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Abstract. We answer some questions raised by Gantert, Löwe and Steif (Ann. Inst. Henri Poincaré Probab. Stat. 41 (2005) 767–
780) concerning “signed” voter models on locally finite graphs. These are voter model like processes with the difference that the
edges are considered to be either positive or negative. If an edge between a site x and a site y is negative (respectively positive) the
site y will contribute towards the flip rate of x if and only if the two current spin values are equal (respectively opposed).

Résumé. Nous répondons à des questions soulevées dans le récent papier de Gantert, Löwe et Steif (Ann. Inst. Henri Poincaré
Probab. Stat. 41 (2005) 767–780) concernant les modèles du votant “signés” sur des graphes localement finis. Ce sont des processus
de type modèle du votant à la différence que chaque arête est considérée comme étant positive ou bien négative. Si une arête entre
un site x et un site y est négative (respectivement positive), le site y contribura au taux de flip de x si et seulement si les deux
valeurs actuelles des spins sont égales (respectivement opposées).
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1. Introduction

This work arises from questions raised in the recent article by Gantert, Löwe and Steif [4]. Following this paper we
consider voter model like processes called “signed” voter models. For such a process we suppose that we are given a
locally finite, undirected, connected graph G = (V ,E) and a function s :E → {−1,1}. Our model (η(t): t ≥ 0) will
be a spin system on {−1,1}V with generator

Ωf (η) =
∑
x∈V

(
f

(
ηx

) − f (η)
) 1

d(x)

∑
y: {x,y}∈E

I{η(x)η(y) �=s({x,y})}. (1.1)

Here I· denotes the ordinary indicator function. The usual spins, 0 and 1, are replaced by −1 and 1 purely for the
resulting notational simplicity. As usual d(x) is the degree of vertex x ∈ V and configuration ηx is the element of
{−1,1}V with spins equal to those of η except at site x. From now on we will abuse notation and write s(x, y) for
s({x, y}); we will call this the sign of edge {x, y}. This can be seen as a generalization of the classical voter model
(see e.g. [1,6]) in that if the function s is identically 1 (or equivalently if all signs are positive) then the corresponding
process is the voter model. Equally, if all the signs are negative, we are faced with the already studied anti-voter model.

As with the voter model, the easiest and most natural way to realize the voter model is via a Harris construction:
we introduce for each ordered pair (x, y) of neighbours a Poisson process, Nx,y , of rate 1/d(x) with all Poisson
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processes being independent. The process is built by stipulating that at times t ∈ Nx,y , the spin at x becomes equal
to s(x, y)ηt (y) (which may well represent no change for the process). A.s. no two distinct Poisson processes have
common points so the rule is unambiguous. It can easily be checked that with probability one this rule specifies ηt (x)

for all t and x just as in the classical voter model (see [1]). The Markovian nature is simply inherited from that of the
system of Poisson processes. It is then readily seen that this is indeed the process with generator given by (1.1).

As with the voter model, duality plays the dominant role in understanding the “signed” voter model. Before dis-
cussing this duality we introduce some notation.

Definition 1.1. A nearest neighbour path (γ (r): 0 ≤ r ≤ t) having finitely many jumps at times 0 ≤ t1 ≤ t2 ≤ · · · ≤
tn ≤ t is said to be even or positive if the number of 1 ≤ i ≤ n so that s(γ (ti−), γ (ti)) = −1 is even. Otherwise the
path is said to be odd or negative. If it is positive we write sgn(γ ) = 1 otherwise sgn(γ ) = −1.

Definition 1.2. For a possibly infinite path γ = (γ (r): 0 ≤ r ≤ t) and 0 ≤ r1 ≤ t1 ≤ t , γ r1,t1 signifies the path
(γ (r): r1 ≤ r ≤ t1). If r1 = 0 we write γ t1 instead of γ r1,t1 .

For fixed t ≥ 0 and x ∈ V we define the “dual” random walk on G, Xx,t = (Xx,t (r): 0 ≤ r ≤ t) by the recipe:
Xx,t (0) = x and the random walk jumps from y to z at time r ∈ [0, t] if immediately before time r it was at site y and
t − r ∈ Ny,z. As in [1], we recover ηt (x) via the identity

ηt (x) = η0
(
Xx,t (t)

)
sgn

(
Xx,t

)
. (1.2)

It should be noted that the random walks Xx,t (·) and Xy,t (·) are coalescing. If the two paths meet for the first time at
r0 ∈ [0, t], then irrespective of η0 we have

ηt (x)ηt (y) = sgn
(
γ x,y,r0

)
, (1.3)

where γ x,y,r0 : [0,2r0] → V is the concatenation of the path (Xx,t (r): 0 ≤ r ≤ r0) with the path (Xy,t (r0 − r): 0 ≤
r ≤ r0). Thus just as with the classical voter model, if the two dual random walks meet then irrespective of the initial
configuration, η0, a relation holds between ηt (x) and ηt (y). The difference is that this relation is more complicated
than for the voter model where the relation is nothing but equality. For more discussion of the dual see the next section.

As stated above, this article is written to address questions raised by [4]; it also follows for instance, the article
of [9] which addresses signed voter models on the integer lattice where the signs are assigned to the edges in i.i.d.
fashion. See [4] for a more complete bibliography.

A major concern of [4] was unsatisfied cycles that are defined as follows.

Definition 1.3. Unsatisfied cycles are nearest neighbour cycles in G whose sign is negative.

Such cycles are important since in their absence the vertices can be divided into a “positive” set, V+ and a “neg-
ative” set, V−: one simply fixes arbitrarily a site x0 ∈ V which is designated “positive.” A site y ∈ V is positive if a
path (and so, in the absence of unsatisfied cycles, all paths) from x0 to y is positive; otherwise y is negative. Then
the process (η′

t : t ≥ 0) defined by η′
t (x) = ηt (x) for x ∈ V+, η′

t (x) = −ηt (x) for x ∈ V− is a classical voter model.
Equally, the presence of unsatisfied cycles precludes the existence of fixed configurations η for which the total flip
rate is zero (see [4], Section 2 for details). For the classical voter model the configurations 1 of all 1’s and −1 of all
−1’s are fixed in this manner and so the voter model is never ergodic in the sense of [6], i.e., there exists a unique
equilibrium μ and for every initial η0, ηt converges in distribution to μ as t tends to infinity. In the case of “signed”
voter models ergodicity in this sense is a real possibility. It is well known that for the classical voter model one may
obtain (possibly nonextremal) equilibria by starting with {η0(x)}x∈V i.i.d. with say α = P(η0(x) = 1) and taking the
limit distribution of ηt as t tends to infinity. For the signed voter model and general α ∈ (0,1) the limit may very well
not exist, indeed even the limit of P(ηt (x) = 1) as t becomes large need not exist. However for the symmetric value
α = 1/2, it can be shown in much the same way as for the voter model that the limit exists. We denote this special
measure by ν1/2.

For the signed voter model it may well be the case that ν1/2 is the unique equilibrium. The question of whether, for
such processes, if this equilibrium was indeed unique, the process must necessarily be ergodic was raised in [4]. In
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fact this holds and can be seen to be a consequence of Matloff’s lemma (Lemma 3.1 in [7]), see also Lemma V.1.26
of [6].

Theorem 1.4. If the “signed” voter model has a unique equilibrium, then the “signed” voter model is ergodic.

We next consider another raised question ([4], question one). Proposition 1.2 of this work gives a useful robust
criterion for there to exist multiple equilibria for a signed voter model: there exists a subset W ⊂ V such that with
positive probability a random walk (starting from an appropriate site) will never leave W and secondly that W , with
inherited edge set, has no unsatisfied cycles. The question raised was whether this criterion was in fact necessary as
well as sufficient.

Proposition 1.5. There exist graphs G = (V ,E) with sign function s so that the associated signed voter model is not
ergodic but such that there does not exist W ⊂ V with the above property.

But, under a natural condition, the question can be answered affirmatively.

Proposition 1.6. If the graph G = (V ,E) is of bounded degree and the sign function is such that there are multi-
ple equilibria for the associated signed voter model, then there exists W ⊂ V on which the inherited graph has no
unsatisfied cycle and such that for each x ∈ W,P x(TWc = ∞) > 0 for TWc = inf{t : X(t) ∈ Wc}.

Definition 1.7. For a path γ = (γ (s): s ≥ 0) on V , we say that γ traverses infinitely many unsatisfied cycles if there
exists sequences (si)i≥1 and (ti)i≥1 tending to infinity so that γ si ,ti are unsatisfied cycles.

A simple criterion for ergodicity was the existence of unsatisfied cycles and the recurrence of the associated simple
random walk, see Theorem 1.1 of [4]. The following may be seen as a generalization of this result.

Proposition 1.8. If with probability one a random walk on G = (V ,E), (X(t): t ≥ 0) traverses infinitely many un-
satisfied cycles then the signed voter model is ergodic.

Another question we are fully able to resolve is the second open question listed in [4]:

Theorem 1.9. For the graph Z
3 with usual edge set and any sign assignation, s, either the process is not ergodic or

a random walk must a.s. traverse infinitely many unsatisfied cycles.

By Proposition 1.8 above the two statements in Theorem 1.9 are exclusive. The peculiarity of this result is high-
lighted by the next result

Theorem 1.10. For the graph Z
d, d ≥ 4 there are sign functions s on the edge set so that the associated voter model

is ergodic but the random walk must a.s. traverse only finitely many unsatisfied cycles.

Theorem 1.1 of [4] shows that in dimensions 1 and 2, if there is an unsatisfied cycle then necessarily the associated
“signed” voter model is ergodic so the above results are in a sense definitive.

An important tool we will use is the existence for two Markov chains on a state space S where the jump rates
satisfy

sup
x∈S

q(x, x) < ∞, (1.4)

of a “time shift” coupling. By this we mean that:

Lemma 1.11. Under condition (1.4), and given T < ∞ and ε > 0, there exists a finite t0 so that for any r ∈ [0, T ]
and any x ∈ S, two realizations of the Markov chain starting at x, (X(t): t ≥ 0) and (X′(t): t ≥ 0) may be coupled
so that with probability at least 1 − ε
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(a) for all t ≥ t0, X(t) = X′(t + r) and
(b) the sequence of sites visited (allowing repeat visits) by the process X(·) up to time t0 is equal to that for X′(·) up

to time t0 + r .

(Observe in particular that if (a) and (b) are satisfied, sgn((X′)t+r ) = sgn(Xt ) ∀t ≥ t0.) The lemma is for fixed r given
in [8], That the coupling bounds are uniform on compacts follows easily from the proof gven there. The details are
left to the reader.

The rest of the paper is organized as follows: Sections 2 is dedicated to the proofs of Theorem 1.4 and Proposi-
tion 1.8. Section 3 concerns itself with the proofs of Propositions 1.5 and 1.6. Finally Sections 4 and 5 are respectively
devoted to the proofs of Theorems 1.9 and 1.10.

Throughout the paper we will use the following notation:
For a measure ν on a measureable space (E, E ) and a measureable function h defined on this space 〈ν,h〉 will

denote the integral of h with respect to ν (when this exists).
Given a set of vertices B in a graph G, ∂B will be the external boundary of B , that is the set of points in Bc which

are neighbours of a point in B .
For a process (X(t): t ≥ 0) (typically a random walk on a graph (V ,E)) and a set B ⊂ V , TB = inf{t : X(t) ∈ B}.
We write x ∼ y to denote {x, y} ∈ E.
It is universal practice that Bernoulli random variables denote variables which a.s. take value 0 or 1. Nonetheless,

we use Bernoulli in this paper to denote variables taking values −1 or 1. A Bernoulli(α) random variable will equal 1
with probability α and thus −1 with probability 1 − α.

2. Proof of Theorem 1.4 and Proposition 1.8

The following proof for Theorem 1.4 is really just a transcription of Lemma V.1.26 of [6]. It is included for complete-
ness. It rests on a property of the dual for the signed voter model, which we now describe in detail.

We suppose, as usual, a given Harris system of Poisson processes for generating signed voter models (ηt : t ≥ 0)

from a given initial configuration η0. That is a collection of independent Poisson processes Nx,y of rate 1/d(x) for
ordered neighbour pairs (x, y). Given an initial configuration η0, a time t ≥ 0, an integer h and h points in vertex set
V , x1, x2, . . . , xh, the values of (ηt (x1), ηt (x2), . . . , ηt (xh)) are determined by the dual process

Xt(u) = ((
X

x1,t
1 (u), it1(u)

)
,
(
X

x2,t
2 (u), it2(u)

)
, . . . ,

(
X

xh,t
h (u), ith(u)

))
, 0 ≤ u ≤ t, (2.1)

at time t , where X
xj ,t

j (u) ∈ V , i
j
j (u) ∈ {−1,1} for all u ∈ [0, t] and 1 ≤ j ≤ h. The process (piecewise constant)

evolves as follows: Xt(·) jumps at time u ∈ [0, t] if and only if there exists j ≤ h so that t − u ∈ N
X

xj ,t

j (u−),z for some
z neighbouring X

xj ,t

j (u−). This being the case

(i) for every index k so that X
xk,t
k (u−) �= X

xj ,t

j (u−), there will be no change: X
xk,t
k (u) = X

xk,t
k (u−) and itk(u) =

itk(u
−),

(ii) for every index k so that X
xk,t
k (u−) = X

xj ,t

j (u−), we will have X
xk,t
k (u) = z and itk(u) = itk(u

−)s(X
xj ,t

j (u−), z)

with s the sign function.

Given this dual one recovers the values ηt (xk) by

ηt (xk) = η0
(
X

xk,t
k (t)

)
itk(t). (2.2)

The key point for the proof is that over the interval [0, t] the process Xt will evolve as a Markov chain whose jump
rates are bounded (by h) so that Lemma 1.11 may be applied. That is given integer T ,h < ∞ and ε > 0, uniformly
over all x1, x2, . . . , xh there exists t0 so that

∥∥Xt(t) − Xt+u(t + u)
∥∥

TV = ∥∥Xt+u(t) − Xt+u(t + u)
∥∥

TV < ε (2.3)

for all t ≥ t0 and u ∈ [0, T ], where by abuse of notation we identify the random variables with their law. Here ‖ · ‖TV
is the usual total variation norm between probability laws.
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We may now turn directly to the proof of Theorem 1.4.

Proof of Theorem 1.4. We consider η0 as fixed. It is sufficient to show that all limit points of the distribution of ηt

as t tends to infinity are equilibria. We suppose that for sequence {tn}n≥1 tending to infinity

ηtn → ν in law. (2.4)

Let h be a cylinder function depending on, say, the spin values at x1, x2, . . . , xr , i.e., h(η) = g(η(x1), η(x2), . . . ,

η(xr)). We have that

〈ν,h〉 = lim
n→∞Eη0

[
h(ηtn)

] = lim
n→∞E

[
h′(η0,X

tn(tn)
)]

, (2.5)

where we have

h′(η0,X
s(s)

) = g
(
η0

(
X

x1,s
1 (s)

)
is1(s), η0

(
X

x2,s
2 (s)

)
is2(s), . . . , η0

(
Xxr,s

r (s)
)
isr (s)

)
. (2.6)

But equally for any fixed t we have (our signed voter model is easily seen to be a Feller process)

〈ν,Pth〉 = lim
n→∞Eη0

[
Pth(ηtn)

]
, (2.7)

where as usual (Pt )t≥0 denotes the Markov semigroup of our signed voter model. The quantity inside the limit in the
r.h.s. of (2.7) can be rewritten as Eη0[h(ηtn+t )] which in the notation introduced in (2.6) is equal to

E
[
h′(η0,X

tn+t (tn + t)
)]

. (2.8)

But, as already noted, as tn tends to infinity ‖Xtn(tn) − Xtn+t (tn + t)‖TV tends to zero and so

lim
n→∞

(
E

[
h′(η0,X

tn+t (tn + t)
)] − E

[
h′(η0,X

tn(tn)
)]) = 0 (2.9)

which implies that 〈ν,h〉 = 〈ν,Pth〉. By the arbitrariness of t and h we can conclude that measure ν is an equilibrium
but, given our hypotheses that there is a unique equilibrium, we have established that any limit point ν must equal this
equilibrium (ν1/2). That is we have established ergodicity. �

The following criterion for ergodicity was given as Theorem 6.1 in [4].

Lemma 2.1. If for every x ∈ V and every η0 ∈ {−1,1}V ,P η0(ηt (x) = 1) → 1/2 as t → ∞, then the signed voter
model is ergodic.

The argument given above permits the following generalization:

Proposition 2.2. If for every equilibrium μ on {−1,1}V , μ(η(x) = 1) = 1/2, then the signed voter model is ergodic.

Proof. If the system is not ergodic then by Lemma 2.1, there exists x, ε > 0, η0 and sequence tn increasing to in-
finity so that ∀n, |P η0(ηtn(x) = 1) − 1/2| > ε. But the proof of Theorem 1.4 demonstrated that under P η0 any limit
distribution of ηtn must be an equilibrium. This equilibrium must satisfy μ(η(x) = 1) �= 1/2 which contradicts our
hypothesis. �

To show Proposition 1.8 we will need the following result. Let, for x ∈ V , t ≥ 0, the measures μx,t,± on V be
defined by

μx,t,+(y) = P x
(
X(t) = y,Xt is even

)
, (2.10)

μx,t,−(y) = P x
(
X(t) = y,Xt is odd

)
. (2.11)
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Lemma 2.3. For fixed T ∈ (0,∞), and ε > 0, there exists T0 < ∞ so that uniformly over r ∈ [0, T ], x ∈ V and t ≥ T0

‖μx,t,+ − μx,t−r,+‖TV + ‖μx,t,− − μx,t−r,−‖TV < ε. (2.12)

The lemma is a simple consequence of Lemma 1.11.

Proof of Theorem 1.8. By Lemma 2.1, it is enough to show that for fixed x ∈ V and η0 ∈ {−1,1}V , as t tends to
infinity P η0(ηt (x) = 1) → 1

2 .
Thus we need to show that lim supt→∞ P η0(ηt (x) = 1) ≤ 1

2 and lim inft→∞ P η0(ηt (x) = 1) ≥ 1
2 . That is we need

to show that for t large P η0(ηt (x) = 1) ∈ [1 − α,α], for any α > 1/2.
First fix α > 1/2 and ε > 0, a small strictly positive constant which will be more fully specified later. We will argue

by contradiction and assume that for t large P η0(ηt (x) = 1) > α; the argument to show for large t that P η0(ηt (x) =
1) ≥ 1 − α is entirely similar. Fix T � 1 to be such that for Zx a random walk beginning at site x.

P
(
Zx(r) has not traversed an unsatisfied cycle for 0 ≤ r ≤ T

)
< ε/100. (2.13)

We suppose that t ≥ T + T0 for T0 given by Lemma 2.3 for this ε and T . Consider the martingale (Mr : 0 ≤ r ≤ t)

Mr = P
(
η0

(
Zx(t)

)
sgn

((
Zx

)t) = 1|Zx(u), sgn
((

Zx
)u)

u ≤ r
)

(2.14)

= P
(
η0

(
Zx(t)

)
sgn

((
Zx

)t) = 1|Zx(r), sgn
((

Zx
)r))

. (2.15)

We may consider Zx to be the dual random walk. If P η0(ηt (x) = 1) > α, then M0 > α, and, by the optional sampling
theorem see e.g. [2],

P
(
σ(α) < T

) ≤ 4(1 − α)

3 − 2α
(2.16)

for

σ(α) = inf

{
r: Mr <

1/2 + α

2

}
. (2.17)

(Note that α > 1/2 implies that 4(1−α)
3−2α

< 1.) Thus if ε is sufficiently small then with strictly positive probability at

least 1 − 4(1−α)
3−2α

− ε
100 ,

(i) for all 0 ≤ r ≤ T ,Mr >
1/2+α

2 and
(ii) there exists 0 ≤ r1 ≤ r2 ≤ T so that (Zx(r): r1 ≤ r ≤ r2) traverses an unsatisfied cycle.

But by Lemma 2.3 and our assumption on t we have that

‖μZx(r1),t−r1,+ − μZx(r1),t−r2,+‖TV + ‖μZx(r1),t−r1,− − μZx(r1),t−r2,−‖TV < ε.

This and the fact that Mr1 > (1/2 + α)/2 implies that Mr2 < 1 − (1/2 + α)/2 + 2ε. But if ε is chosen sufficiently
small then this will contradict (i) above. Thus we have that in fact for α > 1/2 the conditional probability that
η0(Z

x(t)) sgn((Zx)t ) = 1 given η0 is less than α for t large. We similarly have that it must also be greater than
1 − α and we are done by the arbitrariness of α. �

3. Proof of Propositions 1.5 and 1.6

Proposition 1.2 of [4] stated that if the graph G = (V ,E) had the property that there existed W ⊂ V,x ∈ V so that:

(i) P x(TWc = ∞) > 0, recall TWc = inf{t : X(t) ∈ Wc} and
(ii) W with its inherited edge set contained no unsatisfied cycles,
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then necessarily the signed voter model could not be ergodic. The question was raised at the end of the paper as to
whether a converse existed: can it be that whenever a signed voter model is non ergodic such a W can be found? We
first show this is not the case, but then show that with the additional hypothesis that the graph is of bounded degree, it
is indeed true. We first state without proof (it follows from [4], Proposition 1.2).

Proposition 3.1. If a.s. for all random walks X = (X(t): t ≥ 0) on the graph G, there exists random T so that on
[T ,∞), X does not traverse a negative edge then the signed voter model has multiple equilibria.

Proof of Theorem 1.5. We will build our counterexample out of a rooted tree, R, with only positive edges by adding
a number of negative edges whose density is so small that the property of multiple equilibria is unchanged. Consider
a rooted tree, R, so that each ith generation has ni “children” where ni increases to infinity as i → ∞ and is always
even. We now amend R as follows. We pick strictly increasing Vn ↑ ∞ so that nVn ≥ 2n. At the Vnth generation we
pair up the vertices so that each vertex of the Vnth generation is paired with a member having the same father. We add
the corresponding edges. For the resulting graph all original edges remain positive but the extra “within generation”
edges are fixed as negative. Though this new graph has cycles (indeed unsatisfied cycles), we retain use of the words
descendants inherited from the original rooted tree. By the Borel–Cantelli lemma and Proposition 3.1, the signed voter
model has multiple equilibria. Let W be a subset of V with the property that, with initial point suitably chosen, the
probability of a random walk on G never leaving W is strictly positive. For time t let Tr(t) be the first time after t

that the random walk is at generation Vn for some generation Vn which is strictly larger than the current generation
(that of X(t)). Since X(Tr(t)) is chosen uniformly among all potential descendants of X(Tr(t)−), we have that the
probability that X(Tr(t)) is equal to an element of W whose pair does not belong to W is less than the probability that
X(Tr(t)) is not a member of W . But by Lévy’s 0–1 law (see e.g. [2]), on the event that the random walk (X(t): t ≥ 0)

never leaves W , as t becomes large the conditional probability given Ft (in the natural filtration of X), that the pair of
X(Tr(t)) ∈ W tends to one. Thus with probability tending to one (as t tends to infinity) on the event {TWc = ∞} we
have

both X(Tr(t)) and its pair belong to W. (3.1)

But this must mean that with probability tending to one as t tends to infinity, the unsatisfied cycle of length 3 involving
the point X(Tr(t)), its pair and their (common) father is in W . �

This counterexample is somewhat cheap, the “real” question is whether the converse to Proposition 1.2 holds for
graphs of bounded degree.

Proof of Theorem 1.6. Given Proposition 2.1 it is enough to show the existence of a suitable W ⊂ V under the
existence of an equilibrium μ for which μ({η: η(x) = 1}) is not identically 1

2 as x varies over V . In the following let
M = supx∈V d(x), which is supposed finite. We fix equilibrium μ so that for some x ∈ V , μ({η: η(x) = 1}) �= 1/2.
Let

α = sup
x∈V

∣∣μ({
η: η(x) = 1

}) − μ
({

η: η(x) = −1
})∣∣ > 0. (3.2)

Without loss of generality we have

α = sup
x∈V

(
μ

({
η: η(x) = 1

}) − μ
({

η: η(x) = −1
}))

. (3.3)

Now we have (see e.g. [6] or [7]) for any x ∈ V and t ≥ 0

h(x) := μ
({

η: η(x) = 1
}) − μ

({
η: η(x) = −1

}) = Ex
[
h
(
X(t)

)
sgn

(
Xt

)]
. (3.4)

Fix ε > 0 with ε � 1 and let x ∈ {y: h(y) > α − ε}. For 0 ≤ t ≤ T , where T is fixed, let

Mt = E
[
ηT (x) = 1|Gt (T )

] − E
[
ηT (x) = −1|Gt (T )

] = h
(
Xx,T (t)

)
sgn

((
Xx,T

)t)
. (3.5)
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(Here Gt (T ) = Harris system on interval [T − t, T ] and the process is run in equilibrium μ.) Note that |Mt | ≤ α for
all 0 ≤ t ≤ T . Let σ = inf{t ≥ 0: |Mt | ≤ α − 10ε} then by optional sampling theorem we have

α − ε < h(x) = E[Mσ∧T ] ≤ (α − 10ε)P (σ ≤ T ) + αP (σ > T ), (3.6)

from which we deduce P(σ ≤ T ) ≤ 1/10. Now this (and the arbitrariness of T ) implies that if W is the component of
{y: |h(y)| ≥ α − 10ε} containing x, then P x(TWc = ∞) ≥ 9/10. We now show that, provided ε is sufficiently small,
W has no unsatisfied cycles. The idea of the proof is that if a site x has close to the maximum value for function h,
then as each neighbour has a reasonable chance of being hit by a random walk starting at x, each neighbour, y, must
also be extreme and in a way that is in conformity with s(x, y). That is h(y) will have close to the minimum value
only if s(x, y) = −1.

Suppose for W as above, x0, x1, . . . , xk forms an unsatisfied cycle in W . The point is that for all i ∈ {0, . . . , k}

h(xi) =
∑
y∼xi

h(y)s(xi, y)

d(xi)
, (3.7)

thus

h(xi) = h(xi+1)

M
s(xi, xi+1) + Ri

(
M − 1

M

)
, (3.8)

where |Ri | ≤ α. From which we have for h(xi) > 0

(α − 10ε) ≤ h(xi+1)s(xi, xi+1)

M
+ M − 1

M
α. (3.9)

That is h(xi+1)s(xi, xi+1) ≥ α −10Mε > 0 if ε is sufficiently small. Similarly if h(xi) < 0, then h(xi+1)s(xi, xi+1) <

−(α − 10Mε) < 0 for ε sufficiently small. This gives a contradiction. �

4. The integer lattice in three dimensions

In this section we consider the signed voter model on Z
3 with simple random walk motion. We address the question

of whether the existence of a single equilibrium implies that the simple random walk must a.s. traverse infinitely
many unsatisfied cycles. Given the possibility of adapting the example of the following section to three dimensions
we interpret the random walk “traversing infinitely many unsatisfied cycles” to mean (recall the definition given in the
Introduction (Definition 1.7)): there exist ri , ti ↑ ∞ with ri < ti for all i ≥ 1 so that X(ri) = X(ti) for all i ≥ 1 and
the path

(
X(r): ri ≤ r ≤ ti

) := Xri,ti is odd. (4.1)

We do not require that the path Xri,ti visits each site in the range exactly once, with the exception of X(ri) = X(ti).
Our approach uses the following simple properties of simple random walks in Z

d found in e.g. Lawler [5].

(A) There exists k4.1 ∈ (0,∞) so that for each integer n and for a random walk (X(t): t ≥ 0) starting at X(0) = 0
and any x ∈ ∂B(0, n),

1

k4.1nd−1
≤ P

(
X(T∂B(0,n)) = x

) ≤ k4.1

nd−1
(4.2)

(see [5], Lemma 1.7.4).
(B) Harnack principle: for all α < 1 there exists k4.2 = k4.2(α) < ∞ so that

1

k4.2
≤ P z(X(T∂B(0,n)) = x)

P 0(X(T∂B(0,n)) = x)
≤ k4.2 (4.3)

uniformly over z ∈ B(0, αn), x ∈ ∂B(0, n) and n (see [5], Theorem 1.7.6).
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In this and the following section we will employ the following notation: Cn = ∂B(0,2n) and Bn = B(0,2n). The
picture to be conveyed by the above two results is that, essentially, the points X(TCn), n ≥ 1 are uniformly distributed
on Cn and that they are close to being independent. Consider the quantity

H(z) =
∞∑

n=1

∑
x∈Cn

y∈Cn+1

P
(
X(TCn) = x|X(0) = z

)
P

(
X(TCn+1) = y|X(0) = x

)
N

x,y
n , (4.4)

where for all x ∈ Cn and y ∈ Cn+1

N
x,y
n = min

{
P x

(
path X

TCn+1 is even|X(TCn+1) = y
)
,

P x
(
path X

TCn+1 is odd|X(TCn+1) = y
)}

. (4.5)

Then, by (4.2) and (4.3), the following are clear:

(i) H(·) ≡ ∞ or H(z) < ∞ ∀z;
(ii) H(z) < ∞ if and only if I < ∞ with

I =
∞∑

n=1

∑
x∈Cn

y∈Cn+1

1

24n+2
N

x,y
n . (4.6)

Furthermore:

Lemma 4.1. I = ∞ implies that a.s. ∀z,

P z
(
path XTCn is even|X(TCn)

) → 1/2 (4.7)

and the signed voter model is ergodic.

The lemma follows from the following elementary 0–1 law whose proof (which rests on (4.2) and (4.3)) is left to
the reader.

Lemma 4.2. Consider sequences {ni} and {mi} satisfying ni + 1 < mi < ni+1 − 1 and positive uniformly bounded
random variables Vi measureable with respect to σ {XTCni

,TCmi }. Then
∑

i Vi < ∞ if and only if
∑

i E[Vi] < ∞.
Equivalently if and only if

∑
i

1

22ni

1

22mi

∑
x∈Cni

∑
y∈Cmi

Ex,y[Vi] < ∞,

where Ex,y denotes the expectation for a random walk starting at x and hitting Cmi
at y.

Proof of Lemma 4.1. We first note that the condition I = ∞ implies that for some j ∈ {0,1, . . . ,5},
∑

n=j mod 6

∑
x∈Cn

∑
y∈Cn+1

1

24n+2
N

x,y
n = ∞. (4.8)

Without loss of generality we suppose that this holds for j = 0. Consider the quantity

N∏
i=1

(
1 − N

XTC6i
,XTC6i+1

6i

)
. (4.9)
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We have via our hypothesis and Lemma 4.2 that a.s. this tends to zero as N tends to infinity. Hence

N∏
i=1

(
1 − N

XTCi
,XTCi+1

i

)
(4.10)

tends to zero as N tends to infinity. But

P
(
XTCN is odd|X(TCi

) i = 1,2, . . . ,N
) − 1

2

=
(

P
(
X

TCN−1 is odd|X(TCi
) i = 1,2, . . . ,N − 1

) − 1

2

)

× P
XTCN−1

,XTCN
(
X

XTCN−1
,XTCN is even

)

+
(

P
(
X

TCN−1 is even|X(TCi
) i = 1,2, . . . ,N − 1

) − 1

2

)

× P
XTCN−1

,XTCN
(
X

XTCN−1
,XTCN is odd

)
. (4.11)

Thus

∣∣∣∣P (
XTCN is odd|X(TCi

) i = 1,2, . . . ,N
) − 1

2

∣∣∣∣ ≤
N∏

i=1

(
1 − N

XTCi−1
,XTCi

i

)
(4.12)

and we are done. �

Theorem 1.9 will follow from the two following results:

Proposition 4.3. If I = ∞ then a.s. the random walk traverses infinitely many unsatisfied cycles.

Proposition 4.4. If I < ∞ then a.s. the signed voter model has multiple equilibria.

Given Proposition 1.8, it is immediate that Proposition 4.3 implies that we have ergodicity when I = ∞.

4.1. Proof of Proposition 4.3

If I = ∞ then again as in the proof of Lemma 4.2, we may assume without loss of generality that

∑
n=0 mod 6

∑
x∈Cn

y∈Cn+1

1

24n+2
N

x,y
n = ∞. (4.13)

Lemma 4.2 ensures that a.s.
∑

n=0 mod 6

N
X(TCn ),X(TCn+1 )

n = ∞ (4.14)

for random walk (X(r): r ≥ 0).

Definition 4.5. For positive integer n and subset A ⊂ Z
3, let function Hn(A) denote the probability that a simple

random walk (X′(m))m≥0 starting at point (2n,0,0) hits set A before hitting Cn+2.

The fixing of (2n,0,0) as the initial point is somewhat arbitrary but is not so important if the set A in question is
of distance of order 2n from (2n,0,0). In the following we will be interested in Hn(A) for A random, indeed we will
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take A to be a segment of the path of a random walk X. We must emphasize that the random walk X′ invoked in the
definition of Hn(A) is always taken to be independent of any randomness producing random set A including random
walk X.

It is well know that in three dimensional lattice space, the paths of two independent random walks starting at points
in a ball of radius R centred at the origin and killed on leaving the ball of radius 2R, will, with positive probability
not depending on R, meet. The following is simply a concretization of this.

Lemma 4.6. There exists a constant k4.3 > 0 so that for all n, uniformly over “initial point” x ∈ Cn−2 of a random
walk X,

P x
(
Hn

(
X

TCn−1
)
> k4.3

)
> k4.3. (4.15)

Proof. It is only necessary to show this for n large. Our approach is simply to use the two moment argument twice.
We use the limiting identities of Lawler [5], Proposition 1.5.9, to show that there exist 0 < k1 < k2 < ∞ not depending
on n, such that for |x − y| ∈ (2n−2/10,2n−2/5),

2n−2P x(Ty < TCn+2) ∈ (k1, k2), 2n−2P x(Ty < TCn−1) ∈ (k1, k2). (4.16)

Consider A, the set of points y satisfying:

(i) |x − y| ∈ (2n−2/10,2n−2/5),
(ii) y ∈ X

TCn−1 .

We associate two variables with A:

• |A| = ∑
y IA(y). The above bounds on P x(Ty < TCn−1) immediately give that E[|A|] ≥ k′

122n for some strictly
positive k′

1 and for all n,
• SA = ∑

z,y∈A 2n/(1 + |z − y|). Equally we have from the bounds of Lawler [5], Proposition 1.5.9 that E[SA] ≤
k′

224n for some universal, finite k′
2 and all n.

From this and the usual two moment argument (see e.g. [2]), we have the existence of universal, nontrivial k so that

P

(
A >

1

k
22n, SA < k24n

)
≥ 1/2. (4.17)

We now condition on process X(·) and in particular on set A and thus on random variables |A| and SA. Let us
define random variable for X′ a random walk starting at (2n,0,0) and hitting Cn+2 at time T ′

W =
∑
y∈A

I{∃r≤T ′: X′(r)=y}. (4.18)

Using the inequalities from Lawler, we have that

E[W |X] ≥ k′′
1 |A|/2n, E

[
W 2|X] ≤ k′′

2SA/22n, (4.19)

for universal nontrivial k′′
i . Profiting once more from the two moment argument we have that

P
(
W > E[W |X]/2|X) ≥ 1

4

(k′′
1 )2

k′′
2

|A|2
SA

. (4.20)

In particular we have, by (4.17), with probability at least 1
2 ,

P(W > 0|X) ≥ 1

4

(k′′
1 )2

k′′
2

1

k3
. (4.21)

�
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Define the events

Dn = {
X

TCn+1 ,TCn+2 ∩ X
TCn−2 ,TCn−1 �= ∅

}
(4.22)

and

Hn = {
Hn

(
X

TCn−2 ,TCn−1
)
> k4.3

}
. (4.23)

Corollary 4.7. There exists some universal k4.4 not depending on n so that on event Hn,

P(Dn|FTCn+1
) > k4.4, (4.24)

where {Ft }t≥0 is the natural filtration associated to the random walk X.

Proof. To prove this it suffices to see that, because of the invariance principle for the random walk X′, uniformly on
y ∈ Cn+1 for some nontrivial k not depending on n,

P y
(
X′ hits B

((
2n,0,0

)
,2n−2/40

))
> k > 0. (4.25)

Then combining Lemma 4.6 and (4.3) and using the Markov property, we get on Hn,

P
X(TCn+1 )

(Dn|FTCn+1
) >

4kk4.3

k4.2(1/2)
. (4.26)

�

Now Corollary 4.7 and Lemma 4.2 ensure that

∑
n=0 mod 6

IDnN
X(TCn ),X(TCn+1 )

n = ∞ a.s. (4.27)

under the conditions given. We now introduce the discrete filtration

Jn = FTC6n
and Gn+1 = σ

(
Jn,X

TC6n+1 ,TC6n+2
)

(4.28)

and consider the filtration

J1, G2, . . . , Jn, Gn+1, . . . . (4.29)

Note that on D6n ∈ Gn+1 we can define measurably tn ∈ [TC6n−2 , TC6n−1 ], rn ∈ [TC6n+1 , TC6n+2 ] so that X(tn) = X(rn).
Note that on D6n

P
(
Xtn,rn is odd|Gn+1

) ≥ N
X(TC6n

),X(TC6n+1 )

6n . (4.30)

So by (4.30) and Lévy 0–1 law (see e.g. [2]) we have a.s. infinitely many unsatisfied cycles. This complete the proof
of of Proposition 4.3.

4.2. Proof of Proposition 4.4

One way to show Proposition 4.4 would be to find a suitable subset W of Z
3 satisfying the conditions of Proposition 1.2

of [4]. In fact, since the graph Z
3, the degree is bounded (by 6), Proposition 1.6 applies and so proving Proposition 4.4

shows the existence of a suitable subset W of Z
3. Actually we do not explicitly find such a W but our approach comes

down to finding a way of assigning signs to “most” points in Z
3 which will asymptotically (as the points becomes

large) be respected by a random walk. As we will shortly see, we begin by talking of the sign “between” certain
points in Z

3 and the greater part of the work consists of “sewing” these signs together to give a sign function which
“asymptotically” works.
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As before, we denote by Cn the external boundary of B(0,2n), the Euclidean ball centered at the origin of radius
2n. For u ∈ Bn+1 = B(0,2n+1), z ∈ Cn+1, the law P u,z,n is the law of the random walk started at u conditioned to
exit B(0,2n+1) at z. Define

sgn(u, z, n) =
⎧⎨
⎩

1, if P u,z,n
(
X

TCn+1 is even
)
> 3/4,

−1, if P u,z,n
(
X

TCn+1 is odd
)
> 3/4,

0, otherwise.

(4.31)

In this definition the choice of 3
4 is not very important beyond it being strictly larger than 1

2 . If sgn(u, z, n) = 1, we
say z is positive for or with respect to u. Now for α < 1 such that 1 − α � 1 (and certainly ≤ 1/4) and for x ∈ Cn

define two complementary sets:

S(x,n) = {
v ∈ Cn+1: Nx,v

n < 1 − α
}

and U(x,n) = {
v ∈ Cn+1: Nx,v

n ≥ 1 − α
}
. (4.32)

We first have from the Borel–Cantelli lemma and (4.2) and (4.3):

Lemma 4.8. For a random walk (X(t): t ≥ 0) on Z
3 and for any α < 1, under condition I < ∞ a.s.

X(TCn+1) ∈ S
(
X(TCn), n

)
(4.33)

for all n sufficiently large.

Lemma 4.9. For any x ∈ Cn,w ∈ Cn+1 with w ∈ S(x,n), the P x,w,n probability that the path X(·) satisfies for all
t ≤ TCn+1

sgn
(
Xt

)
sgn

(
X(t),w,n

) = sgn(x,w,n) (4.34)

is at least 1 − 4(1 − α).

Proof. Suppose without loss of generality that sgn(x,w,n) = 1. Then the P x,w,n probability of event

A = {
path X

TCn+1 is odd
}

(4.35)

is less than 1 − α. Consider, with respect to the natural filtration, the càdlàg martingale Mt = E(1A|Ft ). By Doob’s
optional sampling theorem (see e.g. [2]) the probability that this value ever gets above 1/4 is bounded above by
4(1 − α). This gives the result. �

The following lemma follows in the same way as (4.24) with some elementary conditioning arguments.

Lemma 4.10. There exists a universal k4.5 > 0 so that for any x, y ∈ Cn and w,v ∈ Cn+1, if X is a random walk
under law P x,w,r and X′ an independent random walk under law P y,v,n,

P
(
P y,v,n

((
X′)τ ′

n,σ ′
n ∩ Xτn,σn �= ∅|(X(t): t ≥ 0

))
> k4.5

)
> 2k4.5, (4.36)

where

τn = inf
{
t :

∣∣X(t)
∣∣ ≥ 3 × 2n−1}, σn = inf

{
t > τn:

∣∣X(t)
∣∣ ≥ 7 × 2n−2 or ≤ 5 × 2n−2} (4.37)

and τ ′
n, σ ′

n are analogous stopping times for X′.

Remark. We assume that n be large enough for the relevant sets to be nonempty.

Definition 4.11. We say {x, y, v,w} with x, y ∈ Cn and v,w ∈ Cn+1 are 1-compatible if

sgn(x, v,n) sgn(x,w,n) sgn(y, v,n) sgn(y,w,n) = 1. (4.38)
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Lemma 4.12. There exists some universal constant k4.6 > 0 so that (provided 1 − α has been fixed sufficiently small)
for all n large and {x, y, v,w} not 1-compatible with x, y ∈ Cn and v,w ∈ Cn+1 if, for each u ∈ {v,w}, N

x,u
n < 1 −α

then for at least one u ∈ {v,w} N
y,u
n > k4.5/k4.6, where k4.5 is the constant defined in Lemma 4.10.

Proof. We suppose without loss of generality that v and w are both positive with respect to x but that while w is
positive with respect to y, v is not. By our assumption on the largeness of α we have by Lemmas 4.9 and 4.10, that
there exists a nearest neighbour path γ (·) from x to w on which for all times s,

sgn
(
γ s

)
sgn

(
γ (s),w, r

) = 1 (4.39)

and for which τ ′
n, σ

′
n are defined for path γ as in Lemma 4.10, we have

P z,u,n
(
Xτn,σn hits γ τ ′

n,σ ′
n
)
> k4.5 (4.40)

for each (z, u) ∈ {(x, v), (x,w), (y, v), (y,w)}. We consider two processes, (Zx(t): t ≥ 0) and (Zy(t): t ≥ 0) starting
respectively in x and y, running until Cn+1 is hit and so that for u ∈ {x, y} the process (Zu(t): t ≥ 0) has law
1/2P u,v,n + 1/2P u,w,n. Then we define the measures μu(z) by

μu
({z}) = P

(
Zu

(
T u

γ

) = z,T u
γ < σu

n

) ∀u ∈ {x, y}, z ∈ γ τ ′
n,σ ′

n , (4.41)

where T u
γ is the first hitting time for path γ τ ′

n,σ ′
n for process Zu and σu

n is the hitting time for this process analagous
to the stopping time of Lemma 4.10. From facts (4.2)–(4.3), we have that there exists universal K so that

1

K
μy

({z}) ≤ μx
({z}) ≤ Kμy

({z}) ∀z ∈ γ τ ′
n,σ ′

n (4.42)

and for either u,

P
(
Zu

(
T u

Cn+1

) = v|Zu
(
T u

γ

) = z,T u
γ < σu

n

) ∈ (1/K,1 − 1/K) ∀z ∈ γ τ ′
n,σ ′

n . (4.43)

We classify the points in γ τ ′
n,σ ′

n into five sets:

A++ = {
z: P z,w,n

(
X

TCn+1 is even
) ≥ 3/4,P z,v,n

(
X

TCn+1 is even
) ≥ 3/4

}
= {

z: sgn(z,w,n) = 1, sgn(z, v, n) = 1
}
,

A+− = {
z: sgn(z,w,n) = 1, sgn(z, v, n) = −1

}
,

(4.44)
A−+ = {

z: sgn(z,w,n) = −1, sgn(z, v, n) = 1
}
,

A−− = {
z: sgn(z,w,n) = −1, sgn(z, v, n) = −1

}
,

D = {
z: sgn(z,w,n) sgn(z, v, n) = 0

}
.

We have by the optimal stopping time reasoning of proof of Lemma 4.9 and our assumptions on x and v that

μx(D) < 4(1 − α). (4.45)

By (4.42), this implies that

μy(D) < 4(1 − α)K. (4.46)

That is D is a small set for the conditioned random walks started at x or y alike. We claim that

μx(A+−) < ε = 4K(1 − α). (4.47)
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To see this suppose the contrary, then we must have either

P
(
Zx(Tγ ) ∈ A+−, Tγ < σu

n ,
(
Zx

)Tγ is even
) ≥ ε/2 (4.48)

or

P
(
Zx(Tγ ) ∈ A+−,< Tγ < σu

n ,
(
Zx

)Tγ is odd
) ≥ ε/2. (4.49)

In the former case we have via (4.43) that

P x,v,n
(
X(Tγ ) ∈ A+−, Tγ < σn,X

Tγ is even
) ≥ ε/(2K) (4.50)

for σn the analagous stopping time to σu
n for X and so by the Markov property

P x,v,n
(
X

TCn+1 is odd
)
> ε/(4K) = 1 − α (4.51)

(provided 1 − α has been fixed sufficiently small) which contradicts our hypothesis on x and v. Similarly in the other
case we are forced to conclude that P x,v,n(X

TCn+1 is odd) > 1 −α. Arguing similarly with set A+− replaced by A−+,
we are able to deduce that

μx(A−+) < ε. (4.52)

From (4.42) we can conclude that μy(A−+ ∪ A+−) < 2Kε. We thus have that either μy(A++) ≥ (k4.5 − 2Kε)/2 or
μy(A−−) ≥ (k4.5 − 2Kε)/2. Without loss of generality we suppose the former. Note that assuming, as we may, that
our assumption on the closeness of α to 1 was suitably stringent, we have that (k4.5 − 2Kε)/2 > k4.5/3. Then for
identical reasons, either

P
(
Zy

(
T y

γ

) ∈ A++, Tγ < σ
y
n ,

(
Zx

)T x
γ is even

) ≥ (k4.5 − 2Kε)/4 > k4.5/6 (4.53)

or

P
(
Zy

(
T y

γ

) ∈ A++, T y
γ < σ

y
n ,

(
Zx

)T x
γ is odd

) ≥ (k4.5 − 2Kε)/4 > k4.5/6. (4.54)

Again without loss of generality we suppose the former. In this case we have

P y,w
(
X

(
T y

γ

) ∈ A++, T y
γ < σ

y
n ,XT

y
γ is even

) ≥ k4.5/(12K) (4.55)

and so

P y,w
(
XT

y
γ is even

) ≥ k4.5/(16K). (4.56)
�

In the following we assume that α has been fixed so large that 240k2
4.6(1 − α) < k4.5. The condition that I < ∞,

(4.2), (4.3) and Borel–Cantelli immediately yield:

Corollary 4.13. Let (X(t): t ≥ 0) and (Y (t): t ≥ 0) be two independent random walks. For any α < 1 a.s., for n

sufficiently large

N
X(TCn),X(TCn+1 )

n < 1 − α and N
Y(TCn ),Y (TCn+1 )

n < 1 − α (4.57)

and so a.s. for n sufficiently large {X(T X
Cn

), Y (T Y
Cn

),X(T X
Cn+1

), Y (T Y
Cn+1

)} are 1-compatible.

Definition 4.14. We say {x, y, z,w} with x ∈ Cn−1, y, z ∈ Cn and w ∈ Cn+1 are 2-compatible if

sgn(x, y,n − 1) sgn(x, z, n − 1) sgn(y,w,n) sgn(z,w,n) = 1. (4.58)
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Definition 4.15. For all x ∈ Cn−1 and y ∈ Cn+1

N
x,y
n+ = min

{
P x

(
path X

TCn+1 is even|X(TCn+1) = y
)
,

P x
(
path X

TCn+1 is odd|X(TCn+1) = y
)}

. (4.59)

Given this definition we define analagously:

Definition 4.16. I+ = ∑∞
n

∑
x∈Cn−1
y ∈ Cn+1

1
24n+2 N

x,y
n+ .

Lemma 4.17. The condition I < ∞ implies that I+ < ∞.

Proof. For n sufficiently large to ensure that Cn−5 is nontrivial and has zero intersection with Cn−4, we fix x ∈ Cn−1
and y ∈ Cn. By the invariance principle for random walks, we know that there exists universal k > 0 so that for any
choice of n and x ∈ Cn−1, P x(TCn−4 < TCn) > k.

Furthermore by (4.3), we have ∀x, x′ ∈ Cn−1,

P x(TCn = y)

P x′
(TCn = y)

∈
(

1

(k4.2(1/2))2
,

(
k4.2

(
1

2

))2)
. (4.60)

Thus from the Markov property we obtain

N
x,y
n ≥ k

k4.2(1/2)4(k4.1)2

∑
u∈Cn−3

u∈Cn−1

N
u,v
n−2+

1

22(n−3)

1

22(n−1)
(4.61)

from which the desired conclusion is immediate. �

This lemma is necessary for:

Lemma 4.18. Under the hypothesis that I < ∞, for any two independent random walks (X(t): t ≥ 0) and (Y (t): t ≥
0) with probability one {X(TCn−1),X(TCn), Y (TCn),X(TCn+1)} are 2-compatible for all n large.

Here, as before TCn as an argument denotes the stopping time appropriate to the process.

Proof. Given x ∈ Cn−1, y ∈ Cn+1, we define for N
x,y
n+ < 1

100 , the set H(x,y,+) to be the subset of elements w ∈ Cn

such that

sgn(x,w,n − 1) sgn(w,y,n) = sgn(x, y,n+),

where sgn(x, y,n+) is defined analagously to (4.31). We take H(x,y,−) to be simply the complement in Cn of
H(x,y,+),Cn\H(x,y,+). We note that given the condition I < ∞ (and thus I+ < ∞), by Corollary 4.13 for a

random walk X(·) a.s. we have eventually N
X(TCn−1 ),X(TCn−1 )

n+ < 1
100 . So in this case we need not define H(x,y,−)

for the remaining cases where N
X(TCn−1 ),X(TCn−1 )

n+ ≥ 1
100 .

If w ∈ H(x,y,−), then either sgn(x,w,n − 1) sgn(w,y,n) = 0, in which case

P x
(
sgn

(
X

TCn+1
) �= sgn(x, y,n+)|X(TCn) = w,X(TCn+1) = y

) ≥ 1

4

or sgn(x,w,n − 1) sgn(w,y,n) = − sgn(x, y,n+), in which case

P x
(
sgn

(
X

TCn+1
) �= sgn(x, y,n+)|X(TCn) = w,X(TCn+1) = y

) ≥
(

3

4

)2

.
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In either we have the lower bound 1
4 , so

N
x,y
n+ ≥ 1

4

∑
w∈H(x,y,−)

P x
(
X(TCn) = w|X(TCn+1) = y

)
.

An application of (4.2) gives that for random walks X(·) and Y(·), ∑
n P (A(n)c) and

∑
n P (A′(n)c) are both ma-

jorized by a multiple of I for events

A(n) = {
sgn

(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn),X(TCn+1), n

)
= sgn

(
X(TCn−1),X(TCn+1), n+)·}

∩{
N

X(TCn−1 ),X(TCn+1 )

+ < 1/100
}

and

A′(n) = {
sgn

(
X(TCn−1), Y (TCn), n − 1

)
sgn

(
Y(TCn),X(TCn+1), n

)
= sgn

(
X(TCn−1),X(TCn+1), n+)·}

∩{
N

X(TCn−1 ),X(TCn+1 )

+ < 1/100
}
,

so our result follows from the first Borel–Cantelli lemma. �

Given Lemmas 4.12 and 4.18, (4.3) and Fubini’s theorem, we can find a path realization X = X(·,ω) so that for
a.s. every independant random walk path Y the conclusion of the lemmas hold a.s. (here we use the notation X(·,ω)

to underline the fact that we consider a fixed path of the random walk (X(s): s ≥ 0) at time t ). Let us pick and
fix a “good” path X so that for a.s. path Y we have that for n large, {X(TCn−1),X(TCn), Y (TCn),X(TCn+1)} are 2-
compatible and {X(TCn), Y (TCn), Y (TCn+1),X(TCn+1)} are 1-compatible and also such that for any α < 1 eventually

N
X(TCn ),X(TCn+1 )

n < 1 − α. We will use this path to designate sites in Cn as positive or negative (at least for n large):
we first choose r0 so that for all n ≥ r0, sgn(X(TCn−1),X(TCn), n) is nonzero. We say that XCr0

is a positive site, i.e.,
sgn(XCr0

) = 1. Subsequently, we define recursively

sgn
(
X(TCn)

) = sgn
(
X(TCn−1),X(TCn), n

)
sgn

(
X(TCn−1)

)
. (4.62)

Given this assignation we now assign signs to arbitrary y ∈ Cn by

sgn(y) = sgn
(
X(TCn−1), y, n

)
sgn

(
X(TCn−1)

)
. (4.63)

It may help the reader to note that the objective in assigning a sign to sites is really to divide up the sites into two
classes so that this choice is asymptotically respected by random walks. Thus initial arbitrariness in choosing the sign
is not problematic.

Lemma 4.19. With probability one there exists a finite random r0 so that either

∀n ≥ n0, sgn
(
YTCn

)
sgn

(
Y(TCn)

) = 1 (4.64)

or

∀n ≥ n0, sgn
(
YTCn

)
sgn

(
Y(TCn)

) = −1. (4.65)

Proof. We first observe that for n large enough all the terms

N
X(TCn−1 ),X(TCn )

n−1 and N
X(TCn−1 ),Y (TCn )

n−1 (4.66)
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are less than 1 − α � 1. Furthermore by Lemmas 4.12 and 4.18 for n large, 1- and 2-compatibility give

sgn
(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn−1), Y (TCn), n − 1

)
× sgn

(
X(TCn),X(TCn+1), n

)
sgn

(
Y(TCn),X(TCn+1), n

) = 1 (4.67)

and

sgn
(
X(TCn), Y (TCn+1), n

)
sgn

(
Y(TCn), Y (TCn+1), n

)
× sgn

(
X(TCn),X(TCn+1), n

)
sgn

(
Y(TCn),X(TCn+1), n

) = 1. (4.68)

Therefore their product

sgn
(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn−1), Y (TCn), n − 1

)
× sgn

(
X(TCn), Y (TCn+1), n

)
sgn

(
Y(TCn), Y (TCn+1), n

) = 1. (4.69)

Using our assumptions, we have

sgn
(
Y(TCn+1)

) = sgn
(
X(TCn)

)
sgn

(
X(TCn), Y (TCn+1), n

)
= sgn

(
X(TCn−1)

)
sgn

(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn), Y (TCn+1), n

)
= sgn

(
X(TCn−1)

)
sgn

(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn), Y (TCn+1), n

)
× sgn

(
X(TCn−1), Y (TCn), n − 1

)2

= sgn
(
X(TCn−1)

)
sgn

(
X(TCn−1), Y (TCn), n − 1

)
sgn

(
X(TCn−1),X(TCn), n − 1

)
× sgn

(
X(TCn), Y (TCn+1), n

)
sgn

(
X(TCn−1), Y (TCn), n − 1

)
= sgn

(
Y(TCn)

)
sgn

(
X(TCn−1),X(TCn), n − 1

)
sgn

(
X(TCn), Y (TCn+1), n

)
× sgn

(
X(TCn−1), Y (TCn), n − 1

)
. (4.70)

Therefore, combining (4.69) and (4.70), we get for all n large

sgn
(
Y(TCn+1)

) = sgn
(
Y(TCn)

)
sgn

(
Y(TCn), Y (TCn+1), n

)
. (4.71)

Now, conditional upon Y(TCn), Y (TCn+1), the probability that

sgn
(
YTCn

)
sgn

(
Y(TCn)

) �= sgn
(
YTCn

)
sgn

(
Y(TCn+1)

)
(4.72)

is simply N
Y(TCn ),Y (TCn+1 )

n . Hence the result follows by Lemma 4.8. �

Thus we have defined the sign for points in
⋃

Cn in a way that is a.s. asymptotically respected by random walks.
Define the function

h(x) = P x
(
for all n large sgn

(
YTCn

)
sgn

(
Y(TCn)

) = 1
)

− P x
(
for all n large sgn

(
YTCn

)
sgn

(
Y(TCn)

) = −1
)

(4.73)

and the product measures μ± by μ+({η: η(x) = 1}) = (1 + h(x))/2, μ−({η: η(x) = 1}) = (1 − h(x))/2. We have by
Lévy’s 0–1 law and the Markov property that with probability 1 limt→∞ |h(Y (t))| exists and equals 1. So there exists
x ∈ Z

3 for which |h(x)| is arbitrarily close to 1 and in particular for which h(x) �= 0. But in this case we have for all t

by duality and the Markov property that

Ptμ±
({

η:η(x) = 1
}) = (

1 ± h(x)
)
/2. (4.74)

Then using a similar argument as in [4] (Section 7, Proof of Proposition 1.2), this implies non-uniqueness of equilibria.
This complete the proof of Proposition 4.4.
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5. The integer lattice in dimensions four and higher

We show Theorem 1.10 in this section. For notational convenience we give the proof for four dimensions but the proof
is easily seen to hold in all higher dimensions.

To begin, we introduce the basic building block for our counterexample. Consider the following choice of sign
function s: s(e) = 1 for all edges in Z4 except those of the form {(R,y, z,w), (R + 1, y, z,w)}. For this choice if
random walk X(·) begins at X(0) with the first coordinate X1(0) ≤ R, then for any t ≥ 0, we have

sgn
(
Xt

) = 1 (5.1)

if and only if X1(t) ≤ R. Similar considerations enable us to see that there are no unsatisfied cycles for s. We now
regard a modification. Define s(e) = 1 for all edges in Z

4 except those of the form {(R,y, z,w), (R + 1, y, z,w)}
for |y|, |z|, |w| ≤ R. The two above properties have disappeared. There now exist unsatisfied cycles and one cannot
identify sgn(Xt ) merely from X(t). Indeed, if say, R � 1 and X(0) ∈ [−R/2,R/2]4, we have that P(sgn(XR2

) =
1|X(R2)) is bounded away from 0 and 1 uniformly over R and X(R2) ∈ [−2R,2R]4.

Thus uncertainty is introduced into the sign of the random walk path. Our purpose is to choose a sequence of
integer scales Rn so that Rn+1/Rn tends to infinity sufficiently rapidly. Then we will give sign +1 to all edges except
those of the form (x, x + e1) for e1 = (1,0,0,0) and x ∈ {Rn} × [−Rn,Rn]3 for some n. The basic idea is that if the
Rn are sufficiently separated, then “infinite uncertainty” is introduced into the sign of a random walk path but that this
can be done in such a way that a.s. only a finite number of unsatisfied cycles are traversed.

In the first part of this section we argue from invariance principle considerations that if Rn+1/Rn ≥ 2(n+1)2/Kn+2
for constants (Kn)n≥2 small then almost surely a random walk does not traverse infinitely many unsatisfied cycles.
Then we argue that we have ergodicty.

We now undertake the first part of the program. This involves a more precise discussion of the preceding sketch.
Consider a Brownian motion in 4 dimensions, (B(t): t ≥ 0). Let V i

r , r ≥ 0 and i = 3,4 be the cube [−r, r]i (r will
typically but not always be an integer) and given a process (Y (t): t ≥ 0), T (n) = inf{t : Y(t) leaves V 4

n }. It follows
from the a.s. nonexistence of double points for 4-dim Brownian motion (see e.g. [3]) (and the fact that two dimensional
subspaces are polar) that, with probability 1, there does not exist t1, t2 ≤ T (n) so that t1 < t2 and

(
B(t1),B(t2)

)
or(

B(t2),B(t1)
)
⎫⎬
⎭ ∈ ({1} × V 3

1

) × (
∂V 4

1 \ ({1} × V 3
1

))
(5.2)

and

B(t3) = B(t4) for t3 ≤ t1 ≤ t2 ≤ t4. (5.3)

Bearing in mind the transcience of the Brownian motion and that B does not hit the intersections of the faces of ∂V 4
1 ,

there exists Kn > 0 (which we can and will take to be less than 1/4 and decreasing in n) so that with probability
strictly greater than 1 − 1/2n2

Kn ≤ inf
∣∣B(t3) − B(t4)

∣∣ (5.4)

for t1, t2, t3, t4 as above.
Now (possibly reducing Kn) we can also have that this is so for Brownian motion starting in V 4

Kn
uniformly over

the initial point.
Now we profit from the invariance principle, see e.g. [2], to conclude that for all R sufficiently large, with proba-

bility at least 1 − 1/2n2 for a random walk starting in V 4
RKn

for t3 ≤ t1 ≤ t2 ≤ t4 ≤ T (Rn),

(
X(t1),X(t2)

)
or(

X(t2),X(t1)
)
⎫⎬
⎭ ∈ ({R} × V 3

R

) × (
∂V 4

R \ ({R} × V 3
R

))
, (5.5)

KnR ≤ inf
∣∣X(t3) − X(t4)

∣∣. (5.6)
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In particular the probability that there exist t1, t2 as above, so that Xt1 intersects Xt2,T (nR) is less than 1/2n2.
Let us inductively define Rn as follows: R1 is such that for a 4-dimensional random walk (starting at 0) X, the

probability that there exist t1 < t2 ≤ T (2R1) (recall that T (2R1) is the leaving time of V 4
2R1

) so that

(i)
(
X(t1),X(t2)

)
or(

X(t2),X(t1)
)
⎫⎬
⎭ ∈ ({R1} × V 3

R1

) × (
∂V 4

R1
\ ({R1} × V 3

R1

));

(ii) there exists t3 ≤ t1 ≤ t2 ≤ t4 so that t4 ≤ T (2R1) and |X(t3) − X(t4)| ≤ K2R1

is less than 1/8. Such an R1 exists by the preceding. Now, given Rj−1 take Rj ≥ 2j2Rj−1/Kj+1, so that for any
random walk X(·) starting in V 4

Kj+1Rj
, the probability that there exists t1 < t2 < T (2(j + 1)Rj ) so that

(i)
(
X(t2),X(t1)

)
or(

X(t1),X(t2)
)
⎫⎬
⎭ ∈ ({Rj } × V 3

Rj

) × (
∂V 4

Rj
\ ({Rj } × V 3

Rj

));

and

(ii) there exists t3 ≤ t1 ≤ t2 ≤ t4 so that t4 ≤ T (2(j + 1)Rj ) and |X(t3) − X(t4)| ≤ Kj+1Rj

is bounded by 1/4(j + 1)2. Now take the configuration of ±1 bonds on Z
4 as follows: all bonds are +1 except bonds

(x, x + e1) for x ∈ {Rj } × V 3
Rj

for some j. (5.7)

Define A(n) to be the event that after stopping time T (2(n + 1)Rn), the random walk returns to V 4
Rn

and B(n) to be
the event

∃t > T
(
(n + 1)2Rn

)
: X(t) ∈ V 4

2(n+1)Rn
. (5.8)

Elementary potential theory and Borel–Cantelli immediately yield:

Lemma 5.1. With probability one there exists j0 < ∞ such that for all j ≥ j0, events A(j) and B(j) do not occur.

Define event D(n) to be be that there exists T (Rn) ≤ t3 < t1 < t2 ≤ t4 ≤ T (2(n + 1)Rn) so that
(
X(t2),X(t1)

)
or(

X(t1),X(t2)
)
⎫⎬
⎭ ∈ ({Rj } × V 3

Rj

) × (
∂V 4

Rj
\ ({Rj } × V 3

Rj

));

and X(t3) = X(t4). By our choice of the {Rj }j≥1 and again Borel–Cantelli, we have

Lemma 5.2. With probability one there exists j0 < ∞ such that for all j ≥ j0, events D(j) does not occur.

This yields:

Proposition 5.3. With the above choice of sign, the random walk a.s. traverses through only finitely many unsatisfied
cycles.

Proof. By the two preceding lemmas we have a.s. there exists j0 so that A(j),B(j) and D(j) do not happen for
j ≥ j0. We will show, by contradiction, that if s < t are both greater than T (Rj0), then Xs,t cannot be an unsatisfied
cycle.
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Let j be the largest integer such that s ≥ T (Rj ). We either have s ∈ [T (Rj ), T (2(j + 1)Rj )), [T (2(j +
1)Rj ), T ((j + 1)2Rj)] or [T ((j + 1)2Rj ), T (Rj+1)). We consider each of these possibilities in turn. For the first
case since by assumption j ≥ j0, (and so A(j) does not occur) Xs,t being an unsatisfied cycle must imply that D(j)

has occurred, a contradiction.
For the second case, given that B(j) does not happen, all edges in Xs,T (Rj+1) are positive and so we must have

t ≥ T (Rj+1). It is immediate that Xs,t being an unsatisfied cycle must entail forbidden event B(j + 1).

Finally, the third case immediately implies forbidden event D(j + 1). The proposition is proven. �

We now begin the second step, to show that with the above choice of sign function the signed voter model is
ergodic.

It is easily seen that the Harnack principle (4.3) yields:

Lemma 5.4. Let πr(w, ·) be the harmonic measure for a random walk starting at w, at the boundary of the ball
B(0, r). Then

lim
m→∞ lim sup

r→∞
sup

x,y∈B(0,r)

z∈∂B(0,mr)

πmr(x, z)

πmr(y, z)
= 1. (5.9)

Let (Rn)n≥1 be a sequence satisfying the above conditions and consider Cn = ∂B(0, n) (note change of notation!)
and Sn = nRn.

Lemma 5.5. There exists k5.1 ∈ (0,1/2) so that for all n large enough and all x ∈ CSn , y ∈ CSn+1

P x
(
X

TCSn+1 is odd|X(TCSn+1
) = y

)
> k5.1 (5.10)

and

P x
(
X

TCSn+1 is even|X(TCSn+1
) = y

)
> k5.1. (5.11)

Proof. By the invariance principle we have that if n is large, uniformly for each x ∈ CSn the probability of leaving the
box V 4

Rn+1
for the first time through {Rn+1} × V 3

Rn+1/2, then passing to ∂V 4
2Rn+1

without leaving [2Rn+1/3,+∞) ×
V 3

2Rn+1/3 is greater than k2 ∈ (0,1) for some universal k2. From here, uniformly over the random hitting point of

∂V 4
2Rn+1

, the conditional probability of hitting ∂B(0, (n + 1)Rn+1/2) before hitting V 4
Rn+1

will be greater than k3 ∈
(0,1) provided n is large. This follows from the invariance principle and the classical hitting estimates of Lawler (see
(4.2) and (4.3)). From (4.2) we have the existence of a constant k4 so that for all w ∈ ∂B(0, (n + 1)Rn+1/2)

1

k4S
3
n+1

≤ P w
(
X(TCSn+1

) = z
) ≤ k4

S3
n+1

. (5.12)

So using

P w
(
X(TCSn+1

) = z,TV 4
Rn+1

> TCSn+1

)

≥ P w
(
X(TCSn+1

) = z
) − sup

v∈V 4
Rn+1

P v
(
X(TCSn+1

) = z
)
P w(TCSn+1

> TV 4
Rn+1

), (5.13)

we obtain

P w
(
X(TCSn+1

) = z,TV 4
Rn+1

> TCSn+1

) ≥ 1

2k4S
3
n+1

, (5.14)
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for n large, uniformly over w ∈ ∂B(0, (n + 1)Rn+1/2). Hence for all x ∈ CSn and y ∈ CSn+1

P x
(
X

TCSn+1 is odd,X(TCSn+1
) = y

) ≥ k2k3

2k4S
3
n+1

. (5.15)

This, given

P x
(
X(TCSn+1

) = y
) ≤ k4

S3
n+1

(5.16)

gives

P x
(
X

TCSn+1 is odd|X(TCSn+1
) = y

) ≥ k2k3

2k2
4

. (5.17)

We argue similarly for the second part. �

The following is a simple consequence of Lemmas 5.4 and 5.5.

Corollary 5.6. For m fixed, there exists N0 so that for all n ∈ Z+ and all x ∈ B(0, Sm), y ∈ CSN0+n

∣∣2P x
(
X

TCSN0+n is odd|X(TCSN0+n
) = y

) − 1
∣∣ ≤ 2(1 − k5.1)

n. (5.18)

We are now ready to complete the proof of Theorem 1.10.

Proposition 5.7. For Rn and sign functions as previously described, the signed voter model is ergodic.

Proof. By Theorem 2.1, it is enough to show that for any η0 and any x ∈ V,P (ηt (x) = 1) → 1
2 as t tends to infinity.

We fix x ∈ B(0, Sm) and choose N0 of the preceding corollary. We also fix positive integer r which we will ultimately
let tend to infinity. From the preceding corollary we have that for t sufficiently large and for all y ∈ CN+r ,

∣∣2P x
(
X

TCSN+r is odd|X(TCSN+r
) = y,TCSN+r

< t
) − 1

∣∣ ≤ 4(1 − k5.1)
n (5.19)

and so |P x(X
TCSN+r is odd|X(TCSN+r

) = y,TCSN+r
< t) − 1

2 | is less than or equal to 2(1 − k5.1)
n.

We now introduce the sigma-field G, the algebra generated by the random element X(TCSN+r
) and the event

{TCSN+r
< t}. Of course

P
(
ηt (x) = 1

) = E
(
P

(
ηt (x) = 1|G))

. (5.20)

But for t so large that (5.19) holds, we have that on event {TCSN+r
< t},

∣∣∣∣P (
ηt (x) = 1|G) − 1

2

∣∣∣∣ ≤ 2(1 − k5.1)
r .

Thus integrating (5.20), we have
∣∣∣∣P (

ηt (x) = 1
) − 1

2

∣∣∣∣ ≤ 2(1 − k5.1)
r + P(TCSN+r

≥ t).

Our result now follows by, first, letting t tend to infinity to obtain lim supt→∞ |P(ηt (x) = 1) − 1
2 | ≤ 2(1 − k5.1)

r and
then letting r become large. �
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