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Precipitation is a complex physical process that varies in space and time.
Predictions and interpolations at unobserved times and/or locations help to
solve important problems in many areas. In this paper, we present a hierarchi-
cal Bayesian model for spatio-temporal data and apply it to obtain short term
predictions of rainfall. The model incorporates physical knowledge about the
underlying processes that determine rainfall, such as advection, diffusion and
convection. It is based on a temporal autoregressive convolution with spa-
tially colored and temporally white innovations. By linking the advection pa-
rameter of the convolution kernel to an external wind vector, the model is
temporally nonstationary. Further, it allows for nonseparable and anisotropic
covariance structures. With the help of the Voronoi tessellation, we construct
a natural parametrization, that is, space as well as time resolution consis-
tent, for data lying on irregular grid points. In the application, the statistical
model combines forecasts of three other meteorological variables obtained
from a numerical weather prediction model with past precipitation observa-
tions. The model is then used to predict three-hourly precipitation over 24
hours. It performs better than a separable, stationary and isotropic version,
and it performs comparably to a deterministic numerical weather prediction
model for precipitation and has the advantage that it quantifies prediction un-
certainty.

1. Introduction. Precipitation is a very complex phenomenon that varies in
space and time, and there are many efforts to model it. Predictions and interpola-
tions at unobserved times and/or locations obtained from such models help to solve
important problems in areas such as agriculture, climate science, ecology and hy-
drology. Stochastic models have the great advantage of providing not only point
estimates, but also quantitative measures of uncertainty. They can be used, for in-
stance, as stochastic generators [Wilks (1998), Makhnin and McAllister (2009)] to
provide realistic inputs to flooding, runoff and crop growth models. Moreover, they
can be applied as components within general circulation models used in climate
change studies [Fowler et al. (2005)], or for postprocessing precipitation forecasts
[Sloughter et al. (2007)].

1.1. Distributions for precipitation. A characteristic feature of precipitation
is that its distribution consists of a discrete component, indicating occurrence of
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precipitation, and a continuous one, determining the amount of precipitation. As
a consequence, there are two basic statistical modeling approaches. The contin-
uous and the discrete part are either modeled separately [Coe and Stern (1982),
Wilks (1999)] or together [Bell (1987), Wilks (1990), Bardossy and Plate (1992),
Hutchinson (1995), Sans6 and Guenni (2004)]. Typically, in the second approach,
the distribution of the rainfall amounts and the probability of rainfall are deter-
mined together using what is called a censored distribution. Originally, this idea
goes back to Tobin (1958) who analyzed household expenditure on durable goods.
For modeling precipitation, Stidd (1973) took up this idea and modified it by in-
cluding a power-transformation for the nonzero part so that the model can account
for skewness.

1.2. Correlations in space and time. For modeling processes that involve de-
pendence over space and time, there are two basic approaches [see, e.g., Cressie
and Wikle (2011)]: one which models the space—time covariance structure without
distinguishing between the time and space dimensions, and a dynamic one which
takes the natural ordering in the time dimension into account.

The first approach usually follows the traditional geostatistical paradigm of as-
suming a parametric covariance function [for an introduction into geostatistics,
see, e.g., Cressie (1993) or Gelfand et al. (2010)]. Several parametric families
specifying explicitly the joint space-time covariance structure have been pro-
posed [Jones and Zhang (1997), Cressie and Huang (1999), Gneiting (2002), Ma
(2003), Stein (2005), Paciorek and Schervish (2006)]. Interpretability and, espe-
cially, computational complexity are challenges when working with parametric
space—time covariance functions.

There is, however, a fundamental difference between the spatial and the tem-
poral dimensions. Whereas there is an order in the time domain, there exists no
obvious order for space. It is therefore natural to assume a dynamic temporal evo-
Iution combined with a spatially correlated error term [Sglna and Switzer (1996),
Wikle and Cressie (1999), Huang and Hsu (2004), Xu, Wikle and Fox (2005),
Gelfand, Banerjee and Gamerman (2005)]. As Wikle and Hooten (2010) state,
the dynamic approach can be used to construct realistic space—time dependency
structures based on physical knowledge. Further, the temporal Markovian struc-
ture offers computational benefits.

1.3. Models for precipitation. Isham and Cox (1994) state that there are three
broad types of mathematical models of rainfall: deterministic meteorological mod-
els [Mason (1986)], intermediate stochastic models [Le Cam (1961), Cox and
Isham (1988), Waymire, Gupta and Rodriguez-Iturbe (1984)], and empirical sta-
tistical models. Meteorological models represent as realistically as possible the
physical processes involved. As noted by Kyriakidis and Journel (1999), determin-
istic models typically require a large number of input parameters that are difficult
to determine, whereas stochastic models are usually based on a small number of
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parameters. Nevertheless, statistical models can also incorporate knowledge about
physical processes. Parametrizations can be chosen based on physical knowledge
and covariates reflecting information about the physical processes can be included.

In the following, we briefly review statistical models for precipitation. For mod-
eling daily precipitation at a single measuring site, Stern and Coe (1984) use a
nonstationary second-order Markov chain to describe precipitation occurrence and
a gamma distribution to describe rainfall amounts. Hughes and Guttorp (1994)
and Hughes, Guttorp and Charles (1999) model precipitation occurrence using a
nonhomogeneous hidden Markov model. With the help of an unobserved weather
state they link large scale atmospheric circulation patterns with the local precipita-
tion process. Bellone, Hughes and Guttorp (2000) and Charles, Bates and Hughes
(1999) both extend this approach by also modeling precipitation amounts. The for-
mer propose to use gamma distributions, whereas the latter use empirical distribu-
tion functions. Ailliot, Thompson and Thomson (2009) present a hidden Markov
model in combination with the transformed and censored Gaussian distribution
approach used in Bardossy and Plate (1992). Also building on the same censor-
ing idea, Sans6 and Guenni (1999a) model precipitation occurrence and amount of
precipitation using a transformed multivariate Gaussian model with a spatial corre-
lation structure. Further works on statistical precipitation modeling include Sansé
and Guenni (1999b, 2000), Brown et al. (2001), Stehlik and Bardossy (2002),
Allcroft and Glasbey (2003), Sloughter et al. (2007), Berrocal, Raftery and Gneit-
ing (2008) and Fuentes, Reich and Lee (2008).

1.4. Outline. The model presented in the following is a hierarchical Bayesian
model for spatio-temporal data. At the data stage, we opt for a modeling approach
that determines the discrete and the continuous parts of the precipitation distribu-
tion together. This is done by assuming the existence of a latent Gaussian variable
which can be interpreted as a precipitation potential. The mean of the Gaussian
variable is related to covariates through a regression term. The advantages of this
one-part modeling strategy are twofold: the model contains less parameters and it
can deal with the so-called spatial (and temporal) intermittence effect [Bardossy
and Plate (1992)] which suggests smooth transitions between wet and dry areas.
This means that at the edge of a dry area the amount of rainfall should be low.
Wilks (1998) notes that, indeed, lower rainfall intensity is observed when more
neighboring stations are dry. This feature also reflects the idea that if a model
determines a low probability of rainfall for a given situation, it should also give
a small expected value for its amount conditional on this event, and vice versa.
However, we note that there is no consensus in the literature whether the two parts
of precipitation should be modeled together or separately.

At the process level, we use a dynamic model for accounting for spatio-temporal
variation. The model explicitly incorporates knowledge about the underlying phys-
ical processes that determine rainfall, such as advection, diffusion and convec-
tion. Approximating an integrodifference equation, we obtain a temporally au-
toregressive convolution with spatially colored and temporally white innovations.
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The model is nonstationary, anisotropic, and it allows for nonseparable covariance
structures, that is, covariance structures where spatial and temporal variation inter-
act. While our approach builds on existing models, it includes several novel fea-
tures. With the help of the Voronoi tessellation, a natural parametrization for data
lying on an irregular grid is obtained. The parametrization based on this tessella-
tion is space as well as time resolution consistent, physically realistic and allows
for modeling irregularly spaced data in a natural way. To our knowledge, the use
of the Voronoi tessellation for spatio-temporal data on an irregular grid is new. By
linking the advection parameter of the kernel to an external wind vector, the model
is temporally nonstationary.

The model is applied to predict three-hourly precipitation. The prediction model
is based on three forecasted meteorological variables obtained from an NWP
model as well as past rainfall observations. We compare predictions from the sta-
tistical model with the precipitation forecasts obtained from the NWP.

The remainder is organized as follows. In Section 2 the model specifications
are presented. In Section 3 it is shown how the model can be fitted to data using
a Markov chain Monte Carlo (MCMC) algorithm and how predictions can be ob-
tained. Next, in Section 4 the model is applied to obtain short term predictions of
three-hourly rainfall. Conclusions are given in Section 5.

2. The model. It is assumed that the rainfall Y;(s) at time ¢ on site s =
(x,y) € R? depends on a latent normal variable W; (s) through

Y;(s)=0 if W;(s) <0
(1) .
= W;(s) if W;(s) > 0,

where A > 0. A power transformation is needed since precipitation amounts are
more skewed than a truncated normal distribution and since the scatter of the pre-
cipitation amounts increases with the average amount. The latent variable W;(s)
can be interpreted as a precipitation potential.

This latent variable W;(s) is modeled as a Gaussian process that is specified as

2) Wi (s) =% ()" B+ £ (5) + v, (9),

where B € R¥, and v;(s) ~ N (0, t2), 2 > 0, are i.i.d. The mean x; (s)” B of W,(s)
is assumed to depend linearly on regressors x,(s) € R¥. For notational conve-
nience, we split the terms specifying the covariance function into a structured part
&/ (s) and an unstructured “nugget” v;(s). The term &,(s) is a zero-mean Gaus-
sian process that accounts for structured variation in time and space. It is specified
below in Section 2.1. The nugget v;(s) models microscale variability and measure-
ment errors. Since, typically, the resolution of the data does not allow for distin-
guishing between microscale variability and measurement errors, we model these
two sources of variation together. Note that the covariates x;(s) will usually be
time and location dependent. In addition to weather characteristics, Fourier har-
monics can be included to account for seasonality, and functions of coordinates
can account for smooth effects in space.



1456 F. SIGRIST, H. R. KUNSCH AND W. A. STAHEL

2.1. The convolution autoregressive model. We follow the dynamic approach
and define an explicit time evolution through the following integrodifference equa-
tion (IDE):

3) 6= [ ho(s—8)51(5)ds +e(s).  seR

where ¢;(s) is a Gaussian innovation that is white in time and colored in space, and
hy 1s a Gaussian kernel,

4) ho(s—s)=¢exp(—(s—s —p,) T (s —5 — n,)).

where the parameter vector # combines ¢ and the elements of u, and £~!. Note
that p, shifts the kernel and £ ~! determines the range and the degree of anisotropy.
The parameter ¢ controls the amount of temporal correlation. More details on the
interpretation of the model and specific choices of the parameters u, and ¥ are
discussed below in Section 2.2. An illustration of this kernel can be found in the
application in Section 4.2.

In the following, we assume that we have N measurement locations s;, i =

1,..., N, where measurements are made at times ¢ = 1, ..., 7. Instead of working
with a fine spatial grid with many missing observations, we formulate an approxi-
mate model for the values at the stations only, &, = (&(s1), ..., &(sy))’. Discretiz-

ing the integral in (3), we obtain
f ha(si —s)&—1(s") ds’ %/ hy(si —s')&—1(s") ds’
R2 A
(5)
N
A Zh#(si —8;)&—1(s;)|Aj].

j=1

Here A C R? is an area which contains the convex hull of all stations, the sets

Aj,i=1,..., N, form a tessellation of A with's; € A; and |A | denotes the area
of cell A;.

Our model can then be written as the vector autoregression
(6) £, =9¢Gi§_1+e, G eRVY,
where

T

(7) (G)ij =exp(—(si =} — ;)" T (s — 8 — m,)) - 1A},
and where &, = (&;(s1), ..., &(sy)).

Note that this process does not exhibit explosive growth if the largest eigenvalue
of ¢G; is smaller than one. To ensure this, we check in our application that the
largest eigenvalue is smaller than one for the parameters at the posterior modes.

If the s;’s form a regular grid, a tessellation is straightforward. Otherwise, we
propose to use the Voronoi tessellation [Voronoi (1908)] which decomposes the
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FI1G. 1. Locations of stations. Both axes are in km using the Swiss coordinate system (CH1903).

The lines illustrate the Voronoi tessellation. Cells with unbounded area have been replaced by circles
whose area is determined as described in the text.

space. Specifically, each site s; has a corresponding Voronoi cell consisting of all
points closer to s; than to any other site s;, j #i [see, e.g., Okabe et al. (2000) for
more details]. Stations on the boundary of the convex hull have cells with infinite
area. For these stations, we define |A;| as described in the following. We first
calculate the Voronoi tessellation of R%. We then replace unbounded cells by cells
whose area is the average area of the neighboring bounded cells. In Figure 1, the
Voronoi tessellation for the Swiss stations used in the application below is shown
as an example. Concerning the stations on the boundary, the circles represent the
surface area |A;]|.

As mentioned before, the &;’s are assumed to be independent over time and col-
ored in space. More precisely, we assume a stationary, isotropic Gaussian random
field

(8) e, ~N(0,6%V,),  0°>0,
with

where d;; denotes the Euclidean distance between two sites i and j. The expo-
nential correlation function is used for computational convenience. In principle, it
is possible to use other covariance functions, for instance, other members of the
Matérn family.
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The approximation in (5) assumes that sy is approximately constant in each
cell. If some cells are considered to be too large for this approximation to be rea-
sonable, additional points s’j‘f can be added for which all observations are missing.
Since such additional points increase the computational load, some compromise
has to be found between accuracy and computational feasibility.

2.2. Interpretation and parametrization of the kernel function. For the pur-
pose of interpretation, we note that, in the limit when the temporal spacing goes to
zero, the solution of the IDE (3) can also be written as the solution of the stochastic
partial differential equation (SPDE) [see Brown et al. (2000)]

0 1
(10) ESI(S) == - VE(s) + ZV - LVE(s) — néi(s) + Bi(s),

where V = (%, %) is the gradient operator and where B;(s) is temporally in-
dependent and spatially dependent. The terms have the following interpretations:
I; - V& (s) models advection, u, being a drift or velocity vector. The second term
is a diffusion term that can incorporate anisotropy, and —né; (s) accounts for damp-
ing. The damping parameter 7 is related to ¢ and X through n = — log(¢n |Z|'/?).
B, (s) is a source-sink or stochastic forcing term that can be interpreted as modeling
convective phenomena. This interpretation is based on the reasoning that typically
convective precipitation cells emerge and cease on the domain of interest in con-
trast to larger scale advective precipitation that is being transported over the area.

We now turn to the discussion of the parameterization of g, and X. In our ap-
plication, we have information about wind. It is assumed that the drift term u, is
proportional to this external wind vector. With u, varying over time, the model is
temporally nonstationary. It is also conceivable that in certain situations X or n
may vary over time and/or space, thus obtaining different forms of nonstationar-
ity. Concerning X, it is thought that potential anisotropy is related to topography.
Denoting by w; the wind vector at time ¢, we assume

M, =u-w; and

y-1_ 1/ cosa sine \' [ cosa sino
_p12 —c-sina c¢-cosa —c-sine c-cosa /)’
where u € R, ¢ > 0, and « € [0, r/2]. We use a wind vector which is averaged

over the entire area, but the wind could also change locally. The motivation for
writing ¥ in the given form comes from considering a coordinate transformation

x’ cosa sin o X
12 (3)=(% )(3):
y c-sina c-cosa ) \y

where the parameter « is the angle of rotation, and ¢ determines the degree of
anisotropy, ¢ = 1 corresponding to the isotropic case. p; is a range parameter that

(11)
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determines the degree of interaction between spatial and temporal correlation. See
Section 4.2 for an illustration of a kernel with the above parametrization.

The resulting model is nonstationary and incorporates anisotropy. Finally, we
note that there are various other possible choices of parametrizations. For instance,
a relatively simple model can be obtained by assuming

_ I /1 0
— 1 _
(13) n,=0 and X7 = ,012 <0 1),

that is, no drift and an isotropic diffusion term. There is still spatio-temporal inter-
action, though, which implies that the model is not separable in the sense that (16)
does not hold. We can simplify further and take not only u, =0, but also ¥ =0,
leading to G; being the identity matrix

(14) §[:¢§t_1+€[.

This means that each point at time # — 1 only has an influence on itself at time ¢,
that is, there is no spatio-temporal interaction and the model is separable.

2.3. Discussion of the model.

Propagator matrix G;. Using a parametrized propagator matrix G; in (6) has
the obvious advantage that less parameters are needed than in the general case, in
which each entry in the matrix has to be estimated, resulting in N2 parameters.
Moreover, in contrast to the general case, the parametric approach allows for mak-
ing predictions at sites where no measurements are available, which is often of
interest in applications.

Space resolution consistency. At first sight, it might be tempting to use a sim-
pler parametrization of G; not based on a convolution but of the form

(15) (Gpij = eX11>(—(dz'j/,01)2)-

However, such a model has the following important drawback. Assume, for in-
stance, that a station i is surrounded by two neighboring sites j and k. Say that
both stations j and k lie at the same distance from i but in different directions.
Consequently, j and k at time ¢ — 1 exercise the same influence on i at time 7. If
one adds an additional station / very close to k, the joint influence of k and / at
time ¢ — 1 on site i at time ¢ would then approximately be twice as big as the one
of site j. This means that the distribution of the process at point i depends on the
number and the location of stations in the neighborhood at which it has been ob-
served. The convolution model, on the other hand, does not exhibit this drawback.
Furthermore, the convolution model has the advantage that it is “space resolution
consistent,” that is, it retains approximately its temporal Markovian structure if
one, or several, sites are removed from the domain. This does not hold true for the
simpler vector autoregressive model as specified in (15).

Space—time covariance structure. In the following, let us turn to the spatio-
temporal dependence structure of the latent process &,. A random field & (s),
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(s, 1) € R? x R is said to have a separable covariance structure [Gneiting, Genton
and Guttorp (2007)] if there exist purely spatial and purely temporal covariance
functions Cg and Cr, respectively, such that

(16) cov(&;, (s1), &,(s2)) = Cs(s1,82) - Cr (11, 12).

The convolution based approach allows for nonseparable covariance structures,
whereas the separable autoregressive model in (14) has a separable covariance
structure.

Extremal events. For the data model as specified in equation (1), Hernandez,
Guenni and Sansé (2009) showed that the distribution of the maxima is a Gumbel.
If the focus lies on extremal events, other distributions, which have Fréchet max-
ima, can be used, for instance, a ¢-distribution. The ¢-distribution is particularly
attractive since it is a scale mixture of normal distributions. To be more specific,
if S; has a x7 distribution, then W, =x{ B + (§, 4 v,)//S;/df has a multivari-
ate 7-distribution. This means that the fitting algorithm introduced below can be
extended to the ¢-distribution case by introducing an additional latent variable S;.

3. Fitting and prediction. Fitting is done using a Markov chain Monte Carlo
method (MCMC), the Metropolis—Hastings algorithm [Metropolis et al. (1953),
Hastings (1970)]. Concerning most parameters, it will be shown that the full con-
ditionals are known distributions. Therefore, Gibbs sampling [Gelfand and Smith
(1990)] can be used in these cases.

For convenience and later use, we combine the parameters characterizing the
model into a vector = (A, B, 12,02, 00, ®') and call them primary parameters.
Our goal is to simulate from the joint posterior distribution of these parameters
and the latent variables § = (§{,...,&7),§, and W = (W, ..., W7). We note
that those W;(s;) that correspond to observed values above zero are known. In that
case the full conditional distribution consists of a Dirac distribution at Y;(s;)!/*.
For handling the censored values and for allowing for missing values, we adopt
a data augmentation approach [Smith and Roberts (1993)] as specified below in
equation (19). See Section 3.1 for more details.

Assuming prior independence among the primary parameters, the prior distri-
butions are specified as

P[)"v ﬂv .[2’ 027 va ¢a u, ,01’ o, C, ‘EO]
(17)

11
& = — Plpol Plp1 1 Plul Plel Pla] P[Eo o™, po]

with &, having a normal prior P[’;'Olaz, ool = N (O, Uszo)- Further, po and p;
have gamma priors with mean p, and variance ag. For ¢, we assume a gamma
prior with mean 1 and variance 1, o has a uniform prior on [0, /2], and u has a
normal prior with mean 0 and variance 10*. Further, we assume locally uniform
priors on log(z?) and log(c?) as well as for ¢, A and B.
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In our application, we choose to use informative priors for pg and p1. It is known
that in model-based geostatistics difficulties can arise when estimating the variance
and scale parameters of the exponential covariogram [see, e.g., Warnes and Ripley
(1987), Mardia and Watkins (1989), Diggle, Tawn and Moyeed (1998)]. For the
geostatistical covariance model, Zhang (2004) shows that the product of the two
parameters can be estimated consistently, and Stein (1990) shows that it is the
product of the two parameters that matters more than the individual parameters
for spatial interpolation. Further, Berger, De Oliveira and Sansé (2001) show that,
at least in the simplest setting, the posterior of the range parameters is improper
for most noninformative priors. Given these considerations, we think that using
informative priors for the two range parameters pg and p; is appropriate. In our
example, we chose priors with mean p, = 100 and variance 03 = 10. We have
tried different informative priors. The less informative they are, the worse are the
mixing properties of the MCMC algorithm. In line with the results of Stein (1990)
and Zhang (2004), we have made the experience that different choices of priors on
these range parameters do not have a strong impact on the predictive performance
of the model.

The posterior distribution is then proportional to

N(T+1)/2+1 NT /241 1/3—1

L \NIHEDEL o\ N2 [V, -T2 T Yi(sp)!/*

0_2 _L,2 PO )\‘
Y:(s;)>0

11
X exp(—EZ—z W, —x!g— ’g‘,H
(18) =
1
+ ;(Sr - ¢Gt§z—1)/V;01 (St - ¢Gl‘£t—l)>

11 _
X eXP(—Ep%Vpoléo) - Plpol - P[#] - L{w,(s;)<0 Vi.r: ¥, (s1)=0}-

The product in the first line is the Jacobian for the power transformation in (1).
Note that missing observations do not cause any problem. If Y;(s;) is missing,
there is no respective term in the product nor a corresponding condition for the
indicator function.

3.1. Full conditional distributions. In the following, we derive full conditional
distributions for the individual parameters.

It is readily seen that the full conditional of B is a multivariate normal distribu-
tion, and the full conditional distribution of ¢ is a normal distribution as well. The
full conditionals of both o> and 72 are inverse gamma distributions.

For obtaining the full conditionals of W, we partition its components accord-
ing to whether Y;(s;) is above zero, equal to zero, or missing. Denote by z[H those
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indices for which Y;(s;) > 0O, by i,[O] those with Y;(s;) =0, and by i t[m] the missing
ones. The vector W; can then be partitioned into WFF], WEO], and ng] accord-
ingly. We remark that WEO] and ng] are latent variables, whereas WEH corre-
sponds to transformed observed values. In addition, WEO] has the restriction that

all its values must be smaller than zero, WEO] < 0. For facilitating understanding,
we note that W;(s;) can be written as

Wisi) = W) =Y, snV*  ifYi(s) >0
(19) =w%s) i Yi(s)=0
=w!"(s)) if Y, (s;) is missing.

The full conditional of WE’"] is then a multivariate normal distribution with mean
and covariance

(20) Poyylm = (x'B+ E,)[m] and ngm] =72 L

Similarly, the full conditional distribution of WEOJ is a truncated multivariate nor-
mal distribution with mean and covariance

(21) MWEO] = (XtTﬁ + S,)[O] and pr)] =72 L

As mentioned before, the full conditional of WEH is a Dirac distribution with point
mass at (YEH)I/A.

Concerning the latent variables (§(, &, ..., &), we note that conditional on 6,
(&,, W) is a linear Gaussian state space model. Therefore, a sample from the joint
full conditional of (§,,&,,...,&7) can be obtained using the forward filtering
backward sampling (FFBS) algorithm proposed by Carter and Kohn (1994) and
Frithwirth-Schnatter (1994). The forward filtering step corresponds to the Kalman
filter [see, e.g., West and Harrison (1997) and Kiinsch (2001)].

Alternatively, one can also use single ¢ updates. The full conditional of one &,,
0 <t < T,isanormal distribution N ([.Lgl , Xg,). In the case of the separable model,
the mean pg depends on &,_; and §, |, whereas the covariance matrix Xg, does
not depend on ¢. This is convenient for simulation since its Cholesky decomposi-
tion has to be calculated only once in each update cycle. In contrast, in the sam-
pling step of the FFBS algorithm, one has to calculate a Cholesky decomposition
for each 7. The advantage that the FFBS algorithm mixes better than the single ¢
update algorithm per update cycle is outweighed by the fact that an update cycle of
the single ¢ update algorithm is a lot faster than one of the FFBS algorithm. Thus,
more effective samples can be obtained with the single ¢ update algorithm per time.
In the case of the nonstationary anisotropic drift model, though, ¢, in the single
update algorithm is not constant over time. Thus, a Cholesky decomposition needs
to be computed for each # anyway, meaning that the FFBS algorithm is preferable.
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In summary, we made the experience that it is recommendable to use single ¢
updates for temporally stationary models where the covariance X, of the full con-
ditional of one &, is constant over time. If X¢ changes over time, we recommend
using the FFBS algorithm.

For the remaining parameters, that is, pg, # (excluding ¢) and A, there is no
apparent distribution family from which one can simulate. Therefore, Metropolis
steps will be used. We note that the full conditional distribution of X is proportional
to

Yi(s)!/*1 1 1
@ ] (M—)en(-5 X Slne)' -xp-g17).

Yi(si)>0 Y (si)>0

The parameter A is sampled on the log-scale. This means that we first transform it
to the log scale. Then a proposal is obtained by sampling from a normal distribu-
tion with the mean equal to the last value of the parameter. Thereafter, this proposal
is accepted with a probability that is given by the usual Metropolis—Hasting algo-
rithm [see, e.g., Chib and Greenberg (1995)].

Finally, pp and ¥ (excluding ¢) are sampled together. The full conditional is
proportional to

| /T
exp<—m (X}(éz —¢GiE,_ )V, (6, — Gk, ) + £6V;01£0>)
=

(23) T+1)/2
% |V,00|_( +1)/2.

3.2. Prediction. 'We consider predictions at new locations and/or times as well
as predictions of areal averages. It turns out that in the case of areal averages, the
Voronoi tessellation is again useful.

One way to obtain predictions is to augment the data Y,ps with missing values
at the locations or times where predictions are made. When doing so, the MCMC
algorithm implicitly draws from the corresponding predictive distribution. See the
previous Section 3.1 on how to handle missing values.

If one does not specify the points in space and time where predictions are to be
made prior to model fitting, the predictive distribution of a new set of observations
Y* = (Y:IL P, ..., Y;E (s7))’ is calculated as

P[Y*|Yaps] = f PY*|&*, 0] P[£*|£. 0] P£. 8]Y ops] dE* dE dO

1 & . . .
~ *| % (i) *e(i) (i) *
(24) ml}:l:fP[Y €%, 0 Ple*1E", 0] dk

~ Ly iy, 00,
iz
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where Yops denotes the observed data, § and &* the latent Gaussian process at
the observed and predicted sites, respectively, and @ all the remaining parameters.
Samples 0@ and & @ ), i=1,...,m, from their posterior distribution are obtained
by the MCMC algorithm, and &*) is sampled from P[£*|§®, 0.

When &* is modeled at the same sites as & but at different time points, the
distribution P[&* |§(i), 0] is Gaussian and readily obtained using (6).

In the case when predictions are made at unobserved sites s € S and time ¢,
P[&7|£, 0] can be calculated as described in the following. First, because of the
temporal Markov property, P[£]|€,0] is equal to P[£]|&,_1,&,,&,,,0]. This
density is then obtained by considering the augmented model

(&)=l )e+(2):
§ i =0(Hi Hf) <§§<) + &1,

where G7 is defined analogously to (7), H+ and Hy | are obtained from the same
approximations as in (5), and the covariances of &; and €] are as in (9). By (25),
the conditional distribution of &,, £, &, given &,_; is normal. Therefore, also
the conditional distribution of & given &,_;,&,, &, is Gaussian. Its mean and
covariance can be computed by noting that

P[§f|§t_1,§t,§t+1,0]O(P[§,+1|§f,§,,0]P[§f|§t_1,§t,0]
o<P[§,+1|§f,§l,0]P[§l,Ef|§,,1,0]

and then completing the square in the exponent of the last expression.
In many cases, for instance, when the focus lies on flooding, areal averages

(25)

(26)

—(A* 1
27) A = e /A Y,(s)ds
of precipitation are of interest. If Y, (s) is observed on an irregular grid, one could
first define a regular grid, then interpolate the nonobserved grid points, and ap-
proximate the integral in (27) by a Riemann sum. However, since the regular grid
usually becomes very large, this is computationally expensive. Instead, we propose
to use the Voronoi tessellation once again to approximate the integral

N
I Y Yi(sj)|A; N AT
j=1

(28) 1?,“‘*):L / Y, (s)ds ~
|A*| Jax |A*

Thereby, an adequate weight |A; N A*| is given to each station. Samples from the

predictive distribution of Y, ,(A*) can be obtained by simulating Yt(i) (sj) from their
predictive distribution and inserting them in (28).

We note that the areal prediction becomes deterministic if all Y;(s;) consist of
observed values. This means that uncertainty about values of Y;(s) at locations
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where no observations are made is implicitly ignored with the above approxima-
tion. This can be amended for by first making predictions at a few sites where no
observations were made. Inserting additional unobserved sites can also be useful
in other cases. For instance, if A* cuts off a substantial part of any A j» that is,
Aj; N A* is much smaller than A; but not empty, the areal prediction might be
improved by replacing Y;(s;) by the prediction of Y; at the center of gravity of
Aj N A*, or if the area A* is small and contains only a few stations, improved
predictions of the areal average can be obtained by making predictions at a few
additional points inside the area.

4. Application to short term prediction of precipitation. We apply the
model to obtain short term forecasts of precipitation. Such forecasts are important,
for instance, for agriculture and flooding. The traditional way for obtaining precip-
itation forecasts is the use of numerical weather prediction (NWP) models. NWP
models solve complex, nonlinear equations emulating the dynamics of the atmo-
sphere. Typically, NWP models require a lot of computational resources to run.
Fitting our statistical model using the MCMC algorithm presented above is also
computationally intensive. However, once the statistical model is fitted and assum-
ing that the posterior of the primary parameters does not change (see Section 4.3
for more details), predictions are computationally a lot cheaper. Furthermore, the
statistical model can be used in situations where there are no NWP models avail-
able or to obtain predictions at different temporal resolutions than the one at which
the NWP model operates.

4.1. The data. The data consists of three-hourly precipitation amounts col-
lected by 26 stations around the Swiss Plateau from the beginning of December
2008 to the end of March 2009, making a total of 968 time periods. The data were
provided by MeteoSwiss. We use the first three months, consisting of 720 time
periods, for fitting the model. The remaining month March, consisting of 248 time
periods, is set aside for model evaluation. The locations of these stations are shown
in Figure 1. In Figure 2, a time series plot of the observed precipitation at one sta-
tion (corresponding to the station with the acronym WYN in Figure 1) and of the
weighted areal average is shown. Concerning the latter, we take the weighted av-
erage over the entire spatial domain. Figure 3 shows the spatial distribution of the
precipitation accumulated over time.

The covariates consist of the x- and y-coordinates (km), altitude (m), tempera-
ture (°C), dew point (°C) and specific humidity (%). Specific humidity is the ratio
of water vapor to dry air in a particular mass. It is expected to be positively re-
lated to precipitation. The dew point is the temperature to which a given parcel
of humid air must be cooled, at constant barometric pressure, for water vapor to
condense into water. Thus, the lower the dew point, the lower is the chance for pre-
cipitation. However, specific humidity and dew point are considerably negatively
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FI1G. 2.  Precipitation versus time. The lines are observed precipitation of one station (correspond-
ing to the station with the acronym WYN in Figure 1) and of the areal average. The time axis is in 3 h
steps starting at December 1, 2008. The dotted vertical line separates the training and test data.
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FI1G. 3. llustration of the spatial distribution of precipitation. The circles display the cumulative
rainfall amounts over time at the stations. The larger the circle and the darker the color, the higher
is the cumulative precipitation amount. Both axes are in km.
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correlated. This makes it unclear, a priori, what their joint relation to precipita-
tion is like. Temperature, dew point and specific humidity are predicted variables
obtained from an NWP model called COSMO-2. From the same model, we also
obtain wind predictions (speed is in m/s). Predictions of the statistical model are
evaluated by comparing them to precipitation forecasts from the same NWP. Hav-
ing a high resolution with a grid spacing of 2.2 km, the NWP model is able to
resolve convective dynamics. The NWP model produces predictions once a day
for 24 hours ahead starting at 0:00UTC. After assimilation and computation, fore-
casts are available at around 1:30UTC. For all meteorological variables, we use
values at approximately 1000 m above ground. This is the height where we think
these variables to be most influential for precipitation. All covariates are centered
and standardized to unit variance. Centering covariates around their means is used
in order to avoid correlations of the regression coefficients with the intercept and
to reduce posterior correlations.

4.2. Fitting and results. In the following, the nonstationary anisotropic model
incorporating the wind as an external drift term (see Section 2) is fitted. In addition,
we also fit a separable model. We simulate from the posterior distributions of these
models as outlined in Section 3.

After the burn-in period consisting of 5000 draws, 195,000 samples from the
Markov chain were used to characterize posterior distributions. Convergence was
monitored by inspecting trace plots.

In Table 1 we show posterior modes as well as 95% credible intervals for the
different parameters of the nonstationary anisotropic drift model. The coefficients
of the geographic coordinates are not significant. Specific humidity has a large
positive coefficient. As expected, higher humidity implies more rainfall. The dew
point is also positively related to precipitation. Higher temperatures, on the other
hand, seem to imply less precipitation.

For interpreting the fitted parameters governing the convolution kernel (p1, c,
« and u), we illustrate in Figure 4 the convolution kernel over the region where
the stations lie. The parameters p1, ¢, @ and u are taken at their posterior mode.
The plot is interpreted as follows. The height of the kernel is the level of influence
that &,_,(s") at location s’ has on &,(s) at location s as a function of s’ —s. In
other words, the colors represent the lag-1 influence of the other stations on the
station Wynau which is used as origin in the plot. The white arrow represents
the drift vector u, = u - w; at time ¢ = 429, w, being the wind vector. Note that
this transport vector changes over time, thus causing temporal nonstationarity. The
time ¢ = 429 illustrates a meteorological situation with the typically predominant
southwestern wind direction.

With ¢ and o being approximately 4 and 0.7, we observe anisotropy along the
south-east north-west direction. This corresponds to the topography of the region,
as the area containing a majority of the stations lies between two mountain ranges:
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TABLE 1
Posterior modes and 95% credible intervals for the nonstationary, anisotropic model with an
external drift

Mode 2.5% 97.5%
Intercept —1.05 —1.21 —-0.929
X —0.0473 —0.133 0.0541
Y —0.0108 —0.0846 0.0531
z 0.00347 —0.0169 0.0247
Temp —0.717 —0.856 —0.583
Dew point 0.406 0.187 0.601
Spec hum 1.14 0.949 1.33
A 1.58 1.54 1.62
2 0.0685 0.0451 0.0943
o? 1.04 0.953 1.17
00 92 86.4 97.9
¢ 0.000159 0.000147 0.00017
o1 93.6 88.1 99.4
c 4.1 3.61 4.63
o 0.704 0.658 0.777
u 0.879 0.645 1.1

the Jura to the north-west and the Alps to the south-east. Correlations are expected
to be higher along the flat part between these two mountain ranges.
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FI1G. 4. Illustration of the convolution kernel at time t = 429. The colors indicate the lag-1 influence
of the other stations on the station Wynau. The white arrow represents the drift caused by a south-west
wind at this time point. The dots represent the observation stations. The axes are in km.
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Furthermore, the plot shows how the external drift shifts the convolution ker-
nel. Apparently, the southwestern neighbor (Bern) has the highest influence on
Wynau in this situation, with wind coming from the southwest. Gneiting et al.
(2006) observe a similar phenomenon in wind speed data over the U.S. Pacific
Northwest where there is also a predominant wind direction causing asymmetric
cross-correlations.

4.3. Short term prediction of precipitation. In the following, we apply the fit-
ted models to produce short term predictions of precipitation. As mentioned be-
fore, we have fitted the model to the first 720 time periods from December 2008 to
February 2009. From this we obtain posterior distributions for the primary param-
eters. Predictions for the time periods in March that were set aside are obtained as
described in the following.

Ideally, one would run the full MCMC algorithm at each time point, includ-
ing all data up to the point, and obtain predictive distributions from this. How-
ever, since this is rather time consuming, we make the following approxima-
tion. We assume that the posterior distribution of the primary parameters given
Yi.: ={Y1,...,Y;}is the same for all r > 720. That is, we neglect the additional
information that the observations in March give about the primary parameters. In
practice, this means that posterior distributions of the primary parameters are cal-
culated only once, namely, on the data set from December 2008 to February 2009.

For each time ¢ > 720, we make up to 8 steps ahead forecasts. That is, we
sample from the predictive distribution of Y;" ko k=1,...,8, given Y{.; =
{Y1,...,Y:} and given the posterior of the primary parameters based on the data
from December 2008 to February 2009. Since the NWP produces forecasts for
the three meteorological covariates once a day, for each prediction time ¢ + k, the
forecasts made at 0:00UTC of the same day are used. Sampling from the predic-
tive distribution consists of imputing the augmented data W and sampling from the
latent process &. These two steps are done as described in Section 3. To generate
one sample from the predictive distribution takes around 3.5 seconds on an AMD
Athlon(tm) 64 X2 Dual Core Processor 5600+ with a 2900 MHz CPU clock rate.
We use 200 samples to characterize each predictive distribution.

The assumption that the posterior of the primary parameters does not change
may be questionable over longer time periods and when one moves away from the
time period from which data is used to obtain the posterior distribution. But since
all our data lies in the winter season, we think that this assumption is reasonable.
If longer time periods are considered, one could use sliding training windows or
model the primary parameters as evolving dynamically over time. One can also in-
vestigate how the predictive performance deteriorates with increasing lags between
predictions and last time point from which data is used to fit the model.

In addition to the separable model and the nonstationary anisotropic drift model,
we fit a model with no autoregressive term, that is, with ¢ = 0. Further, to assess
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how much information stems from the three meteorological covariates (tempera-
ture, dew point and specific humidity) and how much from the dynamic spatio-
temporal model, we also fit the nonstationary anisotropic drift model without in-
cluding these covariates. For each model, we calculate pointwise predictions for
the individual stations and also predictions for the areal average. The latter are
obtained using the Voronoi tessellation as described in Section 3.2.

In order to asses the performance of the probabilistic predictions, we use the
continuous ranked probability score (CRPS) [Matheson and Winkler (1976)]. The
CRPS is a strictly proper scoring rule [Gneiting and Raftery (2007)] that assigns
a numerical value to probabilistic forecasts and assesses calibration and sharpness
simultaneously [Gneiting, Balabdaoui and Raftery (2007)]. It is defined as

o0

(29) CRPS(F, y) = / (F(x) — 1{y<x))*dx,

—00
where F is the predictive cumulative distribution function, y is the observed real-
ization, and 1 is an indicator function. It can be equivalently calculated as

(30) CRPS(F,y)=Ep|Y —y| — YEF|Y —Y'|,
where Y and Y’ are independent random variables with distribution F. If a sample
Yy Y™ from F is available, it can be approximated by
1 & 1 &
3] LNy oy y® _yOi)|.
(31) OB L e e B |

i=1 i,j=1

In Figure 5 the average CRPS of the pointwise predictions and the areal pre-
dictions are plotted versus lead times. In the left plot, the mean is taken over all
stations and time periods, whereas the areal version is an average over all time
periods. Predictions Y} e k=1,...,8, for the next 8 time steps are made at each
time point ¢. We recall that the NWP model produces predictions for 8 consecutive
periods once a day at midnight. For simplicity, potential diurnal variation in the
accuracy of the predicted covariates is ignored.

We see that the nonstationary anisotropic drift model (“ConvAR”) has clearly
the best performance among the three models. In particular, the nonsepara-
ble convolution based model performs better than the simpler separable spatio-
temporal model (“SAR”). Not surprisingly, the model without temporal de-
pendency (“NoAR”) performs worse than the other two models. Comparing
the “ConvAR” model, the nonstationary convolution model without covariates
(“ConvAR No Cov”), and the “NoAR” model, we see that the main source of
predictive performance at small lead times is not the covariates but the dynamic
spatio-temporal model. In the areal case, the nonstationary convolution model
without covariates even outperforms the simple autoregressive model including
covariates at small lead times. With increasing lead time, the meteorological co-
variates contribute more to the predictive performance and the dynamic spatio-
temporal model becomes less important.
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FI1G. 5. Comparison of statistical models. The continuous ranked probability score (CRPS) of fore-
casts versus number of consecutive time periods for which predictions are made is shown. On the
left are CRPSs of station specific forecasts and on the right are CRPSs of areal forecasts. “NoAR”
denotes the model without an autoregressive term, “SAR” the one with a separable covariance struc-
ture, and “ConvAR” the convolution based nonstationary anisotropic drift model. All three models
include the covariates described in Section 4.1. A convolution based model without including covari-
ates (“ConvAR No Cov”) is also fitted. The unit of the CRPS is mm.

We also compare the performance of the predictions from the nonstationary
anisotropic drift model with predictions obtained from the NWP model. Since
the NWP model produces deterministic forecasts, we use the mean absolute error
(MAE). In order to make the comparison fair, we first reduce the statistical dis-
tributional forecast to a point forecast by taking the median [see Gneiting (2011)
on why this is a reasonable choice]. As mentioned, the NWP model produces pre-
dictions once a day starting at 0:00UTC. Predictions are then made for eight con-
secutive time periods corresponding to 24 h ahead. This means that the time of
day also corresponds to the lead time. This is in contrast to the above comparison
of the different statistical models where 8 step ahead predictions were made at all
time periods.

In Figure 6 the mean absolute error (MAE) of forecasts versus lead time, or
time of day is shown. In addition, in Table 2 we report MAEs averaged over all
lead times. Note that there is one particular day (March 24) when heavy rainfall
occurred shortly after 0:00UTC. We report results including (thin lines) and ex-
cluding (bold lines) this day.

Table 2 shows that overall the statistical model outperforms the NWP on a sta-
tionwise base. When considering the areal average, the two models perform simi-
larly. Depending on whether March 24 is included or not, the NWP or the statistical
model has a slightly lower average MAE.
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F1G. 6. Comparison of statistical and NWP model. The mean absolute error (MAE) of forecasts
versus lead time is shown. Lead time also corresponds to the time of day. The left panel shows
MAE:s of station specific forecasts averaged over time and the stations, and the right panel shows
MAE: of areal forecasts averaged over time. “ConvAR” denotes the convolution based nonstationary
anisotropic drift model and “NWP” the NWP model. The bold lines show the results when excluding
March 24, 2009. The unit of the MAE is mm.

Furthermore, Figure 6 shows that March 24 considerably affects the perfor-
mance of the one- and two-step ahead predictions of the statistical model as well
as the stationwise performance of the NWP model. When excluding this day, the
corresponding MAEs are considerably lower. This shows a typical behavior of our
model and statistical models in general: they perform well when, at the time of
prediction, the major phenomena (advective fronts) are already observable. In this
case, the spatio-temporal statistical model can extrapolate the space—time dynam-
ics of the rainfall process into the future.

Earlier studies have shown that nowcasting methods, including statistical ap-
proaches, perform usually better at short lead times (up to one day), while NWP
have higher predictive skills at medium ranges [see Kober et al. (2012) or Little,

TABLE 2
Comparison of statistical and NWP model. The mean absolute error (MAE) averaged over all days
and lead times is reported. “ConvAR” denotes the convolution based nonstationary anisotropic
drift model and “NWP” the NWP model. The unit of the MAE is mm

ConvAR NWP Areal ConvAR Areal NWP

March 2009 0.41 0.46 0.35 0.32
Excluding March 24 0.36 0.43 0.29 0.31
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McSharry and Taylor (2009)]. Our results are in line with these findings in the
sense that all lead times used in our application are still in the range of what is
considered “short” lead times. However, our model is not just based on past pre-
cipitation observations but also on other predicted meteorological variables.

5. Conclusions. A hierarchical Bayesian spatio-temporal model is presented.
Incorporating physical knowledge, the dynamic model is nonstationary, aniso-
tropic, and allows for nonseparable covariance structures. It incorporates a drift
term that depends on a wind vector. At the data stage, the model determines the
probability of rainfall and the rainfall amount distribution together. The model
is fitted using Markov chain Monte Carlo (MCMC) methods and applied to ob-
tain short term precipitation forecasts. It performs better than a separable, station-
ary and isotropic model, and it performs comparably to a deterministic numerical
weather prediction model and has the advantage that it quantifies prediction uncer-
tainty.

Even though we have applied the model to prediction of precipitation, it can
also be used to predict or interpolate other meteorological quantities of interest.

Future research could focus on adapting the model so that in can be applied to
spatially highly resolved data. Using Markov random fields [Rue and Held (2005),
Lindgren, Rue and Lindstrom (2011)] for the innovation process &; might be a
potential direction. Alternatively, a dimension reduction approach could be ex-
amined; cf. Banerjee et al. (2008). For instance, Sigrist, Kiinsch and Stahel (2012)
approximate an advection-diffusion SPDE to cope with large data sets. Further, the
model can be extended by additionally relaxing some assumptions. For instance,
the parameters o2, ¢, po, p1 and A were assumed to be constant over time. Assum-
ing periodicity, Fourier harmonics could be used to model parameters that vary
seasonally during the year. Alternatively, the parameters could evolve dynamically
over time according to an equation of the form v; = 9;,_1 + N (0, ag).
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