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Abstract. Ground states of the Edwards—Anderson (EA) spin glass model are studied on infinite graphs with finite degree. Ground
states are spin configurations that locally minimize the EA Hamiltonian on each finite set of vertices. A problem with far-reaching
consequences in mathematics and physics is to determine the number of ground states for the model on 74 for any d. This problem
can be seen as the spin glass version of determining the number of infinite geodesics in first-passage percolation or the number of
ground states in the disordered ferromagnet. It was recently shown by Newman, Stein and the two authors that, on the half-plane
7 x N, there is a unique ground state (up to global flip) arising from the weak limit of finite-volume ground states for a particular
choice of boundary conditions. In this paper, we study the entire set of ground states on the infinite graph, proving that the number
of ground states on the half-plane must be two (related by a global flip) or infinity. This is the first result on the entire set of ground
states in a non-trivial dimension. In the first part of the paper, we develop tools of interest to prove the analogous result on 74,

Résumé. Les états fondamentaux du modele de verre de spins de Edwards—Anderson (EA) sont étudiés sur des graphes infinis de
degré fini. Les états fondamentaux sont les configurations de spins qui minimisent de maniére locale I’Hamiltonien pour chaque
ensemble fini de sommets. Un probleme avec des implications importantes en physique et en mathématique est de déterminer
le nombre d’états fondamentaux pour le modele sur 74 pour un d > 1 donné. Ce probleme est la version équivalente pour les
modeles de verre de spins du probleme du nombre de géodésiques infinies en percolation de premier passage et du nombre d’états
fondamentaux du modele d’Ising ferromagnétique désordonné. Il a été montré récemment par Newman, Stein et les deux auteurs
que sur le demi-plan Z x N, il existe un unique état fondamental (modulo un flip global des spins) produit par la limite faible
des états fondamentaux des volumes finis pour un choix spécifique des conditions frontieres. Dans cet article, nous étudions
I’ensemble de tous les états fondamentaux sur le graphe infini Z x N. Nous montrons que le nombre d’états fondamentaux est deux
(correspondant a un flip global des spins) ou infini. Ceci est le premier résultat sur I’ensemble de tous les états fondamentaux pour
une dimension non-triviale. Dans la premiere partie, nous développons des outils qui sont pertinents a la résolution du probleme
analogue sur 74.
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1. Introduction
1.1. The model and the main result

We study the Edwards—Anderson (EA) spin glass model on an infinite graph G = (V, E) of finite degree [3,5]. We
mostly take G = 74 (and further, d =2), and G =Z x N, a half-plane of 72,

For a finite set A C V, consider the set of spin configurations ¥4 = {—1, ~|—1}A and for o € X4, the Hamiltonian
(with free boundary conditions)

Hja(0)== Y Jyoyo,, (1)
{x.yleE
xX,yeA

where the Jy,’s (the couplings) are taken from an i.i.d. product measure v. We assume that the distribution of each
Jyy is continuous with support equal to R. For inverse temperature 8 > 0 the Gibbs measure for A is

exp(—BHy4(0)), Zja= Z exp(—BH;4(0)).

geXy

Gy alo)= 7

As temperature approaches 0 (8 — oo) the Gibbs measure converges weakly for v-almost all J to a sum of two delta
masses, supported on the spin configurations with minimal value of H; 4. These spin configurations (related by global
flip) can be seen to be characterized by the following local flip property: for each B C A, we have

Z Jyyoroy > 0.
{x.y}eoB
x,yeEA

Here the set 9B C E is defined as all edges {x, y} such that x € B and y ¢ B. The advantage is that this definition
makes sense for infinite sets A. For this reason, we define the set of ground states on the infinite graph G at couplings
J by

g(]):{ae{—1,+1}v: VA C V finite, Z nyaxayZO}. (2)
{x,y}cdA

In other words, elements of G(J) are the spin configurations minimizing the Hamiltonian locally for the coupling
realization J. Clearly, o € G(J) if and only if —o € G(J). The goal of this paper is not to determine precisely the
cardinality of G(J) but rather to rule out possibilities other than two or infinity. Our main result is to prove such a
claim in the case of the EA model on the two-dimensional upper half-plane. In this case, the vertices at the bottom
have degree three and others have degree four. This corresponds to “free boundary conditions” at the bottom in physics
terminology.

Theorem 1.1. For the EA model on the half-plane G = 7Z x N, the number of ground states |G(J)| is either 2 with
v-probability one or 0o with v-probability one.

1.2. Previous results

A main question in the theory of short-range spin glasses is to understand the structure of the set G(J), and in particular
its cardinality. This problem is the zero-temperature equivalent of understanding the structure and the cardinality of
the set of pure states, the set of infinite-volume Gibbs measures of the EA model that are extremal. It is easy to check
that for G = Z, G(J) has only two elements: the flip-related configurations o defined by the identity oo, = sgn Jyy.
However, it is not known how many elements are in G(J) for G = 74 whend > 1. (We will see in the next section that
the cardinality of G(J) must be a constant number v-almost surely.) It is expected that |G(J)| =2 for d =2 [13,17]
(see also [11] for a possible counterargument to this). There are competing predictions for higher dimensions. The
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Replica Symmetry Breaking (RSB) scenario would predict |G(J)| = oo for d high enough [12], and the droplet/scaling
proposal would be consistent with |G(J)| = 2 in every dimension [6]. We refer to [14,16] for a detailed discussion on
ground states of disordered systems or pure states at positive temperature.

There have been several works on ground states of the EA model in the physics and mathematics literature; a partial
list includes [1,6,11,13—17]. The present work appears to give the first rigorous result about the entire set of ground
states G(J). Previous rigorous results have focused on the so-called metastates on ground states. A metastate is a
J-dependent probability measure on {—1, 41} supported on ground states. It is constructed using a sequence of
finite graphs G, converging to G. For a given realization J and n, the ground state on G,, is unique up to a global
flip. We identify the flip-related configurations and write o, (J) for them. A metastate is obtained by considering a
converging subsequence of the measures (v(dJ)dqx(s))n, Where dox(yy is the delta measure on the ground state of
G, for the coupling realization J. If x denotes a subsequential limiting measure, then sampling from « gives a pair
(J,0) e RE x {—1, +1}". A metastate is the conditional measure given J and is denoted k. It is not hard to verify
that «; is supported on G(J).

It was proved in [1] that the ground state of the EA model on the half-plane with horizontal periodic boundary
conditions and free boundary condition at the bottom is unique in the metastate sense. Precisely, for a sequence of
boxes G, that converges to the half-plane, the limit x; produced by the metastate construction is unique and is given
by a delta measure on two flip-related ground states. Though the metastate construction is very natural, it is important
to stress that the measure thus obtained is not necessarily supported on the whole set G(J). It may be that some
elements of G(J) do not appear in the support of the metastate, due to the choice of boundary conditions on G,, or to
the fact that the subsequence in the metastate construction is chosen independently of J. Such states are often said to
be invisible. Therefore, uniqueness in the metastate sense does not answer the more general question of the number of
ground states. We remark that the presence of visible and invisible states in the metastate has been precisely studied
in a particular mean-field disordered model by Iacobelli and Kiilske [10].

It is natural from a statistical physics perspective to study the set G(J) by looking at probability measures on it.
One challenge is to construct probability measures on G(J) that have a nice dependence on J, namely measurability
and translation covariance. The metastate (with suitably chosen boundary conditions) briefly described above is one
such measure. The main idea of the present paper is to consider another measure, the uniform measure on G(J)

1
- 5. 3
" mmggl) ©

For w; to be well-defined it is necessary to assume that |G(J)] is finite. Like the metastate, the uniform measure on
ground states depends nicely on J: see Proposition 2.4 and Lemma 3.9. The strategy to prove a “two-or-infinity” result
is to assume that |G(J)| < oo and to conclude that it implies that p is supported on two spin configurations related
by a global flip (that is, |G(J)| = 2). The approach is similar to the proof of uniqueness in [1] using the interface
between ground states, though new tools need to be developed. For spin configurations o and ¢’, define the interface
o Ao’ as

oAc’ ={{x, y} € E: o0y 750)20;}.

It will be shown for the half-plane that
/v(dJ)/u x us{(o,0'): cAc' =2} =1.

This implies that w; is supported on two flip-related configurations for v-almost all J since o0 Ao’ = & if and only if
oc=c'oro=-0'.

Before going into the details of the proofs, we remark that the problem of determining the number of ground states
for the EA model can be seen as a spin-glass version of a first-passage percolation problem. Indeed, one question in
two-dimensional first-passage percolation is to determine whether there exist infinite geodesics. These are doubly-
infinite curves that locally minimize the sum of the random weights between vertices of the graph. This problem is
equivalent to determining whether there exist more than two flip-related ground states in the (ferromagnetic) Ising

model with random couplings. The Hamiltonian of the ferromagnetic model is the same as in (1), but the distribution
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of J is restricted to the positive half-line. The reader is referred to [18] for the details of the correspondence. It was
proved by Wehr in [18] that the number of ground states for this model is either two or infinity in dimensions greater or
equal to two. On the half-plane, it was shown by Wehr and Woo [19] that the number of ground states is two. Contrary
to the ferromagnetic case, the study of ground states of the EA spin glass model presents technical difficulties that
stem from the presence of positive and negative couplings. This feature rules out monotonicity of the partial sums of
couplings along an interface.

The paper is organized into two main parts as follows. The first part develops general tools to study ground states
of the EA model. Precisely, in Section 2, elementary properties of the set G(J) are derived for general graphs. In
particular, the dependence of G(J) on a single coupling is studied. Properties of probability measures on G(J) are
investigated in Section 3 with an emphasis on the uniform measure on G(J). The second part of the paper consists of
the proof of Theorem 1.1 and is contained in Section 4. Unfortunately, it is not clear how to apply the method used in
Section 4 to the case G = Z2. This is because it makes great use of how the interface behaves close to the boundary.
However, the tools developed in Sections 2 and 3 could be of help to prove Theorem 1.1 for G = Z2.

2. Elementary properties of the set of ground states

In this section, we will introduce the uniform measure on G(J). We stress that it is typically not easy to construct
a family of measures (x7) on ground states parametrized by J that has both a measurable dependence on J and a
certain invariance properties under automorphims of the graph (e.g., translations). The only other example known to
the authors is the metastate on ground states constructed from suitable boundary conditions. Unless otherwise stated,
we consider the EA model on a connected graph G = (E, V) of finite degree. We assume there exists a sequence
of finite subgraphs (G,) that converges locally to G, that is any vertex or edge of G is in all but finitely many G, .
Throughout the paper, we will use the following notation: £2; = R, and ] is the Borel sigma-algebra generated by
its product topology; §2, = {—1, 41}V and ; is the corresponding product sigma-algebra.

2.1. Measurability
We first note that the set of ground states is compact.

Lemma 2.1. G(J) is a non-empty compact subset of §25 (in the product topology) for all J. In particular, the set of
probability measures on G(J) is compact in the weak-* topology on the set of probability measures on §2;.

Proof. The fact that G(J) is non-empty follows by a standard compactness argument, taking a subsequence of ground
states for the Hamiltonian (1) with A = G,,. The function o Z{x,y}ea A4 Jxyoxoy is continuous in the product
topology for a given finite A and J. Therefore, the set {o € {—1,+1}": > ix.y)eoa Jxyoxay = 0} is closed. Since
G(J) is the intersection of these sets over all finite A by (2), it is closed. Being a closed subset of the compact
space £2,, it is also compact. The second statement of the lemma follows from the first. (I

The next result is necessary for the uniform measure to be well-behaved and to later apply the ergodic theorem to

1G(J)].
Proposition 2.2. The random variable J +— |G(J)| is F|-measurable.

Proof. Consider a sequence of finite graphs A, C G, a configuration o, on A, and a configuration &,, on the external
boundary of A, (that is, all vertices that are not in A, but are adjacent to vertices in it). The condition that o, is a
ground state in A, with boundary conditions &, is a finite list of conditions of the form

D Tyn)i(on)y =0 or Y Jey(0)x(Gn)y =0 )

{x,y}eS {x,y}eS
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for specific finite sets S of edges. For any given S, the set of J € £21 such that condition (4) holds for fixed o, and &,
is then measurable (that is, it is in 7). Intersecting over all relevant sets S, we see that the following set is measurable:

J (o4, 0y) :={J: o, is a ground state in A,, for the boundary condition o, }.

Next take m < n and fixed configurations o, on A, 6., On A, \ A, and o, on the boundary of A,. By a similar
argument to the one given above, the set J (0y, 0.5, 0,) of J such that the concatenation of o, and o, , is a ground
state on A, with boundary condition o, is measurable. Taking the union over all o,, , and o, for a fixed o,,, we get
that for m < n and oy, fixed, the following set is measurable:

J(om,n) = {J: there is a ground state in A, (for some &) that equals o, on A, }

If there exists a sequence of (possibly J-dependent) configurations () such that there are ground states (o;,) on
A, with boundary condition &, that converge to o, then o is in G(J). Conversely, if o € G(J), such a sequence (o)
exists by taking &, to be the restriction of ¢ to the boundary. It follows that (),~.,, J (o, n) is the event that there is
an infinite-volume ground state o for couplings J that equals ,, on A,,. This event is thus measurable.

For fixed m and a configuration o,, on A,,, let F;,, (J) be the indicator of the event that there is an infinite-volume
ground state o for couplings J equal to o, on A,,. By the above, it is F]-measurable. The proposition will then be
proved once we show:

G| =sup ) Fo, (). 5)

Om

Here the sum is over all o, on A,,. For any m, the sum Zam F5,, (J) equals the number of different o,,’s that are
equal to restrictions on A,, of elements of G(J). So for each m,

> Fo, (1) <]G()]

Om

and the right side of (5) is at most |G(J)|. To show equality in (5), suppose first that |G(J)| is finite. We can choose n so
that the restriction to A,, of each element of G(J) is different. For this n, Zﬂn F5,(J) =1G(J)| and (5) is established.
If |G(J)| = oo, then for any k € N, we can find ny such that Zank Fonk (J) = k. This is because we can take A, large

enough so that there are at least k elements of G(J) that are distinct on A, . Taking the supremum over k completes
the proof of (5). O

In the case G = Z4, it is easy to see that for any translation 7, by a vector a € 74, 1G(J)| = |G(T,J)| where
(TaJ)xy = J1,(0)T,(y)- The ergodic theorem then implies that the random variable |G(J)]| is constant v-almost surely.
The same holds when G is the half-plane by considering only horizontal translations.

Corollary 2.3. For G = 7% or G =7 x N, the number of ground states |G(J)| is a constant v-almost surely.

The next result shows that if |G(J)| < oo then the uniform measure w ; defined in (3) is a random variable over Fj.

Proposition 2.4. Let B € F; and assume that |G(J)| < 0o. The map

J = uy(B)
is Fi-measurable. Similarly, if B is a Borel set in §2, x $2;, then the map J — uj x puj(B’) is F|-measurable.
Proof. By a standard approximation, it is sufficient to prove the statement for B of the form

B={0:0=s54 0nA}

for some finite set A and fixed configuration s4 on A.
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Take a sequence of finite graphs A, converging to G. We define
F;,(J) = number of o € G(J)’s that equal 54 on A.

Note that p;(B) is simply Fj, (J) divided by |G(J)|. The variable G(J) is Fj-measurable by Proposition 2.2. Thus
it remains to show that Fj, (J) is also.

Exactly as in the last proof, if n is so large that A, contains A and if s4 , is any fixed spin configuration on A, \ A,
then the set J(sa, s4.,) of all J such that there is an element of G(J) that (a) equals s4 on A and (b) equals s4 , on
Ay \ A is measurable. Let Fy, s, . (J) be the indicator of the event [J(s4, 54,,) and consider the random variable

sup E FSA,SA,,,(J).
n
SA,n

Here the supremum is over all n such that A C A,,. The same reasoning to prove (5) shows that F;,(J) is equal to
the above and is thus measurable. This completes the proof of the first claim. The second assertion is implied by the
first one since by a standard approximation, any measurable function on £2, x §2; can be approximated by linear
combinations of indicator functions of sets of the form

By:={(0.0): 0 =sponA, o' =s4 on A’}

for two finite sets A and A’ of G. Since p; x py(Ba) is equal to the product of the w ;-probability of each coordinate,
measurability follows from the first part of the proposition. (]

2.2. Properties of the set of ground states

In this section, we establish some elementary properties of the dependence of the set of ground states G(J) on a finite
number of couplings.
Fix an edge e = {x, y}. We will sometimes abuse notation and write for simplicity

Je:=Jyy and o, :=0,0y.

We are interested in studying how G(J) varies when J, is modified. For simplicity, we will fix all other couplings and
write G(J,) for the set of ground states to stress the dependence on J,. From the definition (2), it is easy to see that if
o € G(J,) and 0, = +1, then o remains a ground state for coupling values greater than J,. More generally:

Lemma 2.5. Fix an edge e = {x, y}. If J, < J, then
g(Je)Nfo: oe =+1} C g(']e/) N{o: o, =+1},

GJ)N{o: 0, =—1}2 Q(Je’) N{o: o, =—1}.

In view of the above monotonicity of the set of ground states, it is natural to introduce the critical value of o € G(J,)
at e. Namely, we define the critical value C, as

Celd0) = {i‘&i{(};iigg({jﬁ} Sy
For future reference, we remark that from the definition,
ceG(/),) and o, =41 = J.>C.(J,0),
cegGl/,) and o, =-1 — J.<C.(J, o). ©

An elementary correspondence exists between the critical values and the energy required to flip finite sets of spins.
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Lemma 2.6. Let o € G(J,). Then

0oCe(J,0) == inf > Jwoiow. @)
eI wleaA
{z,w}e

In particular, for a given o, C,(J, o) does not depend on J,.

In this section, we will often omit the dependence on J in the notation and write C,. (o) for simplicity. From the
above result, we see that this notation is consistent with the fact that all couplings other than J, are fixed in this section.

Proof of Lemma 2.6. The independence assertion is straightforward from the expression. We prove the equation in
the case of o, = +1. The other case is similar. Let —C, (o) be the right side of (7). If C.(0) + C.(0) > 0, there exists
8 > 0 such that

Celo) =8+ inf > Jwozow > 0.
{z,w}€dA
{z,w}ste

In particu}gr, o €G(J,) for J; = C.(0) — 8, contradicting C.(o) as the infimum of such values. On the other hand if
C.(0) + C.(0) < 0, there must exist a finite set A such that

Ce(o) + Z Jowo .0y < 0.
{z,w}€dA
{z,w}#e

In particular this would hold for C. (o) replaced by some J, > C. (o), contradicting the definition of C.(c ), because
we should have o € G(J,) forall J, > C,.(0). O

The distance |J, — C.(0)| from J, to the critical value is called the flexibility of e and is denoted F,(c). (This
quantity was first introduced in [15].) From Lemma 2.6, it has a useful representation:

Fe(o) = |Je - Ce(o')| = A-irégA Jow0o 0. (®
¢ {z,w}€d A

In the same spirit as the critical values, for any edge ¢ and o € G(J,), we define the set of critical droplets for e
in 0. These are the limit sets of the infimizing sequences of finite sets in the expression (7) of the critical value C, (o).
Precisely, if (A;) is a sequence of vertex sets, we say that A, — A if each vertex v € V is in only finitely many of
the sets A, A A (here A denotes the symmetric difference of sets). We will say that A is a critical droplet for e in o if
there exists a sequence of finite vertex sets (A;) such that A, — A, e € dA, for all n and

— Z Jyyoroy — 0,Cc(0) asn— oo.
{x,y}ed A,
{x,y}#e

Write C D, (o) for the set of critical droplets of e in o. By compactness, this set is nonempty.

Since the critical values are values of J, where there is a change in the set G(J,), it will be useful to get bounds
on them that are functions of the couplings only (not of o € G(J,)). In this spirit, similarly to [15], we define the
super-satisfied value as

for e = {x, y}, se:=min{ > el Y |Jyz|}. )
FEy Z#EX
{x,z}€E {y,z}eE
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We will say that an edge e is super-satisfied if | J.| > S,. The terminology is explained by the following fact: by taking
A ={x}and A = {y} in (2), one must have

Jo>S, — o.=+1 foralloeG(J,),

(10)
Jo<-S = o.,=-1 forallo eG(J,).
Moreover, for the same choice of A, we get from Lemma 2.6
C,(0)>-S,ifo,=+1 and C.(0)<S,ifo,=—1. (11

Our next goal is to prove that in fact |C.(0)| < S, (cf. Corollary 2.8). This is done by establishing a correspondence
between the two following sets:

Gy = {o €2 0,=+1,YACYV finite withe ¢ 0A, Y Jyyoc0y > 0},
{x,y}edA

G, = {o €2 0, =—1.YACYV finite with e ¢ JA, Y Jryox0y > 0}.
{x,y}edA

In other words, G+, are the sets of ground states on the graph G minus the edge e, where the spins of the vertices of
e are restricted to have the same/opposite sign. Note that these sets depend on the couplings but not on J,. Clearly, if
o € G(J,) then either 0 € G, or 0 € G_, depending on its sign at e. Moreover by (10), if J, > S,, then G(J,) € G,
and if J, < —S&,, then G(J,) € G_.. Equality is derived in Corollary 2.9 from the following correspondence.

Proposition 2.7. For o € G4, and A € CD,(0), consider & where 0 AG = d A; that is,

~ _{o,,, v A, (12)

o, =
v —0y, VEA.

Then € G_, and C,(G) > C.(0). A similar statement holds for o € G_, with& € G, and C,(6) < C.(0).

Proof. Write D for the collection of sets of edges S such that S = d A for some finite set of vertices A. We will use
the following fact, which is verified by elementary arguments, and which was also noticed in [7]: if Sy, Sz € D, then
S1AS; € D.

We will prove the proposition in the case o € G,. The other case is similar. Choose a sequence of finite vertex sets
(A,) such that e € 0 A, for all n, A, — A, and

— Z Jyyoxoy — Cp(0) asn— oo.
{x,y}ed A,
{x,y}#e

Write S, =0A,, S=0A,letT € D and take n so large that TN S, =T NSand T\ S, =T\ S. Let J be the
coupling configuration with value Jy = J¢ for f #e and J. = C,.(0) ate.

E Jyyoxoy = E Jyy0Ox0y + E Jxy0x0y

{x,y}eT {x,y}eTnS, {x,y}€T\Sp
(12) T T
= — Z Jyyoxoy + Z Jyyox 0y
{x,y}leTNS, {x,y}€T\Sn

= E Jyyoxoy — E Jyy0x0y.

{x,y}€eTAS, {x,y}eSn
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Since TAS, € D and o € G(J), we have 2 r.y)eTAS, J:yoxoy > 0. Therefore,

E Jyy0oxoy > — E Jyy0ox0y.

{x.y}eT {x,y}eSn

The right side tends to 0 as n — oo by the definition of S and T, so Z{x’y}eT J:ygx&'y >0and 5 € G(J). Clearly,
& eG_,, and by (6), C,(5) = J, = C.(0). 0

We prove three corollaries of the proposition. The first is the claimed bounds on C, (o).
Corollary 2.8. Let e be an edge. If 0 € G(J,), then |C.(0)| < S,.

Proof. We prove the bound when o € G,. The case o € G_, is similar. The lower bound was noticed in (11). As
for the upper bound, by Lemma 2.7, there exists & € G_, such that C.(0) < C,(5). The claim then follows from
C.(0) <S8, again by (11). O

A useful fact about Corollary 2.8 is that it replaces the critical value that a priori depends on an infinite number of
couplings by a quantity that depends on finitely many. Another corollary is that for J, low enough or large enough,
the set G(J) is independent of J,:

Corollary 2.9. If J, > S,, then G(J,) = G4,. If Jo < =S¢, then G(J.) =G_,.

Proof. Suppose first that J, > S,. Then, from (6) and Corollary 2.8, one has G(J.) € G,,. Conversely, if o € G4, it
suffices to show that for any finite set of vertices A with e € 9A

Jo + Z Jow0oz04 > 0.
{z,w}€dA
{z,w)ze

By Corollary 2.8, we have S, — C.(0) > 0 and, using formula (7), we see that the above holds for J, > S,. The proof
for G_, is similar. O

Finally, we show that an infimizing sequence of sets for the critical values of an edge can never contain certain
super-satisfied edges. For this we need to introduce

fore={v.y}, &= Y |l (13)
{x,z}eE,z#£y

Note that by definition, S, = min{S;, SJ}. If d and e are two different edges, there exists a vertex x which is an
endpoint of d, but not of e. Having |J4| > S guarantees that the edge d is super-satisfied independently of the value
of J,.

Corollary 2.10. Letd = {x, y} and e be edges such that x is not an endpoint of e and |J4| > S . If o € G(J) then no
element A of CD,(c) has d € 0 A.

Proof. Let o € G(J) for some fixed J such that |Jg| > S}j. Suppose d € 3 A for some A € CD, (o). Define G as in
Proposition 2.7, so that 0 AG = d A. For y € R, let J (e, y) be the coupling configuration that equals J at f 7 e and
y at e. On one hand, note that, by Proposition 2.7, ;4 = —d and that & € G(J (e, y)) for either small or large values
of y. On the other hand, if | J;| > S for J, then | J;| > S in J (e, y) for all y € R, because x is not shared by d and e.
In particular, this implies by Corollary 2.9 that the sign at the edge d of the elements of G(J (e, y)) must be the same
for all y € R. This contradicts oy = —0. O
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3. The uniform measure on the set of ground states

In this section we assume that
‘Q(J)| is constant v-a.s. and |Q(J)| < 00.

The first assertion holds for graphs with translation symmetry by the ergodic theorem as noted in Corollary 2.3. We
consider the family (u ;) consisting of the uniform measures on G(J) indexed by J € £21. Recall from Proposition 2.4
that this family has a measurable dependence on J. For concision, the following notation will be used throughout the
paper for the product measures on J and on one or two replicas of the spin configurations:

M=v(dJ)u; or M=v(dJ)uy X uy, (14)

where the appropriate case will be clear from the context. In the first part, we use the monotonicity of the measure
(defined below) to prove several facts, for example that the critical droplet of any edge is unique. Second, we focus
on the properties of the interface sampled from M and prove that, if it exists, any given edge lies in it with positive
probability.

3.1. Properties of the measure

We first introduce the monotonicity property of the family (u ;). It is the analogue of the monotonicity of G(J) in
Lemma 2.5 at the level of measures. To define it, we give the following notation. For any coupling configuration
J =(Jy) reE, fixed edge e and real number y, let J (e, y) be the coupling configuration given by

e
(J(e’Y))f:{if ifﬁéi (13)

Consider any event A C 21 X {o: 0, = +1}. A simple consequence of Lemma 2.5, since |G(J)| is a.s. constant, is
that for almost all J and for almost all y > J,:

[,LJ{()': (J,U)GA}SMJ(e’y){U: (],O’)GA}; (16)
on the other hand, if A C 21 x {o: 0, = —1}, then for almost all J and almost all y < J,:
/.Lj{O'Z (J,O')GA}EM_](&);){UZ (J,G)EA}. (17)

Similar statements hold for the product p; x p ;. For example, the mixed case A € §2; x {0: 0, =41} x {0": 0/ =
—1} yields for almost all J and almost all y > J, and y' < J,:

pi x pu{(o,0"): (J.0,0") € A} < pyeyy X e n{(o.0’): (J.0.0") € A}. (18)

We refer to (16), (17) and (18) as the monotonicity of the family (w 7). It is a natural property to expect from a
family of measures on ground states. The results of this section, with the exception of Lemma 3.5, are derived solely
from it and no other finer properties of the uniform measure. The main use of the monotonicity property is to decouple
the dependence on J, in ; from the dependence on J, in the considered event. This trick will appear frequently. The
results of this section are stated for the measure M in (14) with one replica of o for concision. They also hold for the
measure M on two replicas.

A useful consequence of (16), (17), (18), and the continuity of v is that M-almost surely no coupling value is equal
to its critical value. This is a special case of the next proposition, taking B = {e} and hpc = C,.

Proposition 3.1. Let B C E be a finite set of edges and hpe :RE x {—1, +1}Y — R be a function that does not
depend on couplings of edges in B. Then for any given s, € R, b € B, not all zero,

M{(J,a): hge(J,0) = Z Jbsb} =0.

beB
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The same statement holds if hge is a function of the couplings and two replicas (J, o, 0") +— hpge(J, o, 0”) that does
not depend on the couplings of edges in B.

Proof. The event {o: hpe(J,0) = Zhe g Jpsp} can be decomposed by taking the intersection with all possible spin
configurations on B. Suppose first that o, = +1 for all b € B and define, for a given J € RE, J(B, y) for y € R
similarly to (15)

| Ye, €e€B,
(J(B’y))e‘{Je, e¢B.

By (16), uy{o: hpe(J,0) =", Jpsp, 0p = +1Vb € B} is smaller than the probability of the same event under the
measure averaged over larger Jp,’s. Writing {J E} for the event that y, > Jp, for all b € B,

/v(dJB)pLJ{a: hpe(J.o) =Y Jpsp.op=+1Vbe B}
beB

1
S/V(dJB) = /> V(dy)MJ(B,y){GI th(J,G)=ZJbSb,Ub=+1Vb€B}.
v{Jg} Jug) ben

Integrating y over all of R? and dropping {0, = 4+1Vb € B} gives the upper bound:

1
/V(dJB)—>/v(dy)MJ(B,y){0: th(J(B,y),U)=ZJbSb}.

U{JE} beB

Note hpe(J(B,y),0) =hpe(J,0) as hp. does not depend on couplings in B. Now use Fubini:

/V(dY)/.dMJ(B,y)(U)[/ U(dJB)V{JE}_ll{ZbEB Jbsb=h3c(J(B,y),o)}(JB)],

where 14 (Jg) denotes the indicator function of the event A. Because the linear combination of Jj’s is non-trivial and
hpe(J(B,y),o) does not depend on Jp, the indicator function is equal to 1 on a set of Jp’s that is a hyperplane of
dimension at most |B| — 1. Therefore it is v-almost surely zero, and the inner integral equals zero. This completes
the proof in the case that o, = +1 for all b € B. To prove the other cases where o, = —1 for some b € B, it suffices
to average over {Jbs} (where this event is defined in the obvious way) for b and use (17). The proof of the second
claim when hpe is a function of the couplings and two replicas (J, o, ¢’) > hpe(J, 0, 0”) is done the same way. In
the case that o, = +1 and O’é = —1, one uses (18) and bounds w; x w; by the average of wjp,y) X e,y over
{JZ} < {J5D O

One consequence of the above proposition is that the critical droplet C D.(o) set cannot contain two non-flip-
related elements. In other words, infimizing sequences of finite sets of edges entering in the definition (7) of the
critical value converge to a unique set. This implies in particular that the mapping of Proposition 2.7 is well-
defined.

Corollary 3.2. Forany edgeec E, M{(J,0): AT1 # T, € CD (o) with T1 # G\ T>} = 0.
Proof. Suppose that C D.(o) contains at least two critical droplets, 77 and T3, not related by 71 = G \ T», with

positive probability. Let S be the set of edges connecting T to Tf (similarly for S). Either S1 \ $> or S \ S; is
non-empty. We may assume that S; \ S» is non-empty. So there exists b such that

M{(J,0): 3T\, T» € CD, (o) with b € S \ $2} > 0. (19)
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Assume that o, = +1 and o}, = +1; the other cases are similar. Define

Cpe(J,0)=— inf Jyyoyoy and
A:b,ecdA
A finite  ¥-Y}€04
{x,yl#b,e
Cc’(J,0)=— inf JeyOxOy.
¢ AsecdA Z Ty

begaa (x.y}edA
A finite {x,y}#e

On the event in (19), we have Cp, .(J,0) — Jp = C.(J,0) = Cf(], o) because Ty and T, are in CD, (o). Thus (19)
implies that

M{(J,0): 0, =0 =+1,Cpo(J,0) — CL(J,0) = Jp} > 0.
This contradicts Proposition 3.1 using B = {e} and hpc(J,0) = Cp (J,0) — Ceb(.], o). (I

We now state a lemma that will be used in Section 4.3.3. By Corollary 2.10, edges the boundary of the critical
droplet cannot go through certain super-satisfied edges. Therefore if there are such super-satisfied edges forcing the
critical droplet of an edge f to go through some fixed edges e or e, then the flexibility (8) of f, by definition, cannot
be smaller than both of those of e; and e;. An example of such a situation is depicted in Fig. 4 where the super-
satisfied edges appear in grey. In this example, observe that the boundary of the critical droplet of f must contain e}
or ey, since it contains f by definition and the positioning of the super-satisfied edges is such that the boundary of the
critical droplet must cross ej or e;.

As in Corollary 2.10, the edges need to be super-satisfied independently of the value of J. For this reason, we
work with the value S defined in (13).

Lemma 3.3. Let ey, e2, f be edges. Let U be a set of edges with the property that all finite vertex sets A with f € 0A
and 0A N U = & must have either e) or ey in dA. For each e € U pick x(e) to be an endpoint of e that is not an
endpoint of f. Then

M{(J,0): Fy(J,0) <min{F, (J,0), Fe,(J,0)},Ye € U|J| > S:¥} =0.

We will now prove two lemmas about the measure M that will be useful later. They require an extra assumption
on the type of events under consideration; see for example (20) and (22). The results show that an event of positive
probability remains of positive probability after a certain coupling modification. They in fact provide explicit lower
bounds which will be needed when dealing with weak limits of measures constructed from M in Section 4.

Lemma 3.4. Let A C 2| x {0: 0. = +1} be such that

if (J,0) € A then (J(e,s),o)eAforallszJe. (20)
Then for each A € R,

M(A, Je= 1) = (1/2)v([A, 00)) M(A). (1)
If instead, we have A C §21 x {0: 0, = —1} and (J(e,s),0) € A forall s < J, then

M(A, Jo < 3) = (1/2)v((=00, A]) M (A).

Proof. We will prove the first statement; the second is similar. The left side of (21) equals

/v(dJ{e}zr)[A v(dJpy{o: (J,a)eA}:|,
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where the first integral is over all couplings Jj, for b # e, and the second is over J,. This is

oo 1 A
/u(dJ{e}c)[A v(d@m/m nifo: (J,a)eA}v(dy):|
2 [vas ey ! ’ :(J Abvd
= f”( {e}C)[/A v( e)m/_ Mj(e,y){0~( ,0) € }V( y)]

(20) e
= / v(dJ{emM V) f Woten|o (J<e,y>,a)eA}v<dy>}

> (2, 00))M(A, Jo < 1),
where the third inequality comes from dropping v((—oo, 1)) . From this computation,

M(A, Je=2) = (1/2){v([r, 00)) M (A, Jo < 1) + M(A, J, > 1)}
> (1/2)v([2, 00)) M (A). O
The next lemma does not use the monotonicity property, but its proof is similar in spirit to the previous one. Instead
of considering coupling values that are far from the critical value, we now consider values that are close. To show that
an event of positive probability remains of positive probability after bringing the coupling closer to the critical value,

we need to use the fact that by definition, a ground state remains in the support of the uniform measure for all values
of J, up to the critical value.

Lemma 3.5. Letc <deRand AC{(J,0): 0 €G(J),0.=+1} C 21 x 2, be such that
if (J,0)€ Aand J, > c then (J(e, y), o) € Aforally>c. 22)
Then for all d > c,
M(A, J. €lc.d]) = v([c,d])M(A, Je = ¢).
Proof. From (22), for a fixed J with J, > c,
tt{a: (J,o0) € A} < n{a: (J(e, y),o) S A} forall y > c.
Since p is the uniform measure and A C {(J, 0): o € G(J)}, this implies v-almost surely
/,L]{O’Z (J,o0) € A} < ,uj(e,y){a: (J(e, y),a) € A} forall y > c.

Therefore M (A, J, > c) equals

1 d
/v(dJ{g}z)/ v(dJ,) ———— Se.dl [/ nifo: (J,a)eA}v(dy)]

(22) 1 d
< /v(dJe}f)/ v(dJ,) S d])[f Rien{o: (J(e,y),a)eA}v(dy):|

_ (e, 00))

= (e.d)) V(d]{e}é‘)‘/c M](g,y){O'Z (](e, y),o') eA}V(dy)’

which is smaller than W. This implies the lemma. ]
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3.2. Properties of the interface

We now turn to properties of the interface o Ac’ under the measure
M =v(d))py x .

The main result of this section is that if o Ao’ is not empty, then it can be made to contain any fixed edge of the
graph with positive probability. A similar statement has been proved in [1], Corollary 2.9, for the metastate measure
on ground states. The conclusion is straightforward by translation invariance in the case G = 7. A different approach
is needed for the half-plane G = Z x N. For the sake of simplicity, we prove the statement in the case that the graph
is planar and each face has four edges. The general statement for a graph G = (V, E) with finite degree can be proved
the same way.

Proposition 3.6. If there exists an edge e € E such that M{(J,0,0’): e € 0 Ao’} > 0, then for any edge b € E,
M{(J,0,0"): beoaAo'} > 0.

Before turning to the proof, we record a fact: if o and o’ are spin configurations then a cycle (in particular, a face)
of the graph cannot have an odd number of edges in o Ac’. This is a direct consequence of the following elementary
lemma; see for example Theorem 1 in [2].

Lemma 3.7. For any finite cycle C in the graph G, the parity of #{e € C: J, < 0} equals the parity of #{e € C: o, #
sgn J.}.

The following lemma interprets the event that an edge is in the interface in terms of the critical values of e in the
two ground states.

Lemma 3.8. For any edge e, M{(J,0,0'): e €0 Ac’} > 0 ifand only if M{(J,0,0"): Co(J,0) £ Co(J,0")} > 0.

Proof.
(=). By assumption,

M{(J,cr,o’): ae:—i—l,otf:—l} > 0.

By (6), o € G(J) and o, = +1 together imply that J, > C.(J, o). Similarly, ¢’ € G(J) and o, = —1 together imply
that J, < C.(J, o). Therefore

M{(J,0,0"): oe=+1,0,=—1,Ce(J,0) < J, <C.(J,0")} > 0. (23)
To complete the proof, observe that Proposition 3.1 implies
M{(J,0,0"): Cc(J,0)=JeorCo(J,0')=J.} =0.

(<=). We may assume that with positive probability, on the event {C.(J, o) = C,(J, 0")}, o and ¢’ have the same
sign at e. Without loss of generality, taking o, =0, = +1,

M{(J,0,0"): e =0,=+1,Ce(J,0) # Cc(J,0")} > 0.
In particular, there exists a deterministic § > 0 such that
M{(.l, o, a’): o, =0, =+1, Ce(J, a’) > C,(J,0) + 8} > 0.
Hence there is a subset of the couplings of positive v-probability such that on this set

Hy X uj{(o,o’): 0. =0, =+1,C6(J,cr’) > Ce(J,U)—i—S} > 0.
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Fix the couplings other than J, and take (o,0’) in the above event. By (6), we must have J, > C.(J, o) and
Je > Co(J, 0’). From Proposition 2.7, there exists o” € G_, such that C,(J, ") > C.(J, ¢'). In particular, by Corol-
lary 2.9, ¢” € G(J) for J, in the non-empty interval (C.(J, o), C.(J,c")). Since 1y is supported on a finite number
of spin configurations, this implies that on a subset of positive v-probability

wy x p{(e,0"): e =+1,0/ =—1}>0.
Integrating over J completes the proof. ]

Proof of Proposition 3.6. By Lemma 3.8, it suffices to show that

M{(J.0,0"): Cp(J,0) #Cp(J,0")} > 0. (24)
Assume that

M{(J,0,0"): 0e #0,} > 0. (25)

Without loss of generality, we can assume that b and e are edges of the same face. Otherwise, we simply apply the
same argument successively on a path of neighboring faces from b to e. Let us denote the other edges of the square
face by b and é.

o Ao’ contains e with positive probability. By the paragraph preceding the statement of the proposition, if it con-
tains e it must also contain another edge of the face. If it contains b with positive probability we are done, so suppose
it contains e with positive probability. Suppose also that with positive probability b is not in the interface. The other
case is proved the same way and is simpler. We will indicate how to deal with it at the end of the proof.

In our notation, ¢, ¢ € 0 Ao’ and b, b ¢ o Ao’. Therefore o, # 0,, 05 # oé, op =0y, and o = obi on this event. The
hypothesis (25) now reduces to M (B) > 0 for the event

B= {(O‘,G/): 0p =0}, 05 = 07,0 # 0, 0; ;éaé’}.

By (16), for any J such that u; x uy(B N{o: oz =+1}) > 0, if J’ is a configuration with Jé > J;, and J; = J, for
a# b, then ;% u;/(B) > 0. Similarly, for any J such that u; x wy(BN{o: o; = —1}) > 0, if J' is a configuration
with Jé < Jjz,and J; = J, fora # b, then pyr x .y (B) > 0.In particular, this implies that if x is one of the endpoints

of b that is not also an endpoint of b,
/ v(dJS)pg X uy(B) > 0.
{J:|J5|>Sg}
‘We show that

/ v(dDug x wy(BN{(o,0"): Cp(J,0)# Cp(J,0")}) >0, (26)
{J:|JB|>S]);‘}

thereby proving (24) and the proposition.

The expression for the critical value Cp(J, o) can be written as follows. Let F' = {b, 15, e, e}. For I a non-empty
subset of {l;, e, e}, write Zp, 1 for the collection of finite sets of vertices A whose boundary dA intersected with F
equals the union of {b} with /. This collection might be empty for some choice of /. We restrict only to sets / for
which Zp, ; is not empty. Let

Cp,1(J,0)= sup {— > nyaxoy}.
AU 1y y1eda
{x,yl¢F
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In this notation, the expression (7) becomes

Cp(J,0) = max {Z—Jcaﬁcb,,u,a)}.
1<F\(b) | 4

Let A € CDy(0), A" € CDp(c”) and note that both dA and 3 A" must contain at least one edge of the face other
than b. When |J;| > Sg , Corollary 2.10 gives that neither can contain b, so they must both contain b and other edges

in {e, e}. Therefore on this event, the above definition of the critical values reduces to

Cp(J,0) = max {Z—JCUC + C;,,I(J,o)}.

1<{e,e} el

Since the max is attained, it holds on the event {J: |J;| > S;f } that
pi x g (BO{Cyr(J,0)=Cy(J,0")})

< Z MJXMJ{Z_Jcac+Cb,I(J70):Z_jc’aé/_i'cb,l’(-lvoj)}-

IS(e,é),I'Sle,) cel e

The right-hand side is the same as

> M{cb,,(J,a) —Cpp(J.0) =) Jeoe— Y Jc/og,}.

IC{e,e}, I'Cle,e} cel el

The right-hand side of the equality in the event is a linear combination of the J..’s, ¢ € I U I’, where the coefficients,
which we call s¢, can only take the values 0, 1, +2. Most importantly, for each choice of I, I, the s.’s cannot all be
zero since [ and I’ are not empty, and o, = —o/ for ¢ € {e, &}. Letting J; ;» be the set of non-zero {0, £1, £2}-valued
vectors s, with each entry corresponding to an element in 7 U I’, we see that the above is smaller than

> 2 mxm{CbJ(J,a)—cb,p(J,a/): > Jcsc}.

I1<ee}, lI'Sle.etseT; celul’

To show (26), integrate over v and use Proposition 3.1 with B = {e, ¢} and hgc = Cp 1(J,0) — Cp p/(J, o).

This completes the proof in the case that b is not in the interface. If the probability of this is zero (that is, if (26)
does not hold), then the proof is easier. We do not need to supersatisfy J;;; we simply take I, I’ to be subsets of {b,e, &)
and complete the proof from after Equation (26). (]

Before turning to the proof of the main result, we mention that in the case that the graph is invariant under a set of
transformations (for example, translations), the uniform measure inherits a covariance property. Translation-covariant
measures on ground states are typically not easy to construct. An advantage of a translation-covariant measure is that
the corresponding v-averaged measure is preserved under translations.

Lemma 3.9. Let G = 7% or G = Z x N and suppose |G(J)| < co. The uniform measure  is translation-covariant.
That is, if T is a translation of Z¢ or a horizontal translation of 7 x N, then for any B € F»,

urj(B)y=uj{o: To € B} forv-almostall J.
In particular, the measure M on §21 X §22 (or on §21 X §22 X §27) is translation-invariant.

Proof. Using the fact that |G(J)| is constant v-almost surely, one gets

#{o€G(TJ): 0 € B} #{o €G(J): To € B)
IG(T )| B IG(J)

ury(B)= =uys{o: To € B).
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For the second assertion, let B’ C RE x {—1,4+1}V. Define T~'B’ = {(J,0): (T J, To) € B’}. Then the first claim
implies that the probability of 77! B is

M(T_IB’)=/v(dJ);LJ{o: (TJ,To) € B'} =/u(d1m”{o: (TJ,o) € B'}.

As v is translation-invariant, we may replace v(dJ) by v(d7J) on the right side. The right side then equals
Jv@Np(o: (J,0) € B') = M(B') as claimed. O

4. The main result on the half-plane
4.1. Preliminaries

In this section, we consider the EA model on the half-plane H := Z x N. Recall from Corollary 2.3 that the number
of ground states |G(J)| is non-random. We continue to assume that |G(J)| < co. Write

M =v(dJ) x (g x p@y),

where p; is the uniform measure on G(J). We will use the notation that sampling from M amounts to obtaining a
triple (J, o, o’) from the space

Q=R x (=1, 41}V x {—1,+1}V",

where Ey and Vg denote the edges and vertices of the half-plane respectively. To show Theorem 1.1, it is sufficient
to prove that M{(J,o,0’): 0 Ao’ # @} = 0. This implies that if |G(J)| < oo, then |G(J)| = 2. We will derive a
contradiction from the following:

assume that M{(J,0,0"): 0 Ao’ # @} > 0. 27)

For this purpose, a representation of the interface o Ao’ in the dual lattice will be used. Instead of thinking of an
edge e as being in the interface, we think of the dual edge crossing e as being in it. We denote this dual edge by e*.
The interface represented this way is a collection of paths in the dual lattice. The reader is referred to Fig. 1 for an
illustration of this representation. Note that these dual paths cannot contain loops; otherwise, o or ¢’ would violate the
ground state property (2). Moreover, it is elementary to see that the interface cannot have dangling ends — dual vertices
with degree one in the interface (for example, using Lemma 3.7). A domain wall refers to a connected component
of 0 Ac’, viewed as edges in the dual lattice. In the case of the half-plane G = Z x N, we call any domain wall that
crosses the x-axis a tethered domain wall.

Fig. 1. An example of an interface between ground states on the half-plane. The edges in 0 Ac’ are the thick ones. The representation of the
interface as dual paths is depicted by the dotted lines. In this example, there are two domain walls and they are both tethered.
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The method used to derive a contradiction is similar in spirit to the one in [1]. From M we construct a measure on
ground states in 7? (denoted by M ) with two contradicting properties: on the one hand any interface sampled from
M must be disconnected; on 