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THE FUNDAMENTAL THEOREM OF ASSET PRICING, THE
HEDGING PROBLEM AND MAXIMAL CLAIMS IN FINANCIAL
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This paper consists of two parts. In the first part we prove the funda-
mental theorem of asset pricing under short sales prohibitions in continuous-
time financial models where asset prices are driven by nonnegative, locally
bounded semimartingales. A key step in this proof is an extension of a well-
known result of Ansel and Stricker. In the second part we study the hedging
problem in these models and connect it to a properly defined property of
“maximality” of contingent claims.

1. Introduction. The practice of short selling is alleged to magnify the de-
cline of asset prices. As a result, short sales bans and restrictions have been com-
monly used as a regulatory measure to stabilize prices during downturns in the
economy. The most notable recent examples are: (i) in August of 2011, the Eu-
ropean Securities and Markets Authority curtailed short sales in France, Belgium,
Italy and Spain in an effort to stop the tailspin in the markets caused by the Euro-
pean debt crisis (see [15]); (ii) in September of 2008, after the burst of the hous-
ing bubble, the U.S. Securities and Exchange Commission (SEC) prohibited short
selling for 797 financial companies in an effort to stabilize those companies (see
[2, 3]); (iii) at the same time, in September of 2008, the U.K. Financial Services
Authority (FSA) prohibited short selling for 32 financial companies (see [2, 3]).

Short sales prohibitions, however, are seen not only after the burst of a price
bubble or during times of financial stress. In certain cases, the inability to short
sell is inherent to the specific market. There are over 150 stock markets worldwide,
many of which are in the third world. In most of the third world emerging markets
the practice of short selling is not allowed; see [4, 5]. Additionally, in markets
such as commodity markets and the housing market, primary securities such as
mortgages cannot be sold short because they cannot be borrowed.

This paper aims to understand the consequences of short sales prohibition in
semimartingale financial models. The fundamental theorem of asset pricing estab-
lishes the equivalence between the absence of arbitrage, a key concept in mathe-
matical finance, and the existence of a probability measure under which the asset
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prices in the market have a characteristic behavior. In Section 3, we prove the fun-
damental theorem of asset pricing in continuous time financial models with short
sales prohibition where prices are driven by locally bounded semimartingales.
This extends related results by Jouini and Kallal in [23], Schürger in [34], Frittelli
in [18], Pham and Touzi in [30], Napp in [29] and more recently by Karatzas and
Kardaras in [26] to the framework of the seminal work of Delbaen and Schacher-
mayer in [9].

Additionally, the hedging problem of contingent claims in markets with convex
portfolio constraints where prices are driven by diffusions and discrete processes
has been extensively studied; see [6], Chapter 5 of [27] and Chapter 9 of [17]. In
Section 4, inspired by the works of Jacka in [19] and Ansel and Stricker in [1], and
using ideas from [16], we extend some of these classical results to more general
semimartingale financial models. We also reveal an interesting financial connec-
tion to the concept of maximal claims, first introduced by Delbaen and Schacher-
mayer in [9] and [10].

2. The set-up.

2.1. The financial market. We focus our analysis on a finite time trading
horizon [0, T ] and assume that there are N risky assets trading in the market.
We suppose, as in the seminal work of Delbaen and Schachermayer in [9], that
the price processes of the N risky assets are nonnegative locally bounded P -
semimartingales over a stochastic basis (�, F ,F,P ), where F := (Ft )0≤t≤T sat-
isfies the usual hypotheses. We let S := (Si)1≤i≤N be the R

N -valued stochastic
process representing the prices of the risky assets. We assume without loss of gen-
erality that the spot interest rates are constant and equal to 0, that is, the price
processes are already discounted. We also assume that the risky assets have no
cash flows associated to them, and there are no transaction costs.

The probability measure P denotes our reference probability measure. We sup-
pose that F0 is P -trivial and FT = F . Hence, all random variables measurable
with respect to F0 are P -almost surely constant and there is no additional source
of randomness on the probability space other than the one specified by the filtra-
tion F. As usual, we identify random variables that are equal P -almost surely. If
X is a semimartingale over this stochastic basis, we denote by L(X) the space
of predictable processes integrable with respect to X. Given H ∈ L(X), H · X

denotes the stochastic integral of H with respect to X; see page 165 of [32]. If
t ∈ [0, T ], we let �Xt = Xt − Xt− be the jump of X at time t , with the con-
vention that X0− = 0. If τ is a stopping time, Xτ := X·∧τ denotes the process X

stopped at τ . Given two semimartingales X,Y we denote by [X,Y ] the quadratic
covariation of X and Y ; see page 66 of [32]. Given a probability measure Q

equivalent to P , denoted by Q ∼ P , we let L0(Q), L0+(Q), L∞(Q), L∞+ (Q) and
L1(Q) be the spaces of equivalent classes of real-valued random variables, non-
negative random variables, Q-essentially bounded random variables, nonnegative
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Q-essentially bounded random variables and Q-integrable random variables, re-
spectively. For a measure Q ∼ P and a random variable f bounded from below,
we let EQ[f ], EQ[f |Ft ] be the expectation with respect to Q and the conditional
expectation with respect to Q given Ft , respectively. Finally, H1(Q) denotes the
space of martingales X such that EQ[[X,X]1/2

T ] < ∞.

2.2. The trading strategies. We fix 0 ≤ d ≤ N and assume that the first d risky
assets can be sold short in an admissible fashion to be specified below and that the
last N − d risky assets cannot be sold short under any circumstances. This leads
us to define the set of admissible strategies in the market as follows.

DEFINITION 2.1. A vector valued process H = (H 1, . . . ,HN), where for 1 ≤
i ≤ N and t ∈ [0, T ], Hi

t denotes the number of shares of asset i held at time t , is
called an admissible trading strategy if:

(i) H ∈ L(S);
(ii) H0 = 0;

(iii) (H · S) ≥ −α for some α > 0;
(iv) Hi ≥ 0 for all i > d .

We let A be the set of admissible trading strategies.

Hence, by condition (ii), we assume that the initial risky assets’ holdings are
always equal to 0 and therefore initial endowments are always in numéraire de-
nomination. Condition (iii) above is usually called the admissibility condition and
restricts the agents’ strategies to those whose value is uniformly bounded from be-
low over time. The only sources of friction in our market come from conditions
(iii) and (iv) above. For every admissible strategy H ∈ A we define the optional
process H 0 by

H 0 := (H · S) −
N∑

i=1

HiSi.(2.1)

If H 0 denotes the balance in the money market account, then the strategy H =
(H 0,H) is self-financing with initial value 0.

2.3. No arbitrage conditions. In [9] and [12], Delbaen and Schachermayer
considered the no arbitrage paradigm known as no free lunch with vanishing risk
(NFLVR) and proved the fundamental theorem of asset pricing (FTAP) under this
framework. Below we will redefine the (NFLVR) condition in our context.

Define the following cones in L0(P ):

K := {
(H · S)T :H ∈ A

}
,(2.2)

C := (
K − L0+(P )

) ∩ L∞(P )
(2.3)

= {
g ∈ L∞(P ) :g = f − h for some f ∈ K and h ∈ L0+(P )

}
.
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The cone K corresponds to the cone of random variables that can be obtained as
payoffs of admissible strategies with zero initial endowment. The cone C is the
cone of random variables that are P -almost surely bounded and are dominated
from above by an element of K. These sets of random variables are cones and not
subspaces of L0(P ) due to conditions (iii) and (iv) in Definition 2.1. We define in
our market the following “no arbitrage” type conditions.

DEFINITION 2.2. We say that the financial market satisfies the condition of
no arbitrage under short sales prohibition (NA-S) if

C ∩ L∞+ (P ) = {0}.
In order to prove the (FTAP), the condition of (NA-S) has to be modified.

DEFINITION 2.3. We say that the financial market satisfies the condition of
no free lunch with vanishing risk under short sales prohibition (NFLVR-S) if

C ∩ L∞+ (P ) = {0},
where the closure above is taken with respect to the ‖ · ‖∞ norm on L∞(P ).

REMARK 2.4. Observe that (NFLVR-S) does not hold if and only if there
exists a sequence (nH) in A, a sequence of bounded random variables (fn) and a
bounded random variable f measurable with respect to F such that (nH ·S)T ≥ fn

for all n, fn converges to f in L∞(P ), P(f ≥ 0) = 1 and P(f > 0) > 0.

In the next section we prove the (FTAP) in our context. This theorem establishes
a relationship between the (NFLVR-S) condition defined above and the existence
of a measure, usually known as the risk neutral measure, under which the price
processes behave in a particular way.

3. The fundamental theorem of asset pricing. The results presented in this
section are a combination of the results obtained by Frittelli in [18] for simple
predictable strategies in markets under convex constraints, and the extension of
the classical theorem of Delbaen and Schachermayer (see [9]) to markets with
convex cone constraints established by Kabanov in [24]. The characterization of
(NFLVR-S) is in accordance with the (FTAP) as proven in [23] by Jouini and
Kallal, who assumed that St is square integrable under P for all times t and con-
sidered simple predictable strategies.

3.1. The set of risk neutral measures. We first define our set of risk neutral
measures.

DEFINITION 3.1. We let Msup(S) be the set of probability measures Q on
(�, F ) such that:
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(i) Q ∼ P and
(ii) for 1 ≤ i ≤ d , Si is a Q-local martingale and, for d < i ≤ N , Si is a Q-

supermartingale.

We will call the set Msup(S) the set of risk neutral measures or equivalent super-
martingale measures (ESMM).

The following proposition plays a crucial role in the analysis below.

PROPOSITION 3.2. Let C be as in (2.3). Then

Msup(S) =
{
Q ∼ P : sup

f ∈C
EQ[f ] = 0

}
.

To prove this proposition we need the following results.

LEMMA 3.3. Suppose that Q is a probability measure on (�, F ). Let V be an
R

N -valued Q-semimartingale such that V i is Q-local supermartingale for i > d ,
and V i is a Q-local martingale for i ≤ d . Let H be an R

N -valued bounded pre-
dictable process, such that Hi ≥ 0 for i > d . Then (H · V ) is a Q-local super-
martingale.

PROOF. Without loss of generality we can assume that, under Q, V i is a su-
permartingale for i > d . Suppose that for i > d , V i = Mi −Ai is the Doob–Meyer
decomposition of the Q-supermartingale V i , with Mi a Q-local martingale and Ai

a predictable nondecreasing process such that Ai
0 = 0. Let Mi = V i and Ai = 0 for

i ≤ d . Then V = M − A, with M = (M1, . . . ,MN) and A = (A1, . . . ,AN), is the
canonical decomposition of the special vector valued semimartingale V under Q.
Since H is bounded, (H · V ) is a Q-special semimartingale, H ∈ L(M) ∩ L(A),
(H · V ) = (H · M) − (H · A) and (H · M) is a Q-local martingale; see Propo-
sition 2 in [20]. Additionally, since Hi ≥ 0 for i > d we have that (H · A) is a
nondecreasing process starting at 0. We conclude then that (H · V ) is a Q-local
supermartingale. �

The following lemma is a known result of stochastic analysis which we present
here for completion.

LEMMA 3.4. Suppose that H is a bounded predictable process, and X ∈
H1(Q) is a real-valued martingale. Then H · X is also in H1(Q). In particular,
H · X is a Q-martingale.

PROOF. The argument to prove this result is analogous to the one used in the
proof of Emery’s inequality (see Theorem V-3 in [32]) and we do not include its
proof in this paper. �
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The next proposition is a key step in the extension of the (FTAP) to markets with
short sales prohibition and prices driven by arbitrary locally bounded semimartin-
gales. It extends a well-known result by Ansel and Stricker; see Proposition 3.3
in [1].

PROPOSITION 3.5. Let Q ∈ Msup(S) and H ∈ L(S) be such that Hi ≥ 0 for
i > d . Then H ·S is a Q-local supermartingale if and only if there exists a sequence
of stopping times (Tn)n≥1 that increases Q-almost surely to ∞ and a sequence of
nonpositive random variables �n in L1(Q) such that �(H · S)Tn ≥ �n for all n.

PROOF. (⇐) It is enough to show that for all n, (H · S)Tn is a Q-local super-
martingale. Hence, without loss of generality we can assume that

�(H · S) ≥ �

with � ∈ L1(Q) a nonpositive random variable. By Proposition 3 in [20], if we
define

Ut = ∑
s≤t

1{|�Ss |>1 or |�(H ·S)s |>1}�Ss,

there exist a Q-local martingale N and a predictable process of finite variation
B such that H ∈ L(N) ∩ L(B + U), Y := S − U is a Q-special semimartingale
with bounded jumps and canonical decomposition Y = N + B and H · N is a Q-
local martingale. Let V := B + U and Hα := H1{|H |≤α} for α ≥ 0. We have that
Q ∈ Msup(S), N is a Q-local martingale and V = S − N . This implies that V i

is a Q-local supermartingale for i > d , and V i is a Q-local martingale for i ≤ d .
We can further assume by localization that Ni ∈ H1(Q) for all i ≤ N and that
V has canonical decomposition V = M − A, where Mi in H1(Q) and Ai ≥ 0
is Q-integrable, predictable and nondecreasing for all i ≤ N ; see Theorem IV-51
in [32]. By Lemmas 3.3 and 3.4, these assumptions imply that for all α ≥ 0, Hα ·N
and Hα · M are Q-martingales and Hα · V is a Q-supermartingale. In particular
for all stopping times τ ≤ T , EQ[(Hα · N)τ ] = 0 and EQ[(Hα · V )τ ] ≤ 0. This
implies that for all stopping times τ ≤ T , EQ[|(H · N)τ |] = 2EQ[(H · N)−τ ] and
EQ[|(H ·V )τ |] ≤ 2EQ[(H ·V )−τ ]. After these observations, by following the same
argument as the one given in the proof of Proposition 3.3 in [1], we find a se-
quence of stopping times (τp)p≥0 increasing to ∞ such that EQ[|H · V |τp ] ≤
12p + 4EQ[|�|] and, for all α ≥ 0, |(Hα · V )τp | ≤ 4p + |H · V |τp . An ap-
plication of the dominated convergence theorem yields that (H · V )τp is a Q-
supermartingale for all p ≥ 0. Since H · S = H · N + H · V and (H · N) is a
Q-local martingale, we conclude that (H · S) is a Q-local supermartingale.

(⇒) The Q-local supermartingale H · S is special. By Proposition 2 in [20], if
S = M − A is the canonical decomposition of S with respect to Q, where Mi is a
Q-local martingale, A0 = 0 and Ai is an nondecreasing, predictable and Q-locally



60 S. PULIDO

integrable process for all i ≤ N , then H · S = H · M − H · A is the canonical
decomposition of H · S, where H · M is a Q-local martingale and H · A is non-
decreasing, predictable and Q-locally integrable. By Proposition 3.3 in [1] we can
find a sequence of stopping times (Tn)n≥0 that increases to ∞ and a sequence of
nonpositive random variables (�̃n) in L1(Q) such that

�(H · M)Tn ≥ �̃n.

We can further assume without loss of generality that (H · A)Tn ∈ L1(Q) for all n.
By taking �n = �̃n − (H · A)Tn , we conclude that for all n

�(H · S)Tn = �(H · M)Tn − �(H · A)Tn ≥ �̃n − (H · A)Tn ≥ �n. �

LEMMA 3.6. Let Q ∈ Msup(S) and H ∈ A; see Definitions 2.1 and 3.1. Then
(H · S) is a Q-supermartingale. In particular (H · S)T ∈ L1(Q) and EQ[(H ·
S)T ] ≤ 0.

PROOF. Assume that (H · S) ≥ −α, with α ≥ 0. Let q ≥ 0 be arbitrary. If
we define Tq = inf{t ≥ 0 : (H · S)t ≥ q − α}, we have that �(H · S)Tq ≥ −q . By
Proposition 3.5 we conclude that (H · S) is a Q-local supermartingale bounded
from below. By Fatou’s lemma we obtain that (H · S) is a Q-supermartingale as
we wanted to prove. �

REMARK 3.7. The statement of Lemma 3.6 corresponds to Lemma 2.2 and
Proposition 3.1 in [25]. Here we have proved this result by methods similar to the
ones appearing in the original proof of Ansel and Stricker in [1]. Additionally, we
have given sufficient and necessary conditions for the σ -supermartingale property
(see Definition 2.1 in [25]) to hold.

We are now ready to prove the main proposition of this section. The arguments
below essentially correspond to those presented in [9, 24] and [26]. We include
them here for completeness.

PROOF OF PROPOSITION 3.2. By Lemma 3.6

Msup(S) ⊂
{
Q ∼ P : sup

f ∈C
EQ[f ] = 0

}
.

Now suppose that Q is a probability measure equivalent to P such that EQ[f ] ≤ 0
for all f ∈ C . Fix 1 ≤ i ≤ N . Since Si is locally bounded, there exists a se-
quence of stopping times (σn) increasing to ∞ such that Si·∧σn

is bounded. Let
0 ≤ s < t ≤ T , A ∈ Fs and n ≥ 0 be arbitrary. Consider the process Hi(r,ω) =
1A(ω)1(s∧σn,t∧σn](r). Let Hj ≡ 0 for j �= i. We have that H = (H1, . . . ,HN) ∈ A,
(H · S)T ∈ C and

0 ≥ EQ[
(H · S)T

] = EQ[
1A

(
Si

t∧σn
− Si

s∧σn

)]
.
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This implies that Si·∧σn
is a Q-supermartingale for all n and Si is a Q-local super-

martingale. Since Si is nonnegative, by Fatou’s lemma we conclude that Si is a
Q-supermartingale. For 1 ≤ i ≤ d we can apply the same argument to the process
Hi(r,ω) = −1A(ω)1(s∧σn,t∧σn](r) to conclude that Si is a Q-local martingale.
Hence

Msup(S) ⊃
{
Q ∼ P : sup

f ∈C
EQ[f ] = 0

}
,

and the proposition follows. �

We have seen in the proof of this proposition that the following equality holds.

COROLLARY 3.8. Let Msup(S) be as in Definition 3.1. Then

Msup(S) = {
Q ∼ P : (H · S) is a Q-supermartingale for all H ∈ A

}
.(3.1)

3.2. The main theorem.

THEOREM 3.9. (NFLVR-S) ⇔ Msup(S) �= ∅.

In order to prove this theorem we need the following lemma.

LEMMA 3.10. {(H · S) :H ∈ A, (H · S) ≥ −1} is a closed subset of the space
of vector valued P -semimartingales on [0, T ] with the semimartingale topology
given by the quasinorm

D(X) = sup
{
EP [

1 ∧ ∣∣(H · X)T
∣∣]: H predictable and |H | ≤ 1

}
.(3.2)

PROOF. Since {−→x ∈ R
N :xi ≥ 0 for i > d} is a closed convex polyhedral cone

in R
N , this result follows from the considerations made in [8]. �

REMARK 3.11. Notice that for the conclusion of Lemma 3.10 to hold, it is
important to work with short sales constraints as explained in Definition 2.1. In
order to consider general convex cone constraints an alternative approach is to
consider constrained portfolios modulus those strategies with zero value. This is
the approach taken in [26]. In our particular case, and as it is pointed out in [8],
we have the advantage of considering portfolio constraints defined pointwise for
(ω, t) in � × [0, T ]. Given a particular strategy, it is easier to verify admissibility
when pointwise restrictions are considered.

PROOF OF THEOREM 3.9. If K1 and K2 are nonnegative bounded predictable
processes, K1K2 = 0, H1,H2 ∈ A are such that (H1 · S), (H2 · S) ≥ −1, and
X := K1 · (H1 · S) + K2 · (H2 · S) ≥ −1, then associativity of the stochastic in-
tegral implies that X ∈ {(H · S) :H ∈ A, (H · S) ≥ −1}. This fact, Proposition 3.2,
Lemma 3.10 and Theorem 1.2 in [24] imply that (NFLVR-S) is equivalent to exis-
tence of a measure Q ∈ Msup(S). �
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REMARK 3.12. By using the results obtained by Kabanov in [24], Karatzas
and Kardaras in [26] proved that the condition of (NFLVR), with predictable con-
vex portfolio restrictions, is equivalent to the existence of a measure under which
the value processes of admissible strategies are supermartingales. In their work the
set of measures on the right-hand side of equation (3.1) is also referred to as the set
of equivalent supermartingale measures. As mentioned in Remark 3.11, they con-
sidered convex portfolio constraints modulus strategies with zero value. We have
shown that in the special case of short sales prohibition one can consider point-
wise portfolio restrictions. More importantly, we have shown that in the case of
short sales prohibition, the set of measures under which the values of admissible
portfolios are supermartingales is precisely the set of measures under which the
prices of the assets that cannot be sold short are supermartingales, and the prices
of assets that can be admissibly sold short are local martingales; see Corollary 3.8.
This provides a more precise characterization of the set of risk neutral measures
under short sales prohibition. Given a particular model, this characterization sim-
plifies the process of verifying that the model is consistent with the condition of
(NFLVR-S).

This section demonstrates that the results obtained by Jouini and Kallal in [23],
Schürger in [34], Frittelli in [18], Pham and Touzi in [30] and Napp in [29], can be
extended to a more general class of models, similar to the ones used by Delbaen
and Schachermayer in [9]. It is also clear from this characterization that the prices
of the risky assets that cannot be sold short could be above their risk-neutral ex-
pectations at maturity time, because the condition of (NFLVR-S) only guarantees
the existence of an equivalent supermartingale measure for those prices.

4. The hedging problem and maximal claims. In this section we seek to un-
derstand the scope of the effects of short sales prohibition on the hedging problem
of arbitrary contingent claims. We study, in financial markets with short sales pro-
hibitions where prices are driven by nonnegative locally bounded semimartingales,
the space of contingent claims that can be super-replicated and perfectly replicated.
The duality type results presented in this section are robust because they character-
ize the claims that can be perfectly replicated or super-replicated in markets with
prohibition on short-selling without relying on particular assumptions on the dy-
namics of the asset prices, other than the locally bounded semimartingale property.
By using the results of Föllmer and Kramkov in [16] we extend the classic results
of Ansel and Stricker in [1]. The results presented also extend those in Chapter 5
of [27] and Chapter 9 of [17] to more general semimartingale financial markets.
Additionally, we establish, in our context, a connection to the concept of maximal
claims as it was first introduced by Delbaen and Schachermayer in [9] and [10].
The (FTAP) (Theorem 3.9) can be generalized to the case of special convex cone
portfolio constraints (see Theorem 4.4 in [26]), and some of the results presented
in this section could be extended to this framework. In our study, we specialize to
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short sales prohibition because in this case the examples are simplified by the fact
that the set of risk neutral measures is characterized by the behavior of the under-
lying price processes, rather than the behavior of the value processes of the trading
strategies; see Remark 3.12. Additionally, in this case, the portfolio restrictions can
be considered pointwise in �×[0, T ]; see Remarks 3.11 and 3.12. A related study
on the implications of short sales prohibitions on hedging strategies involving fu-
tures contracts can be found in [22]. We will use the same notation as described in
Section 2. We will denote by Mloc(S) the set of measures equivalent to P under
which the components of S are local martingales.

4.1. The hedging problem. This section shows how the results obtained by
Föllmer and Kramkov in [16] extend the usual characterization of attainable claims
and claims that can be super-replicated to markets with short sales prohibition.
These results extend those presented in Chapter 5 of [27] and Chapter 9 of [17]
to more general semimartingale financial models. We will assume that the con-
dition of (NFLVR-S) (see Theorem 3.9) holds. Recent works (see, e.g., [31] and
[33]) have shown that in order to find suitable trading strategies the condition of
(NFLVR-S) can be weakened and the hedging problem can be studied in markets
that admit certain types of arbitrage.

4.1.1. Super-replication. Regarding the super-replication of contingent claims
in markets with short sales prohibition we have the following theorem.

THEOREM 4.1. Suppose Msup(S) �= ∅. A nonnegative random variable f

measurable with respect to FT can be written as

f = x + (H · S)T − CT(4.1)

with x constant, H ∈ A and C ≥ 0 an adapted and nondecreasing càdlàg process
with C0 = 0 if and only if

sup
Q∈Msup(S)

EQ[f ] < ∞.

In this case, x = supQ∈Msup(S) E
Q[f ] is the minimum amount of initial capital for

which there exist H ∈ A and C ≥ 0 an adapted and nondecreasing càdlàg process
with C0 = 0 such that (4.1) holds.

PROOF. This follows directly from Corollary 3.8 in this paper and Exam-
ples 2.2, 4.1 and Proposition 4.1 in [16]. �

Before we give an analogous result regarding perfect replication of contin-
gent claims, we present an example of a contingent claim that cannot be super-
replicated under short sales prohibition.
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EXAMPLE 4.2. This example illustrates how, under certain market hypothe-
ses, it is possible to explicitly exhibit a payoff that cannot be super-replicated
without short selling. Suppose that S is of the form S = E (R). Suppose that R

is a continuous P -martingale such that R0 = 0 and there exist ε,C > 0 such
that P(ε ≤ [R,R]T ≤ C) = 1. Let f = exp(−RT ). We have, by Novikov’s crite-
rion (see Theorem III-45 in [32]) and by Girsanov’s theorem (see Theorem III-40
in [32]), that for every α > 0, dQα

dP
= E (−αR)T defines a measure Qα ∈ Msup(S).

Additionally,

EQα [f ] = EP [
E (−αR)T f

]
= EP [

E
(−(1 + α)R

)
T exp

(
(1/2 + α)[R,R]T )]

≥ EP [
E

(−(1 + α)R
)
T

]
exp

(
(1/2 + α)ε

)
= exp

(
(1/2 + α)ε

) → ∞
as α goes to infinity. Hence supQ∈Msup(S) E

Q[f ] = ∞, and Theorem 4.1 implies
that f cannot be super-replicated without selling S short. However, if we assume
that the market where S can be sold short is complete under P , that is, Mloc(S) =
{P }, then in the market where S can be sold short f can be replicated because it
belongs to L1(P ). Indeed, we have that

0 ≤ f ≤ exp
(

C

2

)
E (−R)T ∈ L1(P ).

4.1.2. Replication. A question that remains open, however, is whether there
exists a characterization of contingent claims that can be perfectly replicated. In
this regard we have the following result analogous to the one proven by Ansel and
Stricker in [1]; see also Theorems 5.8.1 and 5.8.4 in [27].

THEOREM 4.3. Suppose Msup(S) �= ∅. For a nonnegative random variable
f measurable with respect to FT the following statements are equivalent:

(i) f = x + (H · S)T with x constant and H ∈ A such that (H · S) is an R∗-
martingale for some R∗ ∈ Msup(S).

(ii) There exists R∗ ∈ Msup(S) such that

sup
Q∈Msup(S)

EQ[f ] = ER∗[f ] < ∞.(4.2)

PROOF. That (i) implies (ii) follows from the fact that (H · S) is a Q-
supermartingale starting at 0 for all Q ∈ Msup(S); see Corollary 3.8. To prove
that (ii) implies (i) we define for all t in [0, T ]

Vt := ess sup
Q∈Msup(S)

EQ[f |Ft ].(4.3)
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By Lemma A.1 in [16] the process V is a supermartingale under any Q ∈ Msup(S).
In particular V is an R∗-supermartingale. The fact that VT = f and (4.2) imply that
V0 = ER∗[VT ] and V is a martingale under R∗. On the other hand by Theorem 3.1
in [16], V = V0 + (H · S) − C for some H ∈ A and C ≥ 0 nondecreasing. Since
(H · S) is an R∗-supermartingale (see Corollary 3.8) we conclude that

ER∗[CT ] = V0 + ER∗[
(H · S)T

] − ER∗[VT ] ≤ 0.

Then, C ≡ 0 R∗-almost surely and (H · S) is an R∗-martingale. �

Vt in (4.3) is usually used to define the selling price of the claim f at time t .
It represents the minimum cost of super-replication of the claim f at time t ; see
Proposition 4.1 in [16]. We now give an example of a payoff in markets with
continuous price processes which cannot be attained with “martingale strategies.”

EXAMPLE 4.4. Suppose that the market consists of a single risky asset with
continuous price process S. Assume further that S is a P -martingale which is not
constant P -almost surely. Then f = 1{ST ≤S0} does not belong to the space

G := {
x + (H · S)T :x ∈ R,H ∈ A,

(4.4)
(H · S) is a Q-martingale for some Q ∈ Msup(S)

}
.

Indeed, for each n ∈ N, let (Tn,m)m be a localizing sequence for

E
(−n(St − S0)

)
.

Define Qn,m ∈ Msup(S) by

dQn,m

dP
= E

(−n(ST ∧Tn,m − S0)
)
.

We have that

EQn,m[f ] = 1 − EQn,m[1 − f ]

= 1 − EP

[
1{ST >S0} exp

(
−n(ST ∧Tn,m − S0) − n2

2
[S,S]T ∧Tn,m

)]
.

Since the expression under the last expectation is dominated by exp(nS0) ∈ R, the
Dominated Convergence theorem implies that for fixed n

lim
m

EQn,m[f ] = 1 − EP

[
1{ST >S0} exp

(
−n(ST − S0) − n2

2
[S,S]T

)]
.

Applying the dominated convergence theorem once again we obtain that

lim
n

lim
m

EQn,m[f ] = 1.
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This allows us to conclude that

sup
Q∈Msup(S)

EQ[f ] = 1.

However, since f is not P -almost surely constant, this supremum is never attained.
By Theorem 4.3, f does not belong to the set G defined in (4.4).

REMARK 4.5. Example 4.4 illustrates that in nontrivial markets with contin-
uous price processes, the minimum super-replicating cost of a digital option of the
form 1{ST ≤S0} is 1; See Theorem 4.1. We will give other examples of claims that
cannot be perfectly replicated with martingale strategies at the end of this section.

We now proceed to give an alternative characterization of the random variables
in G , with G as in (4.4), by extending the concept of maximal claims introduced
by Delbaen and Schachermayer in [9] and [10].

4.2. Maximal claims. By using the extension of the (FTAP) proved in Sec-
tion 3, this section generalizes the ideas presented in [10] to markets with short
sales prohibition. For simplicity, we assume below that S, the price process of
the underlying asset, is one-dimensional. The results can be easily extended to the
multi-dimensional case. Recall the definitions of no arbitrage under short sales pro-
hibition (NA-S) and no free lunch with vanishing risk under short sales prohibition
(NFLVR-S) given in Section 2.

4.2.1. The main theorem.

DEFINITION 4.6. Let J ⊂ L0(P ). We say that an element f is maximal in J
if:

(i) f ∈ J and
(ii) f ≤ g P -almost surely and g ∈ J imply that f = g P -almost surely.

DEFINITION 4.7. Given H ∈ A, we define B(H) as the set of random vari-
ables of the form

((
H 1,H 2) · (

S1, S2))
T ,

where S1 = (H ·S), S2 = S; (H 1,H 2) ∈ L(S1, S2); H 2 ≥ 0, H 1
0 ≡ 1, H 2

0 ≡ 0 and
(
H 1 − 1,H 2) · (

S1, S2) ≥ −β − αS1(4.5)

for some α,β > 0.

The following is the main theorem of this section.
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THEOREM 4.8. Let f ∈ L0(P ) be a random variable bounded from below.
The following statements are equivalent:

(i) f = (H · S)T for some H ∈ A such that:
(a) the market where S1 = (H · S) and S2 = S trade with short selling pro-

hibition on S2 satisfies (NFLVR-S) and
(b) f is maximal in B(H) (see Definition 4.7).

(ii) There exists R∗ ∈ Msup(S) such that

sup
Q∈Msup(S)

EQ[f ] = ER∗[f ] = 0.

(iii) There exists H ∈ A such that f = (H · S)T and (H · S) is an R∗-martingale
for some R∗ in Msup(S).

If we further assume that f is bounded and Mloc(S) �= ∅, the above statements
are equivalent to:

(iv) There exists H ∈ A such that f = (H · S)T for some H ∈ A and (H · S) is
an R-martingale for all R in Mloc(S).

REMARK 4.9. It is important to point out that we can take the same measure
R∗ in (ii) and (iii), and the same strategy H in (i), (iii) and (iv).

Before establishing some lemmas necessary to prove this theorem we make
some additional remarks.

REMARK 4.10. A related result for diffusion price processes can be found in
Theorem 5.8.4 in [27]. This theorem uses the alternative assumption that{

(H · S)ρ : ρ is a stopping time in [0, T ]}
is Q-uniformly integrable for all Q ∈ Msup(S). This hypothesis also implies that
(H · S) is a Q-martingale for all Q ∈ Mloc(S).

REMARK 4.11. Condition (4.5) resembles the definition of workable contin-
gent claims studied in [11].

REMARK 4.12. If f = (H · S)T , (H · S) is an R∗-martingale for some
R∗ ∈ Msup(S) and 1{H=0} ·S is indistinguishable from 0, then R∗ ∈ Mloc(S) �= ∅.
Indeed, observe that if we call M = (H · S), then, by Corollary 3.5 in [1],
( 1
H

1{H �=0}) · M = 1{H �=0} · S = S − S0 is an R∗-local martingale. Theorem 11.4.4
in [14] implies that the claim f is also maximal in

K̃ = {
(H · S)T :H ∈ Ã

}
,(4.6)

where Ã is the set of strategies that satisfy (i), (ii) and (iii) in Definition 2.1.
Additionally, also by Theorem 11.4.4 in [14], Theorem 4.8 shows that when
Mloc(S) �= ∅, all bounded maximal claims in B(H) (see Definition 4.7) of the
form (H · S)T for some H ∈ A are maximal in K̃ as defined in (4.6).
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The proof of Theorem 4.8 that we present below mimics the argument pre-
sented in [10]. In this generalization, the (FTAP) under short sales prohibition
(Theorem 3.9) and the results presented by Kabanov in [24] are fundamental.

4.2.2. Some lemmas. We first recall the following definition.

DEFINITION 4.13. A subset N of L0(P ) is bounded in L0(P ) if for all ε > 0
there exists M > 0 such that P(|Y | > M) < ε for all Y ∈ N .

The following lemmas will be used.

LEMMA 4.14. The condition of (NFLVR-S) holds if and only if (NA-S) holds,
and the set

K1 = {
(H · S)T : H ∈ K and (H · S) ≥ −1

}
is bounded in L0(P ).

PROOF. This corresponds to Lemma 2.2 in [24]. As already noticed before in
the proof of Theorem 3.9, the results in [24] can be applied to our case because the
convex portfolio constraints satisfy the desired hypotheses. �

LEMMA 4.15. The condition of (NFLVR-S) holds if and only if (NA-S) holds
and there exists a strictly positive P -local martingale L = (Lt )0≤t≤T such that
L0 = 1 and P ∈ Msup(LS).

PROOF. The same proof of Theorem 11.2.9 in [14] can be applied to our con-
text. �

We now state from our framework a result that is analogous to Theorem 11.4.2
in [14]. This theorem gives necessary and sufficient conditions under which the
condition of (NA-S) holds after a change of numéraire. We will need the following
lemma, that proves that the self-financing condition [see (2.1)] is independent of
the choice of numéraire; see also [21].

LEMMA 4.16. Let V be a positive P -semimartingale, M = ( S
V

, 1
V

,1) and
N = (S,1,V ). For a (three-dimensional) predictable process H the following
statements are equivalent:

(i) H ∈ L(M) and

H · M = HM − H0M0 = H 1 S

V
+ H 2 1

V
+ H 3 − H 1

0
S0

V0
− H 2

0
1

V0
− H 3

0 ;
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(ii) H ∈ L(N) and

H · N = HN − H0N0 = H 1S + H 2 + H 3V − H 1
0 S0 − H 2

0 − H 3
0 V0.

PROOF. (⇒) Let W = H · M . By (i), �W = H�M = HM − HM− and
W− = W − �W = HM− − H0M0. The integration by parts formula implies that

d(V W) = W− dV + V− dW + d[W,V ]
= (HM− − H0M0) dV + V−H dM + d[W,V ].

Since d[W,V ] = H d[M,V ] regrouping terms and using integration by parts once
more we obtain that

d(V W) = H
(
M− dV + V− dM + d[M,V ]) − H0M0 dV

= H d(V M) − H0M0 dV .

We have that V M = N , and hence d(V W) = H dN − H0M0 dV . By (i), V W =
HN − V H0M0 and

H dN = d(V W) + H0M0 dV

= (
d(HN) − H0M0 dV

) + H0M0 dV

= d(HN)

as we wanted to show.
(⇐) The proof of this direction is analogous to the one just presented since M

is obtained after multiplying N by the nonnegative semimartingale 1
V

. �

LEMMA 4.17. Suppose that V is a strictly positive P -semimartingale. The
market with multi-dimensional price process ( 1

V
, S

V
), where short selling prohibi-

tion is imposed on S
V

, satisfies the condition of (NA-S) if and only if VT − V0 is
maximal in D, where D is the set of random variables of the form (H · (S,V ))T
where H 1 ≥ 0, H 1

0 ≡ 0, H 2
0 ≡ 1 and

(
H 1,H 2 − 1

) · (S,V ) ≥ −αV for some α > 0.

PROOF. (⇐) Let M = ( 1
V

, S
V

) and N = (S,V ). Suppose that H = (H 1,H 2)

is an arbitrage in the market with multi-dimensional price process ( 1
V

, S
V

). In other
words, assume that H 2 ≥ 0, H0 ≡ 0, (H · M)T ≥ 0, P((H · M)T > 0) > 0 and
H · M ≥ −α for some α > 0. If we define

H 3 = 1 + H · M − HM,

M̃ =
(

1

V
,

S

V
,1

)
,

Ñ = (1, S,V )
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and

H̃ = (
H 1,H 2,H 3)

,

we have that H̃ · M̃ = H̃ M̃ − 1. By Lemma 4.16 we have that

H̃ · Ñ = H̃ Ñ − V0.

But observe that

H̃ Ñ = V HM + (1 + H · M − HM)V = (1 + H · M)V

and

H̃ · Ñ = K · N,

where K = (H 2,H 3). Hence (K · N)T is an element of D such that (K · N)T ≥
VT − V0 P -almost surely and P((K · N)T > VT − V0) > 0, whence VT − V0 is
not maximal in D.

(⇒) Conversely, suppose that VT − V0 is not maximal in D. With the notation
used above, let K = (K1,K2) be a strategy such that (K · N)T ≥ VT − V0 P -
almost surely and P((K · N)T > VT − V0) > 0, with K1 ≥ 0, K1

0 ≡ 0, K2
0 ≡ 1

and (K1,K2 − 1) · N ≥ −αV for some α > 0. Define H 2 = K1, H 3 = K2 − 1,
H 1 = (H 2,H 3) · N − (H 2,H 3)N and H = (H 1,H 2,H 3). We have that H · Ñ =
HÑ − H0Ñ0. By Lemma 4.16 we have that

H · M̃ = HM̃ − H0M̃0 = HM̃.

Hence, (
H 1,H 2) · M = HM̃.

We have that

HM̃ = 1

V
HÑ = 1

V

((
H 2,H 3) · N) = 1

V

(
K · N − (V − V0)

) ≥ −α.

Therefore,
((

H 1,H 2) · M)
T = 1

VT

(
(K · N)T − (VT − V0)

)
,

((H 1,H 2) ·M)T ∈ L0+(P ) and P(((H 1,H 2) ·M)T > 0) > 0. Since H 1
0 = H 2

0 = 0,
(H 1,H 2) is an arbitrage strategy in the market with multi-dimensional price pro-
cess ( 1

V
, S

V
). �

REMARK 4.18. It is important to observe that the no arbitrage condition
(NA-S) over ( 1

V
, S

V
) holds for strategies that are nonnegative on the second compo-

nent, but can be negative in an admissible way [see condition (iii) in Definition 2.1]
over the first component. Lemma 4.17 gives a necessary and sufficient condition
under which the introduction of V as a numéraire does not introduce arbitrage
in a market with short sales prohibition. A related discussion on numéraires over
convex sets of random variables can be found in [28].

These lemmas allow us to prove Theorem 4.8.
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4.2.3. Proof of the main theorem.

PROOF OF THEOREM 4.8. Since f is bounded from below there exists a con-
stant x such that f̃ := f + x is nonnegative. Theorem 4.3, applied to f̃ , proves
the equivalence between (ii) and (iii). We will prove now that (iii) implies (i).
The (FTAP) (Theorem 3.9) shows that (NFLVR-S) holds for the market con-
sisting of S and (H · S) with short selling prohibition on S. Now assume that
f ≤ ((H 1,H 2) · (S1, S2))T with ((H 1,H 2) · (S1, S2))T ∈ B(H). Then(

H 1 − 1,H 2) · (
S1, S2) ≥ −β − αS1

for some α,β > 0 and ((H 1 − 1,H 2) · (S1, S2))T ≥ 0. Since(
H 1 − 1 + α,H 2) · (

S1, S2) ≥ −β

by Lemma 3.6 (extended to the case when the integrand is not identically 0 at
time 0) we conclude that (

H 1 − 1 + α,H 2) · (
S1, S2)

is an R∗-supermartingale, which in turn implies that ((H 1 − 1,H 2) · (S1, S2))

is an R∗-supermartingale starting at 0. Since ((H 1 − 1,H 2) · (S1, S2))T ≥ 0, we
conclude that ((H 1 − 1,H 2) · (S1, S2))T = 0 P -almost surely. This shows that f

is maximal in B(H).
Let us prove now that (i) implies (iii). By the (FTAP) we know that there exists

P̃ ∈ Msup(S) such that (H · S) is a P̃ -local martingale. Let a be such that V :=
a + (H · S) is positive and bounded away from 0. Since f is maximal in B(H),
VT − V0 is maximal in D, where D is as in Lemma 4.17. By Lemma 4.17 (NA-S)
holds in the market where S

V
and 1

V
trade with short selling prohibition on S

V
. By

Lemma 4.15 we conclude that (NFLVR-S) holds in this market with respect to the
measure P̃ . Hence, by the (FTAP) there exists Q̃ ∼ P̃ (and hence Q̃ ∼ P ) such that
S
V

is a Q̃-supermartingale, and 1
V

is a bounded Q̃-local martingale and therefore

a Q̃-martingale. By defining R∗ by VT dR∗ = (EQ̃[ 1
VT

])−1 dQ̃, we observe that
R∗ ∈ Msup(S) and V is an R∗-martingale. This implies that (H · S) is an R∗-
martingale as well.

Finally to prove that (iii) implies (iv) we observe that if R ∈ Mloc(S) and (τn) is
an R-localizing sequence for (H · S) then (H · S)τn∧T = ER∗[f |Fτn∧T ] is a dom-
inated sequence of random variables with zero R-expectation. By the dominated
convergence theorem we conclude that ER[f ] = 0, and (H ·S) is an R-martingale
(it is an R-supermartingale with constant expectation). �

4.3. Final remarks.

REMARK 4.19. Condition (i) in Theorem 4.8 can be interpreted as follows.
The market where S1 and S2 trade with short sales prohibition on S2 satisfies the
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no arbitrage paradigm of (NFLVR-S). In this market the strategy of buying and
holding S1 cannot be dominated by any strategy with initial holdings of one share
of S1 and none of S2 that does not sell S2 short.

The following observation is important. It shows that the elements f ∈ L0(P )

that satisfy any of the conditions of Theorem 4.8 are maximal in K. A related
result was discussed in Remark 4.12, where it was shown that, under stronger
assumptions on the replicating strategy for f , a stronger form of maximality holds,
namely maximality in K̃; see (4.6).

PROPOSITION 4.20. If (i), (ii) or (iii) in Theorem 4.8 holds, then f is maxi-
mal in K.

PROOF. Assume that ER∗[f ] = 0 for some R∗ ∈ Msup(S). If f ≤ (K · S)T

with K ∈ A, by Lemma 3.6, we conclude that ER∗[(K · S)T ] = 0. This implies
that f = (K · S)T P -almost surely and f is maximal in K. �

As shown in [13], without the assumption that f is bounded, (iv) of Theorem 4.8
is not a necessary condition. Theorem 4.8 is useful to argue why certain types
of contingent claims in certain financial models cannot be replicated by using a
strategy that is maximal in the sense of (i) of Theorem 4.8 above.

EXAMPLE 4.21. Let K ∈ (0,∞) be fixed. Assume that S is a continuous P -
martingale, [S,S]T is deterministic and P(ST < K,τ < T ) > 0 where

τ = inf
{
t ≤ T :St ≥ K + 1

2

([S,S]T − [S,S]t )} ∧ T .

By Novikov’s criterion (Theorem III-45 in [32]) and by Girsanov’s theorem (The-
orem III-40 in [32]) we know that

dQ

dP
= E

(
−

∫ T

0
1[τ,T ](s) dSs

)

defines a probability measure Q ∈ Msup(S). If g : [0,∞) → [0,∞) is a function
that vanishes on [K,∞) and is strictly positive on [0,K), then

EQ[
g(ST )

] = EQ[
g(ST )1{ST <K}

]
≥ EP [

1{τ=T }g(ST )1{ST <K}
]

(4.7)
+ EP [

1{ST <K,τ<T }g(ST ) exp
(−(ST − K)

)]
> EP [

g(ST )
]
.

If we further assume that g is bounded, then by Theorem 4.8 [condition (iv)]
we conclude that g(ST ) does not belong to G as in (4.4). Indeed, if g(ST ) =
x + (H · S)T , with x ∈ R, H ∈ A and (H · S) an R∗-martingale for some
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R∗ ∈ Msup(S), then by Theorem 4.8, (H · S) would be an R-martingale for all
R ∈ Mloc(S). In particular, we would have that EP [g(ST )] = x = EQ[g(ST )],
which contradicts (4.7). The function g(x) = (K − x)+ satisfies the above men-
tioned conditions. Hence under these assumptions, the put option’s payoff does not
belong to G . This example is similar to Example 7.2 of [6].

REMARK 4.22. In Example 5.7.4 in [27] and Section 8.1 in [7], it is proven
that for diffusion models with constant coefficients and stochastic volatility models
with additional properties, respectively, the minimum super-replication price of an
European put option, supQ∈Msup(S) E

Q[(K − ST )+], is equal to K . In particular if
P(ST �= 0) > 0, then this supremum is never attained and (K − ST )+ is not in G
as defined by (4.4).

In this section we have studied the space of contingent claims that can be super-
replicated and perfectly replicated with martingale strategies in a market with short
sales prohibition. We extended results found in [1, 27] and [17] to the short sales
prohibition case. We additionally have extended the results in [10] to our frame-
work and modified the concept of maximality accordingly (see Theorem 4.8). Ad-
ditionally, we presented explicit payoffs in general markets that cannot be repli-
cated without selling the spot price process short.

5. Open questions. It is still unclear whether (NFLVR) for a market without
short sales prohibition, implies that all claims that are maximal in the sense of (i)
in Theorem 4.8 are maximal in K̃; see (4.6). Equivalently, it is unclear whether for
a claim f that is bounded from below, the conditions Mloc(S) �= ∅ and

sup
Q∈Msup(S)

EQ[f ] = ER∗[f ]

for some R∗ ∈ Msup(S), imply that there exists P ∗ ∈ Mloc(S) such that EP ∗[f ] =
ER∗[f ]. Also, it would be interesting to obtain a characterization of the set of
claims that are maximal in K [as in (2.2)] and explore whether maximality in K
implies maximality in K̃; see (4.6).
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