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NEAR CRITICAL CATALYST REACTANT BRANCHING
PROCESSES WITH CONTROLLED IMMIGRATION1

BY AMARJIT BUDHIRAJA AND DOMINIK REINHOLD

University of North Carolina at Chapel Hill and Clark University

Near critical catalyst-reactant branching processes with controlled immi-
gration are studied. The reactant population evolves according to a branching
process whose branching rate is proportional to the total mass of the cata-
lyst. The bulk catalyst evolution is that of a classical continuous time branch-
ing process; in addition there is a specific form of immigration. Immigration
takes place exactly when the catalyst population falls below a certain thresh-
old, in which case the population is instantaneously replenished to the thresh-
old. Such models are motivated by problems in chemical kinetics where one
wants to keep the level of a catalyst above a certain threshold in order to
maintain a desired level of reaction activity. A diffusion limit theorem for the
scaled processes is presented, in which the catalyst limit is described through
a reflected diffusion, while the reactant limit is a diffusion with coefficients
that are functions of both the reactant and the catalyst. Stochastic averaging
principles under fast catalyst dynamics are established. In the case where the
catalyst evolves “much faster” than the reactant, a scaling limit, in which the
reactant is described through a one dimensional SDE with coefficients de-
pending on the invariant distribution of the reflected diffusion, is obtained.
Proofs rely on constrained martingale problem characterizations, Lyapunov
function constructions, moment estimates that are uniform in time and the
scaling parameter and occupation measure techniques.

1. Introduction. This work is concerned with catalytic branching processes
that model the dynamics of catalyst-reactant populations in which the activity level
of the reactant depends on the amount of catalyst present. Branching processes in
catalytic environments have been studied extensively and are motivated, for in-
stance, by biochemical reaction networks; see [6, 8, 11, 15] and references therein.
A typical setting consists of populations of multiple types such that the rate of
growth (depletion) of one population type is directly affected by population sizes
of other types. The simplest such model consists of a continuous time countable
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state branching process describing the evolution of the catalyst population and a
second branching process for which the branching rate is proportional to the to-
tal mass of the catalyst population, modeling the evolution of reactant particles.
Such processes were introduced in [6] in the setting of super-Brownian motions;
see [15]. For classical catalyst-reactant branching processes, the catalyst popula-
tion dies out with positive probability and subsequent to the catalyst extinction,
the reactant population stays unchanged, and therefore the population dynamics
are modeled until the time the catalyst becomes extinct. In this work, we con-
sider a setting where the catalyst population is maintained above a positive thresh-
old through a specific form of controlled immigration. Branching process models
with immigration have also been well studied in literature; see [2, 15] and refer-
ences therein. However, typical mechanisms that have been considered correspond
to adding an independent Poisson component; see, for example, [12]. Here, in-
stead, we consider a model where immigration takes place only when the popula-
tion drops below a certain threshold. Roughly speaking, we consider a sequence
{X(n)}n∈N of continuous time branching processes, where X(n) starts with n par-
ticles. When the population drops below n, it is instantaneously restored to the
level n.

There are many settings where controlled immigration models of the above form
arise naturally. One class of examples arises from predator-prey models in ecology,
where one may be concerned with the restoration of populations that are close to
extinction by reintroducing species when they fall below a certain threshold. In our
work, the motivation for the study of such controlled immigration models comes
from problems in chemical reaction networks where one wants to keep the lev-
els of certain types of molecules above a threshold in order to maintain a desired
level of production (or inhibition) of other chemical species in the network. Such
questions are of interest in the study of control and regulation of chemical re-
action networks. A control action where one minimally adjusts the levels of one
chemical type to keep it above a fixed threshold is one of the simplest regulatory
mechanisms, and the goal of this research is to study system behavior under such
mechanisms with the long-term objective of designing optimal control policies.
The specific goal of the current work is to derive simpler approximate and reduced
models, through the theory of diffusion approximations and stochastic averaging
techniques, that are more tractable for simulation and mathematical treatment than
the original branching process models. In order to keep the presentation simple,
we consider the setting of one catalyst and one reactant. However, similar limit
theorems can be obtained for a more general chemical reaction network in which
the levels of some of the chemical species are regulated in a suitable manner. Set-
tings where some of the chemical species act as inhibitors rather than catalysts are
also of interest and can be studied using similar techniques. These extensions will
be pursued elsewhere.

Our main goal is to establishes diffusion approximations for such regulated
catalyst-reactant systems under suitable scalings. We consider two different scal-
ing regimes; in the first setting the catalyst and reactant evolve on “comparable



CATALYTIC BP WITH CONTROLLED IMMIGRATION 2055

timescales,” while in the second setting the catalyst evolves “much faster” than
the reactant. In the former setting, the limit model is described through a coupled
system of reflected stochastic differential equations with reflection in the space
[1,∞) × R. The precise result (Theorem 2.1) is stated in Section 2. Such limit
theorems are of interest for various analytic and computational reasons. It is sim-
pler to simulate (reflected) diffusions than branching processes, particularly for
large network settings. Analytic properties such as hitting time probabilities and
steady state behavior are more easily analyzed for the diffusion models than for
their branching process counterparts. In general, such diffusion limits give parsi-
monious model representations and provide useful qualitative insight to the under-
lying stochastic phenomena.

For the second scaling regime, where the catalyst evolution is much faster, we
establish a stochastic averaging limit theorem. A key ingredient here is an ergodic-
ity result, which says that under a suitable “criticality from below” assumption on
the catalyst dynamics, the limiting catalyst reflected diffusion admits a unique sta-
tionary distribution, which takes an explicit form (Proposition 3.1). Characteriza-
tion of the invariant distribution is based on a variant of Echeverria’s criterion for
constrained Markov processes [14]. Next, by constructing suitable uniform Lya-
punov functions, we show that the stationary distribution of the scaled catalyst
branching process converges to that of the catalyst diffusion (Theorem 3.1). These
results are then used to establish a stochastic averaging principle that governs the
dynamics of the reactant population in the fast catalyst limit. Proofs proceed by
developing suitable moment estimates that are uniform in time and the scaling pa-
rameter and by using characterization results for probability laws of reflected dif-
fusions through certain constrained martingale problems [13]. The limit evolution
of the reactant population is given through an autonomous one-dimensional SDE
with coefficients that depend on the stationary distribution of a reflected diffusion
in [1,∞). Such model reductions are important in that they not only help in better
understanding the dynamics of the system but also help in reducing computational
costs in simulations. Indeed, since in the model considered here the invariant distri-
bution is explicit, the coefficients in the one-dimensional averaged diffusion model
are easily computed, and consequently this model is significantly easier to analyze
and simulate than the original two-dimensional model. We refer the reader to [11]
and references therein for similar results in the setting of (nonregulated) chemi-
cal reaction networks. It will be of interest to see if similar model reductions can
be obtained for general multi-dimensional regulated chemical-reaction networks.
Key mathematical challenges will be to identify suitable conditions for ergodic-
ity of multi-dimensional reflected diffusions in polyhedral domains that arise from
the regulated part of the network, and to develop uniform (in time and the scaling
parameter) moment estimates for such multi-dimensional constrained diffusions.

We consider two different formulations of models with multiple time scales. In
Theorem 4.1 we consider the setting where both catalyst and reactant processes
are described through (reflected) diffusions and the time scale parameter appears
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in the coefficients of the catalyst evolution equation. An important step here is to
argue that the generator of the two-dimensional catalyst-reactant reflected diffu-
sion is suitably close to the generator of the one-dimensional averaged diffusion,
for large values of the scaling parameter. Bounds on the exponential moments of
the catalyst process, obtained in Lemma 8.1, play a key role in this argument. The
second formulation is considered in Theorem 4.2. Here, both catalyst and reactant
populations evolve according to near critical countable state branching processes,
and the branching rate in the catalyst dynamics is of higher order than that for the
reactant process. In this setting one encounters the additional difficulty of showing
that the steady state distributions of the scaled catalyst branching process, for large
values of the scaling parameter, are suitably close to the stationary distribution of
the limiting catalyst reflected diffusion. The approach taken here is based on char-
acterizing the limit points of a certain sequence of random measures on the path
space of the catalyst process and the associated reflection process, as time and the
scaling parameter together approach infinity.

The model considered in this work does not incorporate any spatial dynamics of
the two chemical species. As noted earlier in the Introduction, in the unregulated
setting, Dawson and Fleischmann [6] considered catalyst-reactant systems, with
chemical species moving continuously in a spatial domain, given in terms of super-
Brownian motions. It will be of interest to develop analogous continuous spatial
models for the regulated catalyst-reactant systems of the form considered in the
current work. This question will be explored in a future work.

The paper is organized as follows. We begin in Section 2 by presenting the basic
limit theorem in the setting of “comparable time scales.” Section 3 studies the time
asymptotic behavior of the catalyst process under a suitable criticality from below
assumption. Section 4 presents our main results for the multiple time scale setting.
Section 5 collects some auxiliary estimates that are needed in our proofs. Section 6
proves Theorem 2.1, and Section 7 is devoted to the proofs of Proposition 3.1
and Theorem 3.1. Finally, in Section 8 we present proofs of stochastic averaging
principles stated in Section 4.

1.1. Notation. The following notation will be used throughout this work. De-
note by N the natural numbers, let N0 := N ∪ {0}, denote the set of integers
by Z and let R+ := [0,∞) be the set of nonnegative real numbers. The state
spaces of the scaled catalyst, reactant, and auxiliary processes, X̂(n), Ŷ (n) and
Ẑ(n), respectively, introduced below in (2.1), are S

(n)
X := { l

n
|l ∈ N0} ∩ [1,∞),

S
(n)
Y := { l

n
|l ∈ N0} and S

(n)
Z := { l

n
|l ∈ Z}. Let W

(n) := S
(n)
X × S

(n)
Y × S

(n)
Z and

W := [1,∞)× R+ × R. Let Ck(W) denote the space of k-times continuously dif-
ferentiable, real valued functions on W, and denote by Ck

c (W) the space of Ck(W)

functions with compact support. Here, by a (k-times) differentiable function f on
a set D ⊂ R

n we mean a function that can be extended to a (k-times) differentiable
function f̃ on an open domain U ⊃ D such that f̃ restricted to D equals f . Given
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a metric space S, the space of probability measures on S will be denoted by P(S),
the Borel σ -field on S by B(S), and the space of real valued, bounded, measurable
functions on S by BM(S). Let

D(R+ :S) := {f : R+ → S|f is right continuous and has left limits}
and D1(R+ : R) := {f ∈ D(R+ : R)|f (0) ≥ 1}, where these D-spaces are endowed
with the usual Skorohod topology. Let C(R+ : R+) be the space of continuous
functions from R+ to R+ endowed with the local uniform topology. We say a
sequence {ξn}n∈N of random variables with values in some Polish space E is tight
if the corresponding probability laws are a tight sequence in P(E ). For a function
ξ : R+ → R

n, let the jump at time t be defined as �ξt := ξt − ξt−, t > 0, and
�ξ0 := 0. For a function f : R+ → R and t ≥ 0, let |f |∗,t := sups≤t |f (s)|. For
two semimartingales ξ and ζ , the quadratic covariation (or bracket process) and
predictable (or conditional) quadratic covariation are denoted by {[ξ, ζ ]t }t∈R+ and
{〈ξ, ζ 〉t }t∈R+ , respectively; their definition will be recalled in Section 5.

2. Diffusion limit under comparable timescales. Consider a sequence of
pairs of continuous time, countable state Markov branching processes (X(n), Y (n)),
where X(n) and Y (n) represent the number of catalyst and reactant particles, re-
spectively. The dynamics are described as follows. Each of the X

(n)
t particles alive

at time t has an exponentially distributed lifetime with parameter λ
(n)
1 (mean life-

time 1/λ
(n)
1 ). When it dies, each such particle gives rise to a number of offspring,

according to the offspring distribution μ
(n)
1 (·). Additionally, if the catalyst popu-

lation drops below n, it is instantaneously replenished back to the level n (con-
trolled immigration). The branching rate of the reactant process Y (n) is of the or-
der of the current total mass of the catalyst population, that is, X(n)/n, and we
denote the offspring distribution of Y (n) by μ

(n)
2 (·). A precise definition of the

pair (X(n), Y (n)) will be given below. We are interested in the study of asymptotic
behavior of (X(n), Y (n)), under suitable scaling, as n → ∞.

To facilitate some weak convergence arguments, we will consider an auxiliary
sequence of processes Z(n) that “shadow” X(n) in the following manner. The pro-
cess Z(n) will be a Z valued pure jump process whose jump instances and sizes
are the same as that of X(n) away from the boundary {n}, whereas when X(n) is
at the boundary, Z(n) has a negative jump of size 1 whenever there is immigra-
tion of a catalyst particle into the system. This description is made precise through
the infinitesimal generator given in (2.2). The process Ẑ(n) will not appear in the
statements of the results; nevertheless it plays an important role in our proofs.

We now give a precise description of the various processes and the scaling that
is considered. Roughly speaking, time is accelerated by a factor of n, and mass is
scaled down by a factor of n. Define RCLL processes

Ŵ(n)
t := (

X̂
(n)
t , Ŷ

(n)
t , Ẑ

(n)
t

) :=
(

X
(n)
nt

n
,
Y

(n)
nt

n
,
Z

(n)
nt

n

)
, t ∈ R+,(2.1)
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and let Ŵ(n)
0 = (x

(n)
0 , y

(n)
0 , z

(n)
0 ) ∈ W

(n), where (nx
(n)
0 , ny

(n)
0 ) is the initial number

of catalyst and reactant particles and z
(n)
0 = x

(n)
0 . Then {Ŵ(n)

t }t∈R+ is characterized
as the W

(n) valued Markov process with sample paths in D(R+ : W(n)), starting at
Ŵ(n)

0 = (x
(n)
0 , y

(n)
0 , z

(n)
0 ), and having infinitesimal generator Â(n) given as

Â(n)φ(w) = λ
(n)
1 n2x

∞∑
k=0

[
φ

(
1 ∨ x + k − 1

n
,y, z + k − 1

n

)
− φ(w)

]
μ

(n)
1 (k)

(2.2)

+ λ
(n)
2 n2xy

∞∑
k=0

[
φ

(
x, y + k − 1

n
, z

)
− φ(w)

]
μ

(n)
2 (k),

where w = (x, y, z) ∈ W
(n) and φ ∈ BM(W). From the definition of the generator

we see that, for each k ≥ 0, given Ŵ(n)
t = (x, y, z) ∈ W

(n), the process jumps to
(x, y + k−1

n
, z) with rate λ

(n)
2 n2xyμ

(n)
2 (k) and to (x + k−1

n
, y, z + k−1

n
) with rate

λ
(n)
1 n2xμ

(n)
1 (k), except when k = 0 and x = 1, in which case the latter jump is to

(x, y, z + k−1
n

) with rate λ
(n)
1 n2μ

(n)
1 (0). This property of the generator at x = 1

accounts for the instantaneous replenishment of the (unscaled) catalyst population
to level n, whenever the catalyst drops below n.

For i = 1,2, let

m
(n)
i :=

∞∑
k=0

kμ
(n)
i (k) and α

(n)
i =

∞∑
k=0

(k − 1)2μ
(n)
i (k).

We make the following basic assumption on the parameters of the branching rates
and offspring distributions as well as on the initial configurations of the catalyst
and reactant populations:

CONDITION 2.1. (i) For i = 1,2 and for n ∈ N, α
(n)
i , λ

(n)
i ∈ (0,∞) and

m
(n)
i = 1 + c

(n)
i

n
, c

(n)
i ∈ (−n,∞).

(ii) For i = 1,2, as n → ∞, c
(n)
i → ci ∈ R, α

(n)
i → αi ∈ (0,∞) and λ

(n)
i →

λi ∈ (0,∞).
(iii) For i = 1,2 and for every ε ∈ (0,∞),

lim
n→∞

∑
l:l>ε

√
n

(
l − m

(n)
i

)2
μ

(n)
i (l) = 0.

(iv) As n → ∞, (x
(n)
0 , y

(n)
0 ) → (x0, y0) ∈ [1,∞) × R+.

Condition 2.1 and the form of the generator in (2.2) ensure that the scaled cata-
lyst and reactant processes transition on comparable time scales, namely O(n2). In
order to state the limit theorem for (X̂(n), Ŷ (n)), we need some notation and defini-
tions associated with the one-dimensional Skorohod map with reflection at 1. Let
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 :D1(R+ : R) → D(R+ : [1,∞)) be defined as


(ψ)(t) := (
ψ(t) + 1

)− inf
0≤s≤t

{
ψ(s) ∧ 1

}
for ψ ∈ D(R+ : R).(2.3)

The function 
, known as Skorohod map, can be characterized as follows; see,
for example, Appendix B in [3] and references therein: if ψ,φ,η∗ ∈ D(R+ : R)

are such that (i) ψ(0) ≥ 1, (ii) φ = ψ + η∗, (iii) φ ≥ 1, (iv) η∗ is nondecreasing,∫
[0,∞) 1{φ(s)�=1} dη∗(s) = 0, and η∗(0) = 0, then φ = 
(ψ) and η∗ = φ − ψ . The

process η∗ can be regarded as the reflection term that is applied to the original
trajectory ψ to produce a trajectory φ that is constrained to [1,∞). From the defi-
nition of the Skorohod map and using the triangle inequality, we get the following
Lipschitz property: for ψ, ψ̃ ∈ D1(R+ : R),

sup
s≤t

∣∣
(ψ)(s) − 
(ψ̃)(s)
∣∣≤ 2 sup

s≤t

∣∣ψ(s) − ψ̃(s)
∣∣.(2.4)

The diffusion limit of (X̂(n), Ŷ (n)) will be the process (X,Y ), starting at (x0, y0),
which is given through a system of stochastic integral equations as in the following
proposition.

PROPOSITION 2.1. Let (̄, F̄ , P̄ , {F̄t}) be a filtered probability space on
which are given independent standard {F̄t } Brownian motions BX and BY . Let
X0, Y0 be square integrable F̄0 measurable random variables with values in
[1,∞) and R+, respectively. Then the following system of stochastic integral equa-
tions has a unique strong solution:

Xt = 


(
X0 +

∫ ·
0

c1λ1Xs ds +
∫ ·

0

√
α1λ1Xs dBX

s

)
(t),(2.5)

Yt = Y0 +
∫ t

0
c2λ2XsYs ds +

∫ t

0

√
α2λ2XsYs dBY

s ,(2.6)

ηt = Xt − X0 −
∫ t

0
c1λ1Xs ds −

∫ t

0

√
α1λ1Xs dBX

s ,(2.7)

where 
 is the Skorohod map defined in (2.3).

In the above proposition, by a strong solution of (2.5)–(2.7), we mean an F̄ -
adapted continuous process (X,Y,η) with values in [1,∞) × R+ × R+ that satis-
fies (2.5)–(2.7). The following is the main result of this section.

THEOREM 2.1. Suppose Condition 2.1 holds. The process (X̂(n), Ŷ (n)) con-
verges weakly in D(R+ : [1,∞) × R+) to the process (X,Y ) given in Proposi-
tion 2.1 with (X0, Y0) = (x0, y0).

Proposition 2.1 follows by standard arguments, so its proof is relegated to the
Appendix. Theorem 2.1 will be proved in Section 6.



2060 A. BUDHIRAJA AND D. REINHOLD

3. Asymptotic behavior of the catalyst population. Stochastic averaging
results in this work rely on understanding the time asymptotic behavior of the
catalyst process. Such behavior, of course, is also of independent interest. We
begin with the following result on the stationary distribution of X, where X is
the reflected diffusion from Proposition 2.1, approximating the catalyst dynamics
(Theorem 2.1). The proof uses an extension of the Echeverria criterion for sta-
tionary distributions of diffusions to the setting of constrained diffusions; see Sec-
tion 7.1. We will make the following additional assumption. Recall the constants
c
(n)
1 ∈ (−n,∞) and c1 ∈ R introduced in Condition 2.1.

CONDITION 3.1. For all n ∈ N, c
(n)
1 < 0 and c1 < 0.

PROPOSITION 3.1. Suppose Condition 3.1 holds. The process X defined
through (2.5) has a unique stationary distribution, ν1, which has density

p(x) :=
⎧⎨
⎩

θ

x
exp

(
2

c1

α1
x

)
, if x ≥ 1,

0, if x < 1,
(3.1)

where θ := (
∫∞

1 ( 1
x

exp(2 c1
α1

x)) dx)−1.

The following result shows that the time asymptotic behavior of the catalyst
population is well approximated by that of its diffusion approximation given
through (2.5). We make the following additional assumption on the moment gener-
ating function of the offspring distribution, which will allow us to construct certain
“uniform Lyapunov functions” that play a key role in the analysis; see Theorem 7.2
and the function V̂ (n) defined in (7.5).

CONDITION 3.2. For some δ̄ > 0,

sup
n∈N

∞∑
k=0

eδ̄kμ
(n)
1 (k) < ∞.(3.2)

THEOREM 3.1. Suppose Conditions 2.1, 3.1 and 3.2 hold. Then, for each
n ∈ N, the process X̂(n) has a unique stationary distribution ν

(n)
1 , and the fam-

ily {ν(n)
1 }n∈N is tight. As n → ∞, ν

(n)
1 converges weakly to ν1.

Proposition 3.1 and Theorem 3.1 will be proved in Section 7.

4. Diffusion limit of the reactant under fast catalyst dynamics. As noted in
Section 2, the catalyst and reactant populations whose scaled evolution is described
through (2.2) transition on comparable time scales. In situations in which the cat-
alyst evolves “much faster” than the reactant, one can hope to find a simplified
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model that captures the dynamics of the reactant population in a more economical
fashion. One would expect that the reactant population can be approximated by
a diffusion whose coefficients depend on the catalyst only through the catalyst’s
stationary distribution. Indeed, we will show that the (scaled) reactant population
can be approximated by the solution of

Y̌t = Y̌0 +
∫ t

0
c2λ2mXY̌s ds +

∫ t

0

√
α2λ2mXY̌s dBs, Y̌0 = y0,(4.1)

where mX = ∫∞
1 xν1(dx) = −α1θ

2c1
exp(2c1/α1).

Such model reductions (see [11] and references therein for the setting of chem-
ical reaction networks) not only help in better understanding the dynamics of the
system but also help in reducing computational costs in simulations. In this sec-
tion we will consider such stochastic averaging results in two model settings. First,
in Section 4.1, we consider the simpler setting where the population mass evolu-
tions are described through (reflected) stochastic integral equations and a scaling
parameter in the coefficients of the model distinguishes the time scales of the two
processes. In Section 4.2 we will consider a setting which captures the underly-
ing physical dynamics more accurately in the sense that the mass processes are
described in terms of continuous time branching processes, rather than diffusions.

4.1. Stochastic averaging in a diffusion setting. In this section we consider the
setting where the catalyst and reactant populations evolve according to (reflected)
diffusions similar to X and Y from Proposition 2.1, but where the evolution of
the catalyst is accelerated by a factor of an such that an ↑ ∞ as n ↑ ∞ (i.e., drift
and diffusion coefficients are scaled by an). More precisely, we consider a system
of catalyst and reactant populations that are given as solutions of the following
system of stochastic integral equations: for t ≥ 0,

X̌
(n)
t = 


(
X̌

(n)
0 +

∫ ·
0

anc1λ1X̌
(n)
s ds +

∫ ·
0

√
anα1λ1X̌

(n)
s dBX

s

)
(t),

Y̌
(n)
t = Y̌

(n)
0 +

∫ t

0
c2λ2X̌

(n)
s Y̌ (n)

s ds +
∫ t

0

√
α2λ2X̌

(n)
s Y̌

(n)
s dBY

s ,

where (X̌
(n)
0 , Y̌

(n)
0 ) = (x0, y0), c1, c2 ∈ R, αi, λi ∈ (0,∞), BX and BY are inde-

pendent standard Brownian motions, and 
 is the Skorohod map described above
Proposition 2.1.

The following result says that if c1 < 0, then the reactant population pro-
cess Y̌ (n), which is given through a coupled two-dimensional system, can be well
approximated by the one-dimensional diffusion Y̌ in (4.1), whose coefficients are
given in terms of the stationary distribution of the catalyst process.

THEOREM 4.1. Suppose Condition 3.1 holds. The process Y̌ (n) converges
weakly in C(R+ : R+) to the process Y̌ .

The proof of Theorem 4.1 is given in Section 8.
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4.2. Stochastic averaging for scaled branching processes. We now consider
stochastic averaging for the setting where the catalyst and reactant populations are
described through branching processes. Consider catalyst and reactant populations
evolving according to the branching processes introduced in Section 2, but where
the catalyst evolution is sped up by a factor of an such that an ↑ ∞ monotonically
as n ↑ ∞. That is, we consider a sequence of catalyst populations X̃

(n)
t := X

(n)
ant ,

t ≥ 0, where X(n) are the branching processes introduced in Section 2. The reac-
tant population evolves according to a branching process, Ỹ (n), whose branching
rate, as before, is of the order of the current total mass of the catalyst population,
X̃(n)/n. The infinitesimal generator Ǧ(n) of the scaled process

(
X̌

(n)
t , Y̌

(n)
t

) :=
(

1

n
X̃

(n)
nt ,

1

n
Ỹ

(n)
nt

)
, t ≥ 0,

is given as

Ǧ(n)φ(x, y) = λ
(n)
1 n2anx

∞∑
k=0

[
φ

(
1 ∨

(
x + k − 1

n

)
, y

)
− φ(x, y)

]
μ

(n)
1 (k)

(4.2)

+ λ
(n)
2 n2xy

∞∑
k=0

[
φ

(
x, y + k − 1

n

)
− φ(x, y)

]
μ

(n)
2 (k),

where (x, y) ∈ S
(n)
X × S

(n)
Y and φ ∈ BM([1,∞) × R+).

We note that a key difference between the generators Ǧ(n) above and Â(n) in
(2.2) is the extra factor of an in the first term of (4.2), which says that, for large n,
the catalyst dynamics are much faster than that of the reactant.

We will show in Theorem 4.2 that the reactant population process Y̌ (n) can be
well approximated by the one-dimensional diffusion Y̌ in (4.1). Once again, the
result provides a model reduction that is potentially useful for simulations and
also for a general qualitative understanding of reactant dynamics near criticality.

THEOREM 4.2. Suppose Conditions 2.1, 3.1 and 3.2 hold. Then, as n → ∞,
Y̌ (n) converges weakly in D(R+ : R+) to the process Y̌ .

We will prove the above theorem in Section 8.

5. Auxiliary results. In this section we collect several auxiliary results, which
will be used in the proofs of our main results. Recall that the quadratic covariation
(or bracket process) of two semimartingales ξ and ζ is the process {[ξ, ζ ]t }t∈R+
defined by

[ξ, ζ ]t := ξt ζt −
∫ t

0
ξs− dζs −

∫ t

0
ζs− dξs, t ≥ 0,
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where ξ0− := 0, ζ0− := 0. The predictable quadratic covariation of ξ and ζ is the
unique predictable process {〈ξ, ζ 〉t }t∈R+ such that {[ξ, ζ ]t − 〈ξ, ζ 〉t }t∈R+ is a lo-
cal martingale. If ξ = ζ , then [ξ ] ≡ [ξ, ξ ] and 〈ξ〉 ≡ 〈ξ, ξ〉 are, respectively, the
quadratic and predictable quadratic variation processes of ξ .

For x = (x1, x2, x3) ∈ W, let φi(x) = xi , i = 1,2,3, and h := φ1 −φ3. Note that
for a locally bounded measurable function f on W

M
(n)
t (f ) := f

(
Ŵ(n)

t

)− f
(
Ŵ(n)

0

)−
∫ t

0
Â(n)f

(
Ŵ(n)

s

)
ds, t ≥ 0,(5.1)

is a local martingale with respect to the filtration σ(Ŵ(n)
s : s ≤ t). For the rest of the

paper, we suppress the filtration, and simply refer to M(n)(f ) as a local martingale.
Let

η̂
(n)
t := λ

(n)
1 nμ

(n)
1 (0)

∫ t

0
1{X̂(n)

s =1} ds.(5.2)

This process will play the role of the reflection term in the dynamics of the catalyst,
arising from the controlled immigration. The following tightness result will be
used in the weak convergence proofs.

PROPOSITION 5.1. Suppose Conditions 2.1 and 3.1 hold. Then the fam-
ily {(X̂(n), Ŷ (n), η̂(n))}n∈N is tight in D(R+ : [1,∞) × R+ × R+). If addition-
ally Condition 3.2 holds, then the family {(X̂(n)

s+·, η̂
(n)
s+· − η̂

(n)
s )}n∈N,s∈R+ is tight

in D(R+ : [1,∞) × R+).

The proof of Proposition 5.1 will be based on the following results. Lemma 5.1
below gives some useful representations for the catalyst and reactant processes.
Lemmas 5.2–5.5 and Corollary 5.1 provide moment bounds that are useful for
arguing tightness. Proofs of these results are given in Section 5.1.

LEMMA 5.1. Suppose Condition 2.1(i) holds. The process (X̂(n), Ŷ (n)) can be
represented as

X̂
(n)
t = X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ t

0
X̂(n)

s ds + M
(n)
t (φ1) + η̂

(n)
t

(5.3)

= 


(
X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ ·
0

X̂(n)
s ds + M(n)· (φ1)

)
(t)

and

Ŷ
(n)
t = Ŷ

(n)
0 + c

(n)
2 λ

(n)
2

∫ t

0
X̂

(n)
t Ŷ

(n)
t ds + M

(n)
t (φ2).(5.4)

Moreover, for t ≥ 0,〈
M(n)(φ1)

〉
t = λ

(n)
1 α

(n)
1

∫ t

0
X̂(n)

s ds − λ
(n)
1 μ

(n)
1 (0)

∫ t

0
1{X̂(n)

s =1} ds

(5.5)

≤ λ
(n)
1 α

(n)
1

∫ t

0
X̂(n)

s ds
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and

〈
M(n)(φ2)

〉
t = λ

(n)
2 α

(n)
2

∫ t

0
X̂(n)

s Ŷ (n)
s ds.(5.6)

Let

N̂
(n)
t := X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ t

0
X̂(n)

s ds + M
(n)
t (φ1).(5.7)

Then we have the following second moment estimate.

LEMMA 5.2. Suppose Conditions 2.1(i) and (ii) hold. Then there is a K ∈
(0,∞) such that for all n ∈ N and T ≥ 0,

E
(

sup
t≤T

((
X̂

(n)
t

)2 + (
M

(n)
t (φ1)

)2 + (
N̂

(n)
t

)2 + (
η̂

(n)
t

)2))≤ exp
(
KT 2)(x(n)

0

)2(5.8)

and for each k ∈ N,

E
(

sup
t≤T

(
Ŷ

(n)

σ
(n)
k ∧t

)2)≤ exp
(
KT 2k2)(y(n)

0

)2
,(5.9)

where σ
(n)
k := inf{t > 0 : X̂(n)

t ≥ k}.

In order to study properties of invariant measures of X̂(n), it will be convenient
to allow the initial random variable X̂

(n)
0 to have an arbitrary distribution on S

(n)
X .

When X
(n)
0 has distribution μ on S

(n)
X , we will denote the corresponding proba-

bility and expectation operator by Pμ and Eμ, respectively. If μ = δx for some

x ∈ S
(n)
X , we will instead write Px and Ex , respectively. When considering an ini-

tial condition x for X̂(n), x will always be in S
(n)
X , although this will frequently

be suppressed in the notation. The symbols E and P (without any subscripts) will
correspond to the initial distribution as in Condition 2.1.

LEMMA 5.3. Suppose Conditions 2.1(i) and (ii), 3.1 and 3.2 hold. Then there
exist δ, ρ ∈ (0,∞) such that for every M > 0,

sup
n∈N,x≤M

Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t

)
=: d(δ, ρ,M) < ∞.(5.10)

LEMMA 5.4. Suppose Conditions 2.1(i) and (ii), 3.1 and 3.2 hold. Then there
exist δ, d̃ ∈ (0,∞) such that for every x ∈ S

(n)
X , n ∈ N and t ≥ 0,

Ex

(
eδX̂

(n)
t /2)≤ d̃eδx.(5.11)

The following is immediate from Lemmas 5.2 and 5.4.
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COROLLARY 5.1. Suppose Conditions 2.1(i) and (ii), 3.1 and 3.2 hold. Let δ

be as in Lemma 5.4 and T ∈ R+. Then there exists a d(δ, T ) ∈ (0,∞) such that
for all x ∈ S

(n)
X and n ∈ N,

sup
s∈R+

Ex

(
sup

s≤u≤s+T

(
X̂(n)

u

)2)≤ d(δ, T )eδx.(5.12)

The next lemma follows by combining Lemma 5.4 with arguments as in the
proof of Lemma 5.2. The proof is omitted.

LEMMA 5.5. Suppose Conditions 2.1(i) and (ii), 3.1 and 3.2 hold. Let δ be as
in Lemma 5.4. Then for each T ≥ 0 there are LT , L̃T ∈ (0,∞) such that for all
n ∈ N and s ∈ R+,

E
(

sup
t≤T

((
X̂

(n)
s+t − X̂(n)

s

)2 + (
M

(n)
s+t (φ1) − M(n)

s (φ1)
)2

+ (
N̂

(n)
s+t − N̂ (n)

s

)2 + (
η̂

(n)
s+t − η̂(n)

s

)2))(5.13)

≤ LT E
(
X̂(n)

s

)2 ≤ L̃T

(
eδx

(n)
0
)
.

In order to prove weak convergence results for the scaled catalyst and reactant
processes, we will need to argue that the limit processes are continuous, which will
be a consequence of the following bounds on the jumps. The somewhat stronger
estimate on the jumps of the catalyst population in (5.15), below, will be used in
the stochastic averaging argument in the proof of Theorem 4.2. Recall that for
a process {ξt }t∈R+ the jump at instant t > 0 is defined as �ξt := ξt − ξt− and
�ξ0 := 0.

LEMMA 5.6. Suppose Condition 2.1 holds. Fix T , ε > 0. Then, as n → ∞,

P
(

sup
0≤t≤T

(∣∣�X̂
(n)
t

∣∣+ ∣∣�Ŷ
(n)
t

∣∣)≥ ε
)

→ 0.(5.14)

If additionally Conditions 3.1 and 3.2 hold, then, as n → ∞,

sup
s∈R+

P
(

sup
0≤t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε
)

→ 0.(5.15)

5.1. Proofs of auxiliary results. In this section we prove the results stated in
Section 5. We begin with the proofs of Lemmas 5.1–5.5. Using these results, we
will then prove Proposition 5.1. The proof of Lemma 5.6 is given at the end.

PROOF OF LEMMA 5.1. Recall that Ŵ(n) = (X̂(n), Ŷ (n), Ẑ(n)) and that for
x = (x1, x2, x3) ∈ W, φi(x) = xi , i = 1,2,3, and h := φ1 − φ3. From (5.1),

Ẑ
(n)
t = φ3

(
Ŵ(n)

t

)= Ẑ
(n)
0 +

∫ t

0
Â(n)φ3

(
Ŵ(n)

s

)
ds + M

(n)
t (φ3).(5.16)
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Using (2.2), we get

Â(n)φ3
(
Ŵ(n)

t

)= λ
(n)
1 nX̂

(n)
t

∞∑
k=0

(k − 1)μ
(n)
1 (k) = c

(n)
1 λ

(n)
1 X̂

(n)
t .(5.17)

Next, since X̂
(n)
0 = Ẑ

(n)
0 , we have

X̂
(n)
t − Ẑ

(n)
t = h

(
Ŵ(n)

t

)=
∫ t

0
Â(n)h

(
Ŵ(n)

s

)
ds + M

(n)
t (h)

and, once more using (2.2),

Â(n)h(w) = λ
(n)
1 nμ

(n)
1 (0)1{x=1}, w = (x, y, z).

Thus with η̂(n) as in (5.2), we get

X̂
(n)
t − Ẑ

(n)
t = h

(
Ŵ(n)

t

)= η̂
(n)
t + M

(n)
t (h).(5.18)

Noting that M(n)(φ1) = M(n)(h) + M(n)(φ3) and using (5.16), (5.17) and (5.18),
we have

X̂
(n)
t = X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ t

0
X̂(n)

s ds + M
(n)
t (φ1) + η̂

(n)
t .(5.19)

Since η̂(n) is nondecreasing and
∫∞

0 1{X̂(n)
s �=1} dη̂

(n)
s = 0, we have from the charac-

terization given above (2.4) that

X̂
(n)
t = 


(
X̂

(n)
0 + c

(n)
1 λ

(n)
1

∫ ·
0

X̂(n)
s ds + M(n)· (φ1)

)
(t).

Next, for the reactant population, using similar calculations as for X̂(n), we get

Ŷ
(n)
t = Ŷ

(n)
0 +

∫ t

0
Â(n)φ2

(
Ŵ(n)

s

)
ds + M

(n)
t (φ2)

= Ŷ
(n)
0 + c

(n)
2 λ

(n)
2

∫ t

0
X̂(n)

s Ŷ (n)
s ds + M

(n)
t (φ2).

Finally, routine calculations then show (see [10], Lemma 3.1.3) that (5.5) and (5.6)
hold. Details are omitted. �

PROOF OF LEMMA 5.2. Using (5.5) and Doob’s inequality, we have

E
(

sup
t≤T

(
M

(n)
t (φ1)

)2)≤ 4λ
(n)
1 α

(n)
1 E

(∫ T

0
X̂(n)

s ds

)
.(5.20)

Next, from (5.3), X̂
(n)
t = 
(N̂

(n)· )(t). The Lipschitz continuity of the Skorohod
map implies

sup
t≤T

∣∣X̂(n)
t − 1

∣∣≤ 2 sup
t≤T

∣∣N̂ (n)
t − 1

∣∣.(5.21)
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Letting |X̂(n)|2∗,T := supt≤T |X̂(n)
t |2, we now get∣∣X̂(n)

∣∣2∗,T ≤ 2
∣∣X̂(n) − 1

∣∣2∗,T + 2 ≤ 8
∣∣N̂ (n) − 1

∣∣2∗,T + 2 ≤ 16
∣∣N̂ (n)

∣∣2∗,T + 18.

Combining this with (5.7) and (5.20), we obtain

E
(∣∣X̂(n)

∣∣2∗,T

)≤ 18 + 16E
(∣∣N̂ (n)

∣∣2∗,T

)
≤ 18 + 48

[
E
(
X̂

(n)
0

)2(5.22)

+ (
T
(
c
(n)
1 λ

(n)
1

)2 + 4λ
(n)
1 α

(n)
1

) ∫ T

0
E
(∣∣X̂(n)

∣∣2∗,s

)
ds

]
.

Using Gronwall’s inequality, we get, since E(X̂
(n)
0 )2 = (x

(n)
0 )2 ≥ 1,

E
(∣∣X̂(n)

∣∣2∗,T

)≤ 66
(
x

(n)
0

)2 exp
(
K

(n)
1,T

)
,

where K
(n)
1,T := 48T (T (c

(n)
1 λ

(n)
1 )2 + 4λ

(n)
1 α

(n)
1 ). Since c

(n)
1 , λ

(n)
1 and α(n) converge

as n → ∞, we have that for some K ∈ (0,∞) and all n ∈ N

E
(

sup
t≤T

(
X̂

(n)
t

)2)≤ 66 exp
(
KT 2)(x(n)

0

)2
.(5.23)

Using (5.23) in (5.20), (5.22) and (5.19), we have the estimate in (5.8) by choosing
K sufficiently large.

We next establish (5.9). Using Doob’s inequality once more and applying (5.6),
we have

E
(

sup
t≤T

(
M

(n)

σ
(n)
k ∧t

(φ2)
)2)≤ 4E

(〈
M(n)(φ2)

〉
σ

(n)
k ∧T

)

≤ 4λ
(n)
2 α

(n)
2 E

(∫ σ
(n)
k ∧T

0
X̂(n)

s Ŷ (n)
s ds

)
.

Thus, by (5.4),

E
(∣∣Ŷ (n)

∣∣2∗,T ∧σ
(n)
k

)

≤ 3
((

y
(n)
0

)2 + [
T
(
c
(n)
2 λ

(n)
2 k

)2 + 4λ
(n)
2 α

(n)
2 k

] ∫ T

0
E
(∣∣Ŷ (n)

∣∣2∗,s∧σ
(n)
k

)
ds

)
.

The estimate in (5.9) now follows by choosing K sufficiently large and applying
Gronwall’s inequality. �

PROOF OF LEMMA 5.3. First we show, using Conditions 2.1(i) and (ii), 3.1
and 3.2, that there are δ0, d1, d2 ∈ (0,∞) such that for all δ ∈ [0, δ0] and n ∈ N

−δd2 ≤
∞∑

k=0

n2[e(k−1)δ/n − 1
]
μ

(n)
1 (k) ≤ −δd1.(5.24)
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Note that
∞∑

k=0

n2[e(k−1)δ/n − 1
]
μ

(n)
1 (k)

= n2
∞∑

k=0

( ∞∑
l=1

1

l!
(

(k − 1)δ

n

)l
)
μ

(n)
1 (k)

= nδ

( ∞∑
k=0

kμ
(n)
1 (k) − 1

)
+ 1

2
δ2

∞∑
k=0

(k − 1)2μ
(n)
1 (k)

+ n2
∞∑

k=0

( ∞∑
l=3

1

l!
(

(k − 1)δ

n

)l
)
μ

(n)
1 (k).

Now, as n → ∞,

nδ

( ∞∑
k=0

kμ
(n)
1 (k) − 1

)
= nδ

(
m

(n)
1 − 1

)= δc
(n)
1 → δc1 ∈ (−∞,0)

and

1

2
δ2

∞∑
k=0

(k − 1)2μ
(n)
1 (k) = 1

2
δ2α

(n)
1 → 1

2
δ2α1.

Noting that c
(n)
1 < 0, we can choose δ0 > 0 sufficiently small, and d1, d2 ∈ (0,∞)

suitably, such that (5.24) holds.
For δ0 as above and δ ≤ δ0, let

α
(n)
δ := neδ

∞∑
k=1

(
e(k−1)δ/n − 1

)μ(n)
1 (k)

μ
(n)
1 (0)

and

β
(n),δ
t := n2λ

(n)
1

∫ t

0
X̂(n)

s

∞∑
k=0

([
e(k−1)δ/n − 1

]
μ

(n)
1 (k)

)
1{X̂(n)

s >1} ds.

Note that, by (5.24), for any t ≥ u ≥ 0,

−δd2λ
(n)
1

∫ t

u
X̂(n)

s 1{X̂(n)
s >1} ds ≤ β

(n),δ
t − β(n),δ

u

(5.25)

≤ −δd1λ
(n)
1

∫ t

u
X̂(n)

s 1{X̂(n)
s >1} ds.

Moreover,

0 ≤ α
(n)
δ ≤ eδδ.(5.26)
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The first inequality in the last display is immediate, the second inequality can be
seen as follows:

α
(n)
δ = neδ

∞∑
k=1

(
e(k−1)δ/n − 1

)μ(n)
1 (k)

μ
(n)
1 (0)

= neδ
∞∑

k=0

(
e(k−1)δ/n − 1

)μ(n)
1 (k)

μ
(n)
1 (0)

− neδ(e−δ/n − 1
)μ(n)

1 (0)

μ
(n)
1 (0)

.

By (5.24), the first term on the right-hand side of the last display is smaller or equal
to 0. Thus

α
(n)
δ ≤ −neδ(e−δ/n − 1

)≤ eδδ.

We now argue that

M
(n),δ
t := exp

(
δX̂

(n)
t − β

(n),δ
t

)− α
(n)
δ

∫ t

0
exp

(−β(n),δ
s

)
dη̂(n)

s

is a local martingale. Let f (x) = eδx and

q(x) := L̂(n)f (x)

f (x)
1{x>1}.

Here L̂(n) is the generator of X̂(n), that is, for x ∈ S
(n)
X ,

L̂(n)f (x) = λ
(n)
1 n2x

∞∑
k=0

[
f

(
1 ∨

(
x + k − 1

n

))
− f (x)

]
μ

(n)
1 (k).(5.27)

Note that

q(x) = n2λ
(n)
1 x

∞∑
k=0

([
e(k−1)δ/n − 1

]
μ

(n)
1 (k)

)
1{x>1}

and thus ∫ t

0
q
(
X̂(n)

s

)
ds = β

(n),δ
t .(5.28)

Also, ∫ t

0
L̂(n)f

(
X̂(n)

s

)
1{X̂(n)

s =1} ds = α
(n)
δ η̂

(n)
t .(5.29)

Consider the Markov process V (n) defined by

V
(n)
t :=

(
X̂

(n)
t , exp

(
−
∫ t

0
q
(
X̂(n)

s

)
ds

))
, t ≥ 0.
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Denote by L̄(n) the generator of V (n). Then the action of the generator on the
function f (x)g(y) with f (x) = eδx and g(y) = y is given by

L̄(n)(f (x)g(y)
)= y

(
L̂(n)f (x) − q(x)f (x)

)= yL̂(n)f (x)1{x=1}.

Using (5.28) we now have that

(fg)
(
V

(n)
t

)−
∫ t

0
L̄(n)(fg)

(
V (n)

s

)
ds

= eδX̂
(n)
t −β

(n),δ
t −

∫ t

0
e−β

(n),δ
s L̂(n)f

(
X̂(n)

s

)
1{X̂(n)

s =1} ds, t ≥ 0,

is a local martingale. From (5.29) we now see that the last expression equals
M

(n),δ
t , t ≥ 0, which is thus a local martingale.
We next show that for every M > 0, δ ≤ δ0 and t ≥ 0,

d3(δ, t,M) := sup
x≤M

sup
n∈N

Ex

(
eδX̂

(n)
t
)
< ∞.(5.30)

Note that

eδX̂
(n)
t =

(
eδX̂

(n)
t −β

(n),δ
t − α

(n)
δ

∫ t

0
e−β

(n),δ
s dη̂(n)

s + α
(n)
δ

∫ t

0
e−β

(n),δ
s dη̂(n)

s

)
eβ

(n),δ
t

(5.31)

=
(
M

(n),δ
t + α

(n)
δ

∫ t

0
e−β

(n),δ
s dη̂(n)

s

)
eβ

(n),δ
t .

Applying Itô’s formula and using (5.24), (5.28) and (5.31), we see that

Ex

(
eδX̂

(n)
t
)

= eδx + α
(n)
δ Ex

∫ t

0
e
∫ s

0 q(X̂
(n)
u ) due− ∫ s

0 q(X̂
(n)
u ) du dη̂(n)

s

+ Ex

(∫ t

0
q
(
X̂(n)

s

)(
M(n),δ

s + α
(n)
δ

∫ s

0
e−β

(n),δ
u dη̂(n)

u

)
e
∫ s

0 q(X̂
(n)
u ) du ds

)

= eδx + α
(n)
δ Exη̂

(n)
t + Ex

(∫ t

0
q
(
X̂(n)

s

)
eδX̂

(n)
s ds

)

≤ eδx + α
(n)
δ Exη̂

(n)
t .

The estimate in (5.30) now follows by combining the above inequality with Lem-
ma 5.2 and (5.26).

Fix M > 0, x ≤ M and δ ≤ δ0
4 . Then, since β

(n),δ
t ≤ 0 for all t ≥ 0, we have for

ρ > 0,

Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t

)2 ≤ Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t −β

(n),δ
t

)2 ≤ 4Ex

(
e2δX̂

(n)
ρ −2β

(n),δ
ρ

)
,
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where the last inequality follows on noting that eδX̂
(n)
t −β

(n),δ
t is a submartingale and

applying Doob’s inequality. Now from (5.25) and (5.30),

Ex

(
e2δX̂

(n)
ρ −2β

(n),δ
ρ

)≤ (
Ex

(
e4δX̂

(n)
ρ
))1/2(

Ex

(
e−4β

(n),δ
ρ

))1/2

≤ (
d3(4δ, ρ,M)

)1/2
Ex

(
exp

(
4δd2λ

(n)
1 ρ sup

0≤t≤ρ

X̂
(n)
t

))
.

Choose ρ < (8d2 supn∈N λ
(n)
1 )−1. Then, by combining the above estimates, we can

find a d4(δ, ρ,M) < ∞ such that for all x ≤ M , n ∈ N and δ ≤ δ0
4

Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t

)
≤ d4(δ, ρ,M)Ex

(
exp

(
4δd2λ

(n)
1 ρ sup

0≤t≤ρ

X̂
(n)
t

))

≤ d4(δ, ρ,M)Ex

(
exp

(
δ

2
sup

0≤t≤ρ

X̂
(n)
t

))

≤ d4(δ, ρ,M)
[
Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t

)]1/2
.

Dividing both sides by [Ex(sup0≤t≤ρ eδX̂
(n)
t )]1/2 yields[

Ex

(
sup

0≤t≤ρ

eδX̂
(n)
t

)]1/2 ≤ d4(δ, ρ,M)

for any x ≤ M and n ∈ N. The result follows. �

PROOF OF LEMMA 5.4. For δ ∈ (0,1), n ∈ N, define

b
(n),1
δ (x) := λ

(n)
1 n2x

∞∑
k=0

(
eδ(k−1)/n − 1

)
μ

(n)
1 (k),

b
(n),2
δ (x) := λ

(n)
1 n2x

∞∑
k=1

(
eδ(k−1)/n − 1

)
μ

(n)
1 (k)

and

b
(n)
δ (x) := b

(n),1
δ (x)1{x>1} + b

(n),2
δ (x)1{x=1}.

From (5.24), we have, for some κ ∈ (0,∞),

sup
n∈N

b
(n),1
δ (x) ≤ −δd1x inf

n∈N
λ(n) ≤ −δκx ≤ −δκ

for all δ ≤ δ0 [with δ0 as above (5.24)] and x ≥ 1. Observing that with f (x) = eδx ,
L̂(n)f (x)

f (x)
= b

(n)
δ (x), where L̂(n) is the generator of X̂(n) defined in (5.27), we have

that

U
(n)
t := eδX̂

(n)
t −∫ t

0 b
(n)
δ (X̂

(n)
s ) ds, t ≥ 0,(5.32)
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is a local martingale. Fix δ and ρ as in the statement of Lemma 5.3. Without loss
of generality, we can assume that δ ≤ δ0. Note that on the set

{
ω : X̂(n)

s (ω) > 1 for all s ∈ [
(j − 1)ρ, jρ

)}
,

we have

δ
[
X̂

(n)
jρ − X̂

(n)
(j−1)ρ

] ≤ δ
[
X̂

(n)
jρ − X̂

(n)
(j−1)ρ

]− ∫ jρ

(j−1)ρ
b

(n)
δ

(
X̂(n)

s

)
ds − δκρ

(5.33)
≡ v

(n)
j − δκρ.

Fix t > 0, and let N ∈ N be such that (N − 1)ρ ≤ t < Nρ. Then, similarly, on the
set

{
ω : X̂(n)

t (ω) > 1 for all s ∈ [
(N − 1)ρ, t

)}
,

δ[X̂(n)
t − X̂

(n)
(N−1)ρ] ≤ v

(n)
N (t), where

v
(n)
j (t) := δ

[
X̂

(n)
t − X̂

(n)
(j−1)ρ

]− ∫ t

(j−1)ρ
b

(n)
δ

(
X̂(n)

s

)
ds.

Now, for a fixed ω, let m ≡ m(ω) be such that [(m − 1)ρ,mρ) is the last interval
in which X̂(n) visits 1 before time Nρ. We set m = 0 if 1 is not visited before
time Nρ. We distinguish between the cases 0 < m < N , m = N and m = 0, where
the latter corresponds to the case where 1 is not visited before time Nρ.

Case 1: 0 < m < N .
In this case

δX̂
(n)
t ≤ δX̂(n)

mρ +
N−1∑

j=m+1

(
v

(n)
j − δκρ

)+ v
(n)
N (t).

For j ∈ N, let

γ
(n)
j := inf

{
t ≥ (j − 1)ρ|X̂(n)

t = 1
}∧ jρ

and

θ
(n)
j := sup

0≤t≤ρ

[
X̂

(n)

(t+γ
(n)
j )∧jρ

− X̂
(n)

γ
(n)
j

]
.(5.34)

Then δX̂
(n)
mρ ≤ δθ

(n)
m + δ. Combining the above estimates, we have

δX̂
(n)
t ≤ δθ(n)

m + δ +
N−1∑

j=m+1

(
v

(n)
j − δκρ

)+ v
(n)
N (t).(5.35)
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Thus, in this case

δX̂
(n)
t ≤ δX̂

(n)
0 + max

0≤l≤N

{
N−1∑

j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l

}
+ v

(n)
N (t),

where by convention
∑N−1

j=l+1(v
(n)
j − δκρ) = 0 for l = N − 1,N and θ

(n)
0 := 0.

Case 2: m = 0.
In this case, 1 is not visited before time Nρ and thus

δX̂
(n)
t ≤ δX̂

(n)
0 +

N−1∑
j=1

(
v

(n)
j − δκρ

)+ v
(n)
N (t)

≤ δX̂
(n)
0 + max

0≤l≤N

{
N−1∑

j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l

}
+ v

(n)
N (t).

Case 3: m = N .
Suppose first that there is an s ∈ [(N −1)ρ, t] such that X̂

(n)
s = 1. It then follows

that

δX̂
(n)
t ≤ δθ

(n)
N + δ.

Now suppose that there is no such s ∈ [(N −1)ρ, t]. Define m′ ∈ {1,2, . . . ,N −1}
to be such that [(m′ − 1)ρ,m′ρ) is the last interval in which X̂(n) visits 1 before
(N − 1)ρ. Once again we set m′ = 0 if there is no such interval.

If m′ = 0, we get exactly as in case 2 that

δX̂
(n)
t ≤ δX̂

(n)
0 + max

0≤l≤N

{
N−1∑

j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l

}
+ v

(n)
N (t).

If 1 ≤ m′ ≤ N − 1, then

δX̂
(n)
t ≤ δθ

(n)
m′ + δ +

N−1∑
j=m′+1

(
v

(n)
j − δκρ

)+ v
(n)
N (t)

≤ δX̂
(n)
0 + max

0≤l≤N

{
N−1∑

j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l

}
+ v

(n)
N (t).

Combining the three cases, we have

δX̂
(n)
t ≤ max

{
δX̂

(n)
0 + max

l≤N

{
N−1∑

j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l

}
+ v

(n)
N (t), δ + δθ

(n)
N

}
.
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Thus, for any M0 > 0,

Px

(
δX̂

(n)
t ≥ M0

)

≤
N−1∑
l=0

Px

(
v

(n)
N (t) +

N−1∑
j=l+1

(
v

(n)
j − δκρ

)+ δθ
(n)
l + δ + δX̂

(n)
0 ≥ M0

)

+ Px

(
δθ

(n)
N + δ ≥ M0

)
≤ eδ(1+x)−M0

×
(

N−1∑
l=0

[
Ex

(
exp

[
δθ

(n)
l +

N−1∑
j=l+1

v
(n)
j + v

(n)
N (t)

])
e−δκρ(N−l−1)

]

+ Ex

(
eδθ

(n)
N
))

.

Recalling U(n) from (5.32) and using its martingale property, we get

Px

(
δX̂

(n)
t ≥ M0

)≤ e−M0eδ(1+x)

(
Ex

(
eδθ

(n)
N
)+

N−1∑
l=0

e−δκρ(N−l−1)Ex

(
eδθ

(n)
l
))

(5.36)

≤ e−M0e(1+x)δ d(δ, ρ,1)

(
1 + 1

1 − e−δκρ

)
,

where the last inequality follows from Lemma 5.3 and the observation that

sup
n∈N

Ex

(
eδθ

(n)
l
)≤ sup

n∈N

E1

(
sup

0≤t≤ρ

eδX̂
(n)
t

)
≤ d(δ, ρ,1) < ∞,(5.37)

where θ
(n)
l is as in (5.34). Finally, from (5.36), we get that for all t ≥ 0 and n ∈ N

Ex

(
eδX̂

(n)
t /2)=

∫ ∞
0

Px

(
δX̂

(n)
t > 2 ln(y)

)
dy

≤ 1 + e(1+x)δ d(δ, ρ,1)

(
1 + 1

1 − e−δκρ

)∫ ∞
1

e−2 ln(y) dy(5.38)

≤ d̃eδx,

where d̃ = 1 + eδd(δ, ρ,1)(1 + 1
1−e−δκρ ). The result follows. �

PROOF OF PROPOSITION 5.1. We will first consider the second part of the
proposition. We begin by showing that {N̂ (n)

s+· − N̂
(n)
s }s,n is tight. For that, in view

of (5.13), it suffices to show that the following condition (Aldous–Kurtz criterion)
holds: for each M > 0, ε > 0 and γ > 0 there are δ0 > 0 and n0 such that for all
stopping times {τn}n∈N with τn ≤ M , we have

sup
s∈R+,n≥n0

sup
θ≤δ0

P
(∣∣N̂ (n)

s+τn+θ − N̂
(n)
s+τn

∣∣≥ γ
)≤ ε.(5.39)
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Let M,ε, γ ∈ (0,∞) be given. Note that

P
(∣∣N̂ (n)

s+τn+θ − N̂
(n)
s+τn

∣∣≥ γ
)

≤ P

(∣∣∣∣c(n)
1 λ

(n)
1

∫ s+τn+θ

s+τn

X̂(n)
u du

∣∣∣∣≥ γ

2

)

+ P

(∣∣M(n)
s+τn+θ (φ1) − M

(n)
s+τn

(φ1)
∣∣≥ γ

2

)
.

By (5.12) we have, for δ0 sufficiently small,

sup
s∈R+,n∈N

sup
θ≤δ0

P

(∣∣∣∣c(n)
1 λ

(n)
1

∫ s+τn+θ

s+τn

X̂(n)
u du

∣∣∣∣≥ γ

2

)
<

ε

2
.

It remains to prove that, for some δ0 > 0,

sup
s∈R+,n∈N

sup
θ≤δ0

P

(∣∣M(n)
s+τn+θ (φ1) − M

(n)
s+τn

(φ1)
∣∣≥ γ

2

)
<

ε

2
.(5.40)

Using the martingale property of M(n)(φ1),

P

(∣∣M(n)
s+τn+θ (φ1) − M

(n)
s+τn

(φ1)
∣∣≥ γ

2

)

≤ E(|M(n)
s+τn+θ (φ1) − M

(n)
s+τn

(φ1)|2)
(γ /2)2

= E((M
(n)
s+τn+θ (φ1))

2) − E((M
(n)
s+τn

(φ1))
2)

(γ /2)2

= E〈M(n)(φ1)〉s+τn+θ − E〈M(n)(φ1)〉s+τn

(γ /2)2 ,

and, using (5.5),

E
〈
M(n)(φ1)

〉
s+τn+θ − E

〈
M(n)(φ1)

〉
s+τn

≤ E

(
λ

(n)
1 α

(n)
1

∫ s+τn+θ

s+τn

X̂(n)
u du

)
.

Now, using (5.12) once more, we can choose δ0 > 0 such that (5.40) holds. This
proves tightness of {N̂ (n)

s+· − N̂
(n)
s }s,n and, using the continuity property of the Sko-

rohod map (from D1(R+ : R) to D(R+ : [1,∞))), that of {X̂(n)
s+· − X̂

(n)
s }s,n and

{η̂(n)
s+· − η̂

(n)
s }s,n. Tightness of {X̂(n)

s+·}s,n now follows by using the uniform estimate
in Lemma 5.4.

Now we consider the first part of the proposition. Tightness of (X̂(n), η̂(n))

follows as before. We now consider Ŷ (n). Fix ε > 0. Using (5.9), we get, for
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K̃ ∈ (0,∞),

P
(
sup
t≤T

(
Ŷ

(n)
t

)
> K̃

)
≤ P

(
sup
t≤T

(
Ŷ

(n)

σ
(n)
k ∧t

)
> K̃ and σ

(n)
k > T

)
+ P

(
σ

(n)
k ≤ T

)

≤
E(supt≤T (Ŷ

(n)

σ
(n)
k ∧t

)2)

K̃2
+ P

(
sup
t≤T

(
X̂

(n)
t

)≥ k
)

≤ exp(KT 2k2)(y
(n)
0 )2

K̃2
+ E(supt≤T (X̂

(n)
t )2)

k2 .

Using (5.8), we can choose k such that

sup
n∈N

E(supt≤T (X̂
(n)
t )2)

k2 <
ε

2
.(5.41)

Now choose K̃ such that

sup
n∈N

exp(KT 2k2)(y
(n)
0 )2

K̃2
<

ε

2
.

The last two displays imply supn∈N P(supt≤T (Ŷ
(n)
t ) > K̃) < ε, and since ε > 0 is

arbitrary, the tightness of the random variables {Ŷ (n)
t }n∈N, for each t ≥ 0, follows.

To establish the tightness of the processes {Ŷ n)}n∈N, it now suffices to show that
for each M > 0, ε > 0 and γ > 0 there are δ0 > 0 and n0 such that for all stopping
times {τn}n∈N with τn ≤ M , we have

sup
n≥n0

sup
θ≤δ0

P
(∣∣Ŷ (n)

τn+θ − Ŷ (n)
τn

∣∣≥ γ
)≤ ε.(5.42)

Fix M,ε, γ ∈ (0,∞). Then, for any θ ∈ (0,1),

P
(∣∣Ŷ (n)

τn+θ − Ŷ (n)
τn

∣∣≥ γ
)

≤ P
(∣∣Ŷ (n)

(τn+θ)∧σ
(n)
k

− Ŷ
(n)

τn∧σ
(n)
k

∣∣≥ γ
)+ P

(
σ

(n)
k ≤ M + 1

)
.

Taking T = M + 1 and k as in (5.41), we have P(σ
(n)
k < M + 1) < ε/2 for all

n ∈ N. For the first term on the right-hand side of the last display, we get, using
(5.4) and that sup

t≤T ∧σ
(n)
k

X̂
(n)
t ≤ k,

P
(∣∣Ŷ (n)

(τn+θ)∧σ
(n)
k

− Ŷ
(n)

τn∧σ
(n)
k

∣∣≥ γ
)

≤ P

(∣∣∣∣c(n)
2 λ

(n)
2

∫ (τn+θ)∧σ
(n)
k

τn∧σ
(n)
k

Ŷ (n)
s ds

∣∣∣∣≥ γ

2k

)
(5.43)

+ P

(∣∣M(n)

(τn+θ)∧σ
(n)
k

(φ2) − M
(n)

τn∧σ
(n)
k

(φ2)
∣∣≥ γ

2

)
.
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The first term on the right-hand side can be bounded as follows:

P

(∣∣∣∣c(n)
2 λ

(n)
2

∫ (τn+θ)∧σ
(n)
k

τn∧σ
(n)
k

Ŷ (n)
s ds

∣∣∣∣≥ γ

2k

)

≤
(

2kc
(n)
2 λ

(n)
2

γ

)2

E

((∫ (τn+θ)∧σ
(n)
k

τn∧σ
(n)
k

Ŷ (n)
s ds

)2)

≤ θ

(
2kc

(n)
2 λ

(n)
2

γ

)2

exp
(
K(M + 1)2k2)(y(n)

0

)2
,

where K is the constant from (5.9). Thus, for δ0 sufficiently small, we get

sup
n∈N

sup
θ≤δ0

P

(∣∣∣∣c(n)
2 λ

(n)
2

∫ (τn+θ)∧σ
(n)
k

τn∧σ
(n)
k

Ŷ (n)
s ds

∣∣∣∣≥ γ

2k

)
< ε/4.

The second term on the right-hand side of (5.43) can be bounded as follows:

P

(∣∣M(n)

(τn+θ)∧σ
(n)
k

(φ2) − M
(n)

τn∧σ
(n)
k

(φ2)
∣∣≥ γ

2

)

≤
E(〈M(n)(φ2)〉(τn+θ)∧σ

(n)
k

− 〈M(n)(φ2)〉τn∧σ
(n)
k

)

(γ /2)2

≤ 4

γ 2 λ
(n)
2 α

(n)
2 E

(∫ (τn+θ)∧σ
(n)
k

τn∧σ
(n)
k

X̂(n)
s Ŷ (n)

s ds

)

≤ 4

γ 2 λ
(n)
2 α

(n)
2 kθE

(
sup

0≤s≤M+1
Ŷ

(n)

s∧σ
(n)
k

)
.

Using (5.9) once more, we have that, for δ0 sufficiently small, the second term in
(5.43) is bounded by ε

4 . Combining the above estimates, we now see that (5.42)

holds, and thus tightness of {Ŷ (n)}n∈N follows. �

PROOF OF LEMMA 5.6. Consider (5.15). Let N
(n)
s,T be the number of deaths of

particles of the (unscaled) process X(n) in the time interval [s, s +T ]. Fix ε, δ > 0.
Then

P
(

sup
0≤t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε
)

≤ P
(

sup
0≤t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε; sup
0≤t≤T

X
(n)
s+t ≤ nL

)
+ P

(
sup

0≤t≤T

X
(n)
s+t > nL

)
.

By Corollary 5.1, we can choose L ∈ (0,∞) such that

P
(

sup
0≤t≤T

X
(n)
s+t > nL

)
<

δ

3
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for s ∈ R+ and n ∈ N. Next, consider

P
(

sup
0≤t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε; sup
0≤t≤T

X
(n)
s+t ≤ nL

)

≤ P
(
sup
t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε;N(n)
s,T < nCL

)
+ P

(
sup
t≤T

X
(n)
s+t ≤ nL;N(n)

s,T ≥ nCL
)
.

Note that on the set {sup0≤t≤T X
(n)
s+t ≤ nL} the branching rates of X(n) are bounded

during the time interval [s, s + T ], uniformly in s and n, and thus we can choose a
C ∈ (0,∞) such that for s ∈ R+ and n ∈ N

P
(

sup
0≤t≤T

X
(n)
s+t ≤ nL;N(n)

s,T ≥ nCL
)

<
δ

3
.

Finally, let, for n ∈ N, {ξ (n)
i }i∈N be i.i.d. random variables distributed as μ

(n)
1 .

Then, since the variance of the offspring distribution converges, we have for n0
sufficiently large and all n ≥ n0,

P
(

sup
0≤t≤T

∣∣�X̂
(n)
s+t

∣∣≥ ε;N(n)
s,T < nCL

)
≤ P

(
max

1≤i<nCL

|ξ (n)
i − 1|

n
≥ ε

)

≤
nCL−1∑

i=1

P
(∣∣ξ (n)

i − 1
∣∣≥ nε

)

≤
nCL−1∑

i=1

E(|ξ (n)
i − 1|2)
(nε)2 <

δ

3
.

Combining the above estimates, (5.15) follows. The limit in (5.14) can be estab-
lished similarly, using Lemma 5.2 instead of Corollary 5.1; the proof is therefore
omitted. �

6. Proof of Theorem 2.1. The following martingale characterization result
will be useful in the proof of Theorem 2.1. The proof is standard and is omitted;
see [18], [13], [14] and Theorem 5.3 of [4].

For φ ∈ C∞
c ([1,∞) × R+), let

Lφ(x, y) := c1λ1x
∂

∂x
φ(x, y) + 1

2
α1λ1x

∂2

∂x2 φ(x, y)

+ c2λ2xy
∂

∂y
φ(x, y) + 1

2
α2λ2xy

∂2

∂y2 φ(x, y).

Let ̃ := D(R+ : [1,∞) × R
2+) and F̃ be the corresponding Borel σ -field (with

respect to the Skorohod topology). Denote by {Ft }t∈R+ the canonical filtration on
(̃, F̃ ), that is, Ft = σ(πs |s ≤ t), where πs(ω̃) = ω̃s = ω̃(s) for ω̃ ∈ ̃. Finally, let
π(i), i = 1,2,3, be the coordinate processes, that is, (π(1)(ω̃),π(2)(ω̃),π(3)(ω̃)) =
π(ω̃).
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THEOREM 6.1. Let P̃ be a probability measure on (̃, F̃ ) under which the
following hold a.s.:

(i) π(3) is a nondecreasing, continuous process, and π
(3)
0 = 0;

(ii) (π(1), π(2)) is an ([1,∞) × R+) valued continuous process;
(iii)

∫∞
0 1(1,∞)(π

(1)
s ) dπ

(3)
s = 0;

(iv) for all φ ∈ C∞
c ([1,∞) × R+)

φ
(
π

(1)
t , π

(2)
t

)−
∫ t

0
Lφ

(
π(1)

s , π(2)
s

)
ds −

∫ t

0

∂φ

∂x

(
1, π(2)

s

)
dπ(3)

s

is an {Ft } martingale;
(v) P̃ ◦ (π

(1)
0 , π

(2)
0 )−1 = P̄ ◦ (X0, Y0)

−1,where X,Y and P̄ are as in Proposi-
tion 2.1.

Then P̃ ◦ (π(1), π(2))−1 = P̄ ◦ (X,Y )−1.

PROOF OF THEOREM 2.1. Recall that for φ ∈ C∞
c ([1,∞) × R+), we have

φ
(
X̂

(n)
t , Ŷ

(n)
t

)= φ
(
X̂

(n)
0 , Ŷ

(n)
0

)+
∫ t

0
Â(n)φ

(
X̂(n)

s , Ŷ (n)
s

)
ds + M

(n)
t (φ),(6.1)

where M
(n)
t (φ) is a martingale, and Â(n) is as defined in (2.2). Also note that Â(n)

can be rewritten as

Â(n)φ(x, y) = L(n)φ(x, y) + D(n)φ(y)nλ
(n)
1 μ

(n)
1 (0)1{x=1},

where

L(n)φ(x, y) := λ
(n)
1 n2x

∞∑
k=0

[
φ

(
x + k − 1

n
,y

)
− φ(x, y)

]
μ

(n)
1 (k)

+ λ
(n)
2 n2xy

∞∑
k=0

[
φ

(
x, y + k − 1

n

)
− φ(x, y)

]
μ

(n)
2 (k)

and

D(n)φ(y) := n

(
φ(1, y) − φ

(
1 − 1

n
,y

))
.

Thus, using (5.2), (6.1) can be rewritten as

φ
(
X̂

(n)
t , Ŷ

(n)
t

)= φ
(
X̂

(n)
0 , Ŷ

(n)
0

)+
∫ t

0
L(n)φ

(
X̂(n)

s , Ŷ (n)
s

)
ds

+
∫ t

0
D(n)φ

(
Ŷ (n)

s

)
dη̂(n)

s + M
(n)
t (φ).

Recall the path space (̃, F̃ ) introduced above Theorem 6.1. Denote by P̃ (n) the
measure induced by (X̂(n), Ŷ (n), η̂(n)) on (̃, F̃ ) and by Ẽ(n) the corresponding
expectation.
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From Proposition 5.1, P̃ (n) is tight. Let P̃ be a limit point of {P̃ (n)} along some
subsequence {nk}. In order to complete the proof, it suffices to show that under
P̃ properties (i)–(v) in Theorem 6.1 hold almost surely. Property (i) is immediate
from the fact that η̂(n) is nondecreasing and continuous with initial value 0 for
each n. Also, property (v) is immediate from the fact that (X̂

(n)
0 , Ŷ

(n)
0 ) = (1,1), a.s.,

for each n. Next, consider property (ii). The continuity of π(1) and π(2) follows by
(5.14); see [9], Proposition VI.3.26, page 315.

To see (iii), consider, for δ > 0, continuous bounded test functions fδ : [1,

∞) −→ R+ such that

fδ(x) =
{

1, if x ≥ 1 + 2δ,
0, if x ≤ 1 + δ.

(6.2)

Note that, for each n ∈ N,
∫∞

0 fδ(X̂
(n)
s ) dη̂

(n)
s = 0 and thus, for each δ > 0,

0 = lim
k→∞ Ẽ(nk)

(∫ ∞
0

fδ

(
π(1)

s

)
dπ(3)

s ∧ 1
)

= Ẽ

(∫ ∞
0

fδ

(
π(1)

s

)
dπ(3)

s ∧ 1
)
.

Consequently, for each δ > 0,
∫∞

0 1[1+2δ,∞)(π
(1)
s ) dπ

(3)
s = 0, almost surely

w.r.t. P̃ . The property in (iii) now follows on sending δ → 0.
Finally, we consider part (iv). It suffices to show that for every 0 ≤ s ≤ t < ∞

Ẽ

(
ψ(·)

(
φ
(
π

(1)
t , π

(2)
t

)− φ
(
π(1)

s , π(2)
s

)

−
∫ t

s
Lφ

(
π(1)

u ,π(2)
u

)
du −

∫ t

s

∂φ

∂x

(
1, π(2)

u

)
dπ(3)

u

))
= 0,

where ψ : ̃ → R is an arbitrary bounded, continuous, Fs measurable map. Now
fix such s, t and ψ . Then by weak convergence of P̃ (nk) to P̃ and using the moment
bound in Lemma 5.2,

lim
k→∞ Ẽ(nk)

(
ψ(·)

(
φ
(
π

(1)
t , π

(2)
t

)− φ
(
π(1)

s , π(2)
s

)

−
∫ t

s
Lφ

(
π(1)

u ,π(2)
u

)
du −

∫ t

s

∂φ

∂x

(
1, π(2)

u

)
dπ(3)

u

))

= Ẽ

(
ψ(·)

(
φ
(
π

(1)
t , π

(2)
t

)− φ
(
π(1)

s , π(2)
s

)

−
∫ t

s
Lφ

(
π(1)

u ,π(2)
u

)
du −

∫ t

s

∂φ

∂x

(
1, π(2)

u

)
dπ(3)

u

))
.

To complete the proof, it suffices to show that the limit on the left-hand side above
is 0. In view of the martingale property in (6.1), to show this, it suffices to prove
that for φ ∈ C∞

c ([1,∞) × R+),

lim
n→∞E

∣∣∣∣
∫ t

0

(
L(n)φ

(
X̂(n)

s , Ŷ (n)
s

)− Lφ
(
X̂(n)

s , Ŷ (n)
s

))
ds

∣∣∣∣= 0(6.3)
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and

lim
n→∞E

∣∣∣∣
∫ t

0

(
D(n)φ

(
Ŷ (n)

s

)− ∂φ

∂x

(
1, Ŷ (n)

s

))
dη̂(n)

s

∣∣∣∣= 0.(6.4)

The latter is immediate upon using the smoothness of φ and the moment estimate
for η̂(n) in (5.8). For (6.3), we rewrite L(n)φ using a Taylor expansion as follows:

L(n)φ(x, y)

= λ
(n)
1 n2x

∞∑
k=0

[
k − 1

n

∂

∂x
φ(x, y) + 1

2

(
k − 1

n

)2 ∂2

∂x2 φ(x, y)

]
μ

(n)
1 (k)

+ λ
(n)
2 n2xy

∞∑
k=0

[
k − 1

n

∂

∂y
φ(x, y) + 1

2

(
k − 1

n

)2 ∂2

∂y2 φ(x, y)

]
μ

(n)
2 (k)

+ R(n)(x, y)

= c
(n)
1 λ

(n)
1 x

∂

∂x
φ(x, y) + 1

2
α

(n)
1 λ

(n)
1 x

∂2

∂x2 φ(x, y)

+ c
(n)
2 λ

(n)
2 xy

∂

∂y
φ(x, y) + 1

2
α

(n)
2 λ

(n)
2 xy

∂2

∂y2 φ(x, y) + R(n)(x, y),

where the term R(n)(x, y) is a remainder term, which, using part (iii) of Con-
dition 2.1, is seen to satisfy sup|x|,|y|≤L |R(n)(x, y)| → 0 as n → ∞, for any
L ∈ (0,∞). Furthermore, using the compact support property of φ, it follows that
limn→∞ E

∫ t
0 |R(n)(X̂

(n)
s , Ŷ

(n)
s )|ds = 0. Next note that

L(n)φ(x, y) − R(n)(x, y) − Lφ(x, y)

= (
λ

(n)
1 c

(n)
1 − λ1c1

)
x

∂

∂x
φ(x, y) + 1

2

(
λ

(n)
1 α

(n)
1 − λ1α1

)
x

∂2

∂x2 φ(x, y)

+ (
λ

(n)
2 c

(n)
2 − λ2c2

)
xy

∂

∂y
φ(x, y) + 1

2

(
λ

(n)
2 α

(n)
2 − λ2α2

)
xy

∂2

∂y2 φ(x, y)

and therefore, in view of Condition 2.1,

sup
|x|,|y|≤L

∣∣L(n)φ(x, y) − R(n)(x, y) − Lφ(x, y)
∣∣→ 0 as n → ∞.

Once more using the compact support property of φ, it follows that

lim
n→∞E

∫ t

0

∣∣L(n)φ
(
X̂(n)

s , Ŷ (n)
s

)− R(n)(X̂(n)
s , Ŷ (n)

s

)− Lφ
(
X̂(n)

s , Ŷ (n)
s

)∣∣ds = 0.

Combining the above estimates, we have (6.3), and the result follows. �
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7. Proofs of results from Section 3.

7.1. Proof of Proposition 3.1. Uniqueness of the invariant measure of X is
an immediate consequence of the nondegeneracy of the diffusion coefficient (note
that α2λ2x ≥ α2λ2 > 0). For existence, we will apply an extension of the well-
known Echeverria criterion for invariant measures of Markov processes [14] and
Theorem 5.7 of [4]. This criterion, in the current context, says that in order to
establish that a probability measure ν̄1 is an invariant measure for X, it suffices to
verify that for some C ≥ 0 and all φ ∈ C∞

c ([1,∞))∫
[1,∞)

L1φ(x)ν̄1(dx) + Cα1λ1φ
′(1) = 0,(7.1)

where

L1φ(x) = c1λ1xφ′(x) + 1
2α1λ1xφ′′(x).(7.2)

We now show that (7.1) holds with ν̄1 = ν1 and C = p(1)
2 . For φ ∈ C∞

c ([1,∞))

and p as in (3.1),∫ ∞
1

(
c1λ1xφ′(x) + 1

2
α1λ1xφ′′(x)

)
p(x)dx

= c1λ1θe2c1x/α1φ(x)

∣∣∣∣
∞

1
−
∫ ∞

1
2c1λ1θ

c1

α1
e2c1x/α1φ(x) dx

+ 1

2
α1λ1θe2c1x/α1φ′(x)

∣∣∣∣
∞

1
−
∫ ∞

1
α1λ1θ

c1

α1
e2c1x/α1φ′(x) dx

= −1

2
α1λ1θe2c1/α1φ′(1) = −p(1)

2
α1λ1φ

′(1).

Thus (7.1) follows.

7.2. Proof of Theorem 3.1. Throughout this section we assume that Condi-
tions 2.1, 3.1 and 3.2 hold. This will not be explicitly noted in the statements of
the results.

Existence of a stationary distribution ν
(n)
1 of the S

(n)
X = { l

n
|l ∈ {n,n + 1, . . .}}

valued Markov process X̂(n) follows from the tightness of {X̂(n)
t }t≥0, which is a

consequence of Lemma 5.4. The uniqueness of the stationary distribution follows
from the irreducibility of X̂(n).

In order to establish the tightness of the sequence {ν(n)
1 }n∈N, we will use the

following uniform in n moment stability estimate for X̂(n).

THEOREM 7.1. There is a t0 ∈ R+ such that for all t ≥ t0 and p > 0,

lim
x→∞ sup

n∈N

1

xp
Ex

((
X̂

(n)
tx

)p)= 0.(7.3)
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PROOF. Fix an L > 1, and let τ (n) := inf{t : X̂(n)
t ≤ L}. Observe that if t ∈

[(N − 1)ρ,Nρ) for some N ∈ N, then, following arguments as in the proof of
Lemma 5.4, for x > L,

Px

(
τ (n) > t

)≤ Px

(
N−1∑
j=1

(
v

(n)
j − δκρ

)
> δ(L − x)

)
≤ eδ(x−L−δκρ(N−1)).

Thus we have that

sup
n∈N

Px

(
τ (n) > t

)≤ γ1e
δxe−γ2t ,

where γi ∈ (0,∞), i = 1,2. The above estimate along with Lemma 5.4 implies,
for n ∈ N,

Exe
δX̂

(n)
t /2 = Ex

(
1{τ (n)≤t}eδX̂

(n)
t /2)+ Ex

(
1{τ (n)>t}eδX̂

(n)
t /2)

≤ d̃eδL + (
γ1e

δxe−γ2t
)1/2(

Ex

(
eδX̂

(n)
t
))1/2

≤ d̃eδL + (
γ1e

δxe−γ2t
)1/2(

d̃eδx)1/2 ≤ d1
(
1 + eδxe−γ2/2t ),

where d̃ is as in Lemma 5.4 and d1 ∈ (0,∞) is some constant, independent of n.
Fix p > 0. Then, for some d2 ∈ (0,∞), we have

sup
n∈N

Ex(X̂
(n)
tx )p

xp
≤ sup

n∈N

d2Exe
δX̂

(n)
tx /2

xp
≤ sup

n∈N

d1d2(1 + eδxe−γ2tx/2)

xp
.

Choose t0 large enough such that γ2
2 t0 > δ. Then for t ≥ t0

lim
x→∞ sup

n∈N

Ex((X̂
(n)
tx )p)

xp
= 0.

The result follows. �

As a consequence of Theorem 7.1, we have the following result. For δ ∈ (0,∞),
define the return time to a compact set C ⊂ [1,∞) by τ

(n)
C (δ) := inf{t ≥ δ|X̂(n)

t ∈
C}.

THEOREM 7.2. There are c̃, δ̂ ∈ (0,∞) and a compact set C ⊂ [1,∞) such
that

sup
n

Ex

(∫ τ
(n)
C (δ̂)

0
ln
(
X̂

(n)
t

)
dt

)
≤ c̃x3, x ≥ 1.

PROOF. Note that ln(X̂
(n)
t ) ≥ 0 since X̂

(n)
t ≥ 1. Applying Theorem 7.1 with

p = 3, we have that there is an L ∈ (1,∞) such that with C := {x ∈ R+|x ≤ L},
for all x ∈ Cc,

sup
n

Ex

((
X̂

(n)
t0x

)3)≤ 1

2
x3,(7.4)
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where t0 is as in Theorem 7.1. Let δ̂ := t0L and

τ (n) := τ
(n)
C (δ̂) = inf

{
t ≥ δ̂|X̂(n)

t ≤ L
}
.

Consider a sequence of stopping times defined as follows:

σ
(n)
0 := 0, σ (n)

m := σ
(n)
m−1 + t0

(
X̂

(n)

σ
(n)
m−1

∨ L
)
, m ∈ N.

Let m
(n)
0 = min{m ≥ 1|X̂(n)

σ
(n)
m

≤ L}, and

V̂ (n)(x) := Ex

(∫ τ (n)

0
ln
(
X̂

(n)
t

)
dt

)
.(7.5)

Then

V̂ (n)(x) ≤ Ex

(∫ σ
(n)

m
(n)
0

0
ln
(
X̂

(n)
t

)
dt

)
=

∞∑
k=0

Ex

(∫ σ
(n)
k+1

σ
(n)
k

ln
(
X̂

(n)
t

)
dt1{k<m

(n)
0 }

)
.

Let F (n)
t := σ {X̂(n)

s |0 ≤ s ≤ t}. We claim that there is a c0 ∈ (0,∞) such that for
all n, k ∈ N, x ≥ 1

Ex

(∫ σ
(n)
k+1

σ
(n)
k

ln
(
X̂

(n)
t

)
dt
∣∣∣F (n)

σ
(n)
k

)
1{k<m

(n)
0 } ≤ c0

(
X̂

(n)

σ
(n)
k

)31{k<m
(n)
0 }.(7.6)

Due to the strong Markov property, to prove the claim it suffices to show that for
some c0 ∈ (0,∞) and for all n ∈ N, x ≥ 1

Ex

(∫ σ
(n)
1

0
ln
(
X̂

(n)
t

)
dt

)
≤ c0x

3.

Note that for x ≥ 1, σ
(n)
1 = t0(x ∨ L) ≤ c̃0x, where c̃0 = t0L. Using this bound

along with Lemma 5.2, we get, for some ĉ0 ∈ (0,∞),

Ex

(
sup

t≤σ
(n)
1

ln
(
X̂

(n)
t

))≤ ln
(
Ex

(
sup

t≤σ
(n)
1

X̂
(n)
t

))
≤ ln

(
x2eK(c̃0x)2)≤ ĉ0x

2.

The claim follows.
From the estimate (7.6), we now have

sup
n

V̂ (n)(x) ≤ c0 sup
n

Ex

(m
(n)
0 −1∑
k=0

(
X̂

(n)

σ
(n)
k

)3)
.(7.7)

Note that {X̂(n)

σ
(n)
k

}k∈N0 is a Markov chain with transition probability kernel

P̌ (n)(x,A) := P
(n)
t0(x∨L)(x,A), x ∈ [1,∞),A ∈ B

([1,∞)
)
,
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where P
(n)
t is the transition probability kernel for X̂(n). Using (7.4) and Lem-

ma 5.4, we get that for any L ∈ (1,∞) there exists a b̃ ∈ (0,∞) such that for all
x ∈ [1,∞)

sup
n

∫ ∞
1

y3P̌ (n)(x, dy) = sup
n

∫ ∞
1

y3P
(n)
t0(x∨L)(x, dy)

= sup
n

∫ ∞
1

y3P
(n)
t0x

(x, dy)1{x>L}
(7.8)

+ sup
n

∫ ∞
1

y3P
(n)
t0L

(x, dy)1{x≤L}

≤ x3 − 1

2
x3 + b̃1[0,L](x).

The above inequality along with Theorem 14.2.2 of [16] yields

sup
n

Ex

(m
(n)
0 −1∑
k=0

(
X̂

(n)

σ
(n)
k

)3) ≤ 2

(
x3 + sup

n
Ex

(m
(n)
0 −1∑
k=0

b̃1[0,L]
(
X̂

(n)

σ
(n)
k

)))

= 2
(
x3 + b̃1[0,L](x)

)≤ c̃x3,

where the equality in the last display follows from the fact that X̂
(n)

σ
(n)
k

> L for

1 ≤ k < m
(n)
0 . The result follows now on combining the last estimate with (7.7).

�

The following theorem is proved exactly as Proposition 5.4 of [5]. The proof is
omitted.

THEOREM 7.3. Let f : [1,∞) → R+ be a measurable function. Define for
δ̂ ∈ (0,∞) and a compact set C ⊂ [1,∞)

V (n)(x) := Ex

(∫ τ
(n)
C (δ̂)

0
f
(
X̂

(n)
t

)
dt

)
, x ∈ [1,∞).

If supn∈N V (n) is everywhere finite and uniformly bounded on C, then there exists
a κ̂ ∈ (0,∞) such that for all n ∈ N, t > 0, x ∈ [1,∞)

1

t
Ex

(
V (n)(X̂(n)

t

))+ 1

t

∫ t

0
Ex

(
f
(
X̂(n)

s

))
ds ≤ 1

t
V (n)(x) + κ̂ .

We now return to the proof of Theorem 3.1 and establish the tightness of
{ν(n)

1 }n∈N. We will apply Theorem 7.3 with f (x) := ln(x), and δ̂,C as in The-

orem 7.2. Since ν
(n)
1 is an invariant measure for X̂(n), we have for nonnegative,

real valued, measurable functions � on [1,∞)∫ ∞
1

Ex

(
�
(
X̂

(n)
t

))
ν

(n)
1 (dx) =

∫ ∞
1

�(x)ν
(n)
1 (dx).(7.9)
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Fix k ∈ N and let V
(n)
k (x) := V (n)(x) ∧ k. Let

�
(n)
k (x) := 1

t
V

(n)
k (x) − 1

t
Ex

(
V

(n)
k

(
X̂

(n)
t

))
.

By (7.9), we have that
∫∞

1 �
(n)
k (x)ν

(n)
1 (dx) = 0. Let

�(n)(x) := 1

t
V (n)(x) − 1

t
Ex

(
V (n)(X̂(n)

t

))
.

By the monotone convergence theorem �
(n)
k (x) → �(n)(x) as k → ∞. We next

show that �
(n)
k (x) is bounded from below for all x ∈ [1,∞): if V (n)(x) ≤ k, then

�
(n)
k (x) = 1

t
V

(n)
k (x) − 1

t
Ex

(
V

(n)
k

(
X̂

(n)
t

))

≥ 1

t
V (n)(x) − 1

t
Ex

(
V (n)(X̂(n)

t

))≥ −κ̂,

where the last inequality follows from Theorem 7.3. If V (n)(x) ≥ k,

�
(n)
k (x) = 1

t
k − 1

t
Ex

(
V

(n)
k

(
X̂

(n)
t

))≥ 0.

Thus �
(n)
k (x) ≥ −κ̂ for all x ≥ 1. By Fatou’s lemma, we have∫ ∞

1
�(n)(x)ν

(n)
1 (dx) ≤ lim inf

k→∞

∫ ∞
1

�
(n)
k (x)ν

(n)
1 (dx) = 0.

By Theorem 7.3 we have �(n)(x) ≥ 1
t

∫ t
0 Ex(f (X̂

(n)
s )) ds − κ̂ . Combining this with

the last display, we have

0 ≥
∫ ∞

1
�(n)(x)ν

(n)
1 (dx) ≥ 1

t

∫ t

0

∫ ∞
1

Ex

(
f
(
X̂(n)

s

))
ν

(n)
1 (dx) ds − κ̂ .

Using the invariance property of ν
(n)
1 once more, we see that the first term on the

right-hand side above equals
∫

f (x)ν
(n)
1 (dx), and therefore

∫
f (x)ν

(n)
1 (dx) ≤ κ̂ .

This completes the proof of tightness.
The tightness of {ν(n)

1 }n∈N implies that every subsequence of {ν(n)
1 } has a con-

vergent subsequence. Call such a limit ν∗
1 . Theorem 2.1 and the stationarity of ν

(n)
1

imply that ν∗
1 is a stationary distribution of X. Since the stationary distribution of

X is unique, we have ν∗
1 = ν1, which completes the proof.

8. Proofs of Theorems 4.1 and 4.2.

8.1. Proof of Theorem 4.1. In order to prove the result, we will verify that
the assumptions of Theorem II.1 (more precisely, those in the remark following
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Theorem II.1) in [17], pages 78 and 79, hold. For this, it suffices to show that for
all k ∈ N, � ∈ BM(Rk+), φ ∈ C∞

c (R+) and 0 ≤ t1 < t2 < · · · < tk+1 < T < ∞,
there exists a sequence hn with limn→∞ hn = 0 and

sup
t∈[tk+1,T ]

∣∣E[�(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

)− hnĽφ
(
Y̌

(n)
t

))]∣∣
(8.1)

= o(hn),

where Ľ is given as

Ľφ(y) := c2λ2mXyφ′(y) + 1
2α2λ2mXyφ′′(y), φ ∈ C∞

c (R+).(8.2)

Letting X◦
t := X̌

(n)
t/an

, t ≥ 0, we see, using scaling properties of the Skorohod
map and straight forward martingale characterization results, that X◦ has the same
probability law as the process X that was introduced in Proposition 2.1 with initial
value X0 = x0. The following uniform moment bound will be used in the proof of
Theorem 4.1.

LEMMA 8.1. There exists a δ0 ∈ (0,∞), such that whenever X is as in Propo-
sition 2.1 with initial value X0 = x, for some x ∈ [1,∞), we have

sup
0≤t<∞

Ex

(
eδ0Xt

)=: d(δ0, x) < ∞.

PROOF. We begin by establishing exponential moment estimates for the in-
crease of X over time intervals of length lρ when the process is away from the
boundary 1, where ρ > 0 and l ≥ 1. Fix ρ ∈ (0,∞). Let a := c1λ1, b := α1λ1 and
δ ∈ (0,−a

b
∧ 1). Note that in view of Condition 3.1, a < 0. Define σr := inf{t ∈

[0,∞)| ∫ t
0 Xs ds > r} and ρl,r := lρ ∧ σr . Then

Ex

(
exp

(
δa

∫ ρl,r

0
Xs ds + δ

√
b

∫ ρl,r

0

√
Xs dBX

s

))

= Ex

(
exp

((
δa + δ2b

) ∫ ρl,r

0
Xs ds

+ δ
√

b

∫ ρl,r

0

√
Xs dBX

s − δ2b

∫ ρl,r

0
Xs ds

))

≤
√

Exe
2ρl,r (δa+δ2b)

×
√

Ex exp
(

2δ
√

b

∫ ρl,r

0

√
Xs dBX

s − (2δ
√

b)2

2

∫ ρl,r

0
Xs ds

)
,

where the inequality follows on noting that ρl,r ≤ ∫ ρl,r

0 Xs ds and δ ∈ (0,−a
b
).

Using the super martingale property of the stochastic exponential, we have that
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the second term on the right-hand side of the last display is bounded by 1. Thus,
sending r → ∞, we have, with −θ := δa + δ2b < 0,

Ex

(
exp

(
δa

∫ lρ

0
Xs ds + δ

√
b

∫ lρ

0

√
Xs dBX

s

))
≤ elρ(δa+δ2b) = e−θlρ.(8.3)

Next, for x ∈ [1,∞), we have by application of Itô’s formula that for t ≤ ρ and
δ̃ ≤ δ,

Ex

(
eδ̃Xt

)≤ eδ̃x + δ̃eδ̃Exηρ ≤ eδ̃x + xC1(ρ, δ),(8.4)

where C1(ρ, δ) ∈ (0,∞) and the last inequality follows by an application of Gron-
wall’s lemma and the Lipschitz property of the Skorohod map; see (2.4).

Using the above estimates, we will now establish certain uniform estimates on
the tail probabilities of Xkρ , which will lead to exponential moment estimates at
these time points. Fix L > 1, and let

τj := inf
{
t ≥ (j − 1)ρ|Xt ≤ L

}∧ jρ and ej := Xjρ − Xτj
, j ≥ 1,

e0 = 0. Fix k ∈ N, and let

M := max
{
j = 1, . . . , k

∣∣ inf
(j−1)ρ≤s≤jρ

Xs ≤ L
}
,

if there is an s ∈ [0, kρ] such that Xs ≤ L, and set M equal to 0 otherwise. Let

vj :=
∫ jρ

(j−1)ρ
aXs ds +

∫ jρ

(j−1)ρ

√
bXs dBX

s , j ≥ 1.

Then Xkρ = XMρ + ∑k
j=M+1 vj . Letting ζi := ei + ∑k

j=i+1 vj , we have, us-
ing (8.3),

Px(Xkρ > K) ≤ Px

(
XMρ +

k∑
j=M+1

vj > K

)

≤ Px

(
max

0≤i≤k
ζi > K − L

)

≤
k∑

i=0

Px(ζi > K − L) ≤
k∑

i=0

Ex

(
eδζi/2)e−δ(K−L)/2

≤
k∑

i=0

(
Exe

δei
)1/2(

Exe
δ
∑k

j=i+1 vj
)1/2

e−δ(K−L)/2

≤
k∑

i=0

(
Exe

δei
)1/2

e−(k−i)θρ/2e−δ(K−L)/2.
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Next note that, from (8.4),

Exe
δei ≤ Ex

(
eδ[Xiρ−Xτi

]1τi<iρ

)+ 1 = Ex

(
e−δXτi 1τi<iρEXτi

(
eδXiρ

))+ 1

≤ Ex

[
e−δXτi 1τi<iρ

(
eδXτi + Xτi

C1(ρ, δ)
)]+ 1 ≡ C2(ρ, δ) + 1.

Hence,

Px(Xkρ > K) ≤ (
C2(ρ, δ) + 1

)1/2
e−δ(K−L)/2

k∑
l=0

e−lρθ/2

≤ (
C2(ρ, δ) + 1

)1/2 e−δ(K−L)/2

1 − e−ρθ/2 .

The last estimate yields, analogously to (5.38),

sup
k∈N0

Ex

(
eδXkρ/4)≤ Ceδx/2 for all x ∈ [1,∞)(8.5)

for some C ∈ (0,∞). Finally, letting δ0 := δ
4 , we have from (8.4) for t ∈ ((k −

1)ρ, kρ], k ≥ 1,

Ex

(
eδ0Xt

)= Ex

(
EX(k−1)ρ

(
eδ0Xt

))
≤ Ex

(
eδ0X(k−1)ρ + X(k−1)ρC1(ρ, δ)

)
≤ Ce

δ
2 x

(
1 + 1

δ0
C1(ρ, δ)

)
.

The result follows. �

REMARK 8.1. Note that Lemma 8.1 and the scaling property noted above that
lemma say that for all x ∈ [1,∞)

sup
n∈N

sup
0≤t<∞

Ex

(
eδ0X̌

(n)
t
)
< ∞.

We now prove Theorem 4.1 by showing (8.1). Let, for φ ∈ C∞
c (R+),

Lxφ(y) := c2λ2xyφ′(y) + 1
2α2λ2xyφ′′(y), (x, y) ∈ [1,∞) × R+.(8.6)

Then

E
[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

))]
= E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) ∫ t+hn

t
L

X̌
(n)
s

φ
(
Y̌

(n)
t

)
ds

]
(8.7)

+ E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) ∫ t+hn

t

(
L

X̌
(n)
s

φ
(
Y̌ (n)

s

)− L
X̌

(n)
s

φ
(
Y̌

(n)
t

))
ds

]
.
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For the second term, we have, using Remark 8.1 and the fact that the function � is
bounded and φ as well as its derivatives are continuous with bounded support, that

sup
t∈[tk+1,T ]

E

∣∣∣∣�(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) ∫ t+hn

t

(
L

X̌
(n)
s

φ
(
Y̌ (n)

s

)− L
X̌

(n)
s

φ
(
Y̌

(n)
t

))
ds

∣∣∣∣
= sup

t∈[tk+1,T ]
E

∣∣∣∣�(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)

×
∫ t+hn

t

[
c2λ2X̌

(n)
s

(
Y̌ (n)

s φ′(Y̌ (n)
s

)− Y̌
(n)
t φ′(Y̌ (n)

t

))
(8.8)

+ 1

2
α2λ2X̌

(n)
s

(
Y̌ (n)

s φ′′(Y̌ (n)
s

)− Y̌
(n)
t φ′′(Y̌ (n)

t

))]
ds

∣∣∣∣
= o(hn).

Recalling the definition of X◦ above Lemma 8.1, the first expected value on the
right-hand side in (8.7) equals

hnE

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) 1

hnan

∫ tan+hnan

tan

LX◦
s
φ
(
Y̌

(n)
t

)
ds

]
.

Thus

E
[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

)− hnĽφ
(
Y̌

(n)
t

))]
= E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)
hn

(
1

hnan

∫ tan+hnan

tan

LX◦
s
φ
(
Y̌

(n)
t

)
ds − Ľφ

(
Y̌

(n)
t

))]

+ o(hn)

= E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)
hn

(
c2λ2Y̌

(n)
t φ′(Y̌ (n)

t

)+ 1

2
α2λ2Y̌

(n)
t φ′′(Y̌ (n)

t

))

×
(

1

hnan

∫ tan+hnan

tan

X◦
s ds − mX

)]

+ o(hn).

To complete the proof, it thus remains to show that for some sequence {hn} with
limn→∞ hn = 0

E

∣∣∣∣ 1

hnan

∫ tan+hnan

tan

X◦
s ds − mX

∣∣∣∣= E

∣∣∣∣ 1

hnan

∫ tan+hnan

tan

Xs ds − mX

∣∣∣∣(8.9)

converges to 0 uniformly in t ∈ [tk+1, T ]. From the ergodicity of X and the mo-
ment estimate in Lemma 8.1, it follows that

E

∣∣∣∣ 1

tan

∫ tan

0
Xs ds − mX

∣∣∣∣→ 0 as n → ∞.(8.10)
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The above result, along with Lemma 8.2, below, implies that there is a sequence
{hn} such that limn→∞ hn = 0, and the expression in (8.9) converges to 0 uni-
formly in t ∈ [tk+1, T ]. This completes the proof.

The proof of the following lemma is adapted from Lemma II.9, page 137,
in [17].

LEMMA 8.2. Let 0 ≤ tk+1 < T < ∞ and an → ∞ monotonically as n → ∞.
If for all t ∈ [tk+1, T ]

E

∣∣∣∣ 1

tan

∫ tan

0
Xs ds − mX

∣∣∣∣→ 0 as n → ∞,

then there is a sequence {hn} such that hn → 0 as n → ∞, and

sup
t∈[tk+1,T ]

E

∣∣∣∣ 1

hnan

∫ tan+hnan

tan

Xs ds − mX

∣∣∣∣→ 0 as n → ∞.

PROOF. Let α(τ) := supu>τ E| 1
u

∫ u
0 Xs ds − mX|. Note that α(τ) converges

monotonically to 0 as τ → ∞. For t ∈ [tk+1, T ] we have

E

∣∣∣∣ 1

hnan

∫ tan+hnan

tan

Xs ds − mX

∣∣∣∣
= E

∣∣∣∣ tan + hnan

hnan

1

tan + hnan

∫ tan+hnan

0
Xs ds − tan

hnan

1

tan

∫ tan

0
Xs ds − mX

∣∣∣∣
≤ tan + hnan

hnan

α(tan + hnan) + tan

hnan

α(tan) ≤ 3T

hn

α(tk+1an)

for all n such that hn ≤ T . Note that the right-hand side of the last display is
independent of t ∈ [tk+1, T ]. Choosing hn = √

α(tk+1an), the lemma follows. �

8.2. Proof of Theorem 4.2. As in the proof of Theorem 4.1, it suffices to show
that for all k ∈ N, � ∈ BM(Rk+), φ ∈ C∞

c (R+) and 0 ≤ t1 < t2 < · · · < tk+1 < T <

∞, there exists a sequence hn with limn→∞ hn = 0 and

sup
t∈[tk+1,T ]

∣∣E[�(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

)− hnĽφ
(
Y̌

(n)
t

))]∣∣= o(hn),

where Ľ is given as in (8.2).
Let for φ ∈ C∞

c (R+) and (x, y) ∈ [1,∞) × R+

L(n)
x φ(y) := λ

(n)
2 n2xy

∞∑
k=0

[
φ

(
y + k − 1

n

)
− φ(y)

]
μ

(n)
2 (k)
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and recall Lx from (8.6). Then

E
[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

))]
= E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) ∫ t+hn

t
L(n)

X̌
(n)
s

φ
(
Y̌

(n)
t

)
ds

]
(8.11)

+ E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

) ∫ t+hn

t

[
L(n)

X̌
(n)
s

φ
(
Y̌ (n)

s

)− L(n)

X̌
(n)
s

φ
(
Y̌

(n)
t

)]
ds

]
.

Using Lemma 5.4, we get, as in (8.8), that the second term in the last display is
o(hn) uniformly in t ∈ [tk+1, T ]. Thus

E
[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(
φ
(
Y̌

(n)
t+hn

)− φ
(
Y̌

(n)
t

)− hnĽφ
(
Y̌

(n)
t

))]
= E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)(∫ t+hn

t

(
L(n)

X̌
(n)
s

φ
(
Y̌

(n)
t

)− L
X̌

(n)
s

φ
(
Y̌

(n)
t

))
ds

)]
(8.12)

+ E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)
hn

(
1

hn

∫ t+hn

t
L

X̌
(n)
s

φ
(
Y̌

(n)
t

)
ds − Ľφ

(
Y̌

(n)
t

))]

+ o(hn).

Calculations similar to those in the proof of Theorem 2.1 show that the first term
on the right-hand side in the last display is o(hn) uniformly in t ∈ [tk+1, T ] [see
proof of (6.3)], while the second term can be written as

E

[
�
(
Y̌

(n)
t1

, . . . , Y̌
(n)
tk

)
hn

(
c2λ2Y̌

(n)
t φ′(Y̌ (n)

t

)+ 1

2
α2λ2Y̌

(n)
t φ′′(Y̌ (n)

t

))

×
(

1

hn

∫ t+hn

t
X̌(n)

s ds − mX

)]
.

To show that the latter term is o(hn) uniformly in t ∈ [tk+1, T ], it suffices to show
the following result.

THEOREM 8.1. As n → ∞
sup

t∈[tk+1,T ]
E

∣∣∣∣EF̌ (n)
t

(
1

hn

∫ t+hn

t
X̌(n)

s ds − mX

)∣∣∣∣→ 0,

where F̌ (n)
t := σ {(X̌(n)

s , Y̌
(n)
s ) : s ≤ t} and EF̌ (n)

t
(·) = E(·|F̌ (n)

t ).

In order to prove this theorem, we need the following three results. Let S :=
D(R+ : [1,∞)× R+), P(S) be the space of probability measures on S, and, given
a sequence {tn} ⊂ [tk+1, T ], μn be a sequence of P(S) valued random variables
defined as follows. For A ∈ B(S),

μn(A) = 1

anhn

∫ antn+anhn

antn

P
[(

X̂
(n)
s+·, η̂

(n)
s+· − η̂(n)

s

) ∈ A|F̌ (n)
tn

]
ds.(8.13)

Let S0 := C(R+ : [1,∞) × R+).
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LEMMA 8.3. The family of P(S) valued random variables {μn}n∈N is tight,
and any weak limit point is a P(S0) valued random variable.

Let π = (π(1), π(2)) with π(1) and π(2) being the canonical coordinate pro-
cesses on S0.

LEMMA 8.4. Let μ be a weak limit point of {μn} given on some probability
space (0, F0,P0). Then for P0 a.e. ω ∈ 0, μ(ω) satisfies the following:

(a) μ(w)(π(1)(t + ·) ∈ F) = μ(ω)(π(1) ∈ F), for all t ≥ 0; F ∈ B(C(R+ :
[1,∞)));

(b) π(2) is nondecreasing and π
(2)
0 = 0 a.s. μ(ω);

(c)
∫∞

0 1(1,∞)(π
(1)
u ) dπ

(2)
u = 0 a.s. μ(ω);

(d) under μ(ω), for all φ ∈ C∞
c ([1,∞))

φ
(
π

(1)
t

)− φ
(
π

(1)
0

)−
∫ t

0
L1φ

(
π(1)

s

)
ds − φ′(1)π

(2)
t

is a {Gt }-martingale, where L1 is as in (7.2) and Gt := σ {(π(1)
s , π

(2)
s ) : s ≤ t}.

We postpone the proofs of Lemmas 8.3 and 8.4 until after the proof of Theo-
rem 8.1. The following is immediate from the above two lemmas, Proposition 3.1
and the martingale characterization of the probability law of the process in (2.5);
see Theorem 6.1.

COROLLARY 8.1. Let (X,η) be as in Proposition 2.1 with X0 ∼ ν1 and ν1
given as in Proposition 3.1. Let μ0 be the probability measure on S0 induced by
(X,η). Then μn converges weakly to μ0.

PROOF OF THEOREM 8.1. It suffices to show that for an arbitrary sequence
{tn} ⊂ [tk+1, T ] we have, as n → ∞,

E

∣∣∣∣EF̌ (n)
tn

(
1

hn

∫ tn+hn

tn

X̌(n)
s ds − mX

)∣∣∣∣
= E

∣∣∣∣EF̌ (n)
tn

(
1

anhn

∫ antn+anhn

antn

X̂(n)
s ds − mX

)∣∣∣∣→ 0.

Since

EF̌ (n)
tn

(
1

anhn

∫ antn+anhn

antn

X̂(n)
s ds

)
=
∫

π
(1)
0 dμn,

it suffices to show that

E

∣∣∣∣
∫

π
(1)
0 dμn −

∫
π

(1)
0 dμ0

∣∣∣∣→ 0 as n → ∞.(8.14)
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For any c > 0, let ψc be the following continuous function:

ψc(x) =
{

1, if x ≤ c

2
,

0, if x ≥ c,

and ψc is linearly interpolated on [ c
2 , c]. By Corollary 8.1 μn converges weakly

to μ0, and therefore, for every c > 0,

E

∣∣∣∣
∫

π
(1)
0 ψc

(
π

(1)
0

)
dμn −

∫
π

(1)
0 ψc

(
π

(1)
0

)
dμ0

∣∣∣∣→ 0 as n → ∞.

Moreover, using the estimate in Lemma 5.4,

sup
n∈N

(
E

∣∣∣∣
∫

π
(1)
0

(
1 − ψc

(
π

(1)
0

))
dμn

∣∣∣∣
)

≤ sup
n∈N

(
1

anhn

∫ antn+anhn

antn

E
(
X̂(n)

s 1|X̂(n)
s |≥c/2

)
ds

)
→ 0 as c → ∞

and

E

∣∣∣∣
∫

π
(1)
0

(
1 − ψc

(
π

(1)
0

))
dμ0

∣∣∣∣≤ E(X01|X0|≥c/2) → 0 as c → ∞.

The last three displays imply the convergence in (8.14), and thus the result follows.
�

PROOF OF LEMMA 8.3. To show the tightness of {μn}, it suffices to show that
{νn} is tight, where for A ∈ B(S)

νn(A) := Eμn(A) = 1

anhn

∫ antn+anhn

antn

P
[(

X̂
(n)
s+·, η̂

(n)
s+· − η̂(n)

s

) ∈ A
]
ds.

However, the tightness of νn is immediate in view of the tightness of{(
X̂

(n)
s+·, η̂

(n)
s+· − η̂(n)

s

)}
n∈N,s∈R+,

which was proved in Proposition 5.1.
Let μ be a weak limit point of μn and J :S → R+ be defined by

J (π) :=
∫ ∞

0
e−u[J (π,u) ∧ 1

]
du,

where

J (π,u) := sup
0≤t≤u

(∣∣�(
π

(1)
t

)∣∣+ ∣∣�π
(2)
t

∣∣).
Then J is continuous and bounded on S, and in order to show that μ is supported
on S0, it suffices to show that μ(J (π) = 0) = 1; see [7], page 147. In turn, for the
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latter equality to hold, it suffices to show that for all ε > 0, Eμn(J (π) > ε) → 0,

as n → ∞. Now

Eμn

(
J (π) > ε

)
= 1

anhn

∫ antn+anhn

antn

P

(∫ ∞
0

e−u
(
sup
t≤u

[∣∣�X̂
(n)
s+t

∣∣
+ ∣∣�(

η̂
(n)
s+t − η̂(n)

s

)∣∣]∧ 1
)
du > ε

)
ds.

Finally, noting that η̂
(n)
s+· − η̂

(n)
s is continuous and using Lemma 5.6, we now have

that the right-hand side of the latter equation converges to 0 as n → ∞. The result
follows. �

PROOF OF LEMMA 8.4. For a measure ν ∈ P(S), let Ẽν denote the expecta-
tion operator. For (a), we show that

Ẽμ(ω)(f (π(1)
t+·

))− Ẽμ(ω)(f (π(1)))= 0
(8.15)

a.s. for all bounded continuous f on S.

Note that ∣∣Ẽμn
(
f
(
π

(1)
t+·

))− Ẽμn
(
f
(
π(1)))∣∣

=
∣∣∣∣ 1

anhn

∫ antn+anhn

antn

(
EF̌ (n)

tn

f
(
X̂

(n)
s+t+·

)− EF̌ (n)
tn

f
(
X̂

(n)
s+·

))
ds

∣∣∣∣
≤ 2t

anhn

‖f ‖sup → 0 as n → ∞.

This proves (8.15) since we can choose hn such that anhn → ∞, and thus (a)
follows.

Property (b) is immediate from the fact that η̂
(n)
s+· − η̂

(n)
s is nondecreasing and

continuous with initial value 0 for each n.
To prove (c), it suffices to show that for a.e. ω and for every T , δ > 0

Ẽμ(ω)

(∫ T

0
fδ

(
π(1)

s

)
dπ(2)

s ∧ 1
)

= 0,

where fδ is defined in (6.2). In turn, for the above equality to hold, it suffices to
show that

E

(
Ẽμ

(∫ T

0
fδ

(
π(1)

s

)
dπ(2)

s ∧ 1
))

= 0.

The latter equality is immediate on noting that for every T , δ > 0

E

(
Ẽμn

(∫ T

0
fδ

(
π(1)

u

)
dπ(2)

u ∧ 1
))

= 1

anhn

∫ antn+anhn

antn

E

(∫ T

0
fδ

(
X̂

(n)
s+u

)
d
(
η̂

(n)
s+· − η̂(n)

s

)
(u) ∧ 1

)
ds = 0
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and thus

E

[
Ẽμ

(∫ T

0
fδ

(
π(1)

s

)
dπ(2)

s ∧ 1
)]

= lim
n→∞E

[
Ẽμn

(∫ T

0
fδ

(
π(1)

s

)
dπ(2)

s ∧ 1
)]

= 0.

Finally, consider (d). It suffices to show that for every 0 ≤ r ≤ t < ∞,

E

∣∣∣∣Ẽμ

(
ψ
(
π(1), π(2))(φ

(
π

(1)
t

)− φ
(
π(1)

r

)−
∫ t

r
L1φ

(
π(1)

u

)
du

− φ′(1)
[
π

(2)
t − π(2)

r

]))∣∣∣∣= 0,

where ψ :S → R is an arbitrary bounded, continuous, Gs measurable map.
Now fix such r, t and ψ . Assume without loss of generality that μn converges

to μ. Combining this weak convergence with Lemma 5.5, we see that the left-hand
side of the last display is the limit of

E

∣∣∣∣Ẽμn

(
ψ
(
π(1), π(2))(φ

(
π

(1)
t

)− φ
(
π(1)

r

)−
∫ t

r
L1φ

(
π(1)

u

)
du

− φ′(1)
[
π

(2)
t − π(2)

r

]))∣∣∣∣
= 1

anhn

∫ antn+anhn

antn

E

∣∣∣∣EF̌tn

(
ψ
(
X̂

(n)
s+·, η̂

(n)
s+· − η̂(n)

s

)

×
[
φ
(
X̂

(n)
s+t

)− φ
(
X̂

(n)
s+r

)

−
∫ t

r
L1φ

(
X̂

(n)
s+u

)
du

− φ′(1)
[
η̂

(n)
s+t − η̂

(n)
s+r

]])∣∣∣∣ds.

To complete the proof, it suffices to show that the limit of the expression in the last
display is 0. Note that for φ ∈ C∞

c ([1,∞)),

φ
(
X̂

(n)
t

)− φ
(
X̂

(n)
0

)−
∫ t

0
L(n)

1 φ
(
X̂(n)

s

)
ds − D(n)

1 φ(1)η̂
(n)
t

is a martingale, where D(n)
1 φ(1) := n[φ(1) − φ(1 − 1

n
)] and

L(n)
1 φ(x) := λ

(n)
1 n2x

∞∑
k=0

[
φ

(
x + k − 1

n

)
− φ(x)

]
μ

(n)
1 (k).

Thus, it suffices to prove that

lim
n→∞

1

anhn

∫ antn+anhn

antn

E

∣∣∣∣
∫ t

r

(
L(n)

1 φ
(
X̂

(n)
s+u

)− L1φ
(
X̂

(n)
s+u

))
du

∣∣∣∣ds = 0
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and

lim
n→∞

1

anhn

∫ antn+anhn

antn

∣∣D(n)
1 φ(1) − φ′(1)

∣∣E(∣∣η̂(n)
s+t − η̂

(n)
s+r

∣∣)ds = 0.

The proofs for the last two equalities are completed as those for (6.3) and (6.4)
upon using the uniform estimates in Corollary 5.1 and Lemma 5.5. �

APPENDIX

PROOF OF PROPOSITION 2.1. We will consider here only the case where
(X0, Y0) ≡ (x, y) for some (x, y) ∈ [1,∞) × [0,∞). The general case can be
treated similarly. The unique solvability of (2.5) is an immediate consequence
of the Lipschitz property of the Skorohod map, Lipschitz coefficients (note that
f (x) = √

x is a Lipschitz function on [1,∞)) and a standard Picard iteration
scheme; see, for example, Proposition 1 in [1].

We next argue the unique solvability of (2.6). For n ∈ N, let σ (n) := inf{t >

0|Xt ≥ n}, X̄
(n)
t := Xt∧σ (n) and f (n)(y) := y ∨ 1

n
. Consider the equation

Ȳ
(n)
t = Y0 + c2λ2

∫ t

0
X̄(n)

s f (n)(Ȳ (n)
s

)
ds

(A.1)

+√
α2λ2

∫ t

0

√
X̄

(n)
s f (n)

(
Ȳ

(n)
s

)
dBY

s .

From the Lipschitz property of f (n) and
√

f (n) it follows that, for each n, the

above equation has a unique pathwise solution. Let τ (n) := inf{t > 0|Ȳ (n)
t = 1

n
}

and θ(n) := τ (n) ∧ σ (n). Note that Ȳ (n) solves (2.6) on [0, θ(n)]. Also, by unique
solvability of (A.1), we have for all n ∈ N, Ȳ (n+1)(· ∧ θ(n)) = Ȳ (n)(· ∧ θ(n)). Fi-
nally, letting θ(∞) := limn→∞ θ(n), the unique solution of (2.6) is given by the
following:

Yt (ω) =
{

Ȳ
(n)
t (ω), if 0 ≤ t ≤ θ(n)(ω) for some n ∈ N,

0, if t ≥ θ∞(ω). �
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