuous and
binary variables along with one categorical variable with three categories which
is converted to two dummy variables. When considering only first-order variables
we thus have n = 4739 and p = 14; when we include second-order interaction
terms p rises to 104 (some interaction terms are constant and are removed). We
have standardized the variables. Our analysis will show how classical, that is, non-
robust, VIF regression can be inadequate for the policy maker by failing to keep
important features.

TABLE 2
Original 14 variables in college data

Variable Description

gender Factor indicating gender.
ethnicity Factor indicating ethnicity (African-American, Hispanic or other).
score Base year composite test score. These are achievement tests given

to high school seniors in the sample.
fcollege Factor. Is the father a college graduate?
mcollege Factor. Is the mother a college graduate?
home Factor. Does the family own their home?
urban Factor. Is the school in an urban area?
unemp County unemployment rate in 1980.
wage State hourly wage in manufacturing in 1980.
distance Distance from 4-year college (in 10 miles).
tuition Average state 4-year college tuition (in 1000 USD).
income Factor. Is the family income above USD 25,000 per year?
region Factor indicating region (West or other).
education Number of years of education.
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The selected models are compared using the median absolute prediction error
(MAPE), as measured by 10-fold CV. That is, we split the data into 10 roughly
equal-sized parts. For the kth part, we carry out model selection using the other
nine parts of the data and calculate the MAPE of the chosen model when predicting
the kth part of the data. We do this for k = 1, . . . ,10 and show boxplots of the 10
estimates of the MAPE. For all methods, the data were split in the same way. For
the college data, we randomly generated the folds. Note here that we look at MAPE
instead of mean squared prediction error, as these real data can contain outliers (as
opposed to the simulated data which were clean) and the MAPE is a better choice.

For completeness, we compare the models selected by classical and robust VIF
approaches with those of FRFS-Marginal and FRFS-Full where feasible, as well
as that of the popular least angle regression (LARS) of Efron et al. (2004), an
extremely efficient algorithm for computing the entire Lasso [Tibshirani (1996)]
path. We use the R package lars to do the computations.

Tables 3 and 4 list the VIF and robust VIF regression selected features, along
with estimated slopes, for the p = 14 and p = 104 scenarios, respectively. For
both scenarios, the robust VIF regression approach selects slightly more, and/or
slightly different, features. When considering only first-order terms, we see that
the classical and robust estimates of commonly selected features are almost the
same. This serves as a good form of validation for the relative importance of these
features. However, the presence of outliers in the data has led classical VIF regres-
sion to completely miss two important features which are identified by robust VIF
regression: unemp and wage. Even LS estimates (not shown) of the robust VIF

TABLE 3
VIF and robust VIF selected variables and estimated slope parameters (t-values) when only

considering first-order terms. FRFS-Marginal and FRFS-Full selected variables and estimated
slope parameters (t-values) are also shown. Significance: ∗0.05, ∗∗0.01, ∗∗∗0.001

VIF robVIF FRFS-Marg/Full
Variable ̂βLS

̂βrob
̂βrob

ethnicityafam 0.130 (5.28)∗∗∗ 0.129 (4.90)∗∗∗ 0.133 (5.16)∗∗∗
ethnicityhispanic 0.142 (5.97)∗∗∗ 0.124 (4.92)∗∗∗ 0.130 (5.19)∗∗∗
score 0.772 (31.3)∗∗∗ 0.820 (31.8)∗∗∗ 0.824 (31.9)∗∗∗
fcollegeyes 0.219 (8.40)∗∗∗ 0.233 (8.51)∗∗∗ 0.232 (8.52)∗∗∗
mcollegeyes 0.131 (5.25)∗∗∗ 0.146 (5.60)∗∗∗ 0.145 (5.55)∗∗∗
homeyes 0.054 (2.39)∗ 0.057 (2.38)∗ 0.057 (2.41)∗
urbanyes – 0.024 (0.96) –
unemp – 0.077 (3.00)∗∗ 0.075 (2.94)∗∗
wage – −0.064 (−2.56)∗ −0.062 (−2.50)∗
distance −0.064 (−2.81)∗∗ −0.083 (−3.22)∗∗∗ −0.088 (−3.57)∗∗∗
incomehigh 0.163 (6.70)∗∗∗ 0.180 (7.07)∗∗∗ 0.183 (7.20)∗∗∗
genderfemale – – 0.066 (2.81)∗∗
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TABLE 4
VIF and robust VIF selected variables and estimated slope parameters (t-values) when including

second-order interactions. Significance: ∗0.05, ∗∗0.01, ∗∗∗0.001

Variable ̂βLS
̂βrob

ethnicityafam 0.132 (5.39)∗∗∗ 0.127 (4.83)∗∗∗
ethnicityhispanic −0.143 (6.02)∗∗∗ 0.122 (4.83)∗∗∗
score 0.772 (31.1)∗∗∗ 0.809 (27.3)∗∗∗
fcollegeyes 0.222 (8.52)∗∗∗ −0.033 (−0.17)

mcollegeyes 0.056 (1.62) 0.045 (0.25)

homeyes 0.056 (2.46)∗ 0.041 (1.61)

urbanyes – 0.028 (1.12)

unemp – 0.059 (2.10)∗
wage – −0.067 (−2.36)∗
distance −0.062 (−2.75)∗∗ −0.078 (−3.00)∗∗
incomehigh 0.167 (6.87)∗∗∗ 0.040 (0.27)

genderfemale:score 0.030 (1.24) –
genderfemale:fcollegeyes – 0.002 (0.06)

genderfemale:mcollegeyes 0.104 (3.07)∗∗ 0.132 (3.43)∗∗∗
score:incomehigh – 0.150 (0.98)

fcollegeyes:homeyes – 0.115 (1.74)

fcollegeyes:unemp – 0.087 (1.24)

fcollegeyes:wage – 0.001 (0.01)

fcollegeyes:tuition – 0.085 (1.44)

mcollegeyes:wage – 0.002 (0.01)

regression selected model find these two features important with t-values of 3.15
and −2.70, but the classical VIF regression selection procedure could not detect
this importance for the reasons outlined in the Introduction. FRFS-Marginal and
FRFS-Full selected features are identical. The latter features, along with estimated
slopes, are also shown in Table 3.

VIF regression also misses the two important features in the p = 104 scenario;
see Table 4. As both the county unemployment rate and the state hourly wage
in manufacturing are directly impacted by economic policy, policy makers must
be equipped with the best feature selection tools to have an effective strategy to
reach sought after goals: in this case, increasing the level of education among its
constituents. These tools, we argue, must include a robust selection procedure, as
shown effectively by this example. Further evidence is given in Figure 3 where
MAPE for VIF, robust VIF, FRFS-Marginal, and FRFS-Full and Lasso are shown
for both scenarios. Robust VIF outperforms both of its nonrobust competitors, and
even does better than FRFS-Marginal in the highly collinear case including inter-
actions. It was shown in Dupuis and Victoria-Feser (2011) that FRFS-Marginal
could select too few features in the highly collinear case and this motivated the
development of FRFS-Full therein.
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FIG. 3. College data: Out-of-sample median absolute prediction errors of the models chosen by
classical and robust VIF regression, FRFS-Marginal, FRFS-Full and the Lasso, in 10-fold cross-val-
idation.

As the solution for VIF and robust VIF regression can depend on the order of
the covariates, we ran each procedure several times with the covariates presented
in random order to investigate the stability of the selected models in terms of model
size and prediction performance. Table 5 shows the distribution of the size of the
selected model over 100 analyses and Table 6 shows how often each variable was
selected over these 100 analyses. As expected, there is considerable variability in
the size of the model, and this both in the classical and robust approaches. We see,
however, that the dominating features are nearly always present. Note also that
unemp and wage are selected twice as often in the robust approach compared to
the classical approach. In terms of prediction performance, we see in Figure 4 that

TABLE 5
Number of variables selected by VIF and robust VIF in 100 analyses of college data, each analysis

with covariates presented in a random order

# selected 7 8 9 10 11 12 13 14

VIF 11 29 24 22 10 3 1 –
robVIF 4 13 8 23 17 12 10 13



ROBUST VIF REGRESSION WITH APPLICATION TO VARIABLE SELECTION 337

TABLE 6
Number of analyses where variable was selected by VIF and robust VIF in 100 analyses of college

data, each analysis with covariates presented in a random order

Variable VIF robVIF

genderfemale 43 47
ethnicityafam 100 100
ethnicityhispanic 67 73
score 100 100
fcollegeyes 100 99
mcollegeyes 100 100
homeyes 79 94
urbanyes 3 38
unemp 24 54
wage 31 63
distance 100 98
tuition 26 56
incomehigh 100 98
regionwest 31 57

the variability in the latter is considerably less, each of the 10 random analyses
shown yielding more or less the same prediction performance despite the differ-
ences in terms of selected model size and features.

FIG. 4. College data: Out-of-sample MAPE of 10 random chosen analyses among 100 analyses
reported in Tables 5 and 6 for classical and robust VIF regression. MAPE calculated based on
10-fold cross-validation.
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5. Crime data. In this section we present a shorter analysis of another data
set to show how the classical approach can even fail to give a usable result. Also,
by looking at a considerably larger data set we can show how robust VIF provides
robust prediction where no other robust method is feasible.

We analyze recently made available crime data. These data are from the UCI
Machine Learning Repository [Frank and Asuncion (2010)] and are available at
http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime. We seek to pre-
dict the per capita violent crimes rate using economic, demographic, commu-
nity, and law enforcement related variables. After removing variables with missing
data, we are left with n = 1994 observations on p = 97 first-order covariates. If
we include second-order interactions (removing those that are constant), we have
p = 4753. In both cases, we standardized the variables. VIF regression selects
33 and 1437 variables, in the respective scenarios, while robust VIF regression se-
lects 20 variables in both cases. Classical VIF experiences problems with the larger
data set, which contains outliers in a highly multicollinear setting, and chooses too
many covariates. This shows how the guarantee of no overfitting only holds at
the model, that is, without any outliers in the data. For these data, robust VIF re-
gression provides the only viable option for policy makers, as the 1437 features
returned by classical VIF regression do not provide useful information. As can
be seen in Figure 5, robust VIF is clearly the best performer for both scenarios.
VIF regression chooses too many features for many of the folds and this leads to
catastrophic results out-of-sample.

6. Concluding remarks. In Lin, Foster and Ungar (2011) it was also shown
that classical VIF regression equates or outperforms stepwise regression, Lasso,
FoBa, an adaptive forward-backward greedy algorithm focusing on linear mod-
els [Zhang (2009)], and GPS, the generalized path-seeking algorithm of Friedman
(2008). In this paper we present a very efficient robust VIF approach that clearly
outperforms classical VIF in the case of contaminated data sets. This robust im-
plementation comes with a very small cost in speed, computation time is less than
doubled, and provides a much-needed robust model selection for large data sets.

APPENDIX: ALGORITHM ROBUST VIF REGRESSION

The robust VIF regression procedure, based on a streamwise regression ap-
proach and α-investing, can be summarized by the following algorithm:

Input data y,x1,x2, . . . (standardized)
Set initial wealth a0 = 0.50, pay-out �a = 0.05, subsample size m, and robust-

ness constant c

Compute efficiency e−1
c where ec is as in (8)

Get all marginal weights wij by fitting p marginal models y = β01 + x1β1 +
ε1, . . . , y = β0p + xpβp + εp using (5) and (6)

http://archive.ics.uci.edu/ml/datasets/Communities+and+Crime
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FIG. 5. Crime and communities data: Out-of-sample median absolute prediction errors of the mod-
els chosen by classical and robust VIF regression, and the Lasso, in 10-fold cross-validation. ∗Results
are not shown as VIF collapses in 4 folds, yielding MAPE of 5.62, 6.55, 6.82, 9.41, and 15.1, respec-
tively. Results for other folds were good, 0.0652, 0.0676, 0.0686, 0.0694, 0.0744, but are excluded
from the boxplot to allow for a better comparisons of all methods.

Initialize j = 1, S = {0}, XS = 1, Xw
S = diag(

√
w0

iS)XS and yw = diag(
√

w0
iS)y

where w0
iS is computed using (4) where r0 = (y − 1β̂0)/σ̂ 0 using Xw

0 = Xw2
0 =

1, β̂0 = [(Xw
0 )T Xw

0 ]−1(Xw2
0 )T y, where σ̂ 0 = 1.483 med |r̃0 −med(r̃0)| and r̃0 =

y − 1β̂0.
repeat

set αj = aj/(1 + j − f )

get Tw from the five-step Fast Robust Evaluation Procedure in Section 2.3.
if 2(1 − �(|Tw|)) < αj then

S = S∪{j}, XS = [1 xj ], Xw
S = diag

(√
w0

iS

)
XS, yw = diag

(√
w0

iS

)
y,

where w0
iS is computed using (4) where r0 = (y − XS β̂0)/σ̂ 0 using Xw

0 =
[1 √

wijxij ], Xw2
0 = [1 wijxij ], i = 1, . . . , n, β̂0 = [(Xw

0 )T Xw
0 ]−1(Xw2

0 )T y,

where σ̂ 0 = 1.483 med |r̃0 − med(r̃0)| and r̃0 = y − XS β̂0.
aj+1 = aj + �a

f = j

else aj+1 = aj − αj/(1 − αj )
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end if
j = j + 1

until all p covariates have been considered.
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