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A GIBBS SAMPLER ON THE n-SIMPLEX

BY AARON SMITH1

ICERM, Brown University

We determine the mixing time of a simple Gibbs sampler on the unit
simplex, confirming a conjecture of Aldous. The upper bound is based on
a two-step coupling, where the first step is a simple contraction argument
and the second step is a non-Markovian coupling. We also present a MCMC-
based perfect sampling algorithm based on our proof which can be applied
with Gibbs samplers that are harder to analyze.

1. Introduction. Given a measure μ on a convex body K ⊂ R
n, how can we

efficiently obtain independent samples from the distribution of μ? This problem
arises in the computational sciences, and a frequently-used tool is Markov chain
Monte Carlo (MCMC) [5]. Because MCMC methods produce nearly-independent
samples only after a lengthy mixing period, a long-standing mathematical question
is to analyze the mixing times of the MCMC algorithms in common use.

The analysis of discrete MCMC algorithms is very advanced, with precise
bounds for many difficult problems as well as some general theory that has re-
ceived recent exposition in [1, 11]. For samplers on continuous state spaces, there
has been some general theory based on geometric or coupling arguments (see [12,
13, 24] and [20]), but many of the techniques built for discrete chains seem to run
into technical difficulties. There are also very few well-understood simple chains,
in stark contrast to the discrete theory, which has been built on many detailed anal-
yses of specific chains; though, see [16, 17] for some very nice analyses of two
slower walks on the simplex; [18, 19] for group walks; and [10] for some appli-
cations. This paper is an attempt to carefully analyze a simple continuous chain,
namely a Gibbs sampler on the n-simplex. In addition, it illustrates the use of two
powerful techniques from the discrete theory: non-Markovian coupling [2, 4, 7]
and coupling from the past [15].

The ideas in this paper can be used for a number of other problems. The analysis
was initially motivated by a simpler version of Kac’s random walk on S(n) or
SO(n) (see [8, 14, 23] and especially [9] for recent progress). It is also a stepping
stone toward analysis of Gibbs samplers on more complicated convex sets, such
as contingency tables. In the author’s thesis and a forthcoming note, we use the
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technique in this paper to improve existing analyses of these samplers and some
others [22, 23]; there is still substantial room for improvement.

In this paper, we will discuss mixing in terms of the popular total variation dis-
tance. For a Markov chain with transition kernel K on a measurable space (�,�)

and unique stationary distribution π , the total variation distance to stationarity af-
ter t steps of a Markov chain started at ω ∈ � is given by

sup
A∈�

∣∣Kt(ω,A) − π(A)
∣∣.

Most of this paper will be concerned with a specific Gibbs sampler Xt on the
n-simplex �n = {X ∈ R

n|∑n
i=1 X[i] = 1;X[i] ≥ 0} whose stationary distribution

is the uniform distribution on �n. To take a move in this Markov chain, begin by
choosing 1 ≤ i < j ≤ n and λ ∈ [0,1] independently and uniformly. Then set

Xt+1[i] = λ
(
Xt [i] + Xt [j ]),

Xt+1[j ] = (1 − λ)
(
Xt [i] + Xt [j ]),(1.1)

Xt+1[k] = Xt [k] (k �= i, j).

This sampler was first mentioned in [1], where the mixing time was shown to be
O(n2 logn). Aldous suggested in his list of open problems that the correct mixing
time was O(n logn), and we confirm this, also demonstrating a pre-cutoff window
of moderate size:

THEOREM 1.1 (Simplex mixing time). Fix C > 3 and n satisfying n >

max(4096,2C + 7
2) and n

logn
>

3(1/2+C)C
C/2−1/4 . If Kt

n is the t-step transition kernel
for the Gibbs sampler described above, and Un is the uniform distribution on �n,
then for all t > 10Cn logn, x ∈ �n and A ⊂ �n measurable,

∣∣Kt
n(x,A) − Un(A)

∣∣ < n3−C + 2n−C/2−1/4 + 4n11/4−C.

On the other hand, for 0 < C < 1 and t < (1 − C)n logn,

lim inf
n→∞ sup

x∈�n

sup
A⊂�n

∣∣Kt
n(x,A) − Un(A)

∣∣ = 1.

The conditions on the constant C are not onerous. Choosing C = 4 gives a
mixing time of at most 40n logn that is effective for n > 4096.

Sections 2–4 are devoted to proving the upper bound of Theorem 1.1, and Sec-
tion 5 proves the lower bound. In Section 6, we briefly discuss applications of our
method to closely related Markov chains. In Section 7, we use the ideas of the
proof to develop a perfect sampling algorithm with wider applicability.
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2. Notation, basic lemmas and strategy. We recall that a coupling of
Markov chains with transition kernel K is a process (Xt , Yt ) so that marginally,
both Xt and Yt are Markov chains with transition kernel K . The proof relies on the
following standard lemma (see [11], Theorem 5.2—they work in discrete space,
but their proof does not rely on this assumption):

LEMMA 2.1 (Fundamental coupling lemma). Assume (Xt , Yt ) is a coupling
of Markov chains such that if Xs = Ys , then Xt = Yt for all t > s. Assume also that
X0 = x and Y0 is distributed according to the stationary distribution of K . Define
the random time τ to be the first time at which Xt = Yt . Then supA∈� |Kt(x,A) −
π(A)| ≤ P [τ > t].

Throughout this note, we are interested in a coupling of Markov chains (Xt , Yt ),
where X0 starts according to some distribution of our choosing, Y0 starts out uni-
formly over the simplex and both marginally evolve as the Gibbs sampler being
studied. We will describe a joint evolution of our two chains Xt and Yt , such that
at a specific time, the probability of having coupled is very high. The method
for proving this is slightly unusual. In most coupling proofs, including the non-
Markovian coupling in [7], there is an attempt to make the two chains get closer
throughout the process. In our method, we attempt to couple only at a specific fi-
nal time, and include many moves that are likely to increase the distance between
the chains by a large amount. In fact, our joint distribution will generally assign 0
probability to coupling at any prior time.

In order to develop our global joint coupling, we describe two possible one-step
couplings of Xt and Yt . These are the “proportional” coupling and the “subset”
coupling. Throughout, we will always choose to update entries at the same co-
ordinates i, j in both Xt and Yt at every step; only the uniform variable λ used
in representation (1.1) sometimes differs. Because of this, we often describe the
couplings by describing only how the update variables λ are coupled.

In the proportional coupling, we choose an i, j and λ for Yt , and then use the
same choices for Xt in representation (1.1), so that, for example, entry i in Yt is
updated to λ(Yt [i] + Yt [j ]) while entry i in Xt is updated to λ(Xt [i] + Xt [j ]).
The subset coupling is slightly more complicated. As before, we choose two
coordinates i, j to be updated in both chains. Next, define the weight w(S,X)

that a vector X gives to a subset S ⊂ [n] to be w(S,X) = ∑
s∈S X[s]. A sub-

set coupling of Xt and Yt will always be with respect to some specific subset
S ⊂ [n] = {1,2, . . . , n}. If either i, j ∈ S or i, j /∈ S, perform a proportional cou-
pling. Otherwise, assume without loss of generality that i ∈ S and j /∈ S and also
that Xt [i] + Xt [j ] ≥ Yt [i] + Yt [j ]. In this case, call a coupling of Xt+1 and Yt+1
conditioned on Xt,Yt , i and j a subset coupling if

P
[
w(Xt+1, S) = w(Yt+1, S)

] ≥ Yt [i] + Yt [j ] − |∑k∈S/{i}(Yt [k] − Xt [k])|
Xt [i] + Xt [j ] .
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We will say a subset coupling has succeeded if w(Xt+1, S) = w(Yt+1, S), and
that it has failed otherwise. We will generally not be concerned with what happens
when a subset coupling has failed. We will check now that such a coupling exists.
Note that, conditioned on Xt and the coordinates i, j updated at time t , the weight
w(S,Xt+1) is uniformly distributed on [∑k∈S/{i} Xt [k],∑

k∈S/{i} Xt [k] + Xt [i] +
Xt [j ]]. Similarly, conditioned on Yt , i and j , w(S,Yt+1) is uniformly distributed
on [∑k∈S/{i} Xt [k],∑

k∈S/{i} Xt [k] + Xt [i] + Xt [j ]].

LEMMA 2.2 (Total variation distance of two uniform distributions). Let U be
distributed uniformly on [a, a + b] and let U ′ be distributed uniformly on [a′, a′ +
b′]. Assume b ≤ b′. Then ‖L(U) − L(U ′)‖TV ≤ 1 − b−|a−a′|

b′ .

PROOF. Note that U has density f (x) = 1
b

1x∈[a,a+b], and U ′ has density
g(x) = 1

b′ 1x∈[a′,a′+b′]. Thus, the total variation distance between them is given
by

∥∥L(U) − L
(
U ′)∥∥

TV = 1 −
∫
x

min
(
f (x), g(x)

)
dx

= 1 − 1

b′
∫
x∈[a,a+b]∩[a′,a′+b′]

1dx

= 1 − 1

b′
[
min

(
a + b, a′ + b′) − max

(
a, a′)]

≤ 1 − 1

b′
[
b + min

(
a, a′) − max

(
a, a′)]

= 1 − b − |a − a′|
b′ . �

Since it is always possible to couple two random variables W,Z so that P [Z =
W ] = 1 − ‖L(Z) − L(W)‖TV, Lemma 2.2 implies that subset couplings exist.

We now give a rough and nonrigorous description of the proof strategy, which
proceeds by describing a two-step coupling of Xt and Yt . For the first T1 steps, Xt

and Yt evolve always under the proportional coupling. This coupling is Markovian,
and we prove that under this coupling, the two chains are very close in sup-norm
with high probability after about n logn steps. In the next phase, we record the
updated coordinates (i(t), j (t)) from time T1 until a specified time T = T1 + T2.
This information is used to construct a nested sequence Pt of partitions of the set
of coordinates [n]. With high probability, the sequence will satisfy PT1 = {[n]} and
PT1+T2 = {{1}, {2}, . . . , {n}}. We will then couple Xt to Yt step by step, using only
information about the future that is contained in Pt , using a proportional coupling
for some steps and a subset coupling for others. We then show that it is possible
to keep w(S,Xt) = w(S,Yt ) for all S ∈ Pt with high probability. If all of these
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high-probability events occur, then the final partition consists of only singletons,
and this implies that XT [i] = YT [i] for 1 ≤ i ≤ n. The two main difficulties are
constructing the partition and showing that Xt and Yt remain close throughout the
second phase.

It is worth pointing out that the dependence of the coupling on the future is in
fact necessary to get the correct mixing time, or indeed any bound that is o(n2).
This is analogous to the well-known fact that no Markovian coupling of the random
transposition walk on Sn can give a coupling time that is o(n2). See Lemma 8 of [2]
for a short proof of this fact for the walk on Sn which applies essentially without
modification to this Gibbs sampler.

Here is a list of some commonly used variables that have been reserved, for
reference while reading:

Xt , the Markov chain of interest.
Yt , another instance of the Markov chain, started at stationarity.
Pt , a set partition of [n].
S, a piece of a partition.
i, j , coordinates we update.
λ,λx, λy , uniform random variable used to update a chain, or chains Xt and Yt .
w(S,X), the weight assigned by vector X to a subset S ⊂ [n].

3. First coupling stage. Define Zt = ‖Xt − Yt‖2
2. The following provides an

upper bound for E[Zt ] under the proportional coupling described above:

LEMMA 3.1 (Burn-in). Let Xt and Yt be two copies of the Markov chain cou-
pled by the proportional coupling, and Zt defined as above. After s ≥ 3

2dn logn

steps of the proportional coupling, E[Zs] ≤ 2n−d .

PROOF. The proof is by a one-step contraction estimate. Assume Xt and Yt are
coupled by the proportional coupling from time 0 onwards. Let Ft be the σ -algebra
generated by the random variables Xt and Yt ; note that Zt is Ft -measurable. Then,
under the proportional coupling, the following equality comes from conditioning
on the coordinates (i, j) = (i(t), j (t)) updated at time t ,

E[Zt+1|Ft ]
= 1

n(n − 1)

∑
i �=j

E

[
λ2(

Xt [i] + Xt [j ] − Yt [i] − Yt [j ])2

+ (1 − λ)2(
Xt [i] + Xt [j ] − Yt [i] − Yt [j ])2

+ ∑
k �=i,j

(
Xt [k] − Yt [k])2

]
.
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Note E[λ2] = E[(1 − λ)2] = 1
3 . Expanding the above, we obtain

E[Zt+1|Ft ]
= 1

n(n − 1)

∑
i �=j

[
2

3

(
Xt [i] − Yt [i])2 + 2

3

(
Xt [j ] − Yt [j ])2

+ 4

3

(
Xt [i] − Yt [i])(Xt [j ] − Yt [j ])

+ ∑
k �=i,j

(
Xt [k] − Yt [k])2

]
.

Collecting coefficients of Zt and using the fact that Zt = ∑
k(Xt [k] − Yt [k])2, this

equals (
1 − 2

3n

)
Zt + 4

3n(n − 1)

∑
i �=j

(
Xt [i] − Yt [i])(Xt [j ] − Yt [j ]).

Noting that
∑n

i=1(Xt [i] − Yt [i]) = 0, the last term can be rewritten as

∑
i �=j

(
Xt [i] − Yt [i])(Xt [j ] − Yt [j ]) =

(
n∑

i=1

(
Xt [i] − Yt [i])

)2

−
n∑

i=1

(
Xt [i] − Yt [i])2

= −Zt .

Putting this together, we find that

E[Zt+1|Ft ] =
(

1 − 2

3n
− 4

3n(n − 1)

)
Zt .

And so in particular,

E[Zt |F0] = E
[
E[Zt |Ft−1]|F0

]
≤

(
1 − 2

3n

)
E[Zt−1|F0].

By induction on t , it is then easy to see that

E[Zt |F0] ≤
(

1 − 2

3n

)t

Z0.

Bound Z0 by

Z0 ≤ ∑
k

(
X0[k]2 + Y0[k]2)

≤ ∑
k

X0[k] + Y0[k]

= 2.
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We conclude that at times t ≥ 3
2dn logn, E[Zt ] ≤ 2n−d . �

Using the obvious inequality |Xt [i] − Yt [i]| ≤ √
Zt and Markov’s inequality,

P [|Xt [i] − Yt [i]| > δ] ≤ δ−1n−d/2 for all δ > 0 and i ∈ [n].
4. Second coupling stage. Let T = (1

2 + ε)n logn be fixed, for some ε > 0 to
be decided later. Let Y0 be chosen from the uniform distribution on the simplex,
and let X0 satisfy ‖X0 − Y0‖1 ≤ n−d . We describe a coupling (Xt , Yt ) from time
0 to time T with the property that XT = YT with high probability as n goes to
infinity, for any fixed ε > 0 and d sufficiently large. First, we choose a sequence
of pairs of distinct elements 1 ≤ i(t) �= j (t) ≤ n independently and uniformly for
times 0 ≤ t ≤ T . These pairs (i(t), j (t)) will be the coordinates updated at time
t in both Xt and Yt . Then define a sequence of graphs Gt for 0 ≤ t ≤ T − 1 to
have vertex set [n] and edge set Et = {(i(t), j (t)), (i(t + 1), j (t + 1)), . . . , (i(T −
1), j (T − 1))}, throwing out repeated edges, if any. We also define GT to be the
graph on [n] with no edges. From this sequence, construct a sequence of partitions
of [n], P(0),P (1), . . . ,P (T ) by letting the sets in Pt be exactly the connected
components of Gt .

Since the edges satisfy Es ⊂ Et for every s > t , it is clear that for any A ∈ Ps ,
there must be some B ∈ Pt with A ⊂ B . In this sense, the sequence of partitions
is nested. Also note from the construction that either Pt and Pt+1 are the same,
or they differ by having a single set in Pt split into two sets in Pt+1. Define the
sequence of marked time 0 ≤ t1 < · · · < tk = T − 1 as the times at which Pt� �=
Pt�+1. Then, for marked time t�, define S(t�,1) and S(t�,2) to be the two sets that
were split apart at time t�, labeled so that |S(t�,1)| ≤ |S(t�,2)|. Note that there are
at most n − 1 marked times, and that there are n − 1 if and only if P0 = [n].

Note also that P0 = [n] if and only if G0 is connected. The question of whether
or not the random graph G0 is connected is a classical question in random graph
theory. The following result, found in [3] among other places, is good enough for
our purposes:

LEMMA 4.1 (Connectedness for Erdos–Renyi graphs). Let ε > 0 be fixed, and
let T = Tε be the first time that (1

2 + ε)n logn distinct edges have been chosen.
Then the probability that G0 is connected is at least 1 − n−ε .

This has the immediate corollary:

LEMMA 4.2 (Connectedness for G0). Let ε > 0, and assume n > 4 satisfies
n

logn
>

3(1+2ε)(1/2+2ε)
ε

. Then let T > (1
2 + 2ε)n logn. Then the probability that G0

is connected is at least 1 − 2n−ε .

PROOF. Ignoring the ordering of vertices in edges, define

At = 1(i(t),j (t))/∈{(i(0),j (0)),...,(i(t−1),j (t−1))}1t−1<Tε .



A GIBBS SAMPLER ON THE n-SIMPLEX 121

Note that P [At = 1|A1, . . . ,At−1] ≤ (1+2ε) logn
n−1 . In particular, if B has bino-

mial ((1
2 +2ε)n logn,

2(1/2+ε) logn
n−1 ) distribution, then P [∑(1/2+2ε)n logn

s=0 As > x] ≤
P [B > x] for all x > 0. For n satisfying n

logn
> 3ε

(1+2ε)(1/2+2ε)
, Chernoff’s inequal-

ity gives the bound

P
[
Tε >

(1
2 + 2ε

)
n logn

] ≤ P [B > εn logn]
≤ e−nε/2,

which is less than n−ε for n ≥ 4. Let ET be the event that G0 is disconnected.
Since P [G0] ≤ P [Tε > T ] + P [ET |Tε < T ], the result follows immediately from
this bound on Tε and Lemma 4.2. �

Having constructed this partition, we now couple Xt and Yt for time 0 ≤ t ≤ T .
First, we need to choose the coordinates to update; we do this by updating coordi-
nates i(t) and j (t) at time t in both chains. Next, we must describe the coupling
of the coordinates. If t is a marked time, then perform a subset coupling for the set
S(t,1). Otherwise, do a proportional coupling. Note that if t is a marked time, then
one of i(t) or j (t) is in S(t,1) and the other is in S(t,2), so the coupling proceeds
according to the description in Section 2 in the case i ∈ S, j ∈ Sc. We claim that
this couples the two walks by time T with high probability:

LEMMA 4.3 (Coupling for close chains). For ε > 0, d > 11
2 , n > max(d +

3
2 ,4096), n

logn
>

3(1+2ε)(1/2+2ε)
ε

and T > (1
2 + 2ε)n logn, the coupling described

in this section has the property

P [XT �= YT ] ≤ 2n−ε + 5n(15−2d)/4.

We begin by showing that subset couplings succeed with high probability:

LEMMA 4.4 (Subset coupling). Assume n ≥ 6, and let (Xt , Yt ) be a pair of
elements of �n satisfying supk |Xt [k] − Yt [k]| = n−f and infk Xt [k], infk Yt [k] ≥
2n−b, with f ≥ b + 1. Then for all S ⊂ [n] and update coordinates i ∈ S, j /∈ S,
P [w(Xt+1, S) = w(Yt+1, S)] ≥ 1 − 3nb+1−f under the subset coupling.

PROOF. Assume that Xt [i]+ Xt [j ] ≥ Yt [i]+ Yt [j ]. Then, from its definition,
the subset coupling succeeds with probability at least

P
[
w(Xt+1, S) = w(Yt+1, S)

]
≥ Yt [i] + Yt [j ] − |∑k∈S/{i}(Yt [k] − Xt [k])|

Xt [i] + Xt [j ]

≥ Yt [i] + Yt [j ] − 2|S|n−f

Yt [i] + Yt [j ] + 4n−f

≥ (
1 − 2n1−f +b)(

1 − 4n−f +b − 8n−2f +2b)
,
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which, for n ≥ 6, is at least 1 − 3nb+1−f . �

Having bounded the probability of failure when Xt , Yt are close, we must show
that they remain close as long as all subset couplings succeed. For S ⊂ [n], define
‖X‖S = ∑

s∈S |X[s]|. Then:

LEMMA 4.5 (Closeness). Let Xt,Yt be coupled as described above, and as-
sume that P0 = {[n]}, that all subset couplings up to time t have succeeded and
that ‖X0 − Y0‖1 < ε. Then ‖Xt − Yt‖S < ε for every S in Pt

PROOF. There are two types of coupling to take care of. For a proportional
coupling with coordinates i and j ,∣∣Xt+1[i] − Yt+1[i]

∣∣ + ∣∣Xt+1[j ] − Yt+1[j ]∣∣
= λt

∣∣Xt [i] + Xt [j ] − Yt [i] − Yt [j ]∣∣
+ (1 − λt )

∣∣Xt [i] + Xt [j ] − Yt [i] − Yt [j ]∣∣
≤ ∣∣Xt [i] − Yt [i]

∣∣ + ∣∣Xt [j ] − Yt [j ]∣∣.
Since i and j always connect elements of the same set in Pt , this shows that pro-
portional couplings never increase ‖Xt − Yt‖S . Otherwise, assume that at time t

we had a successful subset coupling for the subset S along edges i and j . With-
out loss of generality, assume that i ∈ S := S(t,1) and j ∈ R := S(t,2). Since
w(X0, [n]) = w(Y0, [n]) = 1, and all subset couplings up to time t have succeeded,
we have w(Xt ,Q) = w(Yt ,Q) for all Q ∈ Pt . In particular, w(Xt, S ∪ R) =
w(Yt , S ∪ R). Then we note that

Xt+1[i] − Yt+1[i] = ∑
s∈S\{i}

(
Yt [s] − Xt [s])

= Xt [i] − Yt [i] + ∑
s∈R

(
Xt [s] − Yt [s])

and so ∣∣Xt+1[i] − Yt+1[i]
∣∣ ≤ ∣∣Xt [i] − Yt [i]

∣∣ + ‖Xt − Yt‖R,

which immediately implies that

‖Xt+1 − Yt+1‖S ≤ ‖Xt − Yt‖S∪R.

An analogous calculation shows that

‖Xt+1 − Yt+1‖R ≤ ‖Xt − Yt‖R∪S

as well. By induction on t , this implies that ‖Xt+1 − Yt+1‖S ≤ ‖X0 − Y0‖1 and
‖Xt+1 − Yt+1‖R ≤ ‖X0 − Y0‖1. �
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LEMMA 4.6 (Largeness). P [inf1≤i≤n inf0≤t≤n2−1 Yt [i] ≤ n−4.5−k] ≤ 2n−k

for n > max(2k,4096).

PROOF. Let q1, . . . , qn be independent random variables chosen from the ex-
ponential distribution with mean 1, and let Q = ∑n

i=1 qn. It is well known (see,
e.g., Algorithm 2.7.1 of [21]) that (

q1
Q

, . . . ,
qn

Q
) is distributed uniformly on the sim-

plex �n. In particular, Yt
D= (

q1
Q

, . . . ,
qn

Q
). Taking a union bound over 1 ≤ i ≤ n and

0 ≤ t ≤ n2 − 1, it is thus sufficient to show

P

[
q1

Q
≤ n−1.5−k

]
≤ 2n−k.

Let E be the event that q1
Q

< n−1.5−k , E1 the event that q1 < n−k−0.25, and E2

the event that Q > n1.25, and observe that E ⊂ E1 ∪ E2. It is immediate that

P [E1] = 1 − e−n−k−0.25

≤ n−k−0.25 + 1
2n−2k−0.5.

For n > 4096, this is certainly less than n−k . To bound the probability that Q is
large, note that for all 0 < θ < 1,

E
[
eθQ] = E

[
eθq1

]n
= 1

(1 − θ)n
.

Setting θ = 1 − n−0.25, Markov’s inequality gives

P [E2] ≤ e(1/4)n logn+n−n1.25
.

It is straightforward to check that, for n > max(2k,4096), this is less than n−k .
Since P [E] ≤ P [E1] + P [E2], this proves the lemma. �

Finally, it is possible to prove that in fact most couplings will succeed:

LEMMA 4.7 (Weight lemma). Fix d > 11
2 and n > max(k + 3

2 ,4096). Assume
P0 = {[n]} and that ‖X0 − Y0‖1 ≤ n−d . Let E be the event that the equality

w(S,Xt) = w(S,Yt )(4.1)

holds for all 0 ≤ t ≤ T and all S ⊂ P(t). Then

P [E] ≥ 1 − 5n(15−2d)/4.

PROOF. The equality (4.1) clearly holds at time 0. Also note that if it holds
at an unmarked time t , it must also hold at time t + 1, since at unmarked times
the weights of parts S of the partition Pt cannot change in either Xt or Yt . So,
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assume that equality (4.1) holds for all times t ≤ tk for some marked time tk . If the
subset coupling is successful at time tk , then w(S(tk + 1,1),Xtk+1) = w(S(tk +
1,1), Ytk+1) by construction. However, by the assumption that equality (4.1) holds
until time tk , w(S(tk,1) ∪ S(tk,2),Xtk ) = w(S(tk,1)∪ S(tk,2), Ytk ). Since w(A ∪
B,X) = w(A,X) + w(B,X) for any disjoint sets A,B and any vector X, this
implies w(S(tk + 12),Xtk+1) = w(S(tk + 1,2), Ytk+1) as well. Since none of the
other parts of Ptk change weight, this implies that w(S,Xtk+1) = w(S,Ytk+1) holds
for all S ∈ Ptk+1.

It remains to bound only the probability that the first subset coupling to fail
occurs at time tk . By Lemma 4.3 and the assumption of this lemma,

‖Xtk − Ytk‖1 ≤ ∑
S∈Ptk

‖Xtk − Ytk‖S

≤ ∑
S∈Ptk

n−d(4.2)

≤ n1−d .

Set q = d
2 + 3

4 . By Lemma 4.6, infi,t Yt [i] ≥ n−q with probability at least 1 −
2n4.5−q . Assuming this holds, Lemma 4.4 along with inequality (4.2) implies that
any particular subset coupling succeeds with probability at least 1 − 3n2+q−d .
Taking a union bound over all at most n − 1 subset couplings, all subset couplings
succeed with probability at least 1 − 3n3+q−d − 2n4.5−q = 1 − 5n(15−2d)/4. �

It is now time to prove Lemma 4.2. Recall that if P0 = [n] and all components
Q ∈ Pt satisfy w(Q,Xt) = w(Q,Yt ) for 0 ≤ t ≤ T , then at time T the two walks
have coupled. There are only two ways for this to fail to happen. The first is the
event E1 that P0 �= [n]. By Lemma 4.2, P [E1] ≤ 2n−ε . The second is the event
E2 that at least one subset coupling fails. By Lemma 4.7 and our assumption that

n
logn

> 1
2 + 2ε, which implies T < n2, we have the bound P [E2] ≤ 5n(15−2d)/4.

Combining these two bounds proves the lemma.
Finally, we prove Theorem 1.1. We will run the proportional coupling until

time T1 = 9Cn logn, and then we will run the second phase coupling from time
T1 until time T = 10Cn logn. There are only two ways to have XT �= YT . The
first is the event E1 that ‖XT1 − YT1‖1 > n−(2C+2). By the comment immediately
after Lemma 3.1, P [E1] ≤ n3−C . The second is the event E2 that the second phase
coupling fails. By Lemma 4.3, P [E2] ≤ 2nC/2−1/4 + 4n11/4−C . Combining these
two bounds proves the theorem.

We also note that it is possible to improve the top of the pre-cutoff window from
30 to 12 by being more careful in the above proofs, but there is no hope of actually
proving a cutoff without a substantially new argument.
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5. Lower bound. Since our walk is over a continuous space, the total varia-
tion distance to stationarity of the Markov chain at time t must be at least the prob-
ability that not all coordinates have been chosen by time t . Since only two coordi-
nates are chosen at a time, the classical coupon-collector results in [6] tell us that at
time T = 1

2n(logn − c), supA∈� |KT
n (x,A) − π(A)| ≥ 1 − exp(− exp(c)) + o(1)

as n goes to infinity.
It is possible to improve the constant a little bit. Let X0 = (1,0, . . . ,0), and

let Qt ∈ {0,1}n be a vector keeping track of updates in Xt , started at Q0 =
(0,0, . . . ,0). If coordinates i and j are updated in Xt at time t , set Qt+1[i] =
Qt+1[j ] = 1 if at least one of Xt [i], Xt [j ] are nonzero, and set Qt+1[k] =
Qt [k] for all k �= i, j . If Xt [i] = Xt [j ] = 0, then set Qt+1 = Qt . Next, let
τj = inf{t |Qt+1 �= Qt, t > τj−1} with τ0 = 0. We note that E[τ1] = n

2 , and for

j > 1, E[τj ] = n(n−1)
2j (n−j)

. Thus, letting τ = ∑n−1
j=1 τj ,

E[τ ] = n

2
+ n2

2

n−1∑
j=2

1

j (n − j)

= n logn + O(n).

Similarly, since τi and τj are independent for i �= j , it is easy to calculate that the
variance V [τ ] ≤ 6n2. By Chebyshev’s inequality, for all ε > 0 and n sufficiently
large,

P
[
τ < (1 − ε)n logn

] = O

(
1

logn2

)
.(5.1)

Finally, observe that for t < τ , at least one entry of Xt is 0, and so taking
Hj = {X ∈ �n|X[j ] = 0} and A ∈ � to be

⋃
j Hj , we find |KT

n ((1,0, . . . ,0),A)−
Un(A)| ≥ P [T < τ ]. Combined with inequality (5.1), this proves the lower bound
on the mixing time.

6. Closely related walks. It is worth pointing out a small number of cases
where the above argument goes through with very few changes. The first allows
us to go from sampling from the uniform distribution to sampling from a large
class of distributions on the simplex, including symmetric Dirichlet distributions.
At each step of the random walk, instead of choosing λ according to the uniform
distribution on [0,1], choose it according to some other distribution with twice
differentiable cdf F satisfying F [x] = 1 − F [1 − x] for all 0 ≤ x ≤ 1

2 . Then the

above arguments show that the total mixing time is O(n logn
‖F ′′‖∞+1
1−2E[λ2] ), essentially

without modifcation.
It is also possible to apply this argument to the discrete analogue of the sim-

plex, in which M indistinguishable balls are stored in n boxes; these are known as
M-compositions of n. The analogous Markov chain involves choosing two boxes,
holding N balls between them, at every step, and putting 0 ≤ k ≤ N of them in
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the first box with probability 1
N+1 , and the remainder in the second box. The ar-

guments given above apply to the discrete chain, giving a mixing bound of order
O(n logn), but there need to be enough balls for the continuous approximation
to be good at each step. A straightforward step-through of the argument gives a
bound of O(n logn) for M > n18.5 above. Aldous’ greedy argument, which gives
an upper bound of O(n2 logn), holds for M > n5.5.

The follow-up paper [22] will discuss a wider variety of related walks, requiring
larger modifcations.

7. Perfect sampling on the simplex. In this section, we discuss how the two-
chain coupling described above can be modified into a grand coupling, and how
to use this fact to create a perfect sampling algorithm. Before describing the al-
gorithm, we mention that it is not a practical way to obtain uniform points on the
simplex. However, the same algorithm can be used to obtain samples from the
other distributions on the simplex mentioned in Section 6, many of which are a
priori much harder to sample from. The method is also of some interest as a rela-
tively rare instance of a coupling from the past (CFTP) algorithm which does not
use monotonicity or anti-monotonicity.

To begin, we recall the CFTP algorithm, described in greater detail in [15]. First,
choose some large time T , and start a copy of the Markov chain Xω−T for each ω in
the sample space �. Next, couple all of the chains from time −T to time 0. If the
chains have coalesced by time 0, the resulting single value is distributed according
to the stationary distribution of the chain. If not, we couple chains started at all
points from −2T to T and keep the evolution from −T to 0, then from −3T to
−2T keeping the evolution from −2T to 0, and so on until coalescence at 0 has
occurred.

For Markov chains on a finite state space, it is easy in theory to construct a grand
coupling that will eventually coalesce, though bad couplings are very inefficient.
In practice, even on finite chains, CFTP is only used if the chain has some very
special properties. The most popular properties are monotonicity and its twin anti-
monotonicity. Briefly, we introduce a partial order ≤ on �, and say that a coupling
of two chains Xt , Yt is monotone if X0 ≤ Y0 implies Xt ≤ Yt for all t > 0. It is then
easy to see that if our grand coupling is monotone, it is sufficient to keep track of
chains started at maximal and minimal elements of the poset. If they have coupled,
all states have coupled.

For Markov chains on infinite state spaces, many grand couplings will never
coalesce, and of course we cannot keep track of all of the starting values on a
computer. Some chains have a monotonicity property, but such a property is not
obvious for the simplex model. Despite this, there is a fairly efficient perfect sam-
pling algorithm that requires tracking only n+ 1 points (and a little extra overhead
each time an epoch of length T fails to coalesce).

Let Xv
t be a copy of the Markov chain started at v = (v[1], v[2], . . . , v[n]) at

time 0, and let ej be the j th standard unit basis vector. We construct a grand



A GIBBS SAMPLER ON THE n-SIMPLEX 127

coupling of the chains Xv
t as follows. For time 0 < t < T1, do a proportional cou-

pling. That is, at each time t , choose coordinates i(t), j (t) and parameter λ(t),
and update all chains using these three numbers. We claim that for each t ,
there exists a matrix Mt [i, j ] such that for any v, Xv

t [i] = ∑n
j=1 Mt [i, j ]v[j ].

To see this, observe that Xt+1 = Mi(t),j (t),λ(t)Xt , where Mi(t),j (t),λ(t)[i(t), i(t)] =
Mi(t),j (t),λ(t)[i(t), j (t)] = λ(t), Mi(t),j (t),λ(t)[j (t), i(t)] = Mi(t),j (t),λ(t)[j (t),

j (t)] = (1 − λ(t)), Mi(t),j (t),λ(t)[k, k] = 1 for k /∈ {i(t), j (t)} and all other entries
are 0. We can then write Mt [i, j ] = ∏

s<t Mi(s),j (s),λ(s). Thus, for v,w ∈ �n,

∥∥Xv
t − Xw

t

∥∥
1 =

n∑
i=1

∣∣Xv
t [i] − Xw

t [i]∣∣

=
n∑

i=1

∣∣∣∣∣
n∑

j=1

Mt [i, j ](v[j ] − w[j ])
∣∣∣∣∣

≤
n∑

i=1

n sup
j

Mt [i, j ]

≤
n∑

i=1

n
∑
j,k

∣∣Xej

t [i] − X
ek
t [i]∣∣,

which gives ∥∥Xv
t − Xw

t

∥∥
1 ≤ n

∑
j,k

∥∥Xej

t − X
ek
t

∥∥
1.(7.1)

Applying Lemma 3.1 to the expectation of ‖Xej

t −X
ek
t ‖2 for all distinct pairs j, k,

using Markov’s inequality to bound the probability that the L2 norm is large, and
finally noting that ‖Xej

t − X
ek
t ‖1 ≤ n‖Xej

t − X
ek
t ‖2, we find that for t > 3

2dn logn,

P
[∥∥Xej

t − X
ek
t

∥∥
1 > n−k] < 2n2k+1−d,

and so taking a union bound and applying the inequality proved just above,

P
[

sup
v,w∈�n

∥∥Xv
t − Xw

t

∥∥
1 > n3−k

]
< 2n2k+3−d .

This tells us that after O(n logn) steps, the L1 distance between any pair of
points is extremely small with high probability. The second step of the coupling is

almost identical to the algorithm given in Section 4 of this note. Run X
(n−1,...,n−1)
t

from time T1 to time T , recording all choices of i(t), j (t) and λ(t) from repre-
sentation (1.1). Then form the same partition process, and use it to attempt subset
couplings of all variables to this special chain. We will perform these couplings
in such a way that with high probability, all chains simultaneously have success-
ful subset couplings, rather than merely having a high probability of a substantial
fraction of the subset couplings succeeding.



128 A. SMITH

At each subset coupling stage, use the update variable λ(t) for the chain

X
(n−1,...,n−1)
t . For each other chain Xv

t , there will be some probability p(t, v) that

Xv
t performs a successful subset coupling with X

(n−1,...,n−1)
t . Let p be a known

lower bound on infv∈�n p(t, v). This can be obtained from Lemma 4.4 and in-
equality (7.1). To determine the update value of Xv

t , choose a single uniform ran-
dom variable U . If U < p, let Xv

t have a successful subset coupling, in which case

the change to Xv
t+1 depends only on i(t), j (t) and X

(n−1,...,n−1)
t+1 , not the particu-

lar value of U . Otherwise, update with λ taken from the U−p
1−p

’th quantile of the

remainder distribution. When Xv
t [i]+Xv

t [j ]
X

(n−1,...,n−1)
t [i]+X

(n−1,...,n−1)
t [j ]

≤ 1, this has density

f (λ) = C

(
1 − Xv

t [i] + Xv
t [j ]

X
(n−1,...,n−1)
t [i] + X

(n−1,...,n−1)
t [j ]

1g−1(λ)∈[0,1]
)

for

g(λ) = λ
X

(n−1,...,n−1)
t [i] + X

(n−1,...,n−1)
t [j ]

Xv
t [i] + Xv

t [j ]
+ 1

Xv
t [i] + Xv

t [j ]
∑

s∈S\{i}

(
X

(n−1,...,n−1)
t [s] − Xv

t [s]
)

and C a normalizing constant. An analogous formula holds when

Xv
t [i] + Xv

t [j ]
X

(n−1,...,n−1)
t [i] + X

(n−1,...,n−1)
t [j ]

> 1.

Under this grand coupling, all subset couplings succeed together with proba-
bility at least p. As long as the n points X

ej

T1
are close as measured in L1 metric,

and X
(n−1,...,n−1)
t [i] remains far from 1 and 0, the proof of Lemma 4.4 tells us

that all of the subset couplings succeed with high probability. Finally, if a single
subset coupling fails at time t , then all chains should be coupled according to the
proportional coupling for time s > t .

It remains to determine what to do if one of the above subset couplings fails.
In order to obtain a perfect sample, it will be necessary to look at a grand cou-
pling for the epoch −2T ≤ t ≤ −T . Assume for now that the grand coupling de-
scribed above succeeds for the chain started at −2T . It is necessary to determine
the value at time 0 of the chain started from ( 1

n
, . . . , 1

n
) at time −2T . Assume that

at time −T , this chain is at v ∈ �n. Then our sample will be Xv
0 . Fortunately, from

the above description, it is possible to calculate this value from v and the values of
i, j, λ and U used during the first epoch. Thus, it is sufficient to record those O(T )

pieces of information in each failed epoch. A longer discussion of this algorithm,
with pseudocode, may be found in [23].
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It should be noted that, for other target distributions on the simplex, such as
those in Section 6, the above algorithm can also be used without a rigorous bound
on the mixing time and can be used to rigorously check an estimated bound of
time T . Simply run the algorithm with epoch size T ; the number of failed runs k

out of a total of N runs is distributed as a binomial random variable with some
unknown probability q , where q is an upper bound on the total variation distance
to stationarity at time T .
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