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Abstract. We consider “nonconventional” averaging setup in the form dXε(t)
dt

= εB(Xε(t),Ξ(q1(t)),Ξ(q2(t)), . . . ,Ξ(q�(t)))

where Ξ(t), t ≥ 0 is either a stochastic process or a dynamical system with sufficiently fast mixing while qj (t) = αj t,α1 < α2 <

· · · < αk and qj , j = k + 1, . . . , � grow faster than linearly. We show that the properly normalized error term in the “nonconven-
tional” averaging principle is asymptotically Gaussian.

Résumé. Nous considérons un cadre non conventionnel de moyenne de la forme dXε(t)
dt

= εB(Xε(t),Ξ(q1(t)),Ξ(q2(t)), . . . ,

Ξ(q�(t))) où Ξ(t), t ≥ 0 est un processus stochastique ou un système dynamique suffisamment mélangeant tandis que qj (t) =
αj t,α1 < α2 < · · · < αk et qj , j = k + 1, . . . , � ont une croissance sur-linéaire. Nous montrons que le terme d’erreur après renor-
malisation est asymptotiquement gaussien.
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1. Introduction

Nonconventional ergodic theorems (see [12]) known also after [2] as polynomial ergodic theorems studied the lim-
its of expressions having the form 1/N

∑N
n=1 Fq1(n)f1 · · ·Fq�(n)f� where F is a weakly mixing measure preserving

transformation, fi ’s are bounded measurable functions and qi ’s are polynomials taking on integer values on the in-
tegers. Originally, these results were motivated by applications to multiple recurrence for dynamical systems taking
functions fi being indicators of some measurable sets and only convergence in the L2-sense was dealt with but later
[1] provided also almost sure convergence under additional conditions. Recently such results were extended in [6] to
the continuous time dynamical systems, i.e. to expressions of the form

1

T

∫ T

0
Fq1(t)f1 · · ·Fq�(t)f� dt,

where F s is now an ergodic measure preserving flow.
In this paper we consider the averaging setup

Xε(n + 1) = Xε(n) + εB
(
Xε(n),Ξ

(
q1(n)

)
, . . . ,Ξ

(
q�(n)

))
(1.1)

in the discrete time case and

dXε(t)

dt
= εB

(
Xε(t),Ξ

(
q1(t)

)
, . . . ,Ξ

(
q�(t)

))
(1.2)
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in the continuous time case with Ξ being either a stochastic process or having the form Ξ(s) = F sf where F s is
a dynamical system and f is a function. Positive functions q1, . . . , q� will satisfy certain conditions which will be
specified in the next section, in particular, first k of them are linear while others grow faster than preceeding ones.
An example where (1.2) emerges is obtained when we consider a time dependent small perturbation of the oscillator
equation

ẍ + λ2x = εg(x, ẋ, t), (1.3)

where the force term g depends on time in a random way g(x, y, t) = g(x, y,Ξ(q1(t)), . . . ,Ξ(q�(t))). Then passing
to the polar coordinates (r,φ) with x = r sin(λ(t −φ)) and ẋ = λr cos(λ(t −φ)) the equation (1.3) will be transformed
into (1.2). It seems reasonable that a random force may depend on versions of a same process or a dynamical system
moving with different speeds which is what we have here.

As it is well known (see, for instance, [29]), if B(x, y1, . . . , y�) is bounded and Lipschitz continuous in x and the
limit

B̄(x) = lim
T →∞

1

T

∫ T

0
B

(
x,Ξ

(
q1(t)

)
, . . . ,Ξ

(
q�(t)

))
dt (1.4)

exists then for any S ≥ 0,

lim
ε→0

sup
0≤t≤S/ε

∣∣Xε(t) − X̄ε(t)
∣∣ = lim

ε→0
sup

0≤t≤S

∣∣Zε(t) − Z̄(t)
∣∣ = 0, (1.5)

where

dX̄ε(t)

dt
= εB̄

(
X̄ε(t)

)
and Zε(t) = Xε(t/ε), Z̄(t) = X̄ε(t/ε). (1.6)

In the discrete time case we have to take

B̄(x) = lim
N→∞

1

N

N∑
n=0

B
(
x,Ξ

(
q1(n)

)
, . . . ,Ξ

(
q�(n)

))
(1.7)

and (1.5) remains true with X̄ε given by (1.6) and (1.7). Almost everywhere limits in (1.4) and (1.7) follow from
[22] under our (and even weaker) assumptions and in some relevant to our setup cases they could be derived by
nonconventional pointwise ergodic theorems from [6] and [1].

After nonconventional ergodic theorems (or in the probabilistic language laws of large numbers) are established the
next natural step is to obtain central limit theorem type results which was accomplished in [25]. The averaging prin-
ciple (1.5) can be considered as an extension of the ergodic theorem since if B(x, ξ1, . . . , ξ�) in (1.1) does not depend
on x then X1/N(N) becomes the nonconventional average 1

N
SN where SN = ∑

0≤n≤N B(Ξ(q1(n), . . . ,Ξ(q�(n)).

Now if 1
N

SN converges to B̄ as N → ∞ then convergence in distribution of
√

N(X1/N(N) − B̄) to a normal random
variable is, in fact, a nonconventional central limit theorem. The main goal of this paper is to extend the functional
central limit theorem type results obtained in [25] for such sums SN to the above nonconventional averaging setup in
the spirit of what was done in the standard (conventional) averaging case in [18] and [20]. Central limit theorem type
results turn in the averaging setup into assertions about Gaussian approximations of the slow motion Xε given by (1.1)
or by (1.2) where Ξ is a fast mixing stochastic process or a dynamical system while unlike the standard (conventional)
case we have the process Ξ taken simultaneously at different times qi(t) in the right hand side of (1.1) and (1.2).

We prove, first, our limit theorems for stochastic processes under rather general conditions resembling the definition
of mixingales (see [27] and [28]) and then check these conditions for more familiar classes of stochastic processes and
dynamical systems. In [25] we imposed mixing assumptions in a standard way relying on two parameter families of
σ -algebras (see [5]) while our assumptions here use only filtrations (i.e. nondecreasing families) of σ -algebras which
are easier to construct for various classes of dynamical systems. As one of applications we check some form of our
conditions for Anosov flows which serve as fast motions in our nonconventional averaging setup where we rely on the
notion of Markov families from [8] and [9].

At the end of the paper we discuss a fully coupled averaging setup in our nonconventional situation where already
an averaging principle itself becomes a problem.
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2. Preliminaries and main results

Our setup consists of a ℘-dimensional stochastic process {Ξ(t), t ≥ 0 or t = 0,1, . . .} on a probability space
(Ω, F ,P r) together with a filtration of σ -algebras Fl ⊂ F ,0 ≤ l ≤ ∞ so that Fl ⊂ Fl′ if l ≤ l′. For convenience
we extend the definitions of Fl given only for l ≥ 0 to negative l by defining Fl = F0 for l < 0. In order to relax
required stationarity assumptions to some kind of weak “limiting stationarity” our setup includes another probability
measure P on the space (Ω, F ). Namely, we assume that the distribution of Ξ(t) with respect to P does not depend
on t and the joint distribution of {Ξ(t),Ξ(t ′)} for t ≥ t ′ depends only on t − t ′ which can be written in the form

Ξ(t)P = μ and
(
Ξ(t),Ξ

(
t ′
))

P = μt−t ′ for all t ≥ t ′, (2.1)

where μ is a probability measure on R
℘ and μs, s ≥ 0 is a probability measure on R

℘ × R
℘ .

Our setup relies on two probability measures Pr and P in order to include, for instance, Markov processes Ξ(t)

satisfying the Doeblin condition (see [16] or [10]) starting at a fixed point or with another noninvariant distribution.
Then Pr will be a corresponding probability in the path space while P will be the stationary probability constructed
by the initial distribution being the invariant measure of Ξ(t). Usual mixing conditions for stochastic processes are
formulated in terms of a double parameter family of σ -algebras via a dependence coefficient between widely separated
past and future σ -algebras (cf. [5] and [25]) but this approach often is not convenient for applications to dynamical
systems where natural future σ -algebras do not seem to exist unless an appropriate symbolic representation is avail-
able. By this reason we formulate below a different set of mixing and approximation conditions for the process Ξ

which seem to be new and will enable us to treat some of dynamical systems models within a class of stochastic
processes satisfying our assumptions.

In order to avoid some of technicalities we restrict ourselves here mostly to bounded functions though our results
can be obtained for more general classes of functions with polynomial growth supplemented by appropriate moment
boundedness conditions similarly to [25]. For any function g = g(ξ, ξ̃ ) on R

℘ × R
℘ introduce its Hölder norm

|g|κ = sup

{∣∣g(ξ, ξ̃ )
∣∣ + |g(ξ, ξ̃ ) − g(ξ ′, ξ̃ ′)|

|ξ − ξ ′|κ + |ξ̃ − ξ̃ ′|κ : ξ 	= ξ ′, ξ 	= ξ ′
}
. (2.2)

Here and in what follows |ψ − ψ̃ |κ for two vectors ψ = (ψ1, . . . ,ψ�) and ψ̃ = (ψ̃1, . . . , ψ̃�) denotes the sum∑�

i=1 |ψi − ψ̃i |κ . Next, for p,q ≥ 1 and s ≥ 0 we define a sort of a mixing coefficient

ηp,κ,s(n) = sup
t≥0

{∥∥E
(
g
(
Ξ(n + t),Ξ(n + t + s)

)|F[t]
)

− EP g
(
Ξ(n + t),Ξ(n + t + s)

)∥∥
p

: g = g(ξ, ξ̃ ), |g|κ ≤ 1
}
, ηp,κ (n) = ηp,κ,0(n), (2.3)

where ‖ · ‖p is the Lp-norm on the space (Ω, F ,P r), [·] denotes the integral part and throughout this paper we
write E for the expectation with respect to Pr and EP for the expectation with respect to P . We will need also an
(one-sided) approximation coefficient

ζq(n) = sup
t≥0

∥∥E
(
Ξ(t)|F[t]+n

) − Ξ(t)
∥∥

q
. (2.4)

Assumption 2.1. Given κ ∈ (0,1] there exist p,q ≥ 1 and m,δ > 0 satisfying

γm = E
∣∣Ξ(0)

∣∣m < ∞,
1

2
≥ 1

p
+ 2

m
+ δ

q
, δ < κ − �

p
, κq > 1 (2.5)

with � = (� − 1)℘ and such that

∞∑
n=0

n
(
η

1−�/(pθ)
p,κ (n) + ζ δ

q (n)
)
< ∞ and lim

n→∞ηp,κ,s(n) = 0 for all s ≥ 0, (2.6)

where �
p

< θ < κ .
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Next, let B = B(x, ξ) = (B(1)(x, ξ), . . . ,B(d)(x, ξ)), ξ = (ξ1, . . . , ξ�) ∈ R
�℘ be a d-vector function on R

d × R
�℘

such that for some constant K > 0 and all x, x̃ ∈ R
d , ξ, ξ̃ ∈ R

�℘ , i, j, l = 1, . . . , d ,

∣∣B(i)(x, ξ)
∣∣ ≤ K,

∣∣B(i)(x, ξ) − B(i)(x̃, ξ̃ )
∣∣ ≤ K

(
|x − x̃| +

�∑
j=1

|ξj − ξ̃j |κ
)

and

∣∣∣∣∂B(i)(x, ξ)

∂xj

∣∣∣∣ ≤ K,

∣∣∣∣∂2B(i)(x, ξ)

∂xj ∂xl

∣∣∣∣ ≤ K. (2.7)

We will be interested in the central limit theorem type results as ε → 0 for the solution Xε(t) = Xε
x(t) of the equation

dXε(t)

dt
= εB

(
Xε(t),Ξ

(
q1(t)

)
,Ξ

(
q2(t)

)
, . . . ,Ξ

(
q�(t)

))
, Xε

x(0) = x, t ∈ [0, T /ε], (2.8)

where q1(t) < q2(t) < · · · < q�(t), t > 0 are increasing functions such that qj (t) = αj t for j ≤ k < � with α1 < α2 <

· · · < αk whereas the remaining q ′
j s grow faster in t . Namely, we assume similarly to [25] that for any γ > 0 and

k + 1 ≤ i ≤ �,

lim
t→∞

(
qi(t + γ ) − qi(t)

) = ∞ (2.9)

and

lim
t→∞

(
qi(γ t) − qi−1(t)

) = ∞. (2.10)

Set

B̄(x) =
∫

B(x, ξ1, . . . , ξ�)dμ(ξ1) · · · dμ(ξ�). (2.11)

We consider also the solution X̄ε(t) = X̄ε
x(t) of the averaged equation

dX̄ε(t)

dt
= εB̄

(
X̄ε(t)

)
, X̄ε

x(0) = x. (2.12)

It will be convenient to denote Zε(t) = Xε(t/ε), Z̄(t) = X̄ε(t/ε) and to introduce Y ε(t) = Y ε
y (t) by

Y ε
y (t) = y +

∫ t

0
B

(
Z̄(s),Ξ

(
q1(s/ε)

)
,Ξ

(
q2(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
ds. (2.13)

Theorem 2.2. Suppose that (2.7), (2.9), (2.10) and Assumption 2.1 hold true. Then the family of processes
Gε(t) = ε−1/2(Y ε

z (t) − Z̄z(t)), t ∈ [0, T ] converges weakly as ε → 0 to a Gaussian process G0(t), t ∈ [0, T ]
having not necessarily independent increments (see an example in [25]) with covariances of its components
G0(t) = (G0,1(t), . . . ,G0,d (t)) having the form EG0,l(s)G0,m(t)) = ∫ min(s,t)

0 Al,m(u)du with the matrix function
{Al,m(u),1 ≤ l,m ≤ d} computed in Section 4. Furthermore, the family of processes Qε(t) = ε−1/2(Zε(t)−Z̄(t)), t ∈
[0, T ] converges weakly as ε → 0 to a Gaussian process Q0(t), t ∈ [0, T ] which solves the equation

Q0(t) = G0(t) +
∫ t

0
∇B̄

(
Z̄(s)

)
Q0(s)ds. (2.14)

In the discrete time setup (1.1) the similar results hold true assuming that qi ’s take on integer values on integers,
γ in (2.9) is replaced by 1, αi is replaced by i for i = 1, . . . , k and defining Zε(t) = Xε([t/ε]) together with Y ε = Y ε

y

given by

Y ε
y (t) = y +

∫ t

0
B

(
Z̄(s),Ξ

(
q1

([s/ε])),Ξ(
q2

([s/ε])), . . . ,Ξ(
q�

([s/ε])))ds (2.15)
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while leaving all other definitions and assumptions the same as above.

Observe that we work with B̄ defined by (2.11) but in our circumstances the law of large numbers from [22] yields
B̄ also as an almost sure limit in (1.4) and (1.7) even under weaker conditions than here. Note also that we need the
full strength of (2.6) only for one argument in Section 4 borrowed from [18] but for a standard limit theorem not
in the averaging setup, i.e. when B(x, ξ1, . . . , ξ�) = B(ξ1, . . . , ξ�) does not depend on x, it suffices to require only
summability of the expression in brackets in (2.6).

An important point in the proof of the first part of Theorem 2.2 is to introduce the representation

B(x, ξ) = B̄(x) + B1(x, ξ1) + · · · + B�(x, ξ1, . . . , ξ�), (2.16)

where ξ = (ξ1, . . . , ξ�) and for i < �,

Bi(x, ξ1, . . . , ξ�)

=
∫

B(x, ξ1, . . . , ξ�)dμ(ξi+1) · · · dμ(ξ�) −
∫

B(x, ξ1, . . . , ξ�)dμ(ξi) · · · dμ(ξ�) (2.17)

while

B�(x, ξ1, . . . , ξ�) = B(x, ξ1, . . . , ξ�) −
∫

B(x, ξ1, . . . , ξ�)dμ(ξ�). (2.18)

Next, set

Y ε
i (t) =

∫ t/αi

0
Bi

(
Z̄(s),Ξ

(
q1(s/ε)

)
,Ξ

(
q2(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
ds for i = 1, . . . , k

(2.19)

while for i = k + 1, . . . , � set Y ε
i (t) =

∫ t

0
Bi

(
Z̄(s),Ξ

(
q1(s/ε)

)
,Ξ

(
q2(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
ds

with Y ε
0 (t) = Y ε

0,y(t) = y + ∫ t

0 Bi(Z̄(s))ds. Thus Y ε
y from (2.13) has the representation

Y ε
y (t) = Y ε

0 (t) +
k∑

i=1

Y ε
i (αi t) +

�∑
i=k+1

Y ε
i (t). (2.20)

We consider also Xε
0(t) = X̄ε(t), Xε

i (t) = Xε
i,x(t) = x + ε

∫ t

0 Bi(X
ε
i (s),Ξ(q1(s)), . . . ,Ξ(q�(s)))ds and Zε

i (t) =
Xε

i (t/ε) for all i ≥ 0. For i ≥ 1 set also

Gε
i (t) = ε−1/2Y ε

i (t) and Qε
i (t) = ε−1/2Zε

i (t). (2.21)

Relying on martingale approximations (which also can be done employing mixingales from [27] and [28]) we will
show that any linear combination

∑k
i=1 λiG

ε
i converges weakly as ε → 0 to a Gaussian process

∑k
i=1 λiG

0
i . It turns

out that in the continuous time case each Gε
i , i = k +1, . . . , � converges weakly as ε → 0 to zero, and so the processes

Y ε
i , i > k do not play any role in the limit. It follows that Gε converges weakly to a Gaussian process G0 such

that G(t) = ∑k
i=1 λiG

0
i (αi t). On the other hand, in the discrete time case each Gε

i , i > k cannot be disregarded, in
general, and it converges weakly as ε → 0 to a Gaussian process G0

i which is independent of any other G0
j . The above

difference between discrete and continuous time cases is due to the different natural forms of the assumption (2.9) in
these two cases. These arguments yield the first part of Theorem 2.2 while its second part concerning convergence of
Qε as ε → 0 is proved via some Taylor expansion and approximation arguments.

In order to clarify the role of the coefficients ηp,κ and ζq we compare them with the more familiar mixing and
approximation coefficients defined via a two parameter family of σ -algebras Gs,t ∈ F ,−∞ ≤ s ≤ t ≤ ∞ by

�p(n) = sup
s≥0,g

{∥∥E(g|G−∞,s) − EP g
∥∥

p
: g is Gs+n,∞-measurable and |g| ≤ 1

}
(2.22)
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and

βq(n) = sup
t≥0

∥∥E
(
Ξ(t)|Gt−n,t+n

) − Ξ(t)
∥∥

q
, (2.23)

respectively, where Gst ⊂ Gs′t ′ if s′ ≤ s and t ′ ≥ t . Then setting Fl = G−∞,l we obtain by the contraction property of
conditional expectations that

βq(n) ≥ sup
t≥0

∥∥E
(
Ξ(t)|Gt−n,t+n

) − Ξ(t) + Ξ(t) − E
(
Ξ(t)|G−∞,[t]+n+1

)∥∥
q

≥ ζq(n + 1) − βq(n) i.e. βq(n) ≥ 1

2
ζq(n + 1). (2.24)

Furthermore,∥∥g
(
Ξ(n + t),Ξ(n + t + s)

) − g
(
E

(
Ξ(n + t)|Gn+t−[n/2],n+t+[n/2]

)
,

E
(
Ξ(n + t + s)|Gn+t+s−[n/2],n+t+s+[n/2]

))∥∥
p

≤ 2|g|κβκ
pκ

([n/2]),
and so

ηp,κ(n) ≤ (
�p

([n/2]) + 2βκ
pκ

([n/2]))|g|κ . (2.25)

Thus, appropriate conditions on decay of coefficients �p and βq as in [25] yield corresponding conditions on ηp,κ and
ζq . The other direction does not hold true but still it turns out that most of the technique from [25] can be employed
in our circumstances, as well.

The conditions of Theorem 2.2 hold true for many important stochastic processes. In the continuous time case
they are satisfied when, for instance, Ξ(t) = f (Υ (t)) where Υ (t) is either an irreducible continuous time finite state
Markov chain or a nondegenerate diffusion process on a compact manifold while f is a Hölder continuous vector
function. In the discrete time case we can take, for instance, Ξ(n) = f (Υ (n)) with Υ (n) being a Markov chain
satisfying the Doeblin condition (see, for instance, [16], pp. 367–368). In all these examples ηp,κ(n) and ζq(n) decay
in n exponentially fast while (2.6) requires much less. In fact, in both cases Ξ(t) may depend on whole paths of a
Markov process Υ assuming only certain weak dependence on their tails.

Important classes of processes satisfying our conditions come from dynamical systems. In Section 6 we take
Ξ(t) = Ξ(t, z) = g(F tz) where F t is a C2 Anosov flow (see [24]) on a compact manifold M whose stable and
unstable foliations are jointly nonintegrable and g is a Hölder continuous ℘-vector function on M . It turns out that
if we take the initial point z on an element S of a Markov family (see Section 6) introduced in [8] distributed there
at random according to a probability measure equivalent to the volume on S then Assumption 2.1 can be verified.
This does not yield though a desirable limit theorem where the initial point is taken at random on the whole manifold
M distributed according to the Sinai–Ruelle–Bowen (SRB) measure (or the normalized Riemannian volume). We
observe that a suspension representation of Anosov flows employed in [20] to derive limit theorems in the conventional
averaging setup does not work in our situation because Fqi(t)x, i = 1, . . . , � arrive at the ceiling of the suspension at
different times for different i’s.

In the discrete time case there are several important classes of dynamical systems where our conditions can be
verified. First, for transformations where symbolic representations via Markov partitions are available (Axiom A
diffeomorphisms (see [3]) and expanding endomorphisms, some one-dimensional maps e.g. the Gauss map (see [15])
etc.) we can rely on standard mixing and approximation assumptions based on two parameter families of σ -algebras
as in (2.22) and (2.23). On the other hand, for many transformations Markov partitions are not available but still it
is possible to construct one parameter increasing or decreasing filtration of σ -algebras so that our conditions can be
verified. For some classes of noninvertible transformations F it is possible to choose an appropriate initial σ -algebra
F0 such that F−1 F0 ⊂ F0 and then to define a decreasing filtration Fi = F−i F0 (see [26] and [13]). Passing to the
natural extension as in Remark 3.12 of [13] we can turn to an increasing filtration and to verify our conditions. On the
other hand, our results can be derived under appropriate conditions with respect to decreasing families of σ -algebras.
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Namely, let F ⊃ F0 ⊃ F1 ⊃ F2 ⊃ · · · and define mixing and approximation coefficients by

ηp,κ,s(n) = sup
t≥s

{∥∥E
(
g
(
Ξ(t),Ξ(t − s)

)|F[t]+n

)
− EP g

(
Ξ(t),Ξ(t − s)

)∥∥
p

: g = g(ξ, ξ̃ ), |g|κ ≤ 1
}
, ηp,κ (n) = ηp,κ,0(n) (2.26)

and

ζq(n) = sup
t≥n

∥∥E
(
Ξ(t)|F[t]−n

) − Ξ(t)
∥∥

q
. (2.27)

Then under Assumption 2.1 we can rely on estimates of Section 3 below and in place of martingales there arrive at
reverse martingales and employ a limit theorem for the latter.

Remark 2.3. If B̄ ≡ 0 then according to Theorem 2.2 the process Xε(t) is very close to its initial point on the time
interval of order 1/ε. Thus, in order to see fluctuations of order 1 it makes sense to consider longer time and to deal
with V ε(t) = Xε(t/ε2). Under the stronger condition

∫
B(x, ξ1, . . . , ξ�)dμ(ξ�) ≡ 0 it is not difficult to mimic the

proofs in [19] and [4] relying on the technique of Sections 3 and 4 below in order to obtain that V ε(t), t ∈ [0, T ]
converges weakly as ε → 0 to a diffusion process with parameters obtained in the same way as in [19] and [4]. It
is not clear whether, in general, this result still holds true assuming only that B̄ ≡ 0. Though most of the required
estimates still go through in the latter case a convergence of V ε to a Markov process seems to be problematic in a
general nonconventional averaging setup.

3. Estimates and martingale approximation

The proof of Theorem 2.2 will employ a modification of the machinery developed in [25]. First, we have to study the
asymptotical behavior as ε → 0 of

Gε
i (t) = √

ε

∫ τi (t)/ε

0
Bi

(
Z̄(εs),Ξ

(
q1(s)

)
, . . . ,Ξ

(
qi(s)

))
ds (3.1)

which is obtained from the definition (2.21) by the change of variables s → s/ε and where τi(t) = t/αi for i = 1, . . . , k

and τi(t) = t for i = k + 1, . . . , �. Observe that if 1
N+1 ≤ ε ≤ 1

N
and N ≥ 1 then by (2.7),

∣∣Gε
i (t) − G

1/N
i (t)

∣∣ ≤ 2Ktd√
N

(3.2)

and so it suffices to study the asymptotical behavior of G
1/N
i as N → ∞. Set

Ii,N (n) =
∫ n+1

n

Bi

(
Z̄(s/N),Ξ

(
q1(s)

)
, . . . ,Ξ

(
qi(s)

))
ds. (3.3)

In view of (2.7) the asymptotical behavior of G
1/N
i as N → ∞ is the same as of N−1/2Si,N (t) where

Si,N (t) =
[Nτi(t)]∑

n=0

Ii,N (n). (3.4)

There are two obstructions for applying directly the results of [25] to the sum (3.4). First, unlike [25] the integrand
in (3.3) depends on the “slow time” s/N . Secondly, our mixing and approximation coefficients look differently from
the corresponding coefficients in [25]. Still, it turns out that these obstructions can be dealt with and after minor
modifications the method of [25] start working in our situation, as well. Namely, the dependence on the “slow time”
being deterministic will not prevent us from making estimates similar to [25] while dependence of IN

i on N will
just require us to deal with martingale arrays which creates no problems as long as we obtain appropriate limits of
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variances and covariances. Concerning the second obstruction we observe that one half of the approximation estimate
from [25] is contained in the coefficient ζp while another half is hidden in the coefficient ηp,κ which also suffices for
required mixing estimates.

We explain next more precisely why estimates similar to [25] hold true in our circumstances, as well. Let f (ψ, ξ, ξ̃ )

be a function on R
� × R

℘ × R
℘ such that for any ψ,ψ ′ ∈ R

� and ξ, ξ̃ , ξ ′, ξ̃ ′ ∈ R
℘ ,∣∣f (ψ, ξ, ξ̃ ) − f

(
ψ ′, ξ ′, ξ̃ ′)∣∣ ≤ C

(∣∣ψ − ψ ′∣∣κ + ∣∣ξ − ξ ′∣∣κ + ∣∣y − y′∣∣κ)
and

∣∣f (ψ, ξ, ξ̃ )
∣∣ ≤ C. (3.5)

Then setting g(ψ) = EP f (ψ,Ξ(0),Ξ(s)) we obtain from (2.1) and (2.3) that for all u,v ≥ 0 and n ∈ N,∥∥E
(
f

(
ψ,Ξ(n + u),Ξ(n + u + v)

)|F[u]
) − g(ψ)

∥∥
p

≤ Cηp,κ,v(n). (3.6)

Let h(ψ,ω) = E(f (ψ,Ξ(n + u),Ξ(n + u + v))|F[u]) − g(ψ). Then by (3.5) we can choose a version of h(ψ,ω)

such that with probability one simultaneously for all ψ,ψ ′ ∈ R
� ,∣∣h(ψ,ω) − h

(
ψ ′,ω

)∣∣ ≤ 2C
∣∣ψ − ψ ′∣∣κ . (3.7)

Since, in addition, ‖h(ψ,ω)‖p ≤ Cηp,κ(n) by (3.6) for all ψ ∈ R
� , we obtain by Theorem 3.4 from [25] that for any

random �-vector Ψ = Ψ (ω),∥∥h
(
Ψ (ω),ω

)∥∥
a

≤ cC
(
ηp,κ,v(n)

)1−�/(pθ)(1 + ‖Ψ ‖m

)
, (3.8)

where �
p

< θ < κ , 1
a

≥ 1
p

+ 1
m

and c = c(�,p, κ, θ) > 0 depends only on parameters in brackets. Since

h
(
Ψ̃ (ω),ω

) = E
(
f

(
Ψ̃ ,Ξ(n + u),Ξ(n + u + v)

)|F[u]
)
(ω) a.s. (3.9)

provided Ψ̃ is F[u]-measurable we obtain from (3.6)–(3.9) together with the Hölder inequality (cf. Corollary 3.6(ii)
in [25]) that,∥∥E

(
f

(
Ψ,Ξ(n + u),Ξ(n + u + v)

)|F[u]
) − g(Ψ )

∥∥
a

≤ C
(
ηp,κ,v(n)

)1−�/(pθ)(1 + ‖Ψ ‖m

) + 2C
∥∥Ψ − E(Ψ |F[u])

∥∥δ

q
(3.10)

provided 1
a

≥ 1
p

+ 2
m

+ δ
q

.

We apply the above estimates in two cases. First, when f (ψ, ξ, ξ̃ ) = f (ψ, ξ) = Bi(x, ξ1, . . . , ξi) with ψ =
(ξ1, . . . , ξi−1) ∈ R

(i−1)℘ , ξ = ξi ∈ R
℘ , n = [(qi(t) − qi−1(t))/2], u = qi(t) − n and Ψ = (Ξ(q1(t)),Ξ(q2(t)), . . . ,

Ξ(qi−1(t)). In the second case f (ψ, ξ, ξ̃ ) = Bi(x, ξ1, . . . , ξi)Bj (y, ξ ′
1, . . . , ξ

′
j ) with ψ = (ξ1, . . . , ξi−1, ξ

′
1, . . . , ξ

′
j−1)

∈ R
(i+j−2)℘ , ξ = ξi , ξ̃ = ξ ′

j ∈ R
℘ , n = [(min(qi(t), qj (s)) − max(qi−1(t), qj−1(s)))/2] when n > 0, u = min(qi(t),

qj (s)) − n and Ψ = (Ξ(q1(t)), . . . ,Ξ(qi−1(t)),Ξ(q1(s)), . . . ,Ξ(qj−1(s))). The estimates for the first case are used
for martingale approximations while the second case emerges when computing covariances.

Since
∫

Bi(x, ξ1, . . . , ξi−1, ξi)dμ(ξi) = 0 we obtain by (3.10) the estimate∥∥E
(
Bi

(
Ξ

(
q1(t)

)
, . . . ,Ξ

(
qi(t)

))|F[qi (t)]−n

)∥∥
a

≤ C
((

ηp,κ(n)
)1−�(pθ) + (

ζq(n)
)δ) (3.11)

for some C > 0 independent of t where n = ni(t) = [(qi(t) − qi−1(t))/2]. Next, for any x ∈ R
� , ξ1, . . . , ξi−1 ∈ R

�

and r = 1,2, . . . set

Bi,r

(
x, ξ1, . . . , ξi−1,Ξ(t)

) = E
(
Bi

(
x, ξ1, . . . , ξi−1,Ξ(t)

)|F[t]+r

)
and Ξr(t) = E

(
Ξ(t)|F[t]+r

)
.

Then by (2.4) and (2.7) together with the Hölder inequality,∥∥Bi

(
x, ξ1, . . . , ξi−1,Ξ(t)

) − Bi,r

(
x, ξ1, . . . , ξi−1,Ξ(t)

)∥∥
q

≤ 2
∥∥Bi

(
x, ξ1, . . . , ξi−1,Ξ(t)

) − Bi

(
x, ξ1, . . . , ξi−1,E

(
Ξ(t)|F[t]+r

))∥∥
q

≤ 2Kd
∥∥∣∣Ξ(t) − E

(
Ξ(t)

)|F[t]+r )
∣∣κ∥∥

q
≤ 2Kdζ δ

q (r). (3.12)
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This together with the last part of Theorem 3.4 in [25] yields that∥∥Bi

(
x,Ξ

(
q1(t)

)
, . . . ,Ξ

(
qi(t)

)) − Bi,r

(
x,Ξr

(
q1(t)

)
, . . . ,Ξr

(
qi−1(t)

))∥∥
a

≤ cζ δ
q (r) (3.13)

provided 1
a

≥ 1
p

+ 2
m

+ δ
q

and δ < min(κ,1 − d
pκ

) where c = c(δ, a,p, q) > 0 depends only on the parameters in
brackets. Set

b
l,m
ij (x, y; s, t) = E

(
B

(l)
i

(
x,Ξ

(
q1(s)

)
, . . . ,Ξ

(
qi(s)

))
B

(m)
j

(
y,Ξ

(
q1(t)

)
, . . . ,Ξ

(
qj (t)

)))
,

where, recall, B
(l)
i is the l-th component of the d-vector Bi . Now, by (2.7), (3.11) and (3.13),

∣∣bl,m
ij (x, y; s, t)∣∣ ≤ C

((
ηp,κ(n)

)1−�/(pθ) + (
ζq(n)

)δ)
, (3.14)

where C > 0 does not depend on s, t ≥ 0 and n = nij (s, t) = max(n̂ij (s, t), n̂j i(t, s)) with n̂ij (s, t) = [ 1
2 min(qi(s) −

qj (t), qi(s) − qi−1(s))].
Now, set

Ii,N,r (n) =
∫ n

n−1
Bi,r

(
Z̄(s/N),Ξr

(
q1(s)

)
, . . . ,Ξr

(
qi−1(s)

))
ds,

Si,N,r (t) =
[Nτi(t)]∑

n=1

Ii,N,r (n),

(3.15)

Ri,r (m) =
∞∑

l=m+1

E
(
Ii,N,r (l)|Fm+r

)
,

Di,N,r (m) = Ii,N,r (m) + Ri,r (m) − Ri,r (m − 1) and Mi,N,r (t) =
[Nτi(t)]∑

n=1

Di,N,r (n).

In view of (2.6) and (3.11) applied with a = 2 we see that the series for Ri,r (m) converges in L2, Di,N,r (m) is
Fm+r -measurable and since E(Di,N,r (m)|Fm−1+r ) = 0 we obtain that {Di,N,r (m), Fm+r }0≤m≤[Nτi(T )] is a martingale
differences array. Next, we rely on (3.11) and the inequality∣∣Si,N,r (t) − Mi,N,r (t)

∣∣ ≤ ∣∣Ri,r

([
Nτi(t)

])∣∣ + ∣∣Ri,r (0)
∣∣

to observe that as N → ∞ the limiting behavior of N−1/2Si,N,r as N → ∞ is the same as of N−1/2Mi,N,r . Once we
derive that appropriate covariances converge as N → ∞, which will be done in the next section, we can invoke for the
latter expression a version of the functional central limit theorem for martingale arrays (see, for instance, Section 2
in Ch. VIII of [17]) yielding that N−1/2Mi,N,r , and so also N−1/2Si,N,r converge as N → ∞ to a d-dimensional
Gaussian process with independent increments. Next, we write

Si,N (t) = Si,N,1(t) +
∞∑

r=1

(
Si,N,2r (t) − Si,N,2r−1(t)

)
(3.16)

and relying on uniform moment estimates of the terms in this series similar to Proposition 5.9 of [25] we obtain
that also N−1/2Si,N converges in distribution as N → ∞ to a d-dimensional Gaussian process with independent
increments. Next, by a version of the Cramér–Wold argument (see Corollary 5.7 in [25]) we obtain that (Si,N , i =
1, . . . , �) converges in distribution as N → ∞ to a �d-dimensional Gaussian process with independent increments
while covariances computations in the next section show that last � − k random d-vectors of the limiting process are
independent of each other and of other random d-vectors there. Thus, we will end up with limiting d-dimensional
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Gaussian processes G0
i , i = 1, . . . , � with independent increments such that (G0

i , i = 1, . . . , �) is an �d-dimensional
Gaussian process and G0

k+1, . . . ,G
0
� are independent of each other and of G0

i with i ≤ k. Now we write

G0(t) =
k∑

i=1

G0
i (it) +

�∑
i=k+1

G0
i (t) =

k∑
j=1

k∑
i=1

λij

(
G0

j (it) − G0
j

(
(i − 1)t

))
,

where λij = 1 if i ≤ j and λij = 0, otherwise, obtaining from the above that G0 is a Gaussian d-dimensional process
(for more details see [25]).

Observe that under a bit stronger assumptions we could employ in our setup another martingale approximation
construction from [23] which is based on increasing blocks and negligible gaps between them and which does not re-
quire r-approximations as above. In order to complete this programm it remains only to compute limiting covariances
as in Section 4 of [25] taking care also of the slow time s/N entering (3.3) and (3.15).

4. Limiting covariances

In this section we show the existence and compute the limit as ε → 0 of the expression

E
(
Gε

i,l(s)G
ε
j,m(t)

) = ε

∫ τi (s/ε)

0

∫ τj (t/ε)

0
b

l,m
ij

(
Z̄(εu), Z̄(εv);u,v

)
dudv. (4.1)

We start with showing that there exists a constant C > 0 such that for all t ≥ s > 0, l = 1, . . . , d , N ≥ 1 and i =
1, . . . , �,

sup
N≥1

E
∣∣G1/N

i,l (t) − G
1/N
i,l (s)

∣∣2 ≤ C(t − s). (4.2)

In order to obtain (4.2) we note that by (2.9) and (2.10) for t ≥ s,

qi(t) − qi(s) ≥ αi(t − s) and qi(t) − qi−1(t) ≥ αi−1t when i = 2, . . . , k (4.3)

and for any γ > 0 there exists tγ such that for all t ≥ tγ and i = k + 1, . . . , �,

qi(t) − qi(s) ≥ (t − s) + γ −1 and qi(t) − qi−1(t) ≥ t + γ −1. (4.4)

Now (4.2) follows from (2.6), (3.14), (4.1), (4.3) and (4.4). Observe, that by (3.2) and (4.1) if 1
N+1 ≤ ε ≤ 1

N
then

∣∣EGε
i,l(s)G

ε
j,m(t) − EG

1/N
i,l (s)G

1/N
j,m (t)

∣∣ ≤ 4KdC
√

T√
N

,

and so it suffices to study (4.1) as ε = 1
N

and N → ∞.
Next, we claim that if i > j and i > k then the limit in (4.1) as 1

ε
= N → ∞ exists and equals zero. Indeed, in this

case for any small γ > 0 with γ T ≤ s,∣∣EG
1/N
i,l (s)G

1/N
j,m (t)

∣∣ ≤ I1 + I2, (4.5)

where by (4.2),

I1 = ∣∣EG
1/N
i,l (γ T )G

1/N
j,m (t)

∣∣ ≤ (
E

(
G

1/N
i,l (γ T )

)2)1/2(
E

(
G

1/N
j,m (t)

)2)1/2 ≤ C
√

γ T t (4.6)

and by (3.14),

I2 = ∣∣E(
G

1/N
i,l (s) − G

1/N
i,l (γ T )

)
G

1/N
j,m (t)

∣∣
= 1

N

∫ sN

γ T N

du

∫ τj (tN)

0
b

l,m
ij

(
Z̄(u/N), Z̄(v/N);u,v

)
dv ≤ C

N

∫ sN

γ T N

du

∫ τj (tN)

0
ρij (u, v)dv, (4.7)
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where

ρij (u, v) = (
ηp,κ

(
nij (u, v)

))1−�/(pθ) + (
ζq

(
nij (u, v)

))δ (4.8)

with nij (s, t) defined after (3.14). It follows from (2.6), (2.9), (2.10) and (4.8) that for any γ > 0 there exists Nγ such
that whenever N ≥ Nγ and v ∈ [0, T N ] (cf. Proposition 4.5 in [25]),

∫ sN

γ T N

ρij (u, v)du ≤ γ

and so I2 ≤ CT γ . Since γ > 0 is arbitrary this together with (4.5) and (4.6) yields that for all l,m = 1, . . . , d , i > k

and j < i,

lim
N→∞EG

1/N
i,l (s)G

1/N
j,m (t) = 0. (4.9)

Next, we claim that when i > k then also for all l,m = 1, . . . , d ,

lim
N→∞EG

1/N
i,l (s)G

1/N
i,m (t) = 0. (4.10)

Indeed, by (3.14) and (4.8) for t ≥ s,

∣∣EG
1/N
i,l (s)G

1/N
i,m (t)

∣∣ ≤ 1

N

∫ sN

0
du

∫ tN

0
ρii(u, v)dv = I3 + I4, (4.11)

where

I3 = 2

N

∫ sN

0
du

∫ sN

u

ρii(u, v)dv and I4 = 1

N

∫ sN

0
du

∫ tN

sN

ρii(u, v)dv.

Now

I3 = 2

N

∫ sN

0
du

∫ u+γ

u

ρii(u, v)dv + 2

N

∫ γN

0
du

∫ sN

u+γ

ρii(u, v)dv

+ 2

N

∫ sN

γN

du

∫ sN

u+γ

ρii(u, v)dv ≤ C
(
sγ + γ + sβγ (γN)

)
(4.12)

for some C > 0 where by (2.6) and (2.10) for any γ > 0,

βγ (M) = sup
u≥M

∫ ∞

u+γ

ρii(u, v)dv < ∞ and lim
M→∞βγ (M) = 0. (4.13)

Next,

I4 = 1

N

∫ sN

0
du

∫ sN+γ

sN

ρii(u, v)dv

+ 1

N

∫ sN

0
du

∫ tN

sN+γ

ρii(u, v)dv ≤ Csγ + Csβs(N). (4.14)

Finally, (4.10) follows from (4.11)–(4.14) letting, first, N → ∞ and then γ → 0.
In order to compute the limit as 1

ε
= N → ∞ of (4.1) for i, j = 1,2, . . . , k we recall an argument of Lemma 3.1

from [18] which yields that if uniformly in σ ≥ 0 and x, y from a compact set the limit

lim
N→∞

1

N

∫ (σ+sN)/αi

σ/αi

du

∫ (σ+sN)/αj

σ/αj

blm
ij (x, y;u,v)dudv = sD

l,m
ij (x, y) (4.15)
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exists and has the form of the right hand side with a continuous D
l,m
i,j then the limit (4.1) exists, as well, and it has the

form

lim
N→∞E

(
G

1/N
i,l (s)G

1/N
j,m (t)

) =
∫ min(s,t)

0
D

l,m
ij

(
Z̄(u), Z̄(u)

)
du. (4.16)

Namely, set M = M(N) = [N2/3] and let sι = ιs
M

, ι = 0,1, . . . ,M − 1. Assume also that s ≤ t . Let

AN =
M−1⋃
ι=0

AN,ι with AN,ι =
{
(u, v): sιN ≤ u,v <

(
sι + s

M

)
N

}

and BN = {(u, v): 0 ≤ u ≤ sN,0 ≤ v ≤ tN} \ AN . Then

EG
1/N
i,l (s)G

1/N
j,m (t) = I5 + I6, (4.17)

where

I5 = 1

Nij

∫
BN

blm
ij

(
Z̄(u/N), Z̄(v/N),u/i, v/j

)
dudv

and

I6 = 1

Nij

∫
AN

blm
ij

(
Z̄(u/N), Z̄(v/N),u/i, v/j

)
dudv.

Now, by (3.14) and (4.8),

|I5| ≤ C

Nij

(
M−1∑
ι=0

∫ sι/ε

0

∫ (sι+s/M)/ε

sι/ε

(
ρij (u/αi, v/αj )

+ ρji(u/αj , v/αi)
)

dudv +
∫ sι/ε

0

∫ tι/ε

sι/ε

ρij (u/αi, v/αj )dudv

)
. (4.18)

Observe that by the definition of nij (u, v) after (3.14) we can write for i, j = 1, . . . , k,

ρij (u/αi, v/αj ) = ζ
(|u − v|), (4.19)

where ζ ≥ 0 satisfies
∫ ∞

0 wζ(w)dw < ∞. Integrating by parts we obtain for any V ≥ U ≥ 0,

∫ U

0
du

∫ V

U

ζ(v − u)dv ≤
∫ U

0
du

∫ ∞

U−u

ζ(w)dw =
∫ U

0
rζ(r)dr ≤

∫ ∞

0
rζ(r)dr. (4.20)

This together with (2.6), (4.18) and (4.19) gives by the choice of M = M(N) that

|I5| ≤ C̃
M

Nαiαj

→ 0 as N → ∞ (4.21)

for some C̃ > 0 independent of M and N .
Next,

I6 = 1

Mαiαj

M−1∑
ι=0

JM,N(ι) + I7, (4.22)
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where

JM,N(ι) = M

N

∫
sι≤u,v<(sι+ s

M
)N

blm
ij

(
Z̄(sι), Z̄(sι); u

αi

,
v

αj

)
dudv

and by (2.7) and the choice of M = M(N),

|I7| ≤ Cs3NM−2 → 0 as N → ∞, (4.23)

where C > 0 does not depend on s,N and M . By (4.15) we obtain that∣∣JM,N(ι) − sαiαjD
l,m
ij

(
Z̄(sι), Z̄(sι)

)∣∣ → 0 as N → ∞ (4.24)

and so∣∣∣∣I6 −
∫ s

0
D

l,m
ij

(
Z̄(u), Z̄(u)

)
du

∣∣∣∣ → 0 as N → ∞ (4.25)

completing the proof of (4.16).
In order to describe D

l,m
ij (x, y), i, j ≤ k consider all indices 1 ≤ i′1 < i′2 < · · · < i′ιij = i and 1 ≤ j ′

1 < j ′
2 < · · · <

j ′
ιij

= j such that there exist 0 < ρ1 < · · · < ριij = 1 satisfying αi′l ρl, αj ′
l
ρl ∈ {α1, . . . , αk} for all l = 1, . . . , ιij . Define

a
l,m
ij (x, y; s1, . . . , sιij ) =

∫
B

(l)
i (x, ξ1, . . . , ξi)B

(m)
j (y, ξ̃1, . . . , ξ̃j )

×
ιij∏

β=1

dμsβ (ξi′β , ξ̃j ′
β
)

∏
iγ /∈{i′1,...,i′ιij },1≤iγ <i

dμ(ξiγ )
∏

jζ /∈{j ′
1,...,j

′
ιij

},1≤jζ <j

dμ(ξjζ ). (4.26)

Then in the same way as in the proof of Lemma 4.4 from [25] (see also Section 6 there) we obtain relying on (2.6),
(3.10) and (3.14) that

lim
uN ,vN→∞,αiuN−αj vN=w

b
l,m
ij (x, y;uN,vN) = a

l,m
ij (x, y;ρ1w,ρ2w, . . . , ριij w). (4.27)

This is the only place where we need Assumption 2.1 for ηp,κ,s with s > 0. It follows similarly to Section 6 of [25]
that the limit (4.15) exists and it can be written in the form

D
l,m
ij (x, y) = 1

αiαj

∫ ∞

−∞
a

l,m
ij (x, y;ρ1w,ρ2w, . . . , ριij w)dw. (4.28)

Roughly speaking, we derive (4.27) in the following way. First, observe that when uN,vN → ∞ so that
αiuN − αjvN = w we can split the collection of random variables Ξ(α1uN), . . . ,Ξ(αiuN); Ξ(α1vN), . . . ,Ξ(αjvN)

appearing in b
l,m
ij (x, y;uN,vN) into groups consisting of singletons and pairs such that time differences within each

group are bounded while time differences between different groups tend to infinity. Indeed, time differences be-
tween any two terms in either sequence of times α1uN, . . . , αiuN and α1vN, . . . , αj vN tend to infinity, and so such
groups may consist of at most one member from each of these sequences. Next, if the distance |αiuN − αjvN | re-
mains bounded as uN,vN → ∞ then only for pairs αi′ , αj ′ with the same ratio the distance |αi′uN − αj ′vN | remains
bounded, as well. But then αi′ = ραi and αj ′ = ραj for some positive ρ < 1. Now observe that an estimate of the form

(3.10) enables us, making only negligible errors, to compute expectation in b
l,m
ij doing this separately for described

above groups of random variables Ξ with large time differences between them (as if they were independent) which
leads to the limit (4.27) in the form (4.26).

Collecting the results of Sections 3 and 4 together we conclude that each Gε
i , i = 1, . . . , k converges weakly as

ε → 0 to the corresponding Gaussian process G0
i having independent increments while the process Gε

i , i > k converge
weakly as ε → 0 to zero (in the continuous time case we are dealing with now). Moreover, the processes Gε converge
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weakly as ε → 0 to a Gaussian process G0 (with not necessarily independent increments as an example in [25] shows)
having the representation

G0(t) =
k∑

i=1

Gε
i (it). (4.29)

Furthermore, the covariances of different components G0
i (s) = (G

0,1
i (s), . . . ,G

0,d
i (s)) of this processes are described

in view of the above by

EG
0,l
i (s)G

0,m
j (t) =

∫ min(s,t)

0
D

l,m
ij

(
Z̄(u), Z̄(u)

)
du, (4.30)

and so by (4.29),

EG0,l(s)G0,m(t) =
∫ min(s,t)

0
Al,m(u)du, (4.31)

where

Al,m(u) =
∑

1≤i,j≤k

D
l,m
ij

(
Z̄(iu), Z̄(ju)

)
.

5. Gaussian approximation of the slow motion and discrete time case

In order to complete the proof of Theorem 2.2 we proceed similarly to [18]. First, we consider the process Hε(t)

which solves the linear equation

Hε(t) = Gε(t) +
∫ t

0
∇B̄

(
Z̄(s)

)
Hε(s)ds. (5.1)

By (2.7), for some C > 0 independent of t and ε,

∣∣Hε(t)
∣∣ ≤ ∣∣Gε(t)

∣∣ + C

∫ t

0

∣∣Hε(s)
∣∣ds.

Then

∣∣|Hε(t)| − |Gε(t)|∣∣ ≤ C

∫ t

0

∣∣Gε(s)
∣∣ds + C

∫ t

0

∣∣|Hε(s)| − |Gε(s)|∣∣ds

and by Gronwall’s inequality

∣∣Hε(t)
∣∣ ≤ ∣∣Gε(t)

∣∣ + CeCt

∫ t

0

∣∣Gε(s)
∣∣ds. (5.2)

It follows from Section 3 that the family of processes {Gε(t), t ∈ [0, T ]} is tight which together with (5.2) implies that
the family of processes {Hε(t), t ∈ [0, T ]}, as well, as the family of pairs V ε = {Gε,Hε} are tight.

It follows that any weak limit V 0 = {G0,H 0} of V ε as ε → 0 must satisfy the equation

H 0(t) = G0(t) +
∫ t

0
∇B̄

(
Z̄(s)

)
H 0(s)ds (5.3)

which has a unique solution. Moreover, its solution H 0 is a Gaussian process. Indeed, the equation (5.3) can be
solved by successive approximations starting from G0 so that on each step we will get a Gaussian process (in view of
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linearity) and the limiting process will be Gaussian, as well. Moreover, H 0 depends linearly on G0 having an integral
representation of the form

H 0(t) = G0(t) +
∫ t

0
K(t, s)G0(s)ds (5.4)

with a differentiable kernel K (Green’s function). The latter follows considering an operator A given by

Af (t) =
∫ t

0
∇B̄

(
Z̄(s)

)
f (s)ds

which has the supremum norm less than 1 if t ∈ [0,Δ] for Δ small enough, and so we can write

H 0 = (I − A)−1G0 = G0 +
∞∑

n=1

AnG0.

In view of the form of the integral operator A above this representation yields (5.4) on the interval [0,Δ] and then
employing the same argument successively to time itervals [Δ,2Δ], [2Δ,3Δ], . . . we extend the representation (5.4)
for any t .

Observe that

Qε(t) = ε−1/2
∫ t

0

(
B

(
Zε

x(s),Ξ
(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

)) − B̄
(
Z̄x(s)

))
ds

= Gε(t) +
∫ t

0
∇xB

(
Zε

x(s),Ξ
(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
Qε(s)ds +

∫ t

0
J ε

1 (s)ds, (5.5)

where

J ε
1 (s) = ε−1/2(B(

Z̄x(s) + √
εQε(s),Ξ

(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
−B

(
Z̄x(s),Ξ

(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

)) − ∇xB
(
Z̄x(s),Ξ

(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))√
εQε(s)

)
.

If Hε solves (5.1) then Uε(t) = Qε(t) − Hε(t) satisfies by (5.4) the equation

Uε(t) −
∫ t

0
∇xB

(
Z̄x(s),Ξ

(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

))
Uε(s)ds =

∫ t

0

(
J ε

1 (s) + J ε
2 (s)

)
ds, (5.6)

where

J ε
2 (s) = (∇xB

(
Z̄x(s),Ξ

(
q1(s/ε)

)
, . . . ,Ξ

(
q�(s/ε)

)) − ∇xB̄
(
Z̄x(s)

))
Hε(s).

By Gronwall’s inequality we obtain that

∣∣Uε(t)
∣∣ ≤ Ctect

∫ t

0

∣∣J ε
1 (s) + J ε

2 (s)
∣∣ds (5.7)

for some C > 0 independent of ε and t ∈ [0, T ].
Thus, in order to prove that Qε converges weakly as ε → 0 to a Gaussian process Q0 solving (2.14) it suffices to

show that
∫ t

0 J ε
1 (s)ds and

∫ t

0 J ε
2 (s)ds converge to zero in probability as ε → 0. By (2.7),

∣∣Zε
x(t) − Y ε

x (t)
∣∣ ≤ C

∫ t

0

∣∣Zε
x(s) − Z̄x(s)

∣∣ds = C
√

ε

∫ t

0

∣∣Qε
x(s)

∣∣ds

with C = Kd , and so

∣∣Qε
x(t)

∣∣ ≤ ∣∣Gε(t)
∣∣ + C

∫ t

0

∣∣Qε
x(s)

∣∣ds.



Nonconventional averaging 251

Hence, in the same way as in (5.2),

∣∣Qε
x(t)

∣∣ ≤ ∣∣Gε(t)
∣∣ + CeCt

∫ t

0

∣∣Gε(s)
∣∣ds. (5.8)

By (2.7) and the Taylor formula with a reminder we conclude that

∣∣J ε
1 (s)

∣∣ ≤ C
√

ε
∣∣Qε(s)

∣∣2 (5.9)

which together with (4.2) yields that E|J ε
1 (s)| → 0 as ε → 0.

The proof of convergence to zero in probability of
∫ t

0 J ε
2 (s)ds as ε → 0 is based on the integral representation

(5.4). Set

�(x, ξ1, . . . , ξ�) = B(x, ξ1, . . . , ξ�) − B̄(x)

and

Ψ (x, ξ1, . . . , ξ�) = ∇xB(x, ξ1, . . . , ξ�) − ∇xB̄(x).

Relying on the representation (5.4) we obtain that∣∣∣∣E
∫ t

0
J ε

2 (s)ds

∣∣∣∣ ≤ ∣∣J ε
3 (t)

∣∣ + ∣∣J ε
4 (t)

∣∣, (5.10)

where

J ε
3 (t) = ε3/2

∫ t/ε

0
ds

∫ s

0
duE

(
Ψ

(
Z̄x(εs),Ξ

(
q1(s)

)
, . . . ,Ξ

(
q�(s)

))
× �

(
Z̄x(εu),Ξ

(
q1(u)

)
, . . . ,Ξ

(
q�(u)

)))
(5.11)

and

J ε
4 (t) = ε3/2

∫ t/ε

0
ds

∫ εs

0
du

∫ u/ε

0
dvK(εs, εv)

× E
(
Ψ

(
Z̄x(εs),Ξ

(
q1(s)

)
, . . . ,Ξ

(
q�(s)

))
�

(
Z̄x(εu),Ξ

(
q1(u)

)
, . . . ,Ξ

(
q�(u)

)))
. (5.12)

Estimating the expectations in (5.11) and (5.12) via (3.10) similarly to (3.14) we obtain that both J ε
3 (t) and J ε

4 (t) are
of order

√
ε, and so the left hand side of (5.10) is of order

√
ε, as well. For more details of a similar argument we refer

the reader to [18]. This completes the proof of Theorem 2.2 concerning the continuous time case.
In the discrete time case the proofs are similar but slightly simpler. Namely, set

R
1/N
i (t) = N−1/2

[Nt/i]∑
n=0

Bi

(
Z̄(nt/N),Ξ

(
q1(n)

)
, . . . ,Ξ

(
qi(n)

))
, (5.13)

where Bi ’s are the same as in (2.16)–(2.18). Then for all N ≥ 1,

∣∣G1/N
i (t) − R

1/N
i (t)

∣∣ ≤ CN−1/2 (5.14)

for some C > 0 independent of N . The asymptotical behavior of R1/N as N → ∞ can be studied in the same way as
in [25] taking into account that we have here slightly different mixing conditions, and so the corresponding estimates
should be done as above via (3.10)–(3.14). The main difference of the discrete vis-á-vis continuous time case is that
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now each G
1/N
i (t), i = k + 1, . . . , � converges weakly as N → ∞ to a nondegenerate Gaussian process G0

i (t) having
the covariances

E
(
G0

i (t)G
0
i (s)

) =
∫ min(s,t)

0
du

∫ (
Bi

(
Z̄(u), ξ1, . . . , ξi

))2 dμ(ξ1) . . .dμ(ξi) (5.15)

which is proved combining arguments of Proposition 4.5 in [25] and of Section 4 above. The computation of other
limiting covariances proceeds in the same way as in the continuous time case. It follows that in the discrete time case
the processes Gε converge weakly as ε → 0 to a Gaussian process G0 having the representation

G0(t) =
k∑

i=1

G0
i (it) +

�∑
i=k+1

G0
i (t),

where each process G0
i , i > k is independent of each G0

j with j 	= i while the processes G0
i , i ≤ k are correlated

with covariances described at the end of Section 4 taken with αi = i, i = 1, . . . , k. The argument concerning the
convergence of processes Qε to Q0 solving (2.14) remains the same as in the continuous time case.

6. Some dynamical systems applications

We start with recalling the setup from [8] and [9]. A C2-diffeomorphism F of a compact Riemannian manifold Ω is
called partially hyperbolic if there is a F -invariant splitting Eu ⊕ Ec ⊕ Es of the tangent bundle of Ω with Eu 	= 0
and constants λ1 ≤ λ2 < λ3 ≤ λ4 < λ5 ≤ λ6, λ2 < 1, λ5 > 1 such that ‖dF(v)‖/‖v‖ is between λ1 and λ2 on Es ,
between λ3 and λ4 on Ec and between λ5 and λ6 on Eu. Denote by Wu the foliation tangent to Eu and call S a u-set
if S belongs to a single leaf of Wu. F -invariant probability measures which are absolutely continuous with respect to
the volume on leafs Wu are called u-Gibbs measures. It is assumed that F has a unique u-Gibbs measure μSRB which
is called the Sinai–Ruelle–Bowen (SRB) measure.

An important role in the construction is played by Markov families which are collections S of u-sets which cover
Ω and have certain regularity properties (see [8] and [9]) but we formulate here only their “Markov property” saying
that for any S ∈ S there are Si ∈ S such that FS = ⋃

i Si . Now let S be a Markov family. Following [8] and [9] we
construct on each S ∈ S an increasing sequence of σ -algebras Fn in the following recursive way. Let F S

0 = {∅, S}.
Suppose that F S

n is generated by {Sj,n} with FnSj,n ∈ S . By the “Markov property” we can decompose Fn+1Sj,n =⋃
l Sjl,n and now let F S

n+1 be generated by F−n−1Sjl,n.
Next, for each x1 and x2 in a u-set S put

ρ(x1, x2) =
∞∏

j=0

det(dF−1|Eu)(F−1x1)

det(dF−1|Eu)(F−1x2)
.

Fix x0 ∈ S and let ρS(x) = ρ(x, x0)(
∫
S
ρ(x, x0)dx)−1. For a Markov family S and nonnegative constants R,α denote

by E1(S,R,α) the set of probability measures σ defined for each continuous function g ∈ C(Ω) by

σ(g) =
∫

S

g(x)eG(x)ρS(x)dx, (6.1)

where S ∈ S and G is Hölder continuous with the exponent α and the constant R. Denote also by E = E(S,R,α)

the closure of the convex hull of E1(S,R,α). The decay of correlations is measured in [8] and [9] via a sequence
a(n) → 0 as n → ∞ such that for any σ ∈ E and each Hölder continuous g on Ω ,∣∣σ (

g ◦ Fn
) − μSRB(g)

∣∣ ≤ a(n)‖g‖ (6.2)

where ‖ · ‖ is a Hölder norm. An argument from Section 5 of [11] compares the coefficient a(n) above with the more
familiar rate of decay of correlations |μSRB(f · (g ◦ Fn)) − μSRB(f )μSRB(g)| and it follows from there that the latter
decays superpolynomially if and only if a(n) decays superpolynomially. According to [7] such decay of correlations
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holds true for C2 Anosov flows with jointly nonintegrable stable and unstable foliations and for their time-one maps.
By [14] this remains true for an open dense set of C2 Axion A flows as well, as for their time-one maps. For other
partially hyperbolic dynamical systems with fast decay of correlations see [8], [9], [14] and references there.

In order to estimate ηp,κ,s(n) from (2.3) we write in the same way as in Lemma 4 from [8] that on each element S

in F[t],

An,s,t = E
(
g
(
f ◦ Fn+t , f ◦ Fn+t+s

)|F[t]
) =

∫
S

ρS(y)gs,t

(
Fny

)
dy, (6.3)

where the expectation is with respect to σ on S and gs,t (z) = g(f (F t−[t]z), f (F t−[t]+sz)). If f and g are Hölder
continuous then gs,t is Hölder continuous for fixed s and t and it is uniformly in t Hölder continuous when s = 0. Thus,
by (6.2) we have that |An,s,t −EAn,s,t | decays in n with the speed of at least a(n) and this decay is uniform in t if s = 0.
Hence, if a(n) decays superpolynomially then (2.6) holds true. This yields Theorem 2.2 for Ξ(t) = Ξ(t, z) = g(F tz)

on a probability space (S, σ ) for σ ∈ E and an element S of a Markov family while g is a Hölder continuous function.
We observe that the measure σ here plays the role of the probability Pr in the setup of Section 2 while μSRB plays
the role of P there.

7. Concluding remarks: Fully coupled averaging

In the nonconventional framework as discussed in this paper even the setup of fully coupled averaging, i.e. when the
fast motion depends on the slow one, is not quite clear. On the first sight we may want to deal with the equations

Xε(n + 1) = Xε(n) + εB
(
Xε(n),Ξ(n),Ξ(2n), . . . ,Ξ(�n)

)
,

Ξ(n + 1) = FXε(n)

(
Ξ(n)

)
(7.1)

in the discrete time case and

dXε(t)

dt
= εB

(
Xε(t),Ξ(t),Ξ(2t), . . . ,Ξ(�t)

)
,

dΞ(t)

dt
= b

(
Xε(t),Ξ(t)

)
(7.2)

in the continuous time case. The problem is that Ξ(kn) or Ξ(kt) are not yet defined for k > 1 at time n or t so we
cannot insert them into the first equation in (7.1) or (7.2) respectively, and so these equations do not define properly
Xε and Ξ .

A reasonable modification of this setup is to consider

Xε(n + 1) = Xε(n) + εB
(
Xε(n), η1(n), η2(n), . . . , η�(n)

)
,

ηε
i (n + 1) = F i

Xε(n)

(
ηε

i (n)
)
, i = 1, . . . , � (7.3)

in the discrete time case and

dXε(t)

dt
= εB

(
Xε(t), η1(t), η2(t), . . . , η�(t)

)
,

(7.4)
dηε

i (t)

dt
= ib

(
Xε(t), ηε

i (t)
)
, i = 1,2, . . . , �

in the continuous time case. We consider (7.3) and (7.4) as sets of � + 1 equations but require that ηε
1(0) = ηε

2(0) =
· · · = ηε

�(0). This approach seems to be reasonable if we consider (7.3) and (7.4) as perturbations of equations with
constants of motion

η(x)(n + 1) = Fx

(
η(x)(n)

)
and

dη(x)(t)

dt
= B

(
x,η(x)(t)

)
, (7.5)

i.e. when x variable remains fixed in unperturbed equations but start moving slowly in perturbed ones. Then η(x)(i(n+
1)) = F i

x(η
(x)(in)) and dη(x)(it)/dt = iB(x, η(x)(it)).
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As it is well known in the fully coupled setup the averaging principle not always holds true and when it takes place
then usually only in the sense of convergence in average or in measure. In the nonconventional situation the problem
is even more complicated. Consider, for instance,

dαε
α,ϕ(t)

dt
= εB

(
αε

α,ϕ(t), ϕε
1,α(t), . . . , ϕε

�,α(t)
)
,

(7.6)
dϕε

i,α,ϕ(t)

dt
= iαε

i,α,ϕ(t), αε
α,ϕ(0) = α,ϕε

1,α,ϕ(0) = · · · = ϕε
�,α,ϕ(0) = ϕ,

where ϕ denotes a point on an n-dimensional torus T
n and α denotes a constant n-vector (constant vector field on

T
n). Then ϕε

i,α,ϕ = iϕε
1,α,ϕ − (i − 1)ϕ. Set B̃(ψ,ϕ) = B(α,ψ,ψ − ϕ, . . . ,ψ − (� − 1)ϕ). Then the right hand side

of (7.6) can be replaced by εB̃(αε
α,ϕ(t), ϕε

1,α(t), ϕ). If B̄(α) = ∫
B̃(α,ϕ1, ϕ)dϕ1 dϕ and dᾱα(t)

dt
= B̄(ᾱα(t)), ᾱα(0) = α

then employing the technique from the proof of Theorem 2.1 in [21] it is not difficult to see that for any compact K ,∫
K

sup
0≤t≤T /ε

|αε
α,ϕ(t) − ᾱα(εt)|dα dϕ → 0 as ε → 0. (7.7)
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