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POSITIVE RECURRENCE OF PIECEWISE
ORNSTEIN–UHLENBECK PROCESSES AND COMMON

QUADRATIC LYAPUNOV FUNCTIONS1

BY A. B. DIEKER AND XUEFENG GAO

Georgia Institute of Technology

We study the positive recurrence of piecewise Ornstein–Uhlenbeck (OU)
diffusion processes, which arise from many-server queueing systems with
phase-type service requirements. These diffusion processes exhibit different
behavior in two regions of the state space, corresponding to “overload” (ser-
vice demand exceeds capacity) and “underload” (service capacity exceeds de-
mand). The two regimes cause standard techniques for proving positive recur-
rence to fail. Using and extending the framework of common quadratic Lya-
punov functions from the theory of control, we construct Lyapunov functions
for the diffusion approximations corresponding to systems with and without
abandonment. With these Lyapunov functions, we prove that piecewise OU
processes have a unique stationary distribution.

1. Introduction. Since the pioneering paper of Halfin and Whitt (1981), and
particularly within the last 10 years, there has been a surge of interest in diffu-
sion approximations for queueing systems with many servers. These queueing sys-
tems model customer contact centers with hundreds of servers. Empirical study in
Brown et al. (2005) suggests that the service time distribution is far from expo-
nential. Despite past and foreseeable advances in computer hardware and architec-
tures, the sheer size of such systems prohibits exact (numerical) calculations even
when the arrival process is Poisson and the service time distribution is of phase
type. Diffusion approximations such as piecewise Ornstein–Uhlenbeck (OU) pro-
cesses can be used to approximate the queue length process. Such approximations
are rooted in many-server heavy traffic limits proved in Puhalskii and Reiman
(2000) and Dai, He and Tezcan (2010). These approximations are remarkably ac-
curate in predicting system performance measures, sometimes for systems with as
few as 20 servers [see He and Dai (2011)].

For a diffusion approximation to work, it is critical to know whether the ap-
proximating diffusion process has a unique stationary distribution. In this paper
we prove that, under some natural conditions, this is the case for piecewise OU
processes. Thus, this paper provides a solid mathematical foundation for He and
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Dai (2011), who devise an algorithm to numerically compute the stationary distri-
bution of a piecewise OU process.

A standard technique for proving stability of queueing systems is to first estab-
lish the stability of a so-called fluid model and then to appeal to general theory
for establishing stochastic stability [see, e.g., Dupuis and Williams (1994), Dai
(1995), Stolyar (1995)]. However, this theory is restricted to systems with nonneg-
ative fluid levels which are attracted to the origin. The fluid analog of a piecewise
Ornstein–Uhlenbeck process does not possess this property. As an alternative to
the fluid model framework, the family of quadratic Lyapunov functions is a natu-
ral choice for establishing positive recurrence. Indeed, due to diffusive properties
of piecewise Ornstein–Uhlenbeck processes, if a quadratic Lyapunov function can
be shown to stabilize the fluid model, it simultaneously and directly establishes
stochastic stability, that is, the positive recurrence of piecewise OU processes. As
a result of working with quadratic forms as Lyapunov functions, several key results
from linear algebra lie at the heart of our main results. We were unable to devise
an equally powerful framework without using this algebraic machinery.

Piecewise OU processes exhibit different behavior in two regions of the state
space, corresponding to “overload” and “underload.” The two regions are separated
by a hyperplane, which corresponds to “critical load.” In each of the two regions,
a piecewise OU process can be thought of as a first-order linear differential equa-
tion with stochastic noise. A standard technique in proving its positive recurrence
is to use a quadratic Lyapunov function to prove stability of such first-order linear
differential equations. However, the two different regions of a piecewise OU pro-
cess pose considerable challenges to apply this methodology. A natural approach
would be to “paste together” two quadratic Lyapunov functions from the two re-
gions, but our attempts in this direction have failed. In fact, it is well known that
a diffusion with two stable regimes can lead to an instable hybrid system [see Yin
and Zhu (2010) for related examples]. In Blondel and Tsitsiklis (2000), the sta-
bility of a switched linear system is discussed from the perspective of complexity
theory.

Using the interpretation of the diffusion parameters in terms of a many-server
queueing system, our main results can be formulated as follows: (1) For a slightly
underloaded system without abandonment, we show that there exists a quadratic
Lyapunov function which yields the desired positive recurrence using the Foster–
Lyapunov criterion (Theorem 2). In general, this quadratic Lyapunov function is
not explicit and nonunique. (2) We show that no quadratic Lyapunov function can
satisfy the Foster–Lyapunov criterion for systems with abandonment. (3) We con-
struct a suitable nonquadratic Lyapunov function to prove positive recurrence for
systems with abandonment (Theorem 3).

The main building blocks for these two types of Lyapunov functions are so-
called common quadratic Lyapunov functions (CQLFs), which are widely used in
the theory of control. Such functions play an important role in the stability anal-
ysis for deterministic linear systems, with different dynamics in different parts of
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the state space (or, more generally, operating under a switching rule). They are
called common quadratic Lyapunov functions since they serve as a quadratic Lya-
punov function in each part of the state space. There is a vast body of literature
on CQLFs and related theory [see the survey Shorten et al. (2007) for details]. Al-
though quadratic Lyapunov functions are ubiquitous in the literature on queueing
systems Dai and Prabhakar (2000), Gamarnik and Momčilović (2008), Tassiulas
and Ephremides (1992), to our knowledge, our paper is the first to exploit CQLFs
in this context.

As mentioned in the section on open problems of Shorten et al. (2007), it is of
considerable interest to determine simple conditions for the existence of CQLFs.
Theorem 1, which is our main technical contribution in this space, establishes such
a result in the context of M-matrices and rank-1 perturbations. The theorem shows
that existence of a CQLF is guaranteed after merely verifying that certain vectors
are nonnegative. It is a first result of this kind. Its proof relies on a delicate analysis
involving Chebyshev polynomials, as well as on an extension of recent work of
King and Nathanson (2006) and Shorten et al. (2009) summarized in Proposition 3
below.

To conclude this Introduction, we mention a body of work on the recurrence
of multidimensional Ornstein–Uhlenbeck type processes by Sato, Watanabe and
Yamazato (1994), Sato et al. (1996), which differ from the processes studied here.
The processes studied in these references are driven by Lévy processes and they
have a linear drift coefficient. As a result, their multidimensional processes do not
possess the critical feature of the processes we study here, namely, a piecewise
linear drift coefficient.

This paper is organized as follows. Section 2 discusses the required background
on piecewise OU process and positive recurrence. Section 3 is devoted to com-
mon quadratic Lyapunov functions. Section 4 summarizes the main results and
Section 5 contains the proofs of the main results. The proof of Proposition 3,
which mainly uses existing methodology from the theory of control, is given in
Appendix A. Appendix B shows that no quadratic Lyapunov function can work in
the Foster–Lyapunov criterion if abandonment is allowed.

Notation. All random variables and stochastic processes are defined on a com-
mon probability space (�, F ,P) unless otherwise specified. For some d ∈ N, R

d

denotes the d-dimensional Euclidean space. The space of functions f : RK → R

that are twice continuously differentiable is denoted by C2(RK). We use ∇ to de-
note the gradient operator. Given x ∈ R, we set x+ = max{x,0}. All vectors are
envisioned as column vectors. For a K-dimensional vector u, we use uk to de-
note its kth entry and we write |u| for its Euclidean norm. We also write u′ for its
transpose. For two K-dimensional vectors u and v, we write u′ ≥ v′ (u′ > v′) if
uk ≥ vk (uk > vk) for each k = 1,2, . . . ,K. The inner product of u and v is de-
noted by u′v, which is

∑K
k=1 ukvk. Given a K ×K matrix M , we use M ′ to denote

its transpose and Mij for its (i, j)th entry. We write M > 0 (M < 0) if M is a
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positive (negative) definite matrix and M ≥ 0 (M ≤ 0) if it is a positive (negative)
semi-definite matrix. Let the matrix norm of M be |M| = ∑

ij |Mi,j |, where |Mij |
is the absolute value of Mij . We reserve I for the K × K identity matrix and e for
the K-dimensional vector of ones.

2. Piecewise OU processes and positive recurrence. This section introduces
the piecewise Ornstein–Uhlenbeck (OU) processes studied in this paper, and dis-
cusses preliminaries on positive recurrence.

2.1. Piecewise OU processes. We first define M-matrices. We call a matrix
nonnegative when each element of the matrix is nonnegative.

DEFINITION 1 (M-matrix). A K × K matrix R is said to be an M-matrix if it
can be expressed as R = sI − N for some s > 0 and some nonnegative matrix N

with the property that ρ(N) ≤ s, where ρ(N) is the spectral radius of N. The
matrix R is nonsingular if ρ(N) < s.

We next define piecewise Ornstein–Uhlenbeck (OU) processes, which are spe-
cial diffusion processes. Let {W(t)} be a standard Brownian motion in any dimen-
sion. A K-dimensional diffusion process Y is the strong solution to a stochastic
differential equation of the form

dY (t) = b(Y (t)) dt + σ(Y (t)) dW(t),

where the drift coefficient b(·) and the diffusion coefficient σ(·) have appropriate
sizes and satisfy the following Lipschitz continuity condition: there exists some
C > 0 such that

|b(x) − b(y)| + |σ(x) − σ(y)| ≤ C|x − y| for all x, y ∈ R
K.(2.1)

For a real-valued function V ∈ C2(RK), the generator G of Y applied to V is given
by, for y ∈ R

K,

GV (y) = (∇V (y))′b(y) + 1

2

∑
i,j

(σσ ′)ij (y)
∂2V

∂yi ∂yj

(y).(2.2)

We refer to Rogers and Williams [(2000), Chapter V], for more details on diffusion
processes.

DEFINITION 2 (Piecewise OU processes). Let p be a K-dimensional proba-
bility vector, e be the K-dimensional vector of ones and let R be a K × K non-
singular M-matrix. For α,β ∈ R, a K-dimensional diffusion process Y is called a
piecewise Ornstein–Uhlenbeck (OU) process if it has drift coefficient

b(y) = −βp − R
(
y − p(e′y)+

) − αp(e′y)+,(2.3)

and diffusion coefficient σ(y) ≡ σ for all y ∈ R
K , such that σσ ′ is a K × K

nonsingular matrix.



POSITIVE RECURRENCE OF PIECEWISE OU PROCESSES AND CQLFS 1295

As in Dai, He and Tezcan (2010), we call this process a piecewise OU process
since the drift coefficient is affine (hence, OU process) yet it differs on each side
of the hyperplane {y ∈ R

K : e′y = 0} (hence, piecewise). Indeed, for e′y ≥ 0 we
have b(y) = −βp − R(I − pe′)y − αp(e′y) while for e′y ≤ 0 we have b(y) =
−βp − Ry. In conjunction with σ(y) ≡ σ , this implies the Lipschitz continuity
condition (2.1). As a consequence, the piecewise OU process Y is well-defined as
a diffusion process.

The quantities α,β,R,p on the right-hand side of (2.3) come from the queueing
system that gave rise to the piecewise OU diffusion. Their queueing interpretation
is as follows: α is the abandonment rate, β is the slack in the arrival rate relative
to a critically loaded system while p and R are the parameters of the service-time
distribution (assumed to be of phase-type). For more details, we refer to Dai, He
and Tezcan (2010).

Throughout the paper, we impose the following assumption.

ASSUMPTION 1. Each component of the row vector e′R is nonnegative, that
is,

e′R ≥ 0′.

We now make the connection between piecewise OU processes and many-server
queueing models explicit, and we discuss Assumption 1 in this context. For pre-
sentational convenience, we do so in the special case of M/H2/n + M queues. In
fact, we consider a sequence of M/H2/n + M queues indexed by n, where n is
the number of (identical) servers, meaning that (1) the arrival process is a Poisson
process with some intensity λn, (2) the service times have a two-phase hyperexpo-
nential distribution, so they are exponential with parameter ν1 with probability p1,
and exponential with parameter ν2 with probability p2 = 1 − p1 and (3) each cus-
tomer has a patience time which follows an exponential distribution with parame-
ter α > 0. Hypergeometric service time distributions are of special interest, since
they can be used to model multiclass systems [see Puhalskii and Reiman (2000),
Gamarnik and Stolyar (2011)]. To see this, envision two types of customers en-
tering a buffer to seek service. Suppose that the mean service time is 1, that is,
p1/ν1 + p2/ν2 = 1. We further assume the system is operated under Halfin–Whitt
regime, that is, for some β ∈ R,

lim
n→∞

√
n

(
1 − λn

n

)
= β.

Let Xn
1(t) and Xn

2(t) denote the number of customers of type 1 and 2 in the system
at time t . For i = 1,2 and t ≥ 0, we define

X̃n
i (t) = 1√

n

(
Xn

i (t) − n
pi

νi

t

)
.
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As detailed in Dai, He and Tezcan (2010) [see Gamarnik and Goldberg (2011) for
a related general result], the “centering” in this expression has been chosen so that,
in a sense of weak convergence on the process level,

(X̃n
1 , X̃n

2) ⇒ (Y1, Y2), n → ∞,

where (Y1, Y2) satisfies the following system of stochastic differential equations:
for i = 1,2,

Yi(t) = Yi(0) + Wi(t) − βpit

− νi

∫ t

0

(
Yi(s) − pi

(
Y1(s) + Y2(s)

)+)
ds − αpi

∫ t

0

(
Y1(s) + Y2(s)

)+
ds.

Note that (Y1(s)+Y2(s))
+ represents the (scaled) number of customers waiting in

the buffer, and the fraction of type i customers in the buffer is approximately pi .
Thus, the term involving νi can be thought of as a service-rate term. Similarly, the
terms involving α and β are the abandonment and arrival term, respectively. The
randomness in the system is represented by W = (W1,W2), which is a driftless
Brownian motion with nonsingular covariance matrix(

p1(p1c
2 − p1 + 2) p1p2(c

2 − 1)

p1p2(c
2 − 1) p2(p2c

2 − p2 + 2)

)

for some constant c ∈ R. Therefore, Y = (Y1, Y2) is a two-dimensional piecewise
OU process with drift coefficient

b(y) = −βp − R
(
y − p(e′y)+

) − αp(e′y)+,(2.4)

where the matrix R is given by

R =
(

ν1 0
0 ν2

)
.

When we apply this procedure to a general phase-type service time distribution
with K phases, the corresponding diffusion limit is a K-dimensional piecewise OU
process Y . The parameters p and R represent the distribution of the initial phase
and phase dynamics, respectively. Each component of the piecewise OU process
Yk approximates the number of phase-k customers in the many-server queueing
system, either waiting or in service. Thus e′Y represents the total number of cus-
tomers in the system after centering and scaling. Thus, whenever e′Y > 0 the sys-
tem is in “overload,” that is, there are customers waiting in the buffer, and whenever
e′Y < 0 the system is in “underload,” that is, there are idle servers. We refer readers
to Puhalskii and Reiman (2000) and Dai, He and Tezcan (2010) for more details.
We remark that the matrix R in these two papers takes the form of (I −P ′)diag{ν},
where P is assumed to be a transient matrix describing the transitions between
each service phase, and diag{ν} is a diagonal matrix with kth diagonal entry given
by νk , where νk is the rate for the sojourn time in phase k. Transience of P cor-
responds to customers who eventually leave the system after receiving a sufficient
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amount of service, which implies that e′R = e′(I −P ′)diag{ν} ≥ 0. Therefore, we
conclude that in this setting, R is a nonsingular M-matrix and that Assumption 1
is satisfied.

2.2. Positive recurrence and Lyapunov functions. In this section, we recall the
definitions and the criteria for positive recurrence and exponential ergodicity in the
context of general diffusion processes.

Let Eπ be the expectation operator with respect to a probability distribution π .

DEFINITION 3 (Positive recurrence and stationary distribution). For a K-
dimensional diffusion process Y, we say that Y is positive recurrent if for any
y ∈ R

K and any compact set C in R
K with positive Lebesgue measure, we have

E
(
τC |Y(0) = y

)
< ∞,

where τC = inf{t ≥ 0 :Y(t) ∈ C} is the hitting time of the set C. We call a prob-
ability distribution π on R

K a stationary distribution for Y if for every bounded
continuous function f : R

K → R,

Eπ [f (Y (t))] = Eπ [f (Y (0))] for all t ≥ 0.

In the following, we assume that the diffusion coefficient of the diffusion pro-
cess Y is uniformly nonsingular. That is, there exists some c ∈ (0,∞) such that for
all y ∈ R

K and a ∈ R
K ,

a′σ(y)σ (y)′a ≥ ca′a.(2.5)

The next result gives a sufficient criterion for positive recurrence of diffu-
sion processes [see Khasminskii (2011), Sections 3.7, 4.3 and 4.4 and Meyn and
Tweedie (1993), Section 4]. Uniqueness of the stationary distribution follows from
Peszat and Zabczyk (1995) in view of condition (2.5).

PROPOSITION 1 (Foster–Lyapunov criterion). Let Y be a diffusion process
satisfying (2.5). Suppose that there exists a nonnegative function V ∈ C2(RK) and
some r > 0 such that, for any |y| > r,

GV (y) ≤ −1.

In addition, suppose that V (y) → ∞ as |y| → ∞. Then Y is positive recurrent and
has a unique stationary distribution. The function V is called a Lyapunov function.

We now introduce the concept of exponential ergodicity. For any positive
measurable function f ≥ 1 and any signed measure m, we write ‖m‖f =
sup|g|≤f |m(g)|.
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DEFINITION 4 (Exponential ergodicity). Suppose that the diffusion process Y

is positive recurrent and that it has a unique stationary distribution π . Given a
function f ≥ 1, we say that Y is f -exponentially ergodic if there exists a γ ∈ (0,1)

and a real-valued function B such that for all t > 0 and y ∈ R
K ,

‖P t(y, ·) − π(·)‖f ≤ B(y)γ t ,

where P t is the transition function of Y. If f ≡ 1, we simply say that Y is expo-
nentially ergodic.

For f ≥ 1, we have ‖P t(y, ·) − π(·)‖1 ≤ ‖P t(y, ·) − π(·)‖f , and we deduce
that f -exponential ergodicity implies exponential ergodicity. The following result
gives a criterion for exponential ergodicity [see Meyn and Tweedie (1993), Sec-
tion 6].

PROPOSITION 2. Suppose that Y is a diffusion process with a unique sta-
tionary distribution. If there is a nonnegative function V ∈ C2(RK) such that
V (y) → ∞ as |y| → ∞ and for some c > 0, d < ∞,

GV (y) ≤ −cV (y) + d for any y ∈ R
K ,

then Y is (V + 1)-exponentially ergodic.

3. Common quadratic Lyapunov functions. In this section we introduce
common quadratic Lyapunov functions (CQLFs). Such functions play a central
role in the stability analysis of deterministic switched linear systems, which is dis-
cussed in Section 3.2. We use CQLFs as building blocks to construct Lyapunov
functions to prove positive recurrence of piecewise OU processes. At this point
it is best to distinguish CQLFs for switched linear systems from the Lyapunov
functions in the context of the Foster–Lyapunov criterion. We connect these two
concepts in Section 4.

3.1. Background and definitions. Quadratic Lyapunov functions form a cor-
nerstone of stability theory for ordinary differential equations. Consider the linear
system ẏ(t) = By(t) where y(t) ∈ R

K , B ∈ R
K×K is a fixed real matrix and ẏ(t)

is the derivative of y with respect to t . For Q ∈ R
K×K , the quadratic form L given

by L(y) = y′Qy for y ∈ R
K is called a quadratic Lyapunov function for the ma-

trix B if Q is positive definite and QB + B ′Q is negative definite. In this case,
there exists a constant C > 0 such that

d

dt
L(y(t)) = y(t)′(QB + B ′Q)y(t) ≤ −CL(y(t)) < 0 for all t ≥ 0,

and thus we can conclude that L(y(t)) ≤ e−CtL(y(0)). This implies that
L(y(t)) → 0 as t → ∞, thus y(t) → 0 as t → ∞. It is standard fact in Lyapunov
stability theory that the existence of a quadratic Lyapunov function L is equivalent



POSITIVE RECURRENCE OF PIECEWISE OU PROCESSES AND CQLFS 1299

to all eigenvalues of B having negative real part [Berman and Plemmons (1994),
Section 6.2].

The following definition, tailored to our setting in order to allow for a singular
matrix, plays an important role in our analysis. Other versions can be found in
Shorten and Narendra (2003) and Shorten et al. (2007). Recall that an eigenvalue
of a matrix is called (geometrically) simple if its corresponding eigenspace is one-
dimensional.

DEFINITION 5 (CQLF). Let B1 ∈ R
K×K have all eigenvalues with negative

real part and let B2 ∈ R
K×K have all eigenvalues with negative real part except for

a simple zero eigenvalue. For Q ∈ R
K×K, the quadratic form L given by L(y) =

y′Qy for y ∈ R
K is called a common quadratic Lyapunov function (CQLF) for

the pair (B1,B2) if Q is positive definite and

QB1 + B ′
1Q < 0,

QB2 + B ′
2Q ≤ 0.

3.2. The CQLF existence problem. The CQLF existence problem for a pair of
matrices has its roots in the study of stability criteria for switched linear systems.
These systems have the form ẏ(t) = B(τ)y(t), where B(τ) ∈ {B1,B2} with Bi ∈
R

K×K for i = 1,2 and where the switching function τ may depend on both y and t.

The existence of a CQLF for the pair (B1,B2) guarantees that all solutions of the
systems are bounded under arbitrary switching function τ. The CQLF existence
problem is also closely related to the Kalman–Yacubovich–Popov lemma in the
development of adaptive control algorithms and the Lur’e problem in nonlinear
feedback analysis. For more details consult Kalman (1963), Boyd et al. (1994) and
the recent survey paper by Shorten et al. (2007). For an arbitrary matrix pair, no
simple analytic and verifiable conditions are known for the pair to admit a CQLF.
In the special case where the difference of the matrices has rank one, King and
Nathanson (2006) shows that if both B1 and B2 are Hurwitz, that is, all eigenvalues
of the matrices B1,B2 have negative real part, then there exists a positive definite
matrix Q such that QB1 +B ′

1Q < 0 and QB2 +B ′
2Q < 0 if and only if the matrix

product B1B2 has no real negative eigenvalues. Note that in this case, both B1 and
B2 are nonsingular. A similar CQLF existence result has been obtained in Shorten
et al. (2009) when one of the matrices (B1 or B2) is singular.

We now state a result on the CQLF existence problem for a pair of matrices
with one of them being singular. It is essentially the main theorem in Shorten
et al. (2009) but we relax their assumptions. Let B ∈ R

K×K be a real matrix and
let g,h ∈ R

K . The proposition below is stated in Shorten et al. (2009) under the
assumptions that (B,g) is controllable, meaning that the vectors g,Bg,B2g, . . .

span R
K , and that (B,h) is observable, meaning that the vectors h,B ′h, (B ′)2h, . . .

span R
K . Using techniques from King and Nathanson (2006), we show that these

assumptions are unnecessary and we state the result in its full generality here.
A proof is given in Appendix A.
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PROPOSITION 3. Suppose that all eigenvalues of matrix B have negative real
part and all eigenvalues of B − gh′ have negative real part, except for a simple
zero eigenvalue. Then there exists a CQLF for the pair (B,B − gh′) if and only if
the matrix product B(B − gh′) has no real negative eigenvalues and a simple zero
eigenvalue.

4. Main results. In this section, we present our results on positive recurrence
of the piecewise OU process Y . Key to these results is the following theorem,
which uses Proposition 3 to establish the existence of a CQLF for certain matrix
pairs. Recall the definitions of R, p and e from Definition 2 in Section 2.1, and
note that we are working under Assumption 1.

THEOREM 1. There exists a CQLF for both the pair (−R,−R(I − pe′)) and
the pair (−R,−(I − pe′)R).

By Theorem 1, there exists a CQLF L for the pair (−R,−R(I − pe′)) and
another CQLF L̃ for the pair (−R,−(I −pe′)R). Typically there are many CQLFs
corresponding to these pairs, that is, L and L̃ are not unique. Note that L and L̃ are
closely related in the following sense. If the CQLF L for the pair (−R,−R(I −
pe′)) is given by L(y) = y′Qy for some Q > 0 and for all y ∈ R

K, then one
readily checks that the quadratic form L̃ given by L̃(y) = y′(R′QR)y for y ∈ R

K

is a CQLF for the pair (−R,−(I − pe′)R). We remark that, apart from special
cases, the CQLFs from Theorem 1 are not explicit.

We know from Theorem 1 that there exists a CQLF L for the pair (−R,−R(I −
pe′)), where L is given by L(y) = y′Qy for some Q > 0 and for all y ∈ R

K.

We are able to use the quadratic form L as a Lyapunov function in the Foster–
Lyapunov criterion of Proposition 1 to prove the following result.

THEOREM 2. If α = 0 and β > 0, then the piecewise OU process Y is positive
recurrent and has a unique stationary distribution.

For α > 0, no quadratic function can serve as a Lyapunov function in the Foster–
Lyapunov criterion to prove positive recurrence of the piecewise OU process Y

(see Appendix B for details). Despite this fact, still relying on Theorem 1, we
overcome this difficulty in Section 5.3 by constructing a suitable nonquadratic
Lyapunov function. Specifically, there exists a CQLF L̃ for the pair (−R,−(I −
pe′)R) by Theorem 1, where L̃ is given by L̃(y) = y′Q̃y for some Q̃ > 0 and for
all y ∈ R

K. A suitable approximation to the function f , given by, for all y ∈ R
K,

f (y) = (e′y)2 + κL̃
(
y − p(e′y)+

)
for some large constant κ ,

provides the desired nonquadratic Lyapunov function in the Foster–Lyapunov cri-
terion to prove positive recurrence of Y when α > 0. Note that, in queueing termi-
nology, the vector y −p(e′y)+ relates to the customers in service, and not to those
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in the buffer. We therefore need the extra term (e′y)2. Applying Proposition 2 with
the same nonquadratic Lyapunov function yields exponential ergodicity of Y for
α > 0. We use a smooth approximation of f as a Lyapunov function in the Foster–
Lyapunov criterion of Proposition 1 instead of using f directly since f /∈ C2(RK).
This leads to the following result.

THEOREM 3. If α > 0, then the piecewise OU process Y is positive recurrent
and has a unique stationary distribution. Moreover, Y is exponentially ergodic.

5. Proof of the main results.

5.1. Proof of Theorem 1.

PROOF. We only establish the existence of a CQLF for the pair (−R,−R(I −
pe′)), since the existence of a CQLF for the other pair (−R,−(I −pe′)R) follows
directly. Since −R − (−R(I − pe′)) = −Rpe′ is a rank-one matrix, in view of
Proposition 3, we need to check three conditions:

(a) All eigenvalues of −R have negative real part.
(b) All eigenvalues of −R(I − pe′) have negative real part except for a simple

zero eigenvalue.
(c) The matrix product R2(I − pe′) has no real negative eigenvalues and a

simple zero eigenvalue.

We first prove (a) and (b). It is known that all eigenvalues of a nonsingular
M-matrix have positive real part, and all eigenvalues of a singular M-matrix have
nonnegative real part [see Berman and Plemmons (1994), Chapter 6]. Since R is a
nonsingular M-matrix, we immediately get (a). For (b), it is clear that −R(I −pe′)
has a simple zero eigenvalue. We notice that (I −pe′)R = R −pe′R where e′R ≥
0′ by Assumption 1, p is a nonnegative vector and R is a nonsingular M-matrix, so
the off-diagonal elements of (I −pe′)R are nonpositive. Using this in conjunction
with the fact that both I − pe′ and R are M-matrices, we find that (I − pe′)R is
also an M-matrix and all its eigenvalues have nonnegative real part [see Berman
and Plemmons (1994), Exercise 5.2]. Thus we get (b) after a similarity transform.

We now concentrate on proving (c). The key ingredient of the proof is an iden-
tity for Chebyshev polynomials. Suppose that R2(I − pe′) has a real negative
eigenvalue −λ with λ > 0, and write v for the corresponding left eigenvector, thus
we have v′R2(I − pe′) = −λv′. Right-multiplying by p on both sides, we obtain
v′p = 0 and the following equality:

0 = v′R2(I − pe′) + λv′ = v′R2(I − pe′) + λv′(I − pe′)
(5.1)

= v′(R2 + λI)(I − pe′).
Since R is a nonsingular M-matrix having only eigenvalues with positive real part,
the matrix (R2 + λI) is invertible for all λ > 0. Also, by the fact that p is a non-
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negative probability vector with e′p = 1, we deduce the matrix (I − pe′) has an
eigenvalue 0 and the corresponding left eigenvector must be in the form of ce′ for
some c 
= 0. Thus, it follows from (5.1) that v′ = ce′(R2 + λI)−1 for some c 
= 0.
We show below that e′(R2 + λI)−1 is a positive vector for all λ > 0, that is,

e′(R2 + λI)−1 > 0′ for all λ > 0.(5.2)

This yields a contradiction in view of v′p = 0. By definition of a nonsingular M-
matrix, R is of the form sI − N , where N is a nonnegative matrix with ρ(N) < s

and e′R ≥ 0 by Assumption 1. Inequality (5.2) thus states that for all λ > 0 and for
every nonnegative matrix N with ρ(N) < s and se′ ≥ e′N,

e′((sI − N)2 + λI
)−1

> 0′.

Equivalently, we show the following inequality: for all y ∈ (0,1) and for every
nonnegative matrix N with ρ(N) < 1 and e′ ≥ e′N,

e′(y(I − N)2 + (1 − y)I
)−1

> 0′.(5.3)

Therefore, to show (c), it suffices to prove (5.3) for fixed N and y ∈ (0,1).
Our strategy to prove (5.3) is to use a matrix series expansion and connections

with Chebyshev polynomials. Chebyshev polynomials of the second kind Un can
be defined by the following trigonometric form:

Un(cos θ) = sin(n + 1)θ

sin θ
for n = 0,1,2,3, . . . .(5.4)

Moreover, for z ∈ [−1,1] and t ∈ (−1,1), the generating function of Un is
∞∑

n=0

Un(z)t
n = 1

1 − 2tz + t2 .(5.5)

Refer to Abramowitz and Stegun (1992), Chapter 22, for more details. The scalar
version of the left-hand side of (5.3) admits the following expansion: for x, y ∈
(0,1),

1

y(1 − x)2 + 1 − y
=

∞∑
n=0

Cn(y)xn,(5.6)

where Cn(y) = Un(
√

y)(
√

y)n for all n ≥ 0. This can readily be verified with (5.5).
In particular, we have

C0(y) = U0(y) ≡ 1 for all y ∈ (0,1).(5.7)

For fixed y ∈ (0,1), the radius of convergence of the power series in (5.6) is larger
than 1. Since ρ(N) < 1, we immediately obtain that, for y ∈ (0,1),

(
y(I − N)2 + (1 − y)I

)−1 =
∞∑

n=0

Cn(y)Nn.(5.8)
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Let y ∈ (0,1) be fixed and define θ through
√

y = cos θ ∈ (0,1). Using the
trigonometric form (5.4) of Un, we can then show by induction that, for any m ≥ 1,

m∑
n=1

Cn(y) =
m∑

n=1

Un

(√
y
)(√

y
)n

=
m∑

n=1

sin(n + 1)θ

sin θ
· (cos θ)n(5.9)

= cos2 θ

sin2 θ
[1 − (cos θ)m−1 · cos (m + 1)θ ] > 0.

Since N is nonnegative and e′ ≥ e′N , we immediately get e′Nn ≥ e′Nn+1 ≥ 0 for
all n ≥ 0. Combining this fact with (5.9), we obtain

e′
k∑

n=1

Cn(y)Nn ≥
k∑

n=1

Cn(y)e′Nk ≥ 0′ for all k ≥ 1.(5.10)

Therefore, from (5.7), (5.8) and (5.10) we conclude that, for all y ∈ (0,1),

e′((1 − y)I + y(I − N)2)−1 = e′
∞∑

n=0

Cn(y)Nn

= lim
k→∞ e′

k∑
n=1

Cn(y)Nn + e′

≥ 0′ + e′ = e′ > 0′.

This concludes the proof of (c) and we deduce that there exists a CQLF for the pair
(−R,−R(I − pe′)).

To prove the existence of a CQLF for the other pair (−R,−(I −pe′)R), we note
that −(I − pe′)R has the same spectrum as −R(I − pe′) and the matrix product
R(I − pe′)R has the same spectrum as R2(I − pe′). Application of Proposition 3
completes the proof of Theorem 1. �

5.2. Proof of Theorem 2. In this section we prove Theorem 2. Key to the proof
is the CQLF constructed from Theorem 1.

PROOF. If α = 0, then from (2.3) we know that Y has the piecewise linear
drift

b(y) = −βp − R
(
y − p(e′y)+

)
.

By Theorem 1, there exists a CQLF

L(y) = y′Qy,(5.11)
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where Q is a positive definite matrix such that

Q(−R) + (−R)′Q < 0,(5.12)

Q
(−R(I − pe′)

) + (−(I − ep′)R′)Q ≤ 0.(5.13)

We claim that given any positive constant C > 0, there exists a constant M > 0
such that if |y| > M ,

(∇L(y))′b(y) ≤ −C.(5.14)

We discuss the cases e′y < 0 and e′y ≥ 0 separately.
Case 1. e′y < 0. In this case, we have

(∇L(y))′b(y) = y′[Q(−R) + (−R)′Q]y − 2βp′Qy.

By (5.12), the quadratic term dominates if |y| is large. Thus there exists a constant
M1 > 0 such that when e′y < 0 and |y| > M1,

(∇L(y))′b(y) ≤ −C.

Case 2. e′y ≥ 0. In this case, we have

(∇L(y))′b(y) = y′[Q(−R(I − pe′)
) + (−(I − ep′)R′)Q]

y − 2βp′Qy.(5.15)

To overcome the difficulty caused by the singularity of −R(I − pe′), we decom-
pose y as follows:

y = ap + ξ,(5.16)

where ξ ′p = 0 and a ∈ R. Then we have

|y|2 = |ap|2 + |ξ |2 and e′y = a + e′ξ ≥ 0.(5.17)

Note that p′[Q(−R(I − pe′)) + (−(I − ep′)R′)Q]p = 0. Using (5.13), we ob-
tain p′[Q(−R(I − pe′)) + (−(I − ep′)R′)Q] = 0′. This immediately implies
p′[Q(−R(I − pe′)] = 0. Since (I − pe′) has a simple zero eigenvalue, we have

p′Q = be′R−1 for some b 
= 0.

Using this fact, we rewrite the left-hand side of (5.13) as

Q
(−R(I − pe′)

) + (−(I − ep′)R′)Q
(5.18)

= (
(I − ep′)R′) · (−QR−1 − (R−1)′Q

) · (
R(I − pe′)

)
.

After left-multiplying by (R−1)′ and right-multiplying by R−1 in (5.12), we de-
duce that [−QR−1 − (R−1)′Q] is a negative definite matrix. Moreover, since
ξ ′p = 0, from (5.16) and (5.18) we know that there exists some c > 0 such that

y′[Q(−R(I − pe′)
) + (−(I − ep′)R′)Q]

y

= y′[(I − ep′)R′ · (−QR−1 − (R−1)′Q
) · R(I − pe′)

]
y

(5.19)
= ξ ′((I − ep′)R′) · (−QR−1 − (R−1)′Q

) · (
R(I − pe′)

)
ξ

≤ −c|ξ |2.
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Therefore, from (5.15) we have that for any y with e′y ≥ 0,

(∇L(y))′b(y) ≤ −c|ξ |2 − 2βp′Qξ − 2βap′Qp(5.20)

≤ −c|ξ |2 − 2βp′Qξ + 2βp′Qpe′ξ,(5.21)

where the second inequality is obtained from (5.17), β > 0 and p′Qp > 0. For |y|
large, if |ξ | ≥ r for some large constant r , we obtain (∇L(y))′b(y) ≤ −C since
the quadratic term −c|ξ |2 in (5.21) dominates. If |ξ | < r and |y| large, we deduce
from (5.17) that a must be positive and large, that is,

a ≥ 1

|p|
√

|y|2 − r2.

Hence, the dominating term in (5.20) is −2βap′Qp and we immediately obtain
(∇L(y))′b(y) ≤ −C whenever |y| is large. Therefore, there exists a constant M2 >

0 such that when e′y ≥ 0 and |y| > M2,

(∇L(y))′b(y) ≤ −C.

On setting M = max{M1,M2}, we immediately get (5.14).
Now set C = |∑i,j Qij (σσ ′)ij | + 1. Equations (5.11) and (5.14) imply that for

|y| > M ,

GL(y) = ∑
i,j

Qij (σσ ′)ij + (∇L(y))′b(y) ≤ −1.

The proof of Theorem 2 is complete after applying Proposition 1. �

5.3. Proof of Theorem 3. In this section we prove Theorem 3. Throughout this
section, C is a generic positive constant which may differ from line to line but is
independent of y.

By Theorem 1, there exists a positive definite matrix Q̃ with |Q̃| = 1 such that

Q̃(−R) + (−R)′Q̃ < 0,(5.22)

Q̃
(−(I − pe′)R

) + (−R′(I − ep′)
)
Q̃ ≤ 0.(5.23)

We construct a nonquadratic Lyapunov function V ∈ C2(RK) as follows. Let

V (y) = (e′y)2 + κ[y − pφ(e′y)]′Q̃[y − pφ(e′y)],(5.24)

where κ is a positive constant to be decided later and φ(x) is a real-valued C2(R)

function, approximating x �→ x+. Specifically, fix ε > 0 and let

φ(x) =
⎧⎨
⎩

x, if x ≥ 0,
−1

2ε, if x ≤ −ε,
smooth, if −ε < x < 0.

We piece x ≥ 0 and x ≤ −ε together in a smooth way such that φ is in C2(R),

−1
2ε ≤ φ(x) ≤ x+ and 0 ≤ φ̇(x) ≤ 1 for any x ∈ R, where φ̇ is the derivative
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of φ. This function φ evidently exists. Note that V ∈ C2(RK), but that it is not a
CQLF due to its nonquadratic nature. We summarize the key result in the following
proposition, which implies Theorem 3.

PROPOSITION 4. If α > 0, there exists a constant C > 0 such that when |y| is
large enough, we have

(∇V (y))′b(y) ≤ −C|y|2 and
∣∣∣∣ ∂2V

∂yi ∂yj

(y)

∣∣∣∣ ≤ C|y| for any i, j .(5.25)

Consequently, when |y| is large,

GV (y) ≤ −C|y|2 ≤ −1.(5.26)

PROOF. We first study (∇V (y))′b(y). From (5.24), we have for all y ∈ R
K,

(∇V (y))′ = 2(e′y)e′ + 2κ
(
y′ − p′φ(e′y)

)
Q̃[I − pe′φ̇(e′y)].(5.27)

We discuss the cases e′y ≥ 0, e′y ≤ −ε and −ε < e′y < 0 separately.
Case 1. e′y ≥ 0. In this case, let x = e′y and z = y − px = (I − pe′)y, then we

have

(∇V (y))′b(y)

= [2(e′y)e′ + 2κy′(I − ep′)Q̃(I − pe′)](−R(I − pe′)y − αpe′y − βp
)

= −2αx2 − κz′[Q̃(I − pe′)R + R′(I − ep′)Q̃]z − 2xβ − 2xe′Rz.

Suppose we have shown that there exists C > 0 such that

z′[Q̃(I − pe′)R + R′(I − ep′)Q̃]z ≥ C|z|2,(5.28)

we then obtain that

(∇V (y))′b(y) ≤ −2αx2 − κC|z|2 − 2xβ − 2xe′Rz.

Since α > 0, we can select κ > 0 large so that 1
2(2αx2 + κC|z|2) > 2|xe′Rz| for

any (x, z), where κ is independent of (x, z) or y. Then we have,

(∇V (y))′b(y) ≤ −αx2 − 1
2κC|z|2 − 2xβ.

Note that |y| = |px + z| ≤ C|(x, z)|, so that |(x, z)| is large whenever |y| is large.
We conclude that for |y| large,

(∇V (y))′b(y) ≤ −C|(x, z)|2
≤ −C|y|2.

It remains to prove (5.28). We use a similar argument as for (5.19). Observe that

(R−1p)′[Q̃(I − pe′)R + R′(I − ep′)Q̃](R−1p) = 0,
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which implies that Q̃R−1p = be for some b ∈ R. Thus, we obtain

z′[Q̃(I − pe′)R + R′(I − ep′)Q̃]z
(5.29)

= z′R′(I − ep′)[(R−1)′Q̃ + Q̃R−1](I − pe′)Rz.

Since R is a nonsingular M-matrix, R−1 is a nonnegative matrix Berman and Plem-
mons [(1994), Chapter 6], and we deduce that

e′R−1p > 0.(5.30)

This implies that (I − pe′)Rz 
= 0 since e′z = e′(I − pe′)y = 0 in this case.
From (5.22) we know that (R−1)′Q̃ + Q̃R−1 is a positive definite matrix.
Now (5.28) follows from (5.29).

Case 2. e′y < −ε. In this case, we have φ(e′y) = −1
2ε and φ̇(e′y) = 0.

From (5.22), there exists C > 0 such that

(∇V (y))′b(y) = (
2(e′y)e′ + 2κy′Q̃ + κεp′Q̃

)
(−Ry − βp)

= −2κ
[
y′(Q̃R + R′Q̃)y + 1

2(εp′Q̃R + βp′Q̃)y + 1
2εβp′Q̃p

]
− 2e′y · (e′Ry + β)

≤ −2κ
[
C|y|2 + 1

2(εp′Q̃R + βp′Q̃)y + 1
2εβp′Q̃p

]
− 2e′y · (e′Ry + β)

≤ −2κ
[
C|y|2 + 1

2(εp′Q̃R + βp′Q̃)y + 1
2εβp′Q̃p

]
+ κC(|y|2 + |y|)

≤ −κ(C|y|2 − C|y| − C),

where κ is again chosen to be independent of y, but large enough such that
|2e′y · (e′Ry + β)| < κC(|y|2 + |y|). Thus for |y| large and e′y < −ε, we have

(∇V (y))′b(y) ≤ −C|y|2.
Case 3. −ε ≤ e′y ≤ 0. In this case we use the property that 0 ≤ φ̇(e′y) ≤ 1.

Note that we have

(∇V (y))′b(y)

= (
2(e′y)e′ + 2κ

(
y′ − p′φ(e′y)

)
Q̃

(
I − pe′φ̇(e′y)

))
(−Ry − βp)

= 2e′ye′(−Ry − βp)

+ 2κφ̇(e′y)
(
y′ − p′φ(e′y)

)
Q̃(I − pe′)(−Ry − βp)

+ 2κ
(
1 − φ̇(e′y)

)(
y′ − p′φ(e′y)

)
Q̃(−Ry − βp).

We write

y = aR−1p + ξ,



1308 A. B. DIEKER AND X. GAO

where ξ is orthogonal to R−1p and a ∈ R, so that

|y|2 = ca2 + |ξ |2 for some c > 0.(5.31)

From (5.30), we have e′R−1p > 0. Without loss of generality we assume that
e′R−1p = 1. Then e′y = a + e′ξ and we get

(∇V (y))′b(y)

= −2(a + e′ξ)(β + e′Rξ + a)

+ κφ̇(e′y)
(
ξ ′[Q̃(−(I − pe′)R

) + (−(I − pe′)R
)′
Q̃

]
ξ

(5.32)
− 2p′Q̃(I − pe′)Rξφ(e′y)

)
+ κ

(
1 − φ̇(e′y)

)
× (

y′[−Q̃R − R′Q̃]y + βy′Q̃p − φ(e′y)p′Q̃Ry − p′Q̃pβ
)
.

Since ξ ′R−1p = 0, one checks, as for (5.28), that there exists a constant C > 0
such that

ξ ′[Q̃(−(I − pe′)R
) + (−(I − pe′)R

)′
Q̃

]
ξ ≤ −C|ξ |2.(5.33)

Moreover, from (5.22) and (5.31), we deduce that

y′[−Q̃R − R′Q̃]y ≤ −C|y|2 = −Ca2 − C|ξ |2.(5.34)

Substituting (5.33) and (5.34) into (5.32), and using 0 ≤ φ̇(e′y) ≤ 1 as well as
|φ(e′y)| ≤ ε, we obtain

(∇V (y))′b(y)
(5.35)

≤ −2(a2 + C|a||ξ | + C|a|) + κ(−C|ξ |2 + C|ξ | + C|a| + C).

Since e′y = a + e′ξ ∈ [−ε,0], we must have |a| ≤ C + |ξ | and consequently
|y| ≤ C|a| + |ξ | ≤ C|ξ | + C. Thus for |y| large, we can choose κ large so that
the dominating term in (5.35) is −κC|ξ |2. Using the fact that |y|2 ≤ C|ξ |2 when
|y| is large, we then deduce that there exists a constant C > 0 such that for |y|
large,

(∇V (y))′b(y) ≤ −C|y|2.
This concludes the proof for the third case.

On combining the above three cases we obtain that, for |y| large,

(∇V (y))′b(y) ≤ −C|y|2,
as claimed in the proposition.

We now proceed to study the second derivative of V , which is denoted by V̈ .

We also write φ̈ for the second derivative of φ. From (5.27), we find

V̈ (y) = 2ee′ + 2κ
[
Q̃ + ee′ · p′Q̃p

(
φ̈(e′y)φ(e′y) + φ̇(e′y)2)

(5.36)
− (Q̃pe′ + ep′Q̃)φ̇(e′y) − ee′ · y′Q̃pφ̈(e′y)

]
.
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If e′y /∈ [−ε,0], we obtain 0 ≤ φ̇(e′y) ≤ 1 and φ̈(e′y) = 0. Therefore, for any i, j ,
there exists some C > 0 such that∣∣∣∣ ∂2V

∂yi ∂yj

(y)

∣∣∣∣ ≤ C.

If e′y ∈ [−ε,0], then |φ̈(e′y)| ≤ C for some C > 0 since φ ∈ C2(R) and [−ε,0]
is compact. Moreover, since 0 ≤ φ̇(e′y) ≤ 1, the dominating term in (5.36) is
−2κee′ · y′Q̃pφ̈(e′y) for |y| large. This implies that if e′y ∈ [−ε,0] and |y| is
large, then there exists a constant C > 0 such that for any i, j ,∣∣∣∣ ∂2V

∂yi ∂yj

(y)

∣∣∣∣ ≤ C|y|,
where C is independent of y. This concludes the proof of (5.25). Now for |y| large,
we deduce from (5.25) that

GV (y) = (∇V (y))′b(y) + 1

2

∑
i,j

(σσ ′)ij
∂2V

∂yi ∂yj

(y) ≤ −C|y|2 ≤ −1.

The proof of Proposition 4 is complete. �

PROOF OF THEOREM 3. In order to show that Y is positive recurrent and has a
unique stationary distribution, we only have to check that V (y) → ∞ as |y| → ∞
in view of Proposition 1 and (5.26).

Let x = e′y and z = y − px+, then |y|2 ≤ C(x2 + |z|2). We can rewrite (5.24)
as follows:

V (y) = x2 + κ
(
y′ − p′φ(x)

)
Q̃

(
y − pφ(x)

)
≥ x2 + C|y − pφ(x)|2
= x2 + C

∣∣z + p
(
x+ − φ(x)

)∣∣2
≥ x2 + C|z|2 − Cε2

≥ C|y|2 − Cε2,

where the second last inequality uses the fact 0 ≤ x+ − φ(x) ≤ 1
2ε. Therefore,

V (y) → ∞ as |y| → ∞ and we conclude that Y has a unique stationary distribu-
tion.

To prove that Y is exponentially ergodic, we observe from (5.24) that there
exists some C > 0 such that V (y) ≤ C|y|2 + C for all y ∈ R

K . Moreover, (5.26)
implies that for |y| large,

GV (y) ≤ −CV (y) + C.

Putting this together with the fact that V ∈ C2(RK), we know that there exist some
c > 0 and d < ∞ such that

GV (y) ≤ −cV (y) + d for any y ∈ R
K.
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Since V ≥ 0, Proposition 2 implies that Y is f -exponentially ergodic, where f =
V + 1. In particular, Y is exponentially ergodic since f ≥ 1. �

APPENDIX A: PROOF OF PROPOSITION 3

We first outline the key idea behind the proof. Suppose that (B,g) is not control-
lable or that (B,h) is not observable in the CQLF existence problem. Then we can
“reduce” them to suitable subspaces such that (B1, g1) is controllable and (B1, h1)

is observable, where B1 is a new matrix of lower dimension than B and similarly
for g1, h1. In the process of “reduction,” two desired properties are preserved:
(a) B(B − gh′) has no real negative eigenvalues if and only if B1(B1 − g1h

′
1)

has no real negative eigenvalues; (b) (B,B − gh′) has a CQLF if and only if
(B1,B1 − g1h

′
1) has a CQLF. Therefore, applying Theorem 3.1 in Shorten et al.

(2009) to (B1,B1 − g1h
′
1) yields the result.

To make the ideas concrete, we now introduce a lemma giving an equivalent
formulation of the CQLF existence problem, which makes the “reduction” possi-
ble. The lemma is an analog of Proposition 2 in King and Nathanson (2006). In
King and Nathanson (2006), each matrix of the pair is nonsingular while in our
case one of the matrices is singular.

LEMMA 1. Suppose that all eigenvalues of the matrix B have negative real
part and all eigenvalues of B − gh′ have negative real part, except for a simple
zero eigenvalue. Then the following statements are equivalent:

(a) The pair (B,B − gh′) does not have a CQLF.
(b) There are positive semidefinite matrices X and Z such that

BX + XB ′ + (B − gh′)Z + Z(B ′ − hg′) = 0,

BX + XB ′ 
= 0 and (B − gh′)Z + Z(B ′ − hg′) 
= 0.

(c) There are nonzero, positive semidefinite matrices X and Z such that

BX + XB ′ + (B − gh′)Z + Z(B ′ − hg′) = 0,(A.1)

where Z 
= cB−1gg′(B−1)′ for any c ∈ R.

PROOF. We first prove the equivalence of (a) and (b). To set up the notation,
let SK×K be the space of real symmetric K × K matrices. For an arbitrary matrix
A ∈ R

K×K , define the linear operator LA on SK×K by

LA :SK×K → SK×K, LA(H) = AH + HA′.(A.2)

It is well known that if A has eigenvalues {λi} with eigenvectors {vi}, then LA

has eigenvalues {λi + λj } with eigenvectors {viv
′
j + vjv

′
i} for all i ≤ j . Since all

eigenvalues of the matrix B have negative real part, LB is invertible.



POSITIVE RECURRENCE OF PIECEWISE OU PROCESSES AND CQLFS 1311

Following King and Nathanson (2006), we formulate the CQLF existence
problem in terms of separating convex cones in SK×K . Define Cone(B) =
{LB(X)|X ≥ 0} and Cone(B − gh′) = {L(B−gh′)(Z)|Z ≥ 0}. Both are closed con-
vex cones in SK×K . Let SK×K be equipped with the usual Hilbert–Schmidt inner
product 〈X,Z〉 = tr(XZ). We obtain that for any Q ∈ SK×K ,

〈X,QB + B ′Q〉 = 〈Q,BX + XB ′〉 = 〈Q,LB(X)〉.
Note that for a nonzero positive semidefinite matrix X, we have QB + B ′Q < 0
if and only if 〈X,QB + B ′Q〉 < 0, where the “if” part can be checked by tak-
ing X = xx′ for any nonzero x ∈ R

K , and the “only if” part follows from the
spectral decomposition of the positive semidefinite matrix X. Therefore, we have
QB + B ′Q < 0 if and only if 〈Q,M〉 < 0 for all nonzero M ∈ Cone(B). Us-
ing a similar argument one finds that Q(B − gh′) + (B − hg′)Q ≤ 0 if and
only if 〈Q,T 〉 ≤ 0 for all nonzero T ∈ Cone(B − gh′). Moreover, since B only
has eigenvalues with negative real part, we deduce that QB + B ′Q < 0 for
Q ∈ SK×K implies that Q is positive definite by Theorem 2.2.3 in Horn and
Johnson (1994). By definition of CQLF, we thus obtain that (B,B − gh′) has
a CQLF if and only if there exists a Q ∈ SK×K such that QB + B ′Q < 0 and
Q(B −gh′)+ (B −hg′)Q ≤ 0. Equivalently, (B,B −gh′) has a CQLF if and only
if there exists a Q ∈ SK×K such that 〈Q,M〉 > 0 for all nonzero M ∈ Cone(−B)

and 〈Q,T 〉 ≤ 0 for all nonzero T ∈ Cone(B − gh′). Therefore, finding a CQLF
for the pair (B,B − gh′) is the same as finding a separating hyperplane in SK×K

for Cone(−B) and Cone(B − gh′). By the separating hyperplane theorem, we
conclude that (B,B − gh′) not having a CQLF is equivalent to Cone(−B) and
Cone(B −gh′) having nonzero intersection. This completes the proof of the equiv-
alence of (a) and (b).

We now turn to the equivalence of (b) and (c), for which we use the afore-
mentioned spectral properties of the linear operator (A.2). Since LB is invertible,
we deduce that LB(X) = 0 is equivalent to X = 0. We know that all eigenvalues
of (B − gh′) have negative real part except for a simple zero eigenvalue, hence,
L(B−gh′) also has a simple zero eigenvalue with eigenvector cB−1gg′(B−1)′ for
some nonzero c ∈ R while all of its other eigenvalues have negative real part. Con-
sequently, (B −gh′)Z +Z(B −gh′)′ 
= 0 is equivalent to Z 
= cB−1gg′(B−1)′ for
any c ∈ R. The proof of the lemma is complete. �

PROOF OF PROPOSITION 3. In view of Theorem 3.1 of Shorten et al. (2009),
we need to check that controllability of (B,g) and observability of (B,h) need not
be verified in the CQLF existence problem. Recall that controllability of (B,g)

means that the vectors g,Bg,B2g, . . . span R
K , and observability of (B,h) means

that the vectors h,B ′h, (B ′)2h, . . . span R
K. To simplify the notation, let B̃ =

B − gh′.
We first show that in the CQLF existence problem for the pair (B,B − gh′), we

can assume without loss of generality that (B,g) is controllable. The proof relies
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on Lemma 1. Let U be the span of vectors g,Bg,B2g . . . . Suppose U is a proper
subspace of R

K with dim(U) < K , and note that R
K = U ⊕ U⊥ where U⊥ is the

orthogonal complement of U . In view of this decomposition, we perform a change
of basis and rewrite B , B̃ , X and Y in the block form

B =
(

B1 B2

0 B3

)
, B̃ =

(
B̃1 B̃2

0 B3

)
,

(A.3)

X =
(

X1 X2

X′
2 X3

)
, Z =

(
Z1 Z2

Z′
2 Z3

)
,

where B − B̃ = gh′ and g,h are represented in the new basis. We use the same
notation for the matrices and vectors after the change of basis to save space, and we
remark that the orthogonal transformation does not affect the existence of a CQLF
for the pair (B, B̃) or the existence of real negative eigenvalues of BB̃ . Namely,
for any orthonormal matrix O ∈ R

K , one readily checks that the pair (B, B̃) has a
CQLF if and only if the pair (OBO ′,OB̃O ′) has a CQLF. Furthermore, BB̃ has
no real negative eigenvalues if and only if (OBO ′)(OB̃O ′) has no real negative
eigenvalues. Let g1, h1 be the orthogonal projection of g,h on the subspace U,

so that B1 − B̃1 = g1h
′
1. Since U is the span of the vectors g,Bg,B2g . . . , we

deduce that g1,B1g1,B
2
1g1 . . . span U by (A.3), that is, (B1, g1) is controllable.

We now use Lemma 1 to argue that there exists a CQLF for (B, B̃) if and only if
there exists a CQLF for (B1, B̃1), where (B1, g1) is controllable. Note that (A.3)
implies, using (A.1) in Lemma 1,

B3(X3 + Z3) + (X3 + Z3)B
′
3 = 0.

Equivalently,

LB3(X3 + Z3) = 0,

where the linear operator LB3 is defined in (A.2). Since B has only eigenvalues
with negative real part, B3 also has this property. This implies the linear operator
LB3 is invertible. We thus obtain X3 +Z3 = 0. Using the fact that X and Z are pos-
itive semidefinite, we deduce that X3 = Z3 = 0, and consequently X2 = Z2 = 0.
This leads to

B1X1 + X1B
′
1 + B̃1Z1 + Z1B̃

′
1 = 0.(A.4)

Thus, for the pair (B,B − gh′), the existence of nonzero X,Z ≥ 0 such that (A.1)
holds implies the existence of nonzero X1,Z1 ≥ 0 such that (A.4) holds. Con-
versely, if there exists nonzero X1,Z1 ≥ 0 such that (A.4) holds, setting X2 =
X3 = Z2 = Z3 = 0, we then obtain that there exists nonzero X,Z ≥ 0 such
that (A.1) holds. Since B − gh′ has only eigenvalues with negative real part ex-
cept for a simple zero eigenvalue, so does B1 − g1h

′
1. For c ∈ R, since g ∈ U,

one finds that g′(B−1)′ = (g′
1(B

−1
1 )′,0′) by (A.3). Thus Z 
= cB−1gg′(B−1)′
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is equivalent to Z1 
= cB−1
1 g1g

′
1(B

−1
1 )′. Putting these facts together, we apply

Lemma 1 to conclude that (B, B̃) has no CQLF if and only if (B1, B̃1) has no
CQLF, where (B1, g1) is controllable. Therefore, without loss of generality, we
can assume that (B,g) is controllable in the CQLF existence problem for the pair
(B,B − gh′).

We next show that without loss of generality we can assume that (B,h) is ob-
servable in the CQLF existence problem for the pair (B,B − gh′). Note that for
Q > 0, we have QB +B ′Q < 0 and Q(B −gh′)+ (B ′ −hg′)Q ≤ 0 if and only if
Q−1B ′+BQ−1 < 0 and Q−1(B−hg′)+(B ′−gh′)Q−1 ≤ 0. Hence, (B,B−gh′)
has a CQLF if and only if (B ′,B ′ − hg′) has a CQLF. From the preceding para-
graph, we know that in the CQLF existence problem for the pair (B ′,B ′ − hg′),
we can assume that (B ′, h) is controllable without loss of generality. By defini-
tion, (B ′, h) being controllable is the same as (B,h) being observable. Therefore,
we conclude that we can assume without loss of generality that (B,h) is observ-
able.

Finally, we argue that the pair (B,B − gh′) has a CQLF if and only if the
matrix product B(B −gh′) has no real negative eigenvalues. Assuming that (B,g)

is controllable and that (B,h) is observable, Theorem 3.1 in Shorten et al. (2009)
states that (B,B − gh′) has a CQLF if and only if the matrix product B(B − gh′)
has no real negative eigenvalues. We have shown that we can always assume that
(B,g) is controllable and that (B,h) is observable in the CQLF existence problem
by reduction to proper subspaces. So it only remains to check that in the process of
reduction, the spectral property of having no real negative eigenvalues of the matrix
product is preserved. Specifically, in the above proof that controllability of (B,g)

can be assumed without loss of generality, we obtain that (B,B −gh′) has a CQLF
if and only if (B1,B1 −g1h

′
1) has a CQLF, where (B1, g1) is controllable. We next

prove that B(B−gh′) has no real negative eigenvalues if and only if B1(B1 −g1h
′
1)

has no real negative eigenvalues, that is, the desired spectral property of the matrix
product is preserved in the process of reduction from (B,B − gh′) to (B1,B1 −
g1h

′
1). Observe that the spectrum of B(B − gh′) is the union of the spectrum of

B1(B1 −g1h
′
1) and B2

3 by (A.3). Since all eigenvalues of B3 have negative real part,
we deduce that B1(B1 − g1h

′
1) having no real negative eigenvalues is equivalent

to B(B − gh′) having no real negative eigenvalues. A similar argument applies for
observability instead of controllability. We have therefore completed the proof of
Proposition 3. �

APPENDIX B: ANY QUADRATIC FUNCTION FAILS FOR α > 0

In this section, we give a simple example showing that, in general, no quadratic
function can serve as a Lyapunov function in the Foster–Lyapunov criterion to
prove positive recurrence of the piecewise OU process Y for α > 0. We first intro-
duce a lemma which implies that the matrix −R(I − pe′) − αpe′ is nonsingular
for α > 0.
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LEMMA 2. If α > 0, then all eigenvalues of the matrix −R(I − pe′) − αpe′
have negative real part.

PROOF. It is clear that the matrix has an eigenvalue −α with right eigenvec-
tor p. Suppose λ 
= −α is an eigenvalue of the matrix with left eigenvector θ , that
is,

θ ′(−R(I − pe′) − αpe′) = λθ ′,(B.1)

then we obtain that θ ′p = 0. It follows from (B.1) that λ is an eigenvalue of the
matrix −R(I − pe′). Moreover, λ cannot be zero since otherwise θ ′ = ce′R−1 for
some nonzero c ∈ R, which follows from the fact that R(I − pe′) has a simple
zero eigenvalue. This contradicts the fact that e′R−1p > 0 as seen in (5.30). From
condition (b) in the proof of Theorem 1, we know that all nonzero eigenvalues of
the matrix −R(I − pe′) have negative real part. This completes the proof of the
lemma. �

LEMMA 3. Suppose that Q is a real K × K positive semidefinite matrix such
that at least one of the matrices Q(−R)+ (−R′)Q and Q(−R(I −pe′)−αpe′)+
(−(I − ep′)R′ − αep′)Q fails to be negative definite. Let the quadratic function L

be given by L(y) = y′Qy for y ∈ R
K. Then there exists some β ∈ R and v ∈ R

K

such that GL(tv) ≥ 0 for any t ≥ 0.

PROOF. Suppose that Q(−R) + (−R′)Q fails to be negative definite, then
there exists some λ ≥ 0 and nonzero vector v ∈ R

K such that [Q(−R) +
(−R′)Q]v = λv and e′v ≤ 0. By definition of generator of Y in (2.2), we thus
obtain

GL(tv) = ∑
i,j

Qij (σσ ′)ij + (∇L(tv))′b(tv)

= ∑
i,j

Qij (σσ ′)ij + t2v′[Q(−R) + (−R′)Q]v − 2tβp′Qv(B.2)

= ∑
i,j

Qij (σσ ′)ij + λv′vt2 − 2tβp′Qv.

Since Q is positive semidefinite, we infer that
∑

i,j Qij (σσ ′)ij = tr(Qσσ ′) =
tr(σ ′Qσ) ≥ 0. Set β = 0. We conclude from (B.2) that GL(tv) ≥ 0 for any t ≥ 0.
A similar argument applies to the case where Q(−R(I − pe′) − αpe′) + (−(I −
ep′)R′ −αep′)Q fails to be negative definite. The proof of the lemma is complete.

�

In view of Lemmas 2 and 3, we give the following definition of strong CQLF
which is slightly different than Definition 5 given in Section 3.1. For more details,
refer to Shorten and Narendra (2003) and King and Nathanson (2006).
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DEFINITION 6 (Strong CQLF). Let A and B be real K × K matrices having
only eigenvalues with negative real part. For Q ∈ R

K×K, the quadratic form L

given by L(y) = y′Qy for y ∈ R
K is called a strong common quadratic Lyapunov

function (strong CQLF) for the pair (A,B) if Q is positive definite and

QA + A′Q < 0,

QB + B ′Q < 0.

We remark that it suffices to require Q to be a symmetric matrix in the above
definition by Theorem 2.2.3 in Horn and Johnson (1994).

We now formulate an example showing that, in general, no quadratic function
can serve as a Lyapunov function in the Foster–Lyapunov criterion to prove posi-
tive recurrence of the piecewise OU process Y for α > 0. Let R be a matrix given
by

R =
⎛
⎝ 1 −1 0

0 1 −1
0 0 1

⎞
⎠ ,

so that R is a nonsingular M-matrix. Let α = 133 and p′ = [0,0,1].
LEMMA 4. For any quadratic function L given by L(y) = y′Qy for some real

K × K positive semidefinite matrix Q and all y ∈ R
K, there exists some β ∈ R

and v ∈ R
K such that GL(tv) ≥ 0 for any t ∈ R in the above example.

PROOF. In view of Lemma 3, it suffices to prove that there is no strong CQLF
for the pair (−R,−R(I −pe′)−αpe′) for α > 0. Equivalently, it suffices to show
that the matrix product R(R(I − pe′) + αpe′) has real negative eigenvalues by
Theorem 1 in King and Nathanson (2006). One readily checks that R(R(I −pe′)+
αpe′) has three different eigenvalues: −7, 5 − √

82 and 5 + √
82. Thus, it has two

real negative eigenvalues and we deduce that (−R,−R(I − pe′) − αpe′) has no
strong CQLF in this example. Application of Lemma 3 completes the proof of the
lemma. �
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