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MIMICKING AN ITÔ PROCESS BY A SOLUTION OF
A STOCHASTIC DIFFERENTIAL EQUATION

BY GERARD BRUNICK1 AND STEVEN SHREVE2

University of California and Carnegie Mellon University

Given a multi-dimensional Itô process whose drift and diffusion terms
are adapted processes, we construct a weak solution to a stochastic differ-
ential equation that matches the distribution of the Itô process at each fixed
time. Moreover, we show how to match the distributions at each fixed time of
functionals of the Itô process, including the running maximum and running
average of one of the components of the process. A consequence of this re-
sult is that a wide variety of exotic derivative securities have the same prices
when the underlying asset price is modeled by the original Itô process or the
mimicking process that solves the stochastic differential equation.

1. Introduction. We construct a process that mimics certain properties of a
given Itô process, but is simpler in the sense that the mimicking process solves a
stochastic differential equation (SDE), while the Itô process may have drift and
diffusion terms that are themselves stochastic processes. This work is motivated
by the problem of model calibration in finance. The financial engineer would like
to identify a class of models for an underlying asset price that is flexible enough
to allow for calibration to a wide range of possible market prices of derivative
securities on that asset. The result of this paper shows the extent to which sophis-
ticated models are no more powerful for calibration purposes than an SDE for the
underlying asset price.

Our results are closely related to Krylov [25] and Gyöngy [18]. Krylov [25]
calls the measure that records the average amount of time that an Itô process X

spends in each Borel set before being killed at the first jump of an independent
Poisson process with intensity λ the Green λ-measure of X. Given an Itô process
with bounded drift and bounded, uniformly positive-definite covariance, Krylov
[25] constructs a process with the same Green λ-measure which solves a time-
independent diffusion equation. Krylov further asserts that it is possible to con-
struct a process that solves a time-dependent diffusion equation and matches the
one-dimensional marginal distributions of such an Itô process. Gyöngy [18] pro-
vides a proof of Krylov’s assertion and shows that the drift and covariance in the
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diffusion equation solved by the mimicking process may be interpreted as the ex-
pected value of the Itô process’s instantaneous drift and covariance conditioned on
its level. See also Klebaner [24] for a related argument based on semimartingale
local time.

Gyöngy [18] was rediscovered by the mathematical finance community in the
context of local volatility models. Dupire [12] studies the European option prices
generated by a model in which the risk-neutral dynamics of the price process
satisfy a time-dependent diffusion equation (see also Derman and Kani [10] for
a discrete-time treatment of this topic). These models are now known as local
volatility models, and the diffusion coefficient of the log-price process is known as
the local volatility surface. Dupire [12] shows that it is possible to construct a local
volatility model that is consistent with a given set of European option prices when
that set of prices is sufficiently smooth as a function of maturity and strike, and he
shows how the local volatility surface may be implied directly from the call prices.
Local volatility models have proven popular with practitioners because they allow
for calibration to a wide range of European option prices. Dupire [12] does not
find the dynamics of a local volatility model to be particularly plausible; however,
he asserts that “the market prices European options as if the process was this dif-
fusion.” In effect, the local volatility model mimics the European option prices of
some more complicated market process, and this is equivalent to matching the one-
dimensional marginal distributions of that process under the equivalent martingale
probability measure (also call the risk-neutral measure) used for pricing.

In [13], Dupire extends [12] to study the local volatility surface that is implied
not by market prices of options but by prices generated from a stochastic volatility
model. Using infinitesimal calendar and butterfly spreads, he presents a financial
argument that the square of the local volatility function is the expected value of the
instantaneous squared stochastic volatility conditioned on the level of the under-
lying asset price, essentially recovering Gyöngy’s result, albeit in a nonrigorous
fashion. Following this development, the Gyöngy–Dupire formula has found sev-
eral applications in finance. For example, Gatheral [17] uses it to compare the prop-
erties of a number of stochastic volatility models, and Antonov and Misirpashaev
[2] and Piterbarg [30–32] combine it with parameter averaging techniques to pro-
duce pricing approximations based on approximations of the second conditional
expectation appearing in (3.10) below, a special case of (3.7) in our main result.

Brigo and Mecurio [4, 5] use a related methodology to construct a scalar
diffusion whose one-dimensional marginal distributions are given as a mixture
of known densities. Bentata and Cont [3] recently announced an extension of
Gyöngy’s result to jump diffusions under a continuity assumption on the coeffi-
cients in the mimicking process and a nondegeneracy assumption on the covari-
ance or the jump measure of the mimicking process.

Here we extend Gyöngy [18] in two ways. First, we remove the conditions of
nondegeneracy and boundedness on the covariance of the Itô process to be mim-
icked, requiring only integrability of this process and thereby extending the result
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to cover popular stochastic volatility models such as the one due to Heston [20].
Second, we show that the mimicking process can preserve the joint distribution of
certain functionals of the Itô process (e.g., running maximum and running average)
at each fixed time. Our mimicking process is a weak solution to an SDE, and in
the case of preservation of the joint distribution of functionals of the Itô process,
the coefficients in this SDE may depend on the values of these functionals as well
as the current value of the underlying Itô process.

The conditions that permit our construction are so weak that the solution to the
SDE we derive is not necessarily unique. Uniqueness results, such as those found
in Stroock and Varadhan [34, 35], require the conditional expectations determined
by the Gyöngy–Dupire formulas [see (3.7) in this paper] to be sufficiently regular
functions of the conditioning variables. It is difficult to see what conditions one
should impose on the data of our model (the processes b and σ and the updating
function � of Theorem 3.6) to ensure such regularity. Of course, if one is willing
to assume that the coefficients in the mimicking equation are sufficiently well-
behaved, then it is often possible to conclude that the solution to the mimicking
equation is unique.

Finally, we mention an independent body of work devoted to a problem similar
to the one considered here. If an Itô process is a submartingale, Kellerer [23] has
shown that it can be mimicked by a Markov process. More generally, [23] shows
that given any set of marginal densities p(t, ·), t ≥ 0, that have finite first moments
and satisfy

∫
ϕ(y)p(s, y) dy ≤ ∫ ϕ(y)p(t, y) for every t ≥ s ≥ 0 and every non-

decreasing convex function ϕ, there is a Markov submartingale whose density at
each time t is p(t, ·). Madan and Yor [27] provide constructions of such Markov
processes in three specific cases in which the first moments of p(t, ·) are inde-
pendent of t . Cox, Hobson and Oblój [8] and Ekström et al. [14] provide related
constructions. Forde [15] studies the problem of matching the joint law of a pro-
cess and its running maximum at an independent exponential time. Our results
address the specific case in which the densities p(t, ·) are the marginals of an Itô
process. Our mimicking process satisfies an SDE, but because the solution to this
equation might not be unique, we are not able to establish the Markov property in
all cases. On the other hand, we have the Gyöngy–Dupire formulas for the drift
and diffusion coefficients of our mimicking process.

This paper is based on the first author’s Ph.D. dissertation [6]. It is organized
as follows. Section 2 presents an intuitive discrete-time example that illustrates the
main ideas of our construction. In Section 3 we state our main result, Theorem 3.6,
and provide some useful corollaries. To prove Theorem 3.6, we construct a weakly
relatively compact sequence of processes that mimic some initial target process.
We then extract a limit from this sequence, check that the mimicking property is
preserved under weak convergence, and compute the semimartingale characteris-
tics of the limiting process. The tools to implement this strategy are developed in
Sections 4–6, and the proof of Theorem 3.6 is given in Section 7.
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More specifically, in Section 4 we begin with a probability measure on path
space and construct a “concatenated” measure which assigns the same uncondi-
tional distribution as the original measure to fragments of paths between concate-
nation time points but changes the dependency structure across these time points.
The new dependency structure corresponds to “partially forgetting” the past at each
concatenation time point, and the resulting process possesses a limited Markov-
like property. The existence and uniqueness of the concatenated measure are pro-
vided by Theorem 4.3, and Section 4.1 is devoted to the statement and proof of that
theorem. Although the concatenated measure may not be equivalent to the origi-
nal measure, certain properties of the process, such as finite variation and absolute
continuity, are preserved by the construction. The properties we need are set out in
Section 4.2. The most important result of this subsection is Proposition 4.15, which
provides conditions that are sufficient to ensure that the semimartingale character-
istics of the initial process are not disturbed by the concatenation procedure.

Section 5 sets out conditions under which the conditional expectation of one
process conditioned on a second process can be written as a function of time and
the second process. This result, Proposition 5.1, is extended to include condition-
ing on a random time as well in Proposition 5.4.

Finally, in Section 6, we set up the machinery for taking the limit of a sequence
of concatenated measures. Proposition 6.1 provides conditions on a sequence of
weakly converging processes that guarantee joint convergence of the processes
and the integral of a function of the processes. Proposition 6.3 shows how to ap-
proximate a process in L1 by a piecewise constant process constructed from the
original process by sampling at random times. Proposition 6.5 shows that if a se-
quence of discrete-time martingales is constructed by integrating with respect to
time a sequence of uniformly integrable processes and sampling these integrals
at stopping times, and if the maximum time between successive stopping times
approaches zero, then the integrand processes must also approach zero.

2. Guiding example. To motivate the results that follow, we first sketch a
mimicking result for discrete-time processes. This setting illustrates the main ideas
of our proof methodology without the technical complications of continuous time.

Let N0 denote the set of nonnegative integers, let B(R) denote the Borel σ -field
on R and let (Xn)n∈N0 denote a (not necessarily Markov) stochastic process in
discrete time that takes values in R. For each n ∈ N0, we may construct a measur-
able transition kernel pn : R × B(R) → [0,1] with the property that pn(Xn;A) is
a version of P[Xn+1 − Xn ∈ A|σ(Xn)] for each A ∈ B(R) and A �→ pn(x;A) is a
probability measure for each x ∈ R.

After moving to a suitable extension of our probability space if necessary, we
may construct a process Y such that Y0 = X0; Yn+1 − Yn is conditionally indepen-
dent of Fn given Yn; and pn(Yn;A) is a version of P(Yn+1 − Yn ∈ A|Fn) for each
n ∈ N0 and A ∈ B(R). It follows from these properties that

E
[
f (Yn+1)|Fn

]= ∫ f (Yn + x)pn(Yn;dx),
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so Y is a Markov process. We also have

E
[
f (Xn+1)

]= E
[
E
[
f (Xn+1)|σ(Xn)

]]= E

[∫
f (Xn + x)pn(Xn;dx)

]
and Y0 = X0, so an inductive argument shows that Yn has the same law as Xn for
each n. This is essentially the construction given by Derman and Kani [11].

Given a discrete-time process X, we now let Xn = max0≤i≤n Xi denote the
running maximum of the process X. Although the law of the random variable
Yn constructed above agrees with the law of Xn for each fixed n, the law of the
process Y may certainly differ from the law of the process X. In particular, the law
of the pair (Xn,Xn) may not agree with the law of the pair (Yn,Y n) when n ≥ 1.
Nevertheless, one can construct a second process Z such that the two-dimensional
process (Z,Z) is Markov and the joint law of the pair (Zn,Zn) agrees with the
joint law of the pair (Xn,Xn) for each n, as we now show.

We let qn : R2 × B(R) → [0,1] denote a transition kernel with the property
that pn(Xn,Xn;A) is a version of P[Xn+1 − Xn ∈ A|σ(Xn,Xn)] for each A ∈
B(R). Moving to another extension of our probability space, we may construct
a process Z such that Z0 = X0; Zn+1 − Zn is conditionally independent of Fn

given (Zn,Zn); and pn(Zn,Zn;A) is a version of P(Zn+1 − Zn ∈ A|Fn) for each
n ∈ N0.

We define � : R3 → R2 by �(e1, e2;x) = (e1 + x, e2 ∨ (e1 + x)), so that
(Zn+1,Zn+1) = �(Zn,Zn;Zn+1 − Zn). We may use the function � and the in-
crements of the process Z to update the state of the process (Z,Z). One immediate
consequence of this structure is that

E
[
f (Zn+1,Zn+1)|Fn

]= ∫ f ◦ �(Zn,Zn;y)qn(Zn,Zn;dy),

so (Z,Z) is a Markov process. We also have

E
[
f (Xn+1,Xn+1)

]= E

[∫
f ◦ �(Xn,Xn;y)qn(Xn,Xn;dy)

]
,

so another inductive argument shows that the law of the pair (Zn,Zn) agrees with
the law of the pair (Xn,Xn) for each n. This paper extends this construction to
continuous time.

3. Main result. In order to precisely state our main result, we need some
notation. The symbol E will always denote a closed subset of a complete separable
metric space, that is, a Polish space. Let CE be the space of continuous functions
from [0,∞) to E , endowed with the topology of uniform convergence on compact
subsets of [0,∞). We define the shift operator � :CE × R → CE by

�(x, t) � x
(
(t + ·)+),
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the stopping operator ∇ :CE × [0,∞) → CE by

∇(x, t) � x(· ∧ t)

and, if E is a vector space, the difference operator � :CE × [0,∞) → CE by

�(x, t) � x(t + ·) − x(t).

In contrast to usual practice, here the shift operator can shift paths to the right
because t can be negative, and in this case, the shifted path takes the value x(0)

on [0,−t]. The difference operator actually maps into CE
0 , the space of continu-

ous functions from [0,∞) to E with initial condition zero. If E = Rd for some
integer d , we write Cd and Cd

0 rather than CRd
and CRd

0 .
Fix a Polish space E , fix a positive integer d and define �E,d � E × Cd

0 . We
endow �E,d with the product topology. We denote a generic element of �E,d by
ω = (e, x) and define the random variable E(e, x) = e and the Rd -valued process
X(e, x) = x. For a random time T , we use the notation XT to denote the process
X stopped at T , that is,

XT
t (ω) = Xt∧T (ω)(ω) = ∇t

(
X(ω),T (ω)

)
, t ≥ 0.(3.1)

DEFINITION 3.1. We say that � :�E,d → CE is an updating function pro-
vided

�0(e, x) = e, e ∈ E ,(3.2)

�t(e, x) = �t (e,∇(x, t)
)
, t ≥ 0, e ∈ E , x ∈ Cd

0 ,(3.3)

�
(
�(e, x), t

)= �
(
�t(e, x),�(x, t)

)
, t ≥ 0, e ∈ E , x ∈ Cd

0 .(3.4)

In other words, � takes an initial condition in E [see (3.2)] and a path in Cd
0

and generates a path in CE . Property (3.3) says that the path �(e, x) stopped at
t depends only on the initial condition e and the path of x stopped at t . This is
a nonanticipative property. Property (3.4) is a type of Markov property, but on a
path-by-path basis without the presence of a probability measure. It implies that
the path of �(e, x) from time t onward depends only on the value of the path at
time t and the increments of x from time t onward. Using the characterization of
the Markov property as independence of the future and past given the present, it is
easily verified that if ξ is a continuous Rd -valued Markov process, and if for each t

the value of ξt can be deduced from the value of �t(ξ0, ξ − ξ0), then �(ξ0, ξ − ξ0)

is also Markov.

EXAMPLE 3.2 (Process itself). A trivial case of an updating function is ob-
tained if we let E = Rd , �E,d = E × Cd

0 and �(e, x) = e + x for e ∈ Rd and
x ∈ Cd

0 . If ξ is a continuous Rd -valued Markov process and we represent ξ as
(ξ0, ξ − ξ0) ∈ E × Cd

0 , then �t(ξ0, ξ − ξ0) = ξt and �(ξ0, ξ − ξ0) = ξ is Markov.
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EXAMPLE 3.3 (Integral-to-date). Let E = R2 and �E,1 = E × C1
0 . We inter-

pret a point (e1, e2;x) ∈ �E,1 as a path e1 +x with initial condition e1 +x(0) = e1
and the initial value of a running integral given by e2. It is then easy to check that

�t(e1, e2;x) =
(
e1 + x(t), e2 +

∫ t

0

(
e1 + x(s)

)
ds

)
is an updating function.

EXAMPLE 3.4 (Maximum-to-date). Let E = {(e1, e2) ∈ R2 : e1 ≤ e2} and
�E,1 = E × C1

0 . We regard the generic element (e1, e2;x) ∈ �E,1 as a path e1 + x

with initial condition e1 +x(0) = e1 and the time-zero maximum-to-date e2. Given
such a triple, the value of the path at a later time t and the maximum-to-date at that
time t are e1 + x(t) and e2 ∨ max0≤s≤t (e1 + x(s)), respectively. We thus define

�t(e1, e2;x) =
(
e1 + x(t), e2 ∨ max

0≤s≤t

(
e1 + x(s)

))
.

It is straightforward to verify that � is an updating function. If ξ is a continuous
real-valued Markov process, then �t(ξ0,M0; ξ − ξ0) = (ξt ,M0 ∨ max0≤s≤t ξs) is
also Markov, where M0 is any random variable satisfying M0 ≥ ξ0 almost surely.

As a final extremal example, we give an updating function that records the entire
history of the path.

EXAMPLE 3.5 (Path-to-date). Define E = {(s, x) ∈ [0,∞)×Cd;x is constant
on [s,∞)}, define �E,d = E × Cd

0 , and set

�t(s, x;y) = (s + t,∇(∇(x, s) + �(y,−s), s + t
))

,

x ∈ Cd, s ∈ [0,∞), y ∈ Cd
0 .

Given paths x ∈ Cd and y ∈ Cd
0 and a time s ≥ 0, ∇(x, s) + �(y,−s) is the path

that follows x on [0, s] with y appended after time s. The second component of
�t is this path stopped at time s + t . The first component of �t is the time s + t

at which this path is stopped. As t marches forward, the second component of the
operator � applied to (s, x;y) appends more and more of the path y to the path x,
always appending at time s. It is tedious but straightforward to check that � is an
updating function. For any continuous Rd -valued process ξ , we have

�t

(
0, ξ0; ξ − ξ0

)= (t, ξ t ), t ≥ 0,(3.5)

where we recall from (3.1) that ξ t is the process ξ stopped at t .

THEOREM 3.6 (Main result). Suppose an Rd -valued process Y is given by

Yt =
∫ t

0
bs ds +

∫ t

0
σs dWs, t ≥ 0,(3.6)
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where W is an Rr -valued Brownian motion under some probability measure P, b is
an Rd -valued process adapted to a filtration under which W is a Brownian motion
and σ is a d × r matrix-valued process adapted to the same filtration as b. Let E be
a Polish space, define �E,d � E ×Cd

0 , let � :�E,d → CE be a continuous updating
function, let Z0 be an E -valued random variable and set Z = �(Z0, Y ), which is a
continuous E -valued process. Finally, assume that E

∫ t
0 (‖bs‖ + ‖σsσ

tr
s ‖) ds < ∞

for t ≥ 0. Then there exists an Rd -valued measurable function b̂ and a d × d

matrix-valued measurable function σ̂ , both defined on [0,∞)× E , and there exists
a Lebesgue-null set N ⊂ [0,∞), so that3

b̂(t,Zt ) = E[bt |Zt ],
(3.7)

σ̂ (t,Zt )σ̂
tr (t,Zt ) = E

[
σtσ

tr
t |Zt

]
, P-a.s., t ∈ Nc.

Furthermore, there exists a filtered probability space (�̂, F̂ , {F̂t }t≥0, P̂) that sup-
ports a continuous Rd -valued adapted process Ŷ , a continuous E -valued adapted
process Ẑ and a d-dimensional Brownian motion Ŵ satisfying

Ŷt =
∫ t

0
b̂(s, Ẑs) ds +

∫ t

0
σ̂ (s, Ẑs) dŴs, Ẑ = �(Ẑ0, Ŷ ), t ≥ 0,(3.8)

and such that for each t ≥ 0, the distribution of Ẑt under P̂ agrees with the distri-
bution of Zt under P.

Although both Y in (3.6) and Ŷ in (3.8) are d-dimensional processes, the “state”
Ẑ of the system in (3.8) can be of a much lower dimension than the state process
needed to describe (3.6). In (3.6) the processes b and σ are typically given by
stochastic differential equations driven by additional Brownian motions not men-
tioned in the statement of the theorem. The process Ẑ is typically the process Ŷ

itself augmented by some functional of the path of Ŷ . We give examples below.
Indeed, the remainder of this section illustrates the applications of Theorem 3.6.
In this section we also show by example that (3.8) can have multiple solutions and
discuss conditions that guarantee uniqueness. The subsequent sections are devoted
to the proof of Theorem 3.6.

Note that Y in Theorem 3.6 is a martingale if and only if bs is zero for Lebesgue
almost every s almost surely. In this case, b̂ is also zero, and Ŷ is a local martingale.
But since Ẑs has the same distribution as Zs for each s, the integrabilty condition
assumed on σσ tr implies the same condition on σ̂ σ̂ tr and Ŷ is in fact a martingale.

As a first application, we take Y = X − X0 and Z = X in Theorem 3.6 and
use the updating function of Example 3.2. We then have the following corollary,
which is the result obtained by Gyöngy [18], but here without the boundedness
and nondegeneracy assumptions of [18].

3We interpret (3.7) and subsequent similar equations to mean that for each fixed t ∈ Nc , the left-
hand side of each equation is a version of the conditional expectation appearing on the right-hand
side.
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COROLLARY 3.7 (Process itself). Suppose an Rd -valued process X is given
by

Xt = X0 +
∫ t

0
bs ds +

∫ t

0
σs dWs, t ≥ 0,(3.9)

where W , P, b and σ are as in Theorem 3.6. Then there exists an Rd -valued mea-
surable function b̂ and a d × d matrix-valued measurable function σ̂ , both defined
on [0,∞) × Rd , and there exists a Lebesgue-null set N , so that

b̂(t,Xt ) = E[bt |Xt ],
(3.10)

σ̂ (t,Xt )σ̂
tr (t,Xt ) = E

[
σtσ

tr
t |Xt

]
, P-a.s., t ∈ Nc.

Furthermore, there exists a filtered probability space (�̂, F̂ , {F̂t}t≥0, P̂) that sup-
ports a continuous Rd -valued adapted process X̂ and a d-dimensional Brownian
motion Ŵ satisfying

X̂t = X̂0 +
∫ t

0
b̂(s, X̂s) ds +

∫ t

0
σ̂ (s, X̂s) dŴs, t ≥ 0,(3.11)

and such that for each t ≥ 0, the distribution of X̂t under P̂ agrees with the distri-
bution of Xt under P.

EXAMPLE 3.8 (Fake Brownian motion). Let G1 and G2 be standard normal
random variables, let (Bt )t≥0 be Brownian motion and assume that G1, G2, and
W are independent. Define the process

Xt = √
t(G1 cosBln t + G2 sinBln t ), t ≥ 1,

and set Ft = σ(G1,G2,Bs,0 ≤ s ≤ ln t) for t ≥ 1. Then X is a continuous
martingale with respect to {Ft }t≥1 and 〈X〉t = ∫ t

1 σ 2
s ds for t ≥ 1, where σt =

−G1 sinBln t + G2 cosBln t . In particular, we may write X in the form

Xt = X1 +
∫ t

1
σs dWs, t ≥ 1,

for some Brownian motion (Wt)t≥1.
Conditioned on the value of Bln t , the random variables Xt/

√
t and σt are in-

dependent and standard normal, so they are unconditionally independent and stan-
dard normal. Consequently,

E
[
σ 2

t |Xt

]= E
[
σ 2

t

]= 1, P-a.s., t ≥ 1,

and we may take b̂ = 0 and σ̂ = 1 in the previous corollary. As X1 is standard
normal, the previous corollary, adapted to the time interval [1,∞), asserts that
the process X has the same one-dimensional marginal distributions as a Brownian
motion on [1,∞). This is not hard to check directly in this example.
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This construction is due to Oleszkiewicz [28] who was interested in producing
a fake Brownian motion (see also [1, 19]). A fake Brownian motion is a continuous
martingale that has the same one-dimensional marginal distributions as a Brownian
motion but is not itself a Brownian motion. Oleszkiewicz shows that the process
X constructed above can be extended to produce a fake Brownian motion on the
time interval [0,∞). The argument given in this example can be extended to show
that the process which mimics Oleszkiewicz’s fake Brownian motion in the sense
of Corollary 3.7 is simply Brownian motion.

Taking Y = X − X0 and Zt = (Xt ,At), and using the updating function in
Example 3.3, we obtain the following corollary about the distribution of a process
and its running integral.

COROLLARY 3.9 (Integral-to-date). Suppose a real-valued process X is given
by (3.9) where W , P, b and σ are as in Theorem 3.6 with d = r = 1. Let A be a
continuous process such that

At = A0 +
∫ t

0
Xs ds, t ≥ 0.

Then there exists a real-valued measurable function b̂ and a [0,∞)-valued mea-
surable function σ̂ , both defined on [0,∞) × R2, and there exists a Lebesgue-null
set N , such that

b̂(t,Xt ,At) = E[bt |Xt,At ],
σ̂ 2(t,Xt ,At) = E

[
σ 2

t |Xt,At

]
, P-a.s., t ∈ Nc.

Furthermore, there exists a filtered probability space (�̂, F̂ , {F̂t }t≥0, P̂) that sup-
ports continuous real-valued adapted processes X̂ and Â and a real-valued Brow-
nian motion Ŵ satisfying

X̂t = X̂0 +
∫ t

0
b̂(s, X̂s, Âs) ds +

∫ t

0
σ̂ (s, X̂s, Âs) dŴs, t ≥ 0,

(3.12)

Ât = Â0 +
∫ t

0
X̂s ds, t ≥ 0,

and such that for each t ≥ 0, the distribution of the pair (X̂t , Ât ) under P̂ agrees
with the distribution of the pair (Xt ,At) under P.

Taking Y = X − X0 and Zt = (Xt ,Mt), and using the updating function in
Example 3.4, we obtain the following corollary about the distribution of a process
and its running maximum.
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COROLLARY 3.10 (Maximum-to-date). Suppose a real-valued process X is
given by (3.9) where W , P, b and σ are as in Theorem 3.6 with d = r = 1. Let M0
be a random variable satisfying M0 ≥ X0 almost surely and define

Mt = M0 ∨ max
0≤s≤t

Xs, t ≥ 0.

Then there exists a real-valued measurable function b̂ and a [0,∞)-valued mea-
surable function σ̂ , both defined on [0,∞) × R2, and there exists a Lebesgue-null
set N , such that

b̂(t,Xt ,Mt) = E[bt |Xt,Mt ],
σ̂ 2(t,Xt ,Mt) = E

[
σ 2

t |Xt,Mt

]
, P-a.s., t ∈ Nc.

Furthermore, there exists a filtered probability space (�̂, F̂ , {F̂t}t≥0, P̂) that sup-
ports continuous real-valued adapted processes X̂ and M̂ and a real-valued Brow-
nian motion Ŵ satisfying

X̂t = X̂0 +
∫ t

0
b̂(s, X̂s, M̂s) ds +

∫ t

0
σ̂ (s, X̂s, M̂s) dŴs, t ≥ 0,

(3.13)
M̂t = M̂0 ∨ max

0≤s≤t
X̂s, t ≥ 0,

and such that for each t ≥ 0, the distribution of the pair (X̂t , M̂t ) under P̂ agrees
with the distribution of the pair (Xt ,Mt) under P.

Taking Y = X −X0 and Zt = (t,Xt), and using the updating function in Exam-
ple 3.5, we obtain the following corollary, which states that every Itô process with
integrable drift and covariance is a weak solution to an SDE with path-dependent
coefficients.

COROLLARY 3.11 (Path-to-date). Suppose a real-valued process X is given
by (3.9) where W , P, b and σ are as in Theorem 3.6. Then there exist path-
dependent functionals b̂ and σ̂ , both defined on [0,∞) × Cd , with b̂ taking values
in Rd and σ̂ taking values in the space of d × d matrices and a Lebesgue-null set
N such that

b̂
(
t,Xt )= E

[
bt |Xt ],

σ̂
(
t,Xt )σ̂ tr(t,Xt )= E

[
σtσ

tr
t |Xt ], P-a.s., t ∈ Nc.

Furthermore, there exists a filtered probability space (�̂, F̂ , {F̂t}t≥0, P̂) that sup-
ports a continuous Rd -valued adapted process X̂ and a d-dimensional Brownian
motion Ŵ satisfying

X̂t = X̂0 +
∫ t

0
b̂
(
s, X̂s)ds +

∫ t

0
σ̂
(
s, X̂s)dŴs, t ≥ 0,

and such that X̂ has the same distribution under P̂ as X has under P.
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We close this section with a brief discussion of the nonuniqueness that can arise
in equation (3.8) of Theorem 3.6 and its relationship to the strong Markov property.
We first provide a simple example within the context of Corollary 3.7, where X

and Z are the same process.

EXAMPLE 3.12 (Nonuniqueness). Let d = 1 and b = 0 in Corollary 3.7
and let Xt = ∫ t

0 σs dWs , where σs = I(1,∞)(s)I{W1>0}. Then Xt = I(1,∞)(t) ×
I{W1>0}(Wt − W1). From (3.10) we see that σ̂ (t, y) = 0 for 0 ≤ t ≤ 1, and for
t > 1,

σ̂ 2(t, y) = E
[
σ 2

t |Xt = y
]= {1, if y �= 0,

0, if y = 0.

Both X̂1
t ≡ 0 and X̂2

t = I(1,∞)(t)(Wt − W1) are solutions of (3.11). The weak
solution X̂ that has the same one-dimensional distributions as X is obtained by an
initial randomization that is independent of W and determines whether X̂ agrees
with X̂1 or X̂2, each of these events having probability 1

2 . This process is Markov,
but not strong Markov, as can be seen by considering the stopping time that is the
first time after time 2 that zero is reached.

The previous example shows that the mimicking process may not be strong
Markov. Nevertheless, if we are willing to impose further conditions on the coef-
ficients b̂ and σ̂ appearing in Theorem 3.6, then we can often conclude that the
solution to (3.11) is unique in law and strong Markov. In particular, if we assume
that b̂ appearing in Corollary 3.7 is bounded and measurable and that σ̂ σ̂ tr is
bounded, strictly positive-definite and continuous, then the results of Stroock and
Varadhan [34, 35] ensure that the mimicking process satisfying (3.11) in Corol-
lary 3.7 is unique in law and strong Markov with respect to its natural filtration.
We state this observation as a corollary.

COROLLARY 3.13. Let X denote an Rd -valued process that satisfies equation
(3.9), where W , P, b and σ are as in Theorem 3.6, and suppose that there exists a
locally bounded measurable Rd -valued function b̂ and a measurable d ×d matrix-
valued function σ̂ such that (3.10) holds and the function â(t, x) = σ̂ (t, x)σ̂ tr (t, x)

is continuous and strictly positive definite. Then there exists a weak solution to
the SDE (3.11) and all weak solutions have the same law. Moreover, if X̂ is a
weak solution to (3.11), then X̂ is strong Markov with respect to the filtration
F̂t = σ(X̂s,0 ≤ s ≤ t) and has the same one-dimensional marginal distributions
as the process X.

The conditions in this corollary can be weakened. For example, more recent re-
sults of Krylov [26] imply that the mimicking process in Corollary 3.7 is unique in
law and strong Markov when b̂ is bounded and measurable and σ̂ σ̂ tr is bounded,
locally uniformly positive-definite and continuous in the sense of vanishing mean
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oscillation. If we restrict attention to the one-dimensional case, then the mimicking
process in Corollary 3.7 is unique in law and strong Markov when b̂ is bounded
and measurable, and σ̂ is bounded, locally uniformly positive and measurable (Ex-
ercise 7.3.3 of [36]).

The two-dimensional process (X̂, Â) in Corollary 3.9 is degenerate, so the re-
sults of Stroock and Varadhan [34–36] do not apply. However, Theorem 5.10 of [7]
asserts that the solution to (3.12) is uniquely determined in law when b̂ is bounded
and measurable and σ̂ is bounded, strictly positive and continuous. It then fol-
lows under these conditions that the pair of mimicking processes in Corollary 3.9
possess the strong Markov property.

We observe finally that the path functional x �→ maxs∈[0,t] x(s) is Lipschitz con-
tinuous for each fixed t ≥ 0. This implies that pathwise uniqueness holds for the
mimicking equation (3.13) in Corollary 3.10 when b̂ and σ̂ are bounded and lo-
cally Lipschitz continuous. As a result, it is easy to check that the process (X̂, M̂)

in Corollary 3.10 is strong Markov under these conditions.
To summarize, we cannot conclude in general that the mimicking process Ẑ in

Theorem 3.6 is unique in law and strong Markov. In many cases of interest, it is
possible to identify conditions that may be imposed on the mimicking equation
to ensure that the solution is unique and that the mimicking process possesses the
strong Markov property. However, these conditions vary from case to case, and
depend in an essential way on the structure of the updating function.

4. Concatenated measure. In this section we begin with a measure P and
a partition � of [0,∞) and construct a concatenated measure. This is the
continuous-time analogue of the measure induced on path space by the process Y

or the pair (Z,Z) in Section 2. We use the notation introduced at the beginning of
Section 3. On the space �E,d = E ×Cd

0 , we introduce the σ -field F E,d � E⊗σ(X)

and the filtration F E,d
t � E ⊗ σ(Xt), t ≥ 0, where E is the Borel σ -field in E .

DEFINITION 4.1. Let 0 = T0 ≤ T1 ≤ · · · ≤ Tn be a sequence of finite (for ev-
ery ω) {F E,d

t }t≥0-stopping times and let {Gi}ni=0 be a collection of σ -fields sat-

isfying Gi ⊂ F E,d
Ti

for i = 0, . . . , n. Set Tn+1 = ∞, set H0 = F E,d
0 and define

Hi+1 � Gi ∨ σ(�(XTi+1, Ti)), i = 0,1, . . . , n. We say that � � (Ti, Gi)
n
i=0 is an

extended partition provided:

(a) Ti+1 − Ti ∈ Gi ∨ σ(�(X,Ti)), i = 0,1, . . . , n − 1,
(b) Gi ⊂ Hi , i = 0,1, . . . , n.

REMARK 4.2. Because Ti+1 − Ti is F E,d
Ti+1

-measurable and F E,d
Ti+1

= E ⊗
σ(XTi+1), condition (a) in Definition 3.1 is equivalent to the apparently stronger
condition:

(a′) Ti+1 − Ti ∈ Hi+1, i = 0,1, . . . , n − 1.
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Because Gi ⊂ F E,d
Ti

⊂ F E,d
Ti+1

and σ(�(XTi+1, Ti)) ⊂ F E,d
Ti+1

, we have Hi+1 ⊂ F E,d
Ti+1

,
or equivalently,

Hi ⊂ F E,d
Ti

, i = 0,1, . . . , n, n + 1.(4.1)

An extended partition is a model for observing and partially forgetting infor-
mation over time. Partial forgetting occurs in Section 2 when we condition on the
value of a process at time n rather than on Fn. With an extended partition, at time
Ti we retain the information in Gi as we move forward into the interval [Ti, Ti+1],
but carry no other information from F E,d

Ti
forward. We then observe increments in

X over the interval [Ti, Ti+1], so that the information we have at time Ti+1 is Hi+1.
This information is sufficient to tell us the length of time Ti+1 −Ti we conduct the
observations. We then remember only the information in the sub-σ -field Gi+1 of
Hi+1 as we go forward into the interval [Ti+1, Ti+2].

4.1. Existence and uniqueness of concatenated measure.

THEOREM 4.3 (n-fold concatenation). Let P be a probability measure on
(�E,d , F E,d), and let (Ti, Gi)

n
i=0 be an extended partition. Then there exists a

unique measure P⊗� satisfying

P⊗�[A] = P[A], A ∈ Hi , i = 0,1, . . . , n + 1,(4.2)

P⊗�[B|F E,d
Ti

]= P[B|Gi], B ∈ Hi+1, i = 0,1, . . . , n.(4.3)

We interpret (4.3) to mean that every P-version of P[B|Gi] is a P⊗�-version of
P⊗�[B|F E,d

Ti
].

EXAMPLE 4.4 (Simple concatenated measure). Let E = {0}, so that �E,1 is
isomorphic to C1

0 . Then F E,1
0 is the trivial σ -algebra {∅,C1

0}. We consider the
extended partition � = (Ti, Gi)

1
i=0 with G0 = G1 = {∅,C1

0} and T0 = 0, T1 = 1

and, by convention, T2 = ∞. Then H0 = F E,1
0 , H1 = F E,1

1 = σ(X(t),0 ≤ t ≤ 1)

and H2 = σ(X(t) − X(1), t ≥ 1). We define four elements of C1
0 by ω0(t) = 0,

ω1(t) = t , ω2(t) = t ∧ 1 and ω3(t) = (t − 1)+ for t ≥ 0. Let δi be the probability
measure on C1

0 assigning probability 1 to ωi , and set P = (δ0 + δ1)/2. The sets

A0 = {x ∈ C1
0 :x(t) = 0 ∀t ∈ [0,1]} and A1 = {x ∈ C1

0 :x(t) = t ∀t ∈ [0,1]}
are in H1 = F E,1

1 and P(A0) = P(A1) = 1
2 . According to (4.2), we must also have

P⊗�(A0) = P⊗�(A1) = 1
2 . The sets

B0 = {x ∈ C1
0 :x(t) − x(1) = 0 ∀t ∈ [1,∞)

}
,

B1 = {x ∈ C1
0 :x(t) − x(1) = t − 1 ∀t ∈ [1,∞)

}
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are in H2, and (4.3) implies that

P⊗�[B0|F E,1
1

]= P[B0|G1] = P[B0] = 1
2 .

Integrating this equation over A1 with respect to P⊗�, we see that

1
4 = P⊗�(A1 ∩ B0) = P⊗�(ω2).

Considering all combinations of Aj and Bk , we conclude that P⊗�(ωi) = 1
4 for

i = 0,1,2,3, that is, P⊗� = (δ0 + δ1 + δ2 + δ3)/4.

The remainder of this subsection is devoted to the proof of Theorem 4.3. Let Cd

denote the Borel σ -field in Cd and let Cd
0 denote the trace σ -field in Cd

0 . We first
concatenate a deterministic initial path and a probability measure at a deterministic
time. Given a fixed point ω = (e, x) ∈ �E,d , a time t ≥ 0 and a probability measure
Q on (�E,d , F E,d), let ω,t :�E,d → �E,d denote the function

ω,t (e, x) = (e,∇(x, t) + x − ∇(x, t)
)
,(4.4)

and set δω ⊗t Q = Q ◦ −1
ω,t . The reader can easily check that the measure δω ⊗t Q

is uniquely determined by the properties

(δω ⊗t Q)
[
E = e,Xs = x(s) ∀s ≤ t

]= 1,(4.5)

(δω ⊗t Q)
[
�(X, t) ∈ A

]= Q
[
�(X, t) ∈ A

] ∀A ∈ Cd
0 .(4.6)

If Q[Xt = x(t)] = 1, E = Rd and we identify �E,d with Cd in the natural way,
then this notation reduces to the construction given in Lemma 6.1.1 of [36].

In the next step, we concatenate an initial probability measure and a probability
kernel at a stopping time.

DEFINITION 4.5. Let (�′, F ′) and (�′′, F ′′) be measurable spaces. We say
that a function Q :�′ × F ′′ → [0,1] is a probability kernel from (�′, F ′) to
(�′′, F ′′) provided:

(a) Q(ω′,A′′) is an F ′-measurable function of ω′ ∈ �′ for each A′′ ∈ F ′′,
(b) Q(ω′, ·) is a probability measure on (�′′, F ′′) for each ω′ ∈ �′.

PROPOSITION 4.6. Let P be a probability measure on (�E,d , F E,d), let T

be a finite (for every ω) {F E,d
t }t≥0-stopping time and let Q be a probability kernel

from (�E,d , F E,d
T ) to (�E,d , F E,d). Then there exists a unique probability measure

P ⊗T Q on (�E,d , F E,d) such that:

(a) P ⊗T Q[A] = P[A],A ∈ F E,d
T ,

(b) the random variable ω �→ (δω ⊗T (ω) Q(ω, ·))[F ] is a version of the condi-
tional probability (P ⊗T Q)[F |F E,d

T ] for all F ∈ F E,d .
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PROOF. When the initial condition Q(ω, {E = e,XT (ω) = XT (ω)(ω)}) = 1
holds for each ω ∈ �E,d , the result follows in the same way as Theorem 6.1.2
of [36]. To handle the general case, we modify the initial segment of each
path to ensure that the proper initial condition holds. Let ω,t be defined as
in (4.4) and set Q̂(ω, ·) = Q(ω, ·) ◦ −1

ω,T (ω). The map (ω,ω) �→ ω,T (ω)(ω) is

F E,d
T ⊗ F E,d/F E,d -measurable, so Q̂ is a probability kernel from (�E,d , F E,d

T )

to (�E,d , F E,d). It follows from the definition of  that Q̂(ω, {E = e,XT (ω) =
XT (ω)(ω)}) = 1 for each ω ∈ �E,d , so we may apply the previous case to con-
clude that there exists a unique measure P ⊗T Q̂ such that (a) and (b) hold
when Q is replaced with Q̂. But the operator ω �→ ω,t (ω) is idempotent, so
δω ⊗T (ω) Q(ω, ·) = δω ⊗T (ω) Q̂(ω, ·) for each ω ∈ �E,d , and P ⊗T Q = P ⊗T Q̂

is in fact the unique measure which satisfies (a) and (b). �

We now begin concatenating probability measures.

COROLLARY 4.7 (Two-fold concatenation). Let P1 and P2 be probability
measures on �E,d , let T be a finite (for every ω) {F E,d

t }t≥0-stopping time, let G
be a sub-σ -field of F E,d

T and assume that P1|G � P2|G . Then there exists a unique
measure, denoted P1 ⊗T ,G P2, such that:

(a) P1 ⊗T ,G P2[A] = P1[A],A ∈ F E,d
T ,

(b) for every set B ∈ G ∨ σ(�(X,T )), every version of P2[B|G] is a version of
(P1 ⊗T ,G P2)[B|F E,d

T ],
(c) if P1 and P2 agree on G , then P1 ⊗T ,G P2 and P2 agree on G ∨σ(�(X,T )).

PROOF. Because �E,d is a Polish space, there exists a G -measurable proba-
bility kernel Q from (�E,d , F E,d) to (�E,d , F E,d) such that for every F ∈ F E,d ,
Q(·,F ) is a version of P2[F |G] ([36], Theorem 1.1.6). Using Proposition 4.6, we
define P1 ⊗T ,G P2 � P1 ⊗T Q. Property (a) of the corollary is property (a) of
Proposition 4.6.

Given ω ∈ �E,d and F ∈ F E,d , set Q̂(ω,F ) = (δω ⊗T (ω) Q(ω, ·))[F ]. Prop-
erty (b) of Proposition 4.6 asserts that Q̂(·,F ) is a version of (P1 ⊗T Q)[F |F E,d

T ]
for all F ∈ F E,d . Galmarino’s test ([9], Theorem IV.100) for the filtered space
(�E,d , F E,d , {F E,d

t }t≥0) says that E(ω) = E(ω) and Xu(ω) = Xu(ω) for 0 ≤ u ≤
T (ω) imply Y(ω) = Y(ω) for every F E,d

T -measurable random variable Y . In par-
ticular, if A ∈ F E,d

T , then ω ∈ A if and only if (E(ω),XT (ω)(ω)) ∈ A. Therefore,
Q̂(ω,A∩F) = IA(ω)Q̂(ω,F ) for all ω ∈ �E,d , A ∈ F E,d

T and F ∈ F E,d by (4.5).
If B = A ∩ {�(X,T ) ∈ D} with A ∈ G and D ∈ Cd

0 , then (4.6) implies

Q̂(·,B) = IAQ
(·, {�(X,T ) ∈ D

})= P2[B|G], P2-a.s.(4.7)

It then follows from Dynkin’s π–λ theorem that (4.7) holds for all B ∈ G ∨
σ(�(X,T )). From (a) we have P1 ⊗T ,G P2|G = P1|G , and we have assumed
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P1|G � P2|G , so the fact that Q̂(·,B) is a version of both (P1 ⊗T ,G P2)[B|F E,d
T ]

and P2[B|G] implies that every version of P2[B|G] is also a version of (P1 ⊗T ,G
P2)[B|F E,d

T ].
For (c), assume that P1 and P2 agree on G . Property (a) implies that P1|G =

(P1 ⊗T ,G P2)|G , and hence, P2|G = P1 ⊗T ,G P2|G . For B ∈ G ∨ σ(�(X,T )), we
have from (b) that P2[B|G] = (P1 ⊗T ,G P2)[B|G], and we can integrate both sides
over �E,d with respect to P2|G = P1 ⊗T ,G P2|G to obtain (c).

Uniqueness of P1 ⊗T ,G P2 follows from the fact that (b) specifies this measure
on G ∨ σ(�(X,T )) conditioned on F E,d

T , up to P2|G -equivalence. Furthermore,
(a) specifies this measure to be P1 on F E,d

T , and hence, on G . But P1 � P2, and
hence, the integral in the equation (P1 ⊗T ,G P2)[B] = ∫�E ,d P2[B|G]dP1 for B ∈
G ∨ σ(�(X,T )) is well defined. We see then that properties (a) and (b) specify
the measure P1 ⊗T ,G P2 on G ∨ σ(�(X,T )) and on F E,d

T . These two σ -fields
generate F E,d , and thus the measure is uniquely determined on F E,d by properties
(a) and (b). �

PROPOSITION 4.8 (Three-fold concatenation). Let P1, P2 and P3 be prob-
ability measures on �E,d and let 0 ≤ S ≤ T be finite (for every ω) {F E,d

t }t≥0-
stopping times. Let G be a sub-σ -field of F E,d

S and let H be a sub-σ -field

of G ∨ σ(�(XT ,S)), which is a sub-σ -field of F E,d
T . Assume that T − S is

G ∨ σ(�(X,S))-measurable. If P1|G � P2|G and P2|H � P3|H, then:

(a) P1|G � (P2 ⊗T ,H P3)|G ,
(b) (P1 ⊗S,G P2)|H � P3|H,

so that both P1 ⊗S,G (P2 ⊗T ,H P3) and (P1 ⊗S,G P2) ⊗T ,H P3 are defined, and

(c) P1 ⊗S,G (P2 ⊗T ,H P3) = (P1 ⊗S,G P2) ⊗T ,H P3.

PROOF. We simplify notation by writing P12 = P1 ⊗S,G P2, P23 = P2 ⊗T ,H
P3, P1,23 = P1 ⊗S,G (P2 ⊗T ,H P3) and P12,3 = (P1 ⊗S,G P2) ⊗T ,H P3. For (a),
we note from Corollary 4.7(a) that P23 agrees with P2 on F E,d

T , and hence, on G .
Property (a) follows from P1|G � P2|G . For (b), let A ∈ H satisfy P3[A] = 0. By
assumption, we also have P2[A] = 0, and hence, 0 is a version of P2[A|G]. Being
in H, A is also in G ∨σ(�(X,S)), and according to Corollary 4.7(b), 0 is a version
of P12[A|F E,d

S ]. Therefore, P12[A] = 0.
The collection of sets of the form A∩B∩C, where A ∈ F E,d

S , B ∈ σ(�(XT ,S))

and C ∈ σ(�(X,T )), is closed under finite intersections and generates F E,d . Thus,
to prove (c), it suffices to show that the desired equation holds when both sides are
evaluated for a set of this form. Let A, B and C be as described, and let G be in G .
Let Z be a version of E3[IC |H] and Y a version of E2[IBZ|G]. Corollary 4.7(b)
implies that Z is a version of P23[C|F E,d

T ]. This, combined with Corollary 4.7(a),
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implies

E23[IGY ] = E2[IGY ] = E2[IG∩BZ] = E23[IG∩BZ] = E23[G ∩ B ∩ C].
We see then that Y = E2[IBE3[IC |H]|G] is a version of E23[IB∩C |G], a fact we
use along with repeated applications of Corollary 4.7(a), (b) and (c) in the chain of
equalities

P1,23[A ∩ B ∩ C] = E1,23
[
IAE1,23

[
IB∩C |F E,d

S

]]
= E1,23

[
IAE23[IB∩C |G]]

= E1,23
[
IAE2

[
IBE3[IC |H]|G

]]
= E1

[
IAE2

[
IBE3[IC |H]|G

]]
= E12

[
IAE12

[
IBE3[IC |H]|F E,d

S

]]
= E12

[
IA∩BE3[IC |H]]

= E12,3
[
IA∩BE12,3

[
IC |F E,d

S

]]
= P12,3[A ∩ B ∩ C]. �

PROOF OF THEOREM 4.3. Let m satisfy 0 ≤ m ≤ n− 1. According to Defini-
tion 4.1,

Gm+1 ⊂ Hm+1 = Gm ∨ σ
(
�
(
XTm+1, Tm

))⊂ Gm ∨ σ
(
�(X,Tm)

)
.

If 0 ≤ m ≤ n − 2, we further have

Gm+2 ⊂ Hm+2 = Gm+1 ∨ σ
(
�
(
XTm+2, Tm+1

))⊂ Gm ∨ σ
(
�(X,Tm)

)
.

Iterating this process, we obtain the relation Gj ⊂ Gm ∨ σ(�(X,Tm)) for j =
m,m + 1, . . . , n. Consequently,

Gj ∨ σ
(
�
(
XTj+1, Tj

))⊂ Gm ∨ σ
(
�(X,Tm)

)
, 0 ≤ m ≤ j ≤ n.(4.8)

We now proceed by induction on m. The induction hypothesis corresponding
to m, where m = 0, . . . , n, is the existence of a measure Pm such that:

(i) Pm[A] = P[A] for all A ∈ Hi and 0 ≤ i ≤ n + 1,
(ii) for B ∈ Hi+1 and 0 ≤ i ≤ m − 1, every P-version of P[B|Gi] is a Pm-

version of Pm[B|F E,d
Ti

].
The base case is P0 = P, a case for which (i) trivially holds and (ii) is vacuous.

Assume the induction hypothesis for some integer m. Because Gm ⊂ Hm and the
measures Pm and P agree on Hm, we may invoke Corollary 4.7 to define Pm+1 �
Pm ⊗Tm,Gm P. If A ∈ Hj for some j , 0 ≤ j ≤ m, then A ∈ F E,d

Tm
and Pm+1[A] =
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Pm[A] = P[A] by Corollary 4.7(a) and part (i) of the induction hypothesis. If m ≤
j ≤ n, then (4.8) implies

Hj+1 � Gj ∨ σ
(
�
(
XTj+1, Tj

))⊂ Gm ∨ σ
(
�(X,Tm)

)
.(4.9)

But Corollary 4.7(c) implies that Pm+1 agrees with P on Gm ∨ σ(�(X,Tm)).
Hence, Pm+1 satisfies (i).

For some i, 0 ≤ i ≤ m − 1, let B ∈ Hi+1 and A ∈ F E,d
Ti

be given. Suppose Z

is a version of P[B|Gi], so that both A ∩ B and IAZ are F E,d
Tm

-measurable [recall
(4.1)]. Corollary 4.7(a) (used twice) and part (ii) of the induction hypothesis imply

Em+1[IAZ] = Em[IAZ] = Pm[A ∩ B] = Pm+1[A ∩ B],
showing that Z is a version of Pm+1[B|F E,d

Ti
]. Finally, suppose B is in Hm+1,

which is a sub-σ -field of Gm ∨ σ(�(X,Tm)). Corollary 4.7(b) says that every ver-
sion of P[B|Gm] is a version of Pm+1[B|F E,d

Tm
]. This establishes (ii) with m + 1

replacing m.
The induction argument above constructs P⊗� � Pn+1 that satisfies (4.2) and

(4.3). To see that this measure is unique, we show that (4.2) and (4.3) deter-
mine its value on sets of the form

⋂n+1
i=0 Bi , where B0 ∈ F E,d

0 = H0 and Bi+1 ∈
σ(�(XTi+1, Ti)) ⊂ Hi+1 for i = 0, . . . , n. This collection of sets is closed under fi-
nite intersections and generates F E,d . For such a set, repeated application of (4.3),
followed by a final application of (4.2), yields

P⊗�

[
n+1⋂
i=0

Bi

]

= En+1[IB0E
n+1[IB1 · · ·En+1[IBnE

n+1[IBn+1 |F E,d
Tn

]|F E,d
Tn−1

] · · · |F E,d
0

]]
= En+1[IB0E

n+1[IB1 · · ·En+1[IBnE[IBn+1 |Gn]|F E,d
Tn−1

] · · · |F E,d
0

]]
= En+1[IB0E

n+1[IB1 · · ·E[IBnE[IBn+1 |Gn]Gn−1
] · · · |F E,d

0

]]
(4.10)

...

= En+1[IB0E
[
IB1 · · ·E[IBnE[IBn+1 |Gn]|Gn−1

] · · · |G0
]]

= E
[
IB0E

[
IB1 · · ·E[IBnE[IBn+1 |Gn]|Gn−1

] · · · |G0
]]

.

The proof of Theorem 4.3 is complete. �

REMARK 4.9. We see from the proof of Theorem 4.3 that

P⊗� = P ⊗T0,G0 P ⊗T1,G1 · · · ⊗Tn,Gn P,

where the associative property of Proposition 4.8(c) makes the grouping of the
⊗Ti,Gi

operators irrelevant. Equation (4.10) provides insight into the nature of
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P⊗�. If Gi is equal to F E,d
Ti

for each i, then the last iterated conditional expectation

in (4.10) collapses to P[⋂n+1
i=0 Bi], and P⊗� agrees with P. At the other extreme, if

Gi is the trivial σ -field {∅,�E,d} for each i, then this iterated conditional expec-
tation becomes

∏n+1
i=0 P[Bi], and increments of the path fragments over [Ti, Ti+1]

are independent of one another under P ⊗� but have the same unconditional dis-
tribution as under P.

4.2. Properties preserved by concatenation.

PROPOSITION 4.10. Let P be a probability measure and let (Ti, Gi)
n
i=0 be

an extended partition on (�E,d , F E,d). Let A be an {F E,d
t }t≥0-adapted continu-

ous real-valued process on �E,d , and assume that �(A,Ti) is Gi ∨ σ(�(X,Ti))-
measurable for i = 0, . . . , n.

(a) The total variation of A on [0,∞) is P-almost surely finite if and only if it
is P⊗�-almost surely finite.

(b) The process A is P-almost surely absolutely continuous if and only if it is
P⊗�-almost surely absolutely continuous.

PROOF. We set P0 = P and Pi+1 = Pi ⊗Ti,Gi
P, i = 1, . . . , n. Then P⊗� =

Pn+1. For (a), we proceed by induction on i = 0,1, . . . , n, assuming that:

(ai) the total variation of A on [0,∞) is P-almost surely finite if and only if it
is Pi-almost surely finite.

On F E,d
Ti

, the probability measures Pi and Pi+1 agree [Corollary 4.7(a)], and

hence, A restricted to [0, Ti] is Pi -a.s. of finite variation if and only if A re-
stricted to [0, Ti] is Pi+1-a.s. of finite variation. The variation of A on subinter-
vals in [Ti,∞) is a function of �(A,Ti), which is Gi ∨ σ(�(X,Ti))-measurable,
and on this σ -field, the measures Pi and Pi+1 agree [Corollary 4.7(c)]. Therefore,
A restricted to [Ti,∞) is Pi -a.s. of finite variation if and only if A restricted to
[Ti,∞) is Pi+1-a.s. of finite variation. We conclude that A has finite total variation
on [0,∞) Pi -almost surely if and only if it has finite total variation Pi+1-almost
surely. Combining this with the induction hypothesis (ai), we obtain the induction
hypothesis with i + 1 replacing i.

The continuous process A is absolutely continuous on [0,∞) if and only if it is
absolutely continuous on [0, Ti] and absolutely continuous on [Ti,∞). Therefore,
we can imitate the proof of (a) to obtain (b). �

PROPOSITION 4.11. Let P be a probability measure and let (Ti, Gi)
n
i=0 be

an extended partition on (�E,d , F E,d). Let A be an {F E,d
t }t≥0-adapted contin-

uous Rd -valued process on �E,d with A0 = 0, and assume that �(A,Ti) is



1604 G. BRUNICK AND S. SHREVE

Gi ∨ σ(�(X,Ti))-measurable for i = 0, . . . , n. Assume there exists a measurable
Rd -valued process α such that the set

J (ω) �
{
t ∈ [0,∞) :

∂

∂t
At (ω) exists but is not equal to αt(ω)

}
(4.11)

has Lebesgue measure zero for P-almost every and P⊗�-almost every ω ∈ �E,d .
Then

P

[
At =

∫ t

0
αu du ∀t ∈ [0,∞)

]
= 1(4.12)

if and only if

P⊗�

[
At =

∫ t

0
αu du ∀t ∈ [0,∞)

]
= 1.(4.13)

When the equalities (4.12) and (4.13) hold, we also have

E

∫ S

0
f (αu) du = E⊗�

∫ S

0
f (αu) du(4.14)

for every nonnegative, Borel-measurable function f : Rd → R and {F E,d
t }t≥0-

stopping time S satisfying (S − Ti)
+ ∈ Gi ∨ σ(�(X,Ti)) for i = 0, . . . , n.

PROOF. Assume (4.12). Then each component of A is P-a.s. absolutely con-
tinuous. Proposition 4.10 implies that the components of A are P⊗�-a.s. absolutely
continuous as well. Therefore, for P⊗�-almost every ω, the set

C(ω) �
{
t ∈ [0,∞) :

∂

∂t
At (ω) exists

}
has full Lebesgue measure, and by the assumption about J (ω), the set

D(ω) �
{
t ∈ [0,∞) :

∂

∂t
At (ω) exists and is equal to αt(ω)

}
also has full Lebesgue measure for P⊗�-almost every ω. This implies (4.13). This
argument is reversible; (4.13) implies (4.12).

We now assume (4.12) and (4.13). The Gi ∨ σ(�(X,Ti))-measurability of
�(A,Ti) together with the F E,d

Ti+1
-measurability of �(ATi+1, Ti) implies the

Hi+1-measurability of �(ATi+1, Ti). Because A is adapted and continuous,
ATi(ω)+t (ω)I{0≤t<Ti+1(ω)−Ti(ω)} is a jointly Hi+1 ⊗ B[0,∞)-measurable function
of (ω, t), where B[0,∞) is the Borel σ -field on [0,∞) (recall Remark 4.2).
The same is then true for the right-hand derivative ∂+

∂t
ATi(ω)+tI{0≤t<Ti+1(ω)−Ti(ω)},

where we set this right-hand derivative equal to an arbitrary value whenever the
limit of the relevant difference quotient does not exist. By assumption, (S − Ti)

+
is also Gi ∨ σ(�(X,Ti))-measurable. Therefore, (Ti+1 − Ti) ∧ (S − Ti)

+ =
Ti+1 ∧ S − Ti ∧ S is Hi+1-measurable. But on each Hi+1, the measures P and
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P⊗� agree, which implies that for every nonnegative Borel-measurable function
f : Rd → R,

E

∫ Ti+1∧S−Ti∧S

0
f (αTi+u) du = E⊗�

∫ Ti+1∧S−Ti∧S

0
f (αTi+u) du.

Summing over i = 0,1, . . . , n, we obtain (4.14). �

EXAMPLE 4.12 (Example 4.4 continued). Consider the extended partition
and probability measures P and P⊗� of Example 4.4. We take A = X so that
A0 = 0 and �(A,Ti) is G1 ∨ σ(�(X,Ti))-measurable for i = 0,1. We define the
adapted processes

αt(ω) =
{

lim sup
ε↓0

0 ∨ ω(ε)

ε
∧ 1
}
I(0,∞](t),

βt (ω) =
{

lim sup
ε↓0

0 ∨ ω(ε)

ε
∧ 1
}
I(0,1](t)

+
{

lim sup
ε↓0

0 ∨ ω(1 + ε) − ω(1)

ε
∧ 1
}
I(1,∞](t)

and the sets E = {At = ∫ t
0 αu du ∀t ∈ [0,∞)} and F = {At = ∫ t

0 βu du ∀t ∈
[0,∞)}. Then we have P[E] = P[F ] = P⊗�[F ] = 1, but P⊗�[E] = 1/2.

If we let K(ω) denote the set obtained by replacing α with β in (4.11), then we
see that K(ω) is a Lebesgue-null set P-almost surely and P⊗�-almost surely. On
the other hand, J (ω) defined by (4.11) is a Lebesgue-null set P-almost surely, but
has strictly positive Lebesgue measure with strictly positive P⊗�-probability. In
particular, we see that (4.12) and (4.13) may not be equivalent in this situation.

COROLLARY 4.13. Let P be a probability measure on (�E,d , F E,d) and for
each positive integer m, let �m � (T m

i , Gm
i )

N(m)
i=0 be an extended partition. Let

A be an {F E,d
t }t≥0-adapted continuous Rd -valued process on �E,d with A0 = 0,

and assume that T m
i and �(A,T m

i ) are Gm
i ∨ σ(�(X,T m

i ))-measurable for i =
1, . . . ,N(m) and m = 1,2, . . . . Let α be a measurable Rd -valued process such
that At = ∫ t

0 αu du for every t ≥ 0, P-almost surely, and assume that the set J (ω)

defined by (4.11) has Lebesgue measure zero for every ω ∈ �E,d . Finally, assume

E

∫ t

0
‖αu‖du < ∞, t ≥ 0.(4.15)

Then the following hold.

(a) For every t ∈ [0,∞), α restricted to [0, t] is uniformly integrable with re-
spect to the collection of product measures {P⊗�m × λ[0,t]}∞m=1, where λ[0,t] de-
notes Lebesgue measure on [0, t].
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(b) The collection of measures {P⊗�m ◦ A−1}∞m=1 on Cd
0 is tight.

PROOF. For (a), fix t ∈ [0,∞). Given ε > 0, (4.15) guarantees that there exists
Mε > 0 so large that E

∫ t
0 ‖αu‖I{‖αu‖≥Mε} du ≤ ε. Applying Proposition 4.11 with

f (x) = ‖x‖I{‖x‖≥Mε} and S = t , we obtain E⊗�m ∫ t
0 ‖αu‖I{‖αu‖≥Mε} du ≤ ε for

all m.
For (b) it suffices to verify that for every ε > 0, there exists a set �ε ∈ F E,d

such that P⊗�m
(�ε) ≥ 1 − ε for every m and

lim
δ↓0

sup
ω∈�ε

sup
0≤s≤v≤t∧(s+δ)

∥∥Av(ω) − As(ω)
∥∥= 0, t ≥ 0.(4.16)

Fix ε > 0 and let {tn}∞n=1 be an increasing sequence of positive numbers with
limn→∞ tn = ∞. For fixed n, we construct �n such that P⊗�m

(�n) ≥ 1 − 2−nε

for every m and

lim
δ↓0

sup
ω∈�n

sup
0≤s≤v≤tn∧(s+δ)

∥∥Av(ω) − As(ω)
∥∥= 0.(4.17)

Then �ε =⋂∞
n=1 �n satisfies (4.16) and P⊗�m

(�ε) ≥ 1 − ε for every m.
We fix n and construct �n by working through the proof of the Borel–Cantelli

lemma. For each positive integer k, part (a) implies the existence of δk > 0 for
which

E⊗�m
[

sup
0≤s≤v≤tn∧(s+δk)

‖Av − As‖
]
≤ E⊗�m

[
sup

0≤s≤v≤tn∧(s+δk)

∫ v

s
‖αu‖du

]
≤ 2−2k

for all m. We define Fk = {sup0≤s≤v≤tn∧(s+δk)

∫ v
s ‖αu‖du ≥ 2−k}, and note

from Chebyshev’s inequality that P⊗�m
(Fk) ≤ 2−k for every m and k. Choose

j such that 2−(j−1) ≤ 2−nε and set �n = ⋂
k≥j F c

k . We have P⊗�m
(�c

n) ≤∑∞
k=j P⊗�m

(Fk) ≤ 2−nε for every m, as desired. Also, ω ∈ �n implies that
sup0≤s≤v≤tn∧(s+δk)

∫ v
s ‖αu‖du ≤ 2−k for all k ≥ j , and hence, (4.17) holds. �

DEFINITION 4.14. Let Y be an adapted continuous Rd -valued process de-
fined on a filtered probability space (�, F , {Ft}t≥0,P), let B be an adapted con-
tinuous Rd -valued process whose components are of finite variation and for which
B0 = 0 and let C be an adapted continuous, d × d-matrix-valued process whose
components are of finite variation and for which C0 = 0. We further assume that
outside a P-null set that does not depend on s and t , the increment Ct −Cs is posi-
tive semidefinite whenever 0 ≤ s < t < ∞. We say that Y is a semimartingale with
characteristic pair (B,C) if the components of Y − B and (Y − B)(Y − B)tr − C

are local martingales.

PROPOSITION 4.15. Let P be a probability measure and let (Ti, Gi)
n
i=0 be

an extended partition on (�E,d , F E,d). Let Y be a continuous Rd ′
-valued pro-

cess (d ′ may be different from d), and suppose that Y is a semimartingale with
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characteristic pair (B,C) under P. If �(Y,Ti), �(B,Ti) and �(C,Ti) are all
Gi ∨ σ(�(X,Ti))-measurable for i = 1, . . . , n, then under P⊗� the process Y is
still a semimartingale with characteristic pair (B,C).

The proof of Proposition 4.15 depends on some preliminary results.

LEMMA 4.16. Let P1 and P2 be probability measures on (�E,d , F E,d), and
let T be a finite (for every ω) {F E,d

t }t≥0-stopping time. Let M be a continuous
local martingale relative to {F E,d

t }t≥0 under P1 and P2. Let G be a sub-σ -field of
F E,d

T such that P1|G � P2|G and assume that M̂ � �(M,T ) is G ∨ σ(�(X,T ))-

measurable. Then (Mt , F E,d
t )t≥0 is a continuous local martingale under P12 �

P1 ⊗T ,G P2.

PROOF. It is sufficient to show that MT and M − MT are both P12-local
martingales relative to {F E,d

t }t≥0. As MT is a P1-local martingale, MT is F E,d
T -

measurable and P1 and P12 agree on F E,d
T , we may immediately conclude that MT

is a P12-local martingale.
For each integer n > 0, define the stopping time Sn � inf{t ≥ T : |Mt −

MT | ≥ n}. Then MSn − (MSn)T = MSn − MT is bounded, and �(MSn, T ) is
G ∨ σ(�(X,T ))-measurable. As a result, we may assume without loss of gen-
erality that M − MT is a uniformly integrable P2-martingale.

We now show that M̂ is a P12-martingale with respect to the filtration F̂t =
FT +t . The process M̂ is clearly {F̂t }t≥0-adapted, and it follows from the optional
sampling theorem that M̂ is a P2-martingale with respect to the filtration {F̂t }t≥0.
For 0 ≤ s ≤ t , A ∈ F E,d

T and B ∈ σ(�r(X,T ) : 0 ≤ r ≤ s), we have from Corol-
lary 4.7(b) that

E12
[
IA∩B(M̂t − M̂s)

]= E12
[
IAE12

[
IB(M̂t − M̂s)|F E,d

T

]]
= E12

[
IAE2

[
IB(M̂t − M̂s)|G

]]
= E12

[
IAE2

[
IBE2[M̂t − M̂s |F̂s]|G

]]= 0,

where we have used the fact that M̂ is P2-martingale in the last step. Writing
XT +s

t = XT
t + �0∨(t−T )∧s(X,T ), we see that sets of the form A ∩ B generate F̂s .

It then follows from Dynkin’s π–λ theorem that M̂ is P12-martingale relative to
{F̂t }t≥0.

To conclude the proof, we observe that (r −T )+ is a bounded {F̂t }t≥0-stopping
time and Fr ⊂ F̂(r−T )∨0 for each r ≥ 0. Fixing 0 ≤ s < t and A ∈ Fs , we have

E12
[
IA
(
Mt − MT

t

)]= E12[IAM̂(t−T )∨0] = E12[IAM̂(s−T )∨0]
= E12

[
IA
(
Ms − MT

s

)]
,

so M − MT is P12-martingale relative to {Ft }t≥0. �
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LEMMA 4.17. Let P be a probability measure on (�E,d , F E,d), and let M

be a uniformly integrable P-martingale relative to {F E,d
t }t≥0. Let S, T and U

be stopping times with T ≤ U almost surely, and let Z be an F E,d
T -measurable

bounded random variable. Then E[(MU − MT )Z|F E,d
S ] = (MU∧S − MT ∧S)Z.

PROOF. Because

I{S≤T }E
[
(MU − MT )Z|F E,d

S

]= I{S≤T }E
[
ZE
[
(MU − MT )|F E,d

T

]|F E,d
S

]= 0,

we have

E
[
(MU − MT )Z|F E,d

S

]
= I{T <S≤U }E

[
(MU − MT )Z|F E,d

S

]+ I{U<S}E
[
(MU − MT )Z|F E,d

S

]
= I{T <S≤U }(MS − MT )Z + I{U<S}(MU − MT )Z

= (MU∧S − MT ∧S)Z. �

LEMMA 4.18. Let P1 and P2 be probability measures on (�E,d , F E,d) and
let T be a finite (for every ω) {F E,d

t }t≥0-stopping time. Let M1, M2 and C

be continuous {F E,d
t }t≥0-adapted real-valued processes such that M1, M2 and

M3 � M1M2 − C are local martingales relative to {F E,d
t }t≥0 under P1 and P2.

Let G be a sub-σ -field of F E,d
T such that P1|G � P2|G and assume that M̂1 �

�(M1, T ), M̂2 � �(M2, T ) and Ĉ � �(C,T ) are G ∨ σ(�(X,T ))-measurable.
Then (M3, F E,d

t )t≥0 is a local martingale under P12 � P1 ⊗G,T P2.

PROOF. We cannot apply Lemma 4.16 directly because we did not assume
that M̂3 is G ∨ σ(�(X,T ))-measurable. Instead, we define the process

Yt � M1
t∧T M2

t∧T + (M1
t − M1

t∧T

)(
M2

t − M2
t∧T

)− Ct

= M3
t − (M1

t − M1
t∧T

)
M2

t∧T − (M2
t − M2

t∧T

)
M1

t∧T , t ≥ 0,

for which �(Y,T ) = �(M1, T )�(M2, T )−�(C,T ) is G ∨σ(�(X,T ))-measur-
able. Define Tn � inf{t ≥ 0 : |M1

t | ∨ |M2
t | ∨ |M3

t | ∨ |Ct | ≥ n}, and set Mi,n �
(Mi)Tn for i = 1,2,3, Cn � CTn and Yn � YTn . For fixed n, the processes
Mi,n, i = 1,2,3, and Yn are bounded. For 0 ≤ s ≤ t , we apply Lemma 4.17
with M = M1,n, Z = M

2,n
t∧T , S = s, T = t ∧ T and U = t , and use the fact that

M1,n
s − M

1,n
s∧T = 0 if T ≥ s to obtain

Ek

[(
M

1,n
t − M

1,n
t∧T

)
M

2,n
t∧T |F E,d

s

]= (M1,n
s − M

1,n
s∧T

)
M

2,n
t∧T

(4.18)
= (M1,n

s − M
1,n
s∧T

)
M

2,n
s∧T , k = 1,2.
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The same equality holds if we reverse the roles of M1,n and M2,n. Finally, because
M3,n is a martingale,

Ek

[
Yn

t |F E,d
s

]= Ek

[
M

3,n
t |F E,d

s

]− Ek

[(
M

1,n
t − M

1,n
t∧T

)
M

2,n
t∧T |F E,d

s

]
− Ek

[(
M

2,n
t − M

2,n
t∧T

)
M

1,n
t∧T |F E,d

s

]
= M3,n

s − (M1,n
s − M

1,n
s∧T

)
M

2,n
s∧T − (M2,n

s − M
2,n
s∧T

)
M

1,n
s∧T

= Yn
s , k = 1,2,

so Y is a local martingale under both P1 and P2. Lemma 4.16 implies that M1, M2

and Y are P12-local martingales. Therefore, (4.18) holds under P12 as well, from
which we conclude that

E12
[
M

3,n
t |F E,d

s

]= E12
[
Yn

t |F E,d
s

]+ E12
[(

M
1,n
t − M

1,n
t∧T

)
M

2,n
t∧T |F E,d

s

]
+ E12

[(
M

2,n
t − M

2,n
t∧T

)
M

1,n
t∧T |F E,d

s

]
= Yn

s + (M1,n
s − M

1,n
s∧T

)
M

2,n
s∧T + (M2,n

s − M
2,n
s∧T

)
M

1,n
s∧T

= M3,n
s , 0 ≤ s ≤ t. �

PROOF OF PROPOSITION 4.15. According to Remark 4.9, P⊗� = Pn+1,
where Pi is defined recursively by P0 = P and Pi+1 = Pi ⊗Ti,Gi

P, i = 0, . . . , n. If
M is a continuous local martingale under P and �(M,Ti) is Gi ∨ σ(�(X,Ti))-
measurable for i = 0, . . . , n, then repeated application of Lemma 4.16 shows
that M is a Pi -local martingale for i = 1, . . . , n, n + 1, and in particular, M is
a continuous local martingale under P⊗�. Similarly, if M1 and M2 are contin-
uous local martingales under P, C is a finite variation process such that M3 �
M1M2 −C is a local martingale under P, and �(M1, Ti), �(M2, Ti) and �(C,Ti)

are Gi ∨ σ(�(X,Ti))-measurable for 0 = 1, . . . , n, then repeated application of
Lemma 4.18 shows that M1M2 −C is a Pi -local martingale for i = 1, . . . , n, n+1.
In particular, M1M2 − C is a continuous local martingale under P⊗�. These ob-
servations combined with Proposition 4.10(a) prove the desired result. �

5. Conditional expectations. The results of this section are implicit in
Krylov [25] and Gyöngy [18]. We use the notation introduced in Sections 3 and 4.
In addition, we denote the Borel σ -field on [0, t] by B[0, t] and the Borel σ -field
on [0,∞) by B[0,∞).

PROPOSITION 5.1. Let Z be an E -valued process and let � be an Rd -valued
process (resp., a d × d matrix-valued process) taking values in a closed convex
set K , and satisfying E[∫ t

0 ‖�u‖du] < ∞ for all t ≥ 0. Then there exists an Rd -
valued measurable function (resp., a d × d matrix-valued measurable function) �̂,
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defined on [0,∞) × E , taking values in K , and there exists a Lebesgue-null set
N ⊂ [0,∞), so that

�̂(t,Zt ) = E[�t |Zt ], P-a.s., t ∈ Nc.(5.1)

The proof of Proposition 5.1 depends on the following lemma.

LEMMA 5.2. Let Z be an E -valued process and let � be a real-valued process
satisfying E

∫ t
0 |�u|du < ∞ for all t ≥ 0. Let �̂ be a real-valued measurable func-

tion on [0,∞)× E . There exists a Lebesgue-null set N ⊂ [0,∞) so that (5.1) holds
if and only if for every bounded B[0,∞) ⊗ E-measurable real-valued function f ,

E

∫ t

0
�̂(u,Zu)f (u,Zu) du = E

∫ t

0
�uf (u,Zu)du, t ≥ 0.(5.2)

PROOF. If (5.1) holds, then (5.2) follows from Fubini’s theorem.
To prove the converse, we assume (5.2). Taking f (u,Zu) = sgn(�̂(u,Zu)) and

using the integrability of �, we see that E
∫ t

0 |�̂(u,Zu)|du < ∞ for all t ≥ 0.
The σ -field E is generated by a collection of open balls intersected with E ,

each ball having a rational radius and centered at a point in a countable dense
subset of the separable metric space containing E . Let O denote the collec-
tion of finite intersections of this countable collection of sets. Then O is itself
countable and E = σ(O). We enumerate the sets in O as O1,O2, . . . . Define
gn(t) � E[(�̂(t,Zt ) − �t)I{Zt∈On}]. For B ∈ B[0, t], (5.2) implies∫

B
gn(u)du = E

∫ t

0

(
�̂(u,Zu) − �u

)
I{(u,Zu)∈B×On} du = 0.

Since both t ≥ 0 and B ∈ B[0, t] are arbitrary, we conclude that gn = 0 for
Lebesgue-almost every t ≥ 0. Thus, N � {t ≥ 0|gn(t) �= 0 for some n} is a
Lebesgue-null set.

The collection of sets A ∈ E for which

E
[(

�̂(t,Zt ) − �t

)
I{Zt∈A}

]= 0, t ∈ Nc,(5.3)

is a λ system containing O, and the Dynkin π–λ theorem implies that (5.3) holds
for every A ∈ E. This gives us (5.1). �

PROOF OF PROPOSITION 5.1. Except for the assertion that �̂ takes values in
the set K , it suffices to prove the proposition for the case that � is real-valued.
We can then apply the one-dimensional result to each component of the � in the
proposition.

In the one-dimensional case, we define the σ -finite measure

μ(A) � E

∫ ∞
0

IA(u,Zu)du, A ∈ B[0,∞) ⊗ E,
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and the σ -finite signed measure

ν(A) � E

∫ ∞
0

�uIA(u,Zu)du, A ∈ B[0,∞) ⊗ E.

Obviously, ν � μ, so we can define �̂(t, z) = dν
dμ

(t, z) for (t, z) ∈ [0,∞] ⊗ E .
Let f be a bounded B[0,∞) ⊗ E-measurable real-valued function. For t ≥ 0,

E

∫ t

0
�̂(u,Zu)f (u,Zu) du =

∫
[0,t]×E

�̂(u, z)f (u, z)μ(du, dz)

=
∫
[0,t]×E

f (u, z)ν(du, dz)

= E

∫ t

0
�uf (u,Zu)du.

Equation (5.1) follows from Lemma 5.2.
Let us now consider the case of a multi-dimensional � taking values in a closed

convex set K . We have already shown the existence of �̂ such that (5.1) holds, and
it remains to show that �̂ takes values in K . Define ϕ : Rd → R (resp., ϕ : Rd ×
Rd → R) by ϕ(γ ) = minκ∈K‖γ − κ‖, which is the distance from γ to K . One can
verify from the triangle inequality that for each constant c, the set {γ |ϕ(γ ) ≤ c} is
convex, and hence, ϕ is a continuous convex real-valued function. Such a function
has the property that ϕ(γ ) = max{�(γ )|� is linear and � ≤ ϕ}. This permits us to
establish the Jensen inequality

E
[
ϕ(�t )|Zt

] ≥ max
{
E
[
�(�t )|Zt

]|� is linear and � ≤ ϕ
}

= max
{
�
(
E[�t |Zt ])|� is linear and � ≤ ϕ

}
= ϕ

(
E[�t |Zt ])

= ϕ
(
�̂(t,Zt )

)
, t ∈ Nc.

But � takes values in K , so the left-hand side of this inequality is zero. Thus the
right-hand side is zero, implying �̂(t,Zt ) ∈ K almost surely for each t ∈ Nc. We
can modify �̂(t, z) so that it takes values in K for every t , and (5.1) still holds. �

DEFINITION 5.3. Let {�i}i be a collection of processes on some probability
space (�, F ,P) and let T be a [0,∞)-valued random variable. We say the collec-
tion {�i}i is strongly independent of T if there is a σ -field G ⊂ F such that each
�i is B[0,∞) × G -measurable and G is independent of σ(T ).

PROPOSITION 5.4. Within the setting of Proposition 5.1, let T be a [0,∞)-
valued random variable whose distribution μ � P ◦ T −1 is absolutely continuous
with respect to Lebesgue measure. Assume also that the pair of processes (�,Z)

is strongly independent of T and E|�T | < ∞. Then

�̂(T ,ZT ) = E[�T |T ,ZT ], P-a.s.(5.4)
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PROOF. We first observe that∫ ∞
0

E[�t ]μ(dt) = E[�T ](5.5)

for any process � that is strongly independent of T and satisfies E|�T | < ∞.
To see this, consider the case �t =∑n

i=1 IAi
IBi

(t), where Ai ∈ G , the σ -field in
Definition 5.3 and Bi ∈ B[0,∞). Then use the monotone class theorem.

Now let f : [0,∞) × E → R be a bounded, B[0,∞) ⊗ E-measurable real-
valued function. Proposition 5.1 implies E[�̂(t,Zt )f (t,Zt )] = E[�tf (t,Zt )] for
all t ∈ Nc. Integrating both sides of this equation with respect to μ(dt) and us-
ing (5.5), we obtain E[�̂(T ,ZT )f (T ,ZT )] = E[�T f (T ,ZT )]. Equation (5.4) fol-
lows. �

6. Approximation. We collect in this section three approximation results
needed to prove Theorem 3.6. We denote by N the set of natural numbers and
define N � N ∪ {∞}. We recall that λ[0,t] denotes Lebesgue measure on [0, t].

6.1. Convergence of the integral of a process.

PROPOSITION 6.1. Let {Zm}m∈N be a collection of continuous E -valued pro-
cesses, possibly defined on different probability spaces under different probability
measures Qm. Let f : [0,∞) × E → Rd be a measurable function. Assume:

(i) for each t ∈ [0,∞), the distribution of Zm
t under Qm is independent of

m ∈ N,
(ii) the distribution on CE of Zm under Qm converges weakly to the distribu-

tion of Z∞ under Q∞, that is, Qm ◦ (Zm)−1 ⇒ Q∞ ◦ (Z∞)−1 and
(iii) EQ1 ∫ t

0 ‖f (u,Z1
u)‖du < ∞ for every t ∈ [0,∞).

Then:

(iv) for every m ∈ N the integral process Fm
t �

∫ t
0 f (s,Zm

s ) ds, t ∈ [0,∞), is
defined Qm-almost surely,

(v) Qm[Fm ∈ Cd ] = 1 for every m ∈ N,
(vi) {f (·,Zm· ), λ[0,t] × Qm}m∈N is uniformly integrable for every t ∈ [0,∞),
(vii) (Zm,Fm) ⇒ (Z∞,F∞).

PROOF. It suffices to prove parts (iv)–(vi) of the lemma for the case d = 1,
since these results can be applied component-wise to the d-dimensional f .

Define the measure μ on [0,∞) × E by μ(A) � EQm ∫∞
0 IA(s,Zm

s ) ds. As-
sumption (i) and the convergence in (ii) imply that the distribution of Zm

t is inde-
pendent of m ∈ N, so it does not matter which m ∈ N we use in the definition of μ.
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Therefore, for each m ∈ N and M > 0,

EQm
∫ t

0

∣∣f (s,Zm
s

)∣∣I{|f (x,Zm
s )|≥M} ds =

∫
[0,t]×E

∣∣f (s, e)
∣∣I{|f (s,e)|≥M}μ(ds, de)

= EQ1
∫ t

0

∣∣f (s,Z1
s

)∣∣I{|f (s,Z1
s )|≥M} ds.

Setting M = 0, we obtain (iv) and (v) from (iii). Condition (iii) implies that the
last term can be made arbitrarily small by choosing M large, and (vi) also follows.

To prove (v), we use (vi) and Lusin’s theorem to choose for each k ∈ N a
bounded continuous function f k : [0, k] × E → Rd such that

lim
k→∞

∫
[0,k]×E

∥∥f (t, e) − f k(t, e)
∥∥μ(dt, de) = 0.

The mapping z �→ ∫ ·∧k
0 f k(s, z(s)) ds is continuous from CE to Cd , which implies

that (
Zm,Fm,k)⇒ (

Z∞,F∞,k) as m → ∞,(6.1)

where F
m,k
t �

∫ t∧k
0 f k(s,Zm

s ) ds. But for each fixed T and k ≥ T ,

sup
m∈N

Qm
[

sup
0≤t≤T

∥∥Fm
t − F

m,k
t

∥∥> ε
]

≤ sup
m∈N

1

ε
EQm

sup
0≤t≤T

∥∥Fm
t − F

m,k
t

∥∥(6.2)

≤ 1

ε

∫
[0,k]×E

∥∥f (s, e) − f k(s, e)
∥∥μ(ds, de),

which has limit zero as k → ∞. In particular, the convergence Fm,k ⇒ Fm as
k → ∞ is uniform in m ∈ N.

Let  :CE × C1 → R be a uniformly continuous bounded function. To prove
weak convergence of measures on a metric space, it suffices to consider such func-
tions (see [29], Chapter II, Theorem 6.1). We have∣∣Em[(Zm,Fm)]− E∞[(Z∞,F∞)]∣∣

= ∣∣Em[(Zm,Fm)− 
(
Zm,Fm,k)]∣∣

+ ∣∣Em[(Zm,Fm,k)]− E∞[(Z∞,F∞,k)]∣∣
+ ∣∣E∞[(Z∞,F∞,k)− 

(
Z∞,F∞)]∣∣.

Given ε > 0, (6.2) guarantees that we can choose k so large that the first and third
terms on the right-hand side are less than ε, independently of m. For this value
of k, we can then use (6.1) to choose M so that for all m ≥ M , the second term is
also less than ε. �
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6.2. Approximation by step functions. We show in Proposition 6.3 below that
an arbitrary integrable process can be approximated in L1(P×λ[0,t]) by step func-
tions obtained by sampling the process at random partition points.

LEMMA 6.2. Let f : [0,∞) → Rd be a measurable function with∫ t
0 ‖f (s)‖ds < ∞ for every t ∈ [0,∞). Define the sets

In
i �

{
(t, u) ∈ [0,∞) × [0,1] :

u + i − 1

n
≤ t <

u + i

n

}
, i = 1,2, . . . ,(6.3)

and define the sequence of functions fn(t, u) =∑∞
i=1 f (u+i−1

n
)IIn

i
(t, u). Then

lim
n→∞

∫ 1

0

∫ t

0

∥∥f (s) − fn(s, u)
∥∥ds du = 0, t ∈ [0,∞).

PROOF. Fix t > 0 and ε > 0. Choose a continuous, Rd -valued function g de-
fined on [0, t +1] for which

∫ t+1
0 ‖f (s)−g(s)‖ds ≤ ε. Set m = �t� ∈ [t, t +1)∩N

and set gn(s, u) �∑mn
i=1 g(u+i−1

n
)IIn

i
(s, u). We have∫ 1

0

∫ t

0

∥∥fn(s, u) − gn(s, u)
∥∥ds du

≤
mn∑
i=1

∫ 1

0

∫ (u+i)/n

(u+i−1)/n

∥∥∥∥f(u + i − 1

n

)
− g

(
u + i − 1

n

)∥∥∥∥ds du

=
mn∑
i=1

∫ 1

0

∥∥∥∥f(u + i − 1

n

)
− g

(
u + i − 1

n

)∥∥∥∥ du

n

=
mn∑
i=1

∫ i/n

(i−1)/n

∥∥f (v) − g(v)
∥∥dv ≤ ε.

Because g is uniformly continuous on [0, t +1], we may choose N so that ‖g(s2)−
g(s1)‖ ≤ ε/t whenever |s2 − s1| ≤ 1/N . By enlarging N if necessary, we can also
ensure that

∫ 1/N
0 ‖g(s)‖ds ≤ ε. Therefore, for n ≥ N , we have∫ 1

0

∫ t

0

∥∥f (s) − fn(s, u)
∥∥ds du

≤
∫ t

0

∥∥f (s) − g(s)
∥∥ds +

∫ 1

0

∫ t

u/n

∥∥g(s) − gn(s, u)
∥∥ds du

+
∫ 1/n

0

∥∥g(s)
∥∥ds +

∫ 1

0

∫ t

0

∥∥gn(s, u) − fn(s, u)
∥∥ds du ≤ 4ε. �

PROPOSITION 6.3. Let (�′, F ′,Q′) be a probability space that supports an
Rd -valued process a satisfying

EQ′
∫ t

0
‖as‖ds < ∞, t ≥ 0.(6.4)
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Set � � [0,1] × �′, with generic point ω = (u,ω′), and define U(u,ω′) = u. Set
F = B[0,1] ⊗ F ′, Q = λ[0,1] × Q′ and extend a to � via the abuse of notation
a(u,ω′) � a(ω′). Finally, define the random times T n

0 � 0, T n
i � (U + i − 1)/n

for i = 1,2, . . . , n2 and T n
n2+1 � ∞. Then the sampled process

an
t (ω) �

n2∑
i=1

aT n
i (ω)(ω)I[T n

i (ω),T n+1
i (ω))

(t) =
n2∑
i=1

a(u+i−1)/n

(
ω′)IIn

i
(t, u),

where In
i is defined by (6.3), satisfies

lim
n→∞ EQ

∫ t

0

∥∥as − an
s

∥∥ds = 0, t ≥ 0.(6.5)

PROOF. Define An
t (ω

′) �
∫ 1

0
∫ t

0 ‖as(ω
′) − an

s (u,ω′)‖ds du for t ≥ 0 and
ω′ ∈ �′. Assumption (6.4) implies that

∫ t
0 ‖as(ω

′)‖ds < ∞ for all t ≥ 0 for Q′-
almost every ω′. For fixed ω′ satisfying this condition, Lemma 6.2 then shows that
limn→∞ An

t (ω
′) = 0 for every t ≥ 0. Equation (6.5) is equivalent to

lim
n→0

EQ′
An

t = 0, t ≥ 0,

and to obtain this result it now suffices to show that for each fixed t ≥ 0, the col-
lection of random variables {An

t }∞n=1 is uniformly integrable under Q′.
We first show that {an}∞n=1 is uniformly integrable with respect to λ[0,t] × Q for

every t ≥ 0. Toward this end, fix t ≥ 0 and set m � �t� ∈ [t, t + 1) ∩ N, so that
t ≤ T n

mn+1. Then

EQ
[‖aT n

i
‖I{‖aT n

i
‖≥M}

]
=
∫ 1

0
EQ′[∥∥an

(u+i−1)/n

∥∥I{‖a(u+i−1)/n‖≥M}
] du

n

=
∫ i/n

(i−1)/n
EQ′[‖as‖I{‖as‖≥M}

]
ds, i = 1, . . . ,mn,

and

EQ
∫ t

0

∥∥an
s

∥∥I{‖an
s ‖≥M} ds ≤ EQ

∫ T n
mn+1

0

∥∥an
s

∥∥I{‖an
s ‖≥M} ds

= 1

n

mn∑
i=1

EQ[‖aT n
i
‖I{‖aT n

i
‖≥M}

]
= EQ′

∫ m

0
‖as‖I{‖as‖≥M} ds.
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The uniform integrability of {an}∞n=1 under λ[0,t] × Q follows from (6.4). This
implies the uniform integrability of {‖a − an‖}∞n=1. Jensen’s inequality implies

EQ′[(
An

t − M
)+]= EQ′

[(∫ 1

0

∫ t

0

∥∥as(·) − an
s (u, ·)∥∥ds du − M

)+]

≤ EQ′
[∫ 1

0

(∫ t

0

∥∥as(·) − an
s (u, ·)∥∥ds − M

)+
du

]

= EQ

[(∫ t

0

∥∥as − an
s

∥∥ds − M

)+]

≤ EQ

[∫ t

0

(∥∥as − an
s

∥∥− M

t

)+
ds

]
,

and the uniform integrability of {‖a − an‖}∞n=1 under λ[0,t] × Q implies that for
every ε > 0, there exists Mε > 0 such that

sup
n∈N

EQ′[(
An

t − Mε

)+]≤ ε.

Consequently,

sup
n∈N

EQ′[
An

t I{An
t ≥2Mε}

]= sup
n∈N

EQ′[(
An

t − 2Mε

)+ + 2MεI{An
t ≥2Mε}

]
≤ sup

n∈N

EQ′[(
An

t − 2Mε

)+ + 2
(
An

t − Mε

)+]
≤ 3 sup

n∈N

EQ′[(
An

t − Mε

)+]
≤ 3ε.

This proves the uniform integrability of {An
t }∞n=1 under Q′. �

6.3. Sequence of discrete-time martingales with zero limit. For our final ap-
proximation result, we construct a sequence of continuous-time, finite-variation
processes that are martingales when sampled at certain discrete times. We provide
conditions under which this sequence must converge to zero.

DEFINITION 6.4. A random partition � is a set of random times 0 = T0 ≤
T1 ≤ · · · ≤ Tn. We set |�|(ω) � sup1≤i≤n |Ti(ω)−Ti−1(ω)|. Let {�m}∞m=1 be a se-
quence of random partitions, possibly defined on different spaces {�m}∞m=1, where
the random times in the partitions �m are denoted T m

0 ≤ T m
1 ≤ · · · ≤ T m

N(m). We
say that {�m}∞m=1 converges uniformly to the identity if

lim
m→∞ sup

ω∈�m

∣∣�m(ω)
∣∣= 0 and lim

m→∞ inf
ω∈�m

T m
N(m)(ω) = ∞.(6.6)
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PROPOSITION 6.5. Let (�m, F m,Pm)∞m=1 be a sequence of probability
spaces. Assume that on each space there is defined an Rd -valued process Xm

and a random partition �m = {T m
0 , T m

1 , . . . , T m
N(m)}, and these partitions con-

verge uniformly to the identity. Assume further that the set of processes and
measures (Xm,λ[0,t] × Pm)∞m=1 is uniformly integrable for every t ≥ 0. For

k = 0,1, . . . ,N(m), define Ym
k �

∫ T m
k

0 Xm
u du and F m

k � σ(Ym
j , T m

j |0 ≤ j ≤ k),
and assume that (Ym

k , F m
k )0≤k≤N(m) is a martingale for each m. Then

lim
m→∞ Em sup

0≤s≤t

∥∥∥∥∫ s

0
Xm

u du

∥∥∥∥= 0, t ≥ 0.

PROOF. By considering components of
∫ s

0 Xm
u du, we may reduce the proof

to the case d = 1. Fix t ≥ 0. Fix m large enough that supω∈�m |�m|(ω) ≤ 1 and
infω∈�m T m

N(m)(ω) > t . Define ρ � min{k :T m
k ≥ t}, so that T m

ρ is the first random
time after t and T m

ρ ≤ T m
N(m) ∧ (t + 1). The discrete-time martingale Ym stopped

at T m
ρ is still a martingale. For 0 ≤ s ≤ t , set τ(s) � max{k :T m

k ≤ s}, so that T m
τ(s)

is the last random time before s. Then τ(s) ≤ ρ and 0 ≤ s − T m
τ(s) ≤ |�m|. For

M > 0, ∣∣∣∣∫ s

0
Xm

u du

∣∣∣∣≤ ∣∣Ym
τ(s)

∣∣+ ∫ s

T m
τ(s)

∣∣Xm
u

∣∣du

≤ ∣∣Ym
τ(s)

∣∣+ ∫ s

T m
τ(s)

[(∣∣Xm
u

∣∣− M
)+ + M

]
du

≤ max
1≤k≤ρ

∣∣Ym
k

∣∣+ ∫ t

0

(∣∣Xm
u

∣∣− M
)+

du + M
∣∣�m

∣∣.
Maximizing over s ∈ [0, t] and taking expectations, we obtain

Em sup
s∈[0,t]

∣∣∣∣∫ s

0
Xm

u du

∣∣∣∣≤ Em max
1≤k≤ρ

∣∣Ym
k

∣∣
+ Em

∫ t

0

(∣∣Xm
u

∣∣− M
)+

du(6.7)

+ MEm
∣∣�m

∣∣.
We bound the first term on the right-hand side of (6.7). The discrete-time

Burkholder–Davis–Gundy inequality (e.g., [16], inequality II.1.1) implies the ex-
istence of a universal constant C for which

Em max
1≤k≤ρ

∣∣Ym
k

∣∣≤ CEm

[( ∑
1≤k≤ρ

(
Ym

k − Ym
k−1
)2)1/2]

.(6.8)
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The right-hand side of (6.8) can be bounded using Hölder’s inequality. In particu-
lar,

Em

[( ∑
1≤k≤ρ

(
Ym

k − Ym
k−1
)2)1/2]

≤ Em

[
max

1≤k≤ρ

∣∣Ym
k − Ym

k−1

∣∣1/2 ·
( ∑

1≤k≤ρ

∣∣Ym
k − Ym

k−1

∣∣)1/2]

≤ Em

[
max

1≤k≤ρ

∣∣Ym
k − Ym

k−1

∣∣1/2 ·
(∫ t+1

0

∣∣Xm
u

∣∣du

)1/2]
(6.9)

≤
√

Em max
1≤k≤ρ

∣∣Ym
k − Ym

k−1

∣∣ ·
√

Em

∫ t+1

0

∣∣Xm
u

∣∣du

≤
√

Em

∫ t+1

0

(∣∣Xm
u

∣∣− M
)+

du + MEm
∣∣�m

∣∣ ·
√

Em

∫ t+1

0

∣∣Xm
u

∣∣du.

Combining (6.7)–(6.9), we obtain

Em sup
s∈[0,t]

∣∣∣∣∫ s

0
Xm

u du

∣∣∣∣
≤ C

√
Em

∫ t+1

0

(∣∣Xm
u

∣∣− M
)+

du + MEm
∣∣�m

∣∣ ·
√

Em

∫ t+1

0

∣∣Xm
u

∣∣du

+ Em
∫ t

0

(∣∣Xm
u

∣∣− M
)+

du + MEm|�|,
where C does not depend on X and M ≥ 0 is arbitrary. The uniform integrability of
(Xm,λ[0,t+1] × Pm)∞m=1 implies that supm Em

∫ t+1
0 |Xm

u |du is a finite constant C′.
Given ε > 0, uniform integrability further permits us to choose M so large that
supm Em

∫ t+1
0 (|Xm

u | − M)+ du ≤ ε. For such an M ,

Em sup
s∈[0,t]

∣∣∣∣∫ s

0
Xm

u du

∣∣∣∣≤ C
√

C′
√

ε + MEm
∣∣�m

∣∣+ ε + MEm
∣∣�m

∣∣.
Letting m → ∞ and using the first part of (6.6), we conclude that

lim sup
m→∞

Em sup
s∈[0,t]

∣∣∣∣∫ s

0
Xm

u du

∣∣∣∣≤ C
√

C′ε + ε. �

7. Proof of Theorem 3.6. We prove a theorem that is little more than a re-
statement of Theorem 3.6 without reference to the driving Brownian motions W

and Ŵ in that theorem. We develop this connection immediately after the state-
ment of Theorem 7.1 below. Recall Definition 4.14.
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THEOREM 7.1. Let E be a Polish space. Let (�, F , {Ft}t≥0,P) be a filtered
probability space that supports an E -valued random variable Z0 and an adapted
continuous Rd -valued semimartingale Y with Y0 = 0 and with characteristic pair
(B,C), where

Bt =
∫ t

0
bs ds, Ct =

∫ t

0
cs ds,(7.1)

and the adapted Rd -valued process b and the adapted Rd × Rd -valued positive
semidefinite process c satisfy

E

[∫ t

0

(‖bs‖ + ‖cs‖)ds

]
< ∞, t ≥ 0.(7.2)

Let b̂ and ĉ be measurable functions defined on [0,∞) × E with b̂ taking values
in Rd and ĉ taking values in the space of d × d positive semidefinite matrices, and
let N ⊂ [0,∞) be a Lebesgue-null set such that

b̂(t,Zt ) = E[bt |Zt ], ĉ(t,Zt ) = E[ct |Zt ], P-a.s., t ∈ Nc.(7.3)

Define �E,d � E × Cd
0 , let � :�E,d → CE be a continuous updating function and

let Z be the continuous, E -valued process given by Z = �(Z0, Y ). Let Ŷ :�E,d →
Cd

0 be given by Ŷ (e, x) = x and Ẑ :�E,d → CE be given by Ẑ = �(e, x). Then
there exists a measure P̂ on �E,d such that:

(i) Ŷ is a semimartingale with characteristic pair (B̂, Ĉ) under P̂, where B̂t �∫ t
0 b̂(s, Ẑs) ds and Ĉt �

∫ t
0 ĉ(s, Ẑs) ds, and

(ii) for each t ≥ 0, the distribution of Ẑt under P̂ agrees with the distribution
of Zt under P.

PROOF OF THEOREM 3.6. Let us assume Theorem 7.1. Then, under the hy-
potheses of Theorem 3.6, we may define cs � σsσ

tr
s and invoke Proposition 5.1 to

ensure the existence of functions b̂ and ĉ and a Lebesgue-null set N such that (7.3)
holds. We then conclude that there exist Ŷ and Ẑ satisfying properties (i) and (ii)
in Theorem 7.1. To show that Ŷ has the representation (3.8), we set σ̂ equal to the
symmetric square root of ĉ and invoke the Itô integral representation (e.g., [22],
Chapter 3, Theorem 4.2) for the d-dimensional local martingale Ŷ − B̂ . �

PROOF OF THEOREM 7.1. The proof, which involves a discretization, as sug-
gested by the example in Section 2, and then passage to the limit, proceeds in
several steps.

Step 1: Construction of canonical space and processes. The random object of
interest, (Z0, Y,B,C), takes values in �E,d × Cd

0 × Cd2

0 . In order to show that the
discretization has a limit, we need to randomize the discretization times, and thus
introduce an extra dimension, defining �∗ � [0,1] × �E,d × Cd

0 × Cd2

0 . Note that
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�∗ can also be written as �E ∗,d∗
, where E ∗ = [0,1] × E and d∗ = d + d + d2. We

denote F E ∗,d∗
simply as F ∗ and denote F E ∗,d∗

t simply as F ∗
t . On F ∗ we define

the measure Q to be the product of uniform measure on [0,1] and the measure
induced by (Z0, Y,B,C) under P on �E,d × Cd

0 × Cd2

0 . The generic element of
�∗ will be denoted ω = (μ, ε, η,β, γ ), and we define the projections

U∗(ω) = μ, Z∗
0(ω) = ε, Y ∗(ω) = η, B∗(ω) = β, C∗(ω) = γ.

On the filtered probability space (�∗, F ∗, {F ∗
t }t≥0,Q), Y ∗ is a semimartingale

with characteristic pair (B∗,C∗).
We choose an Rd -valued predictable process b∗ whose ith component at each

time t > 0, denoted (b∗
i )t , agrees with

lim inf
k→∞ k

((
B∗

i

)
t − (B∗

i

)
(t−1/k)+

)
,

whenever the latter is finite. Likewise, we choose an Rd2
-valued predictable pro-

cess c∗ whose (i, j)th component at each time t > 0, denoted (c∗
i,j )t , agrees with

lim inf
k→∞ k

((
C∗

i,j

)
t − (C∗

i,j

)
(t−1/k)+

)
,

whenever the latter is finite. By assumption, the components of B∗ and C∗ are
Q-almost surely absolutely continuous, and so their left derivatives are defined
for Lebesgue-almost every t ≥ 0, Q-almost surely. By construction, b∗ and c∗ are
these left derivatives whenever they are defined. It follows that

Q

[∫ t

0

(∥∥b∗
s

∥∥+ ∥∥c∗
s

∥∥)ds < ∞,B∗
t =

∫ t

0
b∗
s ds,C∗

t =
∫ t

0
c∗
s ds ∀t

]
= 1.(7.4)

For i, j = 1, . . . , d , the sets{
t ∈ [0,∞) :

∂

∂t

(
B∗

i

)
t (ω) exists but is not equal to

(
b∗
i

)
t (ω)

}
,

(7.5) {
t ∈ [0,∞) :

∂

∂t

(
C∗

i,j

)
t (ω) exists but is not equal to

(
c∗
i,j

)
t (ω)

}
are empty for every ω ∈ �∗.

We set Z∗ � �(Z∗
0 , Y ∗) and observe that the random time U∗ is strongly inde-

pendent of (Y ∗,Z∗,B∗,C∗, b∗, c∗) (recall Definition 5.3). Furthermore, the distri-
bution of (Y ∗,Z∗,B∗,C∗) under Q is the same as the distribution of (Y,Z,B,C)

under P, so (7.1) and (7.4) imply that

E

∫ t

0
f (Ys,Zs, bs, cs) ds = EQ

∫ t

0
f
(
Y ∗

s ,Z∗
s , b∗

s , c
∗
s

)
ds(7.6)

for any t ≥ 0 and f such that one side of (7.6) is well defined. In particular, (7.2)
and (7.6) imply that

EQ

[∫ t

0

(∥∥b∗
s

∥∥+ ∥∥c∗
s

∥∥)ds

]
< ∞, t ≥ 0,(7.7)
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and (7.3), (7.6) and Lemma 5.2 ensure the existence of a Lebesgue-null set N∗ ⊂
[0,∞) such that b̂(t,Z∗

t ) = EQ[b∗
t |Z∗

t ] and ĉ(t,Z∗
t ) = EQ[c∗

t |Z∗
t ] for all t /∈ N∗.

From (7.7) and the conditional version of Jensen’s inequality, we also have

EQ

[∫ t

0

(∥∥b̂(s,Z∗
s

)∥∥+ ∥∥ĉ(s,Z∗
s

)∥∥)ds

]
< ∞, t ≥ 0,

or equivalently,

E

[∫ t

0

(∥∥b̂(s,Zs)
∥∥+ ∥∥ĉ(s,Zs)

∥∥)ds

]
< ∞, t ≥ 0.

Step 2: Construction of extended partitions. For each positive integer m, set
N(m) = m2, T m

0 � 0 and for i = 1, . . . ,N(m), set T m
i � (U∗+ i−1)/m. Note that

each T m
i is σ(U∗) measurable, and consequently is an {F ∗

t }t≥0-stopping time. Let
�m denote this set of stopping times. The sequence of random partitions {�m}∞m=1
converges uniformly to the identity (Definition 6.4).

For the next step, we adopt the notation X = (Y ∗,B∗,C∗). We set Gm
0 =

Hm
0 = F ∗

0 = σ(U,Z∗
0), and for i = 1, . . . ,N(m), we set Gm

i = σ(U∗,Z∗
Ti

) and

Hm
i = Gm

i−1 ∨ σ(�(XT m
i , T m

i−1)). Finally, we set T m
N(m)+1 = ∞ and Hm

N(m)+1 =
Gm

N(m) ∨ σ(�(X,T m
N(m))). It is clear that part (a) of Definition 4.1 is satisfied.

To show that (T m
i , Gm

i )
N(m)
i=1 is an extended partition, it suffices to verify condi-

tion (b) of Definition 4.1, that is, that Gm
i ⊂ Hm

i for i = 1, . . . ,N(m). In par-
ticular, it suffices to show that Z∗

T m
i

is measurable with respect to σ(U∗) ∨
σ(Z∗

T m
i−1

) ∨ σ(�(XT m
i , T m

i−1)). Let τ ≥ 0 be a possibly random time and define

Sm
i = (τ − T m

i−1)
+. On the set T m

i−1 ≤ τ ≤ T m
i , we may use property (3.4) of the

updating function � to write

Z∗
τ = �Sm

i

(
Z∗, T m

i−1
)

= �Sm
i

(
�
(
Z∗

0 , Y ∗), T m
i−1
)

(7.8)
= �Sm

i

(
�T m

i−1

(
Z∗

0 , Y ∗),�(Y ∗, T m
i−1
))

= �Sm
i

(
Z∗

T m
i−1

,�
(
Y ∗, T m

i−1
))

.

If we take τ = T m
i , this leads to

Z∗
T m

i
= �T m

i −T m
i−1

(
Z∗

T m
i−1

,�
(
Y ∗, T m

i−1
))= �

T m
i −T m

i−1
T m

i −T m
i−1

(
Z∗

T m
i−1

,�
(
Y ∗, T m

i−1
))

,

and by property (3.3), the last expression depends on the path of �(Y ∗, T m
i−1)

only up to time T m
i − T m

i−1, which agrees with the path of �((Y ∗)T m
i , T m

i−1) up
to time T m

i − T m
i−1. We have thus written Z∗

T m
i

in terms of T m
i − T m

i−1, which is

nonrandom unless i = 1, in which case it is U∗/m, in terms of Z∗
T m

i−1
, and in terms

of �((Y ∗)T m
i , T m

i−1).
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Step 3: Concatenated measures. We denote by �m the extended partition
(T m

i , Gm
i )

N(m)
i=1 . These extended partitions are on the space �∗ = [0,1] × �E,d ×

Cd
0 × Cd2

0 , which is the same as �E ∗,d∗
defined in step 1. Theorem 4.3 implies the

existence of concatenated measures Qm � Q⊗�m
that satisfy

Qm[A] = Q[A], A ∈ Hm
i , i = 0,1, . . . ,N(m) + 1,(7.9)

Qm[B|F ∗
T m

i

]= Q
[
B|Gm

i

]
, B ∈ Hm

i+1, i = 0,1, . . . ,N(m).(7.10)

Applying Proposition 4.15 with X = (Y ∗,B∗,C∗), we see that Y ∗ is a semimartin-
gale with characteristic pair (B∗,C∗) under each Qm.

Step 4: Tightness and convergence. Corollary 4.13(b) shows that the collec-
tion of measures induced on Cd

0 × Cd2

0 by (B∗,C∗) under {Qm}∞m=1 is tight. The-
orem VI.4.18 of [21] (Rebolledo’s criterion; see [33]) then implies that the col-
lection of measures induced on Cd

0 by Y ∗ under {Qm}∞m=1 is tight. Since Z∗
0 has

the same distribution under every Qm, the set of measures induced on �E,d by
(Z∗

0 , Y ∗) is likewise tight. Passing to a convergent subsequence if necessary, we
obtain a limiting measure P̂ on �E,d . To simplify notation, we assume that the
passage to a subsequence is not necessary to obtain convergence. We denote the
coordinate mappings on �E,d by Ẑ0 and Ŷ , and we define Ẑ = �(Ẑ0, Ŷ ). The con-
tinuous mapping theorem implies that the distributions of (Y ∗,Z∗) on Cd

0 × CE

under the sequence of measures {Qm}∞m=1 converge to the distribution of (Ŷ , Ẑ)

under P̂, that is, Qm ◦ (Y ∗,Z∗)−1 �⇒ P̂ ◦ (Ŷ , Ẑ)−1.

Step 5: Agreement of one-dimensional distributions. Returning to (7.8), we
take τ = t , a fixed nonnegative number, so that Sm

i = (t − T m
i−1)

+. On the Hm
i -

measurable set {T m
i−1 ≤ t < T m

i }, we have

Z∗
t = �Sm

i

(
Z∗

T m
i−1

,�
(
Y ∗, T m

i−1
))

,

and the term �Sm
i
(Z∗

T m
i−1

,�(Y ∗, T m
i−1)) restricted to {T m

i−1 ≤ t < T m
i } depends only

on Sm
i , Z∗

T m
i−1

and �((Y ∗)T m
i , T m

i−1), all of which are Hm
i -measurable. Because Qm

and Q agree on each Hm
i , we conclude that for every Borel subset A of E and for

every t ≥ 0,

Qm[Z∗
t ∈ A

]= N(m)+1∑
i=1

Qm[Z∗
t ∈ A and T m

i−1 ≤ t < T m
i

]

=
N(m)+1∑

i=1

Q
[
Z∗

t ∈ A and T m
i−1 ≤ t < T m

i

]
(7.11)

= Q
[
Z∗

t ∈ A
]= P[Zt ∈ A].
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But the distributions of Z∗ under the sequence of measures {Qm}∞m=1 converge to
the distribution of Ẑ under P̂, and part (ii) of Theorem 7.1 is proved.

Step 6: Semimartingale characteristics of the limit. To complete the proof, we
must show that under the measure P̂ on �E,d , Ŷ is a semimartingale with charac-
teristic pair (B̂, Ĉ), defined in part (i) of Theorem 7.1. We do this by showing that
the distribution of the (Y ∗,Z∗,B∗,C∗) under Qm converges to the distribution of
(Ŷ , Ẑ, B̂, Ĉ) under P̂, that is,

Qm ◦ (Y ∗,Z∗,B∗,C∗)−1 �⇒ P̂ ◦ (Ŷ , Ẑ, B̂, Ĉ)−1.(7.12)

The filtration on �E,d , defined at the beginning of Section 4, is generated by Ŷ .
Once (7.12) is established, Theorem IX.2.4 of [21] will give the desired result.

On �∗ we define the processes

bt � b̂
(
t,Z∗

t

)
, Bt �

∫ t

0
bs ds,

ct � ĉ
(
t,Z∗

t

)
, Ct �

∫ t

0
cs ds, t ≥ 0.

According to Proposition 6.1,

Qm ◦ (Y ∗,Z∗,B,C
)−1 �⇒ P̂ ◦ (Ŷ , Ẑ, B̂, Ĉ)−1,(7.13) {

b,λ[0,t] × Qm}
m∈N is uniformly integrable for every t ∈ [0,∞),

(7.14) {
c, λ[0,t] × Qm}

m∈N is uniformly integrable for every t ∈ [0,∞).

We show that Qm ◦ (Y ∗,Z∗,B∗,C∗)−1 and Qm ◦ (Y ∗,Z∗,B,C)−1 have the same
limit as m → ∞. We do this by showing that for every ε > 0 and t ∈ [0,∞),

lim
m→∞ Qm

[
sup

0≤s≤t

∥∥B∗
s − Bs

∥∥≥ ε
]
= 0,(7.15)

lim
m→∞ Qm

[
sup

0≤s≤t

∥∥C∗
s − Cs

∥∥≥ ε
]
= 0.(7.16)

Once this has been done, (7.13) will imply (7.12), and we will be done.

Step 7: Proof of (7.15) and (7.16). In fact, we prove only (7.15), because the
proof of (7.16) is the same. Without loss of generality, we assume that B∗ and B̂

are one dimensional.
For i = 1, . . . ,N(m), define the Hm

i+1-measurable random variable

ξm
i � lim inf

k→∞ k
(
B∗

T m
i +1/k − B∗

T m
i

)
,

which is the right derivative of B∗ at T m
i whenever this derivative is defined. Recall

from step 1 that b∗
T m

i
is the left derivative of B∗ at T m

i whenever this derivative is
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defined and is finite. By construction, B∗ is independent of T m
i under Q, and its

derivative is defined and is finite Lebesgue-almost everywhere, Q-almost surely.
But T m

i is uniformly distributed on [ i−1
n

, i
n
]. It follows that

Q
[
ξm
i = b∗

T m
i

]= 1, i = 1, . . . ,N(m).(7.17)

We define three sequences of step functions:

bm
t �

N(m)∑
i=1

ξm
i I[T m

i ,T m
i+1)

(t), bm
t �

N(m)∑
i=1

bT m
i

I[T m
i ,T m

i+1)
,

b�m

t �
N(m)∑
i=1

b∗
T n

i
I[T m

i ,T m
i+1)

.

We further define

Bm
t �

∫ t

0
bm
s ds, Bm

t �
∫ t

0
bm

s ds.

Because of (7.17), bm and b�m
are Q-indistinguishable.

Each Bm is piecewise linear, and so for every ω ∈ �∗, ∂
∂t

Bm
t (ω) = bm

t (ω) except
at finitely many values of t . In addition, �(Bm,T m

i ) is σ(ξm
j : j ≥ i)-measurable.

For j ≥ i, ξm
j is Hm

j+1-measurable, and we have shown in the proof of Theorem 4.3
[see (4.9)] that Hm

j+1 ⊂ Gm
i ∨σ(�(X,T m

i )) for j = i, i + 1, . . . ,N(m), so we may
conclude that �(Bm,T m

i ) is Gm
i ∨σ(�(X,T m

i ))-measurable for i = 1, . . . ,N(m).
This measurability condition is trivially satisfied when i = 0 as well. We conclude
that the pair of processes (Bm,bm) satisfies the hypotheses of Proposition 4.11,
including (4.12), with Q replacing P and Qm replacing P⊗�.

Because B∗ is a component of X and the set (7.5) is empty, (B∗, b∗) also sat-
isfies the hypothesis of Proposition 4.11, and hence, so does (B∗ − Bm,b∗ − bm).
We thus obtain from (4.14) that

EQm
∫ t

0

∣∣b∗
s − bm

s

∣∣ds = EQ
∫ t

0

∣∣b∗
s − bm

s

∣∣ds, t ≥ 0.

For fixed t ≥ 0, we use this equality, the Q-indistinguishability of bm and b�m
and

Proposition 6.3 to write

lim sup
m→∞

EQm

sup
0≤s≤t

∣∣B∗
s − Bm

s

∣∣ ≤ lim sup
m→∞

EQm
∫ t

0

∣∣b∗
s − bm

s

∣∣ds

= lim sup
m→∞

EQ
∫ t

0

∣∣b∗
s − bm

s

∣∣ds

(7.18)

= lim sup
m→∞

EQ
∫ t

0

∣∣b∗
s − b�m

s

∣∣ds

= 0.
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We consider the difference between B and Bm. For i = 1, . . . ,N(m) + 1,∫ T m
i ∧t

T m
i−1∧t

∣∣bs − bm
s

∣∣ds

=
∫ T m

i ∧t

T m
i−1∧t

∣∣b̂(s,Z∗
s

)− b̂
(
T m

i−1,Z
∗
T m

i−1

)∣∣ds(7.19)

=
∫ Sm

i

0

∣∣b̂(T m
i−1 + s,�s

((
Z∗)T m

i , T m
i−1
))− b̂

(
�0
((

Z∗)T m
i , T m

i−1
))∣∣ds,

where Sm
i = 1

n
∧ (t − T m

i−1)
+ if i ≥ 2 and Sm

1 = T m
1 ∧ t . The final expression in

(7.19) is Hm
i -measurable, and so the first expression is as well. But Qm and Q

agree on Hm
i , which together with Proposition 6.3 implies

lim sup
m→∞

EQm

sup
0≤s≤t

∣∣Bs − Bm
s

∣∣ ≤ lim sup
m→∞

EQm
∫ t

0

∣∣bs − bm
s

∣∣ds

= lim sup
m→∞

N(m)+1∑
i=1

EQm
∫ T m

i ∧t

T m
i−1∧t

∣∣bs − bm
s

∣∣ds

(7.20)

= lim sup
m→∞

N(m)+1∑
i=1

EQ
∫ T m

i ∧t

T m
i−1∧t

∣∣bs − bm
s

∣∣ds

= lim sup
m→∞

EQ
∫ t

0

∣∣bs − bm
s

∣∣ds

= 0.

It remains to estimate the difference between Bm and Bm. From (7.14) and
(7.20) we see that {bm,λ[0,t] × Qm}m∈N is uniformly integrable for every t ∈
[0,∞). We show that {bm,λ[0,t] × Qm}m∈N is also uniformly integrable by us-
ing the Hm

i+1 measurability of T m
i , T m

i+1 and ξm
i to write

EQm
∫ t

0

∣∣bm
s

∣∣I{|bn
s |≥M} ds =

N(m)∑
i=0

EQm[(
T m

i+1 ∧ t − T m
i ∧ t

)∣∣ξm
i

∣∣I{|ξm
i |≥M}

]

=
N(m)∑
i=0

EQ[(T m
i+1 ∧ t − T m

i ∧ t
)∣∣ξm

i

∣∣I{|ξm
i |≥M}

]
(7.21)

= EQ
∫ t

0

∣∣bm
s

∣∣I{|bn
s |≥M} ds.

Under λ[0,t]×Q, b∗ restricted to [0, t] is integrable [see (7.4)]. One consequence of
(7.18) is that bm restricted to [0, t] converges to b∗ restricted to [0, t] in L1(λ[0,t] ×
Q). This, combined with (7.21), yields the uniform integrability of {bm,λ[0,t] ×
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Qm}m∈N. We conclude that {bm − bm,λ[0,t] × Qm}m∈N is uniformly integrable for
every t ≥ 0.

Define

m
k � BT m

k
− BT m

k
=
∫ T m

k

0

(
bm
s − bm

s

)
ds.

Let k = 0,1, . . . ,N(m) − 1 be given. Because T m
k+1 and T m

k are F ∗
T m

k
-measurable,

ξm
k − bT m

k
= ξm

k − b̂(T m
k ,ZT m

k
) is Hm

k+1-measurable, and (7.10) and (7.17) hold,
we may write

EQm[
m

k+1 − m
k |F ∗

T m
k

]
= (T m

k+1 − T m
k

)
EQm[

ξm
k − b̂

(
T m

k ,Z∗
T m

k

)|F ∗
T m

k

]
= (T m

k+1 − T m
k

)
EQ[ξm

k − b̂
(
T m

k ,Z∗
T m

k

)|Gm
k

]
= (T m

k+1 − T m
k

)(
EQ
[
b∗
T m

k
|Gm

k

]− b̂
(
T m

k ,Z∗
T m

k

))
.

Proposition 5.4 implies that

EQ
[
b∗
T m

k
|Gm

k

]= EQ
[
b∗
T m

k
|T m

k ,Z∗
T m

k

]= b̂
(
T m

k ,Z∗
T m

k

)
.

We conclude that (m
k , F ∗

T m
k

|0 ≤ k ≤ N(m)) is a discrete-time martingale un-

der Qm, which implies that (m
k , F m

k |0 ≤ k ≤ N(m)) is also a martingale, where
F m

k � σ(m
j ,T m

j |0 ≤ j ≤ k) ⊂ F ∗
T m

k
. Proposition 6.5 now implies that

lim
m→∞ EQm

sup
0≤s≤t

∣∣Bm
s − Bm

s

∣∣= 0, t ≥ 0.(7.22)

Using the triangle inequality, we combine (7.18), (7.22) and (7.20) to conclude

lim sup
m→∞

EQm

sup
0≤s≤t

∣∣B∗
s − Bs

∣∣= 0.(7.23)

Equation (7.15) follows. �
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