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SHARP BENEFIT-TO-COST RULES FOR THE EVOLUTION OF
COOPERATION ON REGULAR GRAPHS

BY YU-TING CHEN

University of British Columbia

We study two of the simple rules on finite graphs under the death–birth
updating and the imitation updating discovered by Ohtsuki, Hauert, Lieber-
man and Nowak [Nature 441 (2006) 502–505]. Each rule specifies a payoff-
ratio cutoff point for the magnitude of fixation probabilities of the underlying
evolutionary game between cooperators and defectors. We view the Markov
chains associated with the two updating mechanisms as voter model perturba-
tions. Then we present a first-order approximation for fixation probabilities
of general voter model perturbations on finite graphs subject to small per-
turbation in terms of the voter model fixation probabilities. In the context of
regular graphs, we obtain algebraically explicit first-order approximations for
the fixation probabilities of cooperators distributed as certain uniform distri-
butions. These approximations lead to a rigorous proof that both of the rules
of Ohtsuki et al. are valid and are sharp.

1. Introduction. The main objective of this paper is to investigate the sim-
ple rules for the evolution of cooperation by clever, but nonrigorous, arguments
of pair-approximation on certain large graphs in Ohtsuki, Hauert, Lieberman and
Nowak [18]. For convenience, we name these rules and their relatives comprehen-
sively as benefit-to-cost rules (abbreviated as b/c rules) for reasons which will
become clear later on. The work [18] takes spatial structure into consideration and
gives an explanation with analytical criteria for the ubiquity of cooperative enti-
ties observed in biological systems and human societies. (See also the references
in [18] for other models on structured populations.) In particular, this provides a
way to overcome one of the major difficulties in theoretical biology since Darwin.
(See Hamilton [8], Axelrod and Hamilton [3], Chapter 13 in Maynard Smith [14]
and many others.)

We start by describing the evolutionary games defined in [18] and set some defi-
nitions. Consider a finite, connected, and simple (i.e., undirected and without loops
or parallel edges) graph G = (V,E) on N vertices. (See, e.g., [4] for the standard
terminology of graph theory.) Imagine the graph as a social network where a pop-
ulation of N individuals occupy the vertices of G and the edges denote the links
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between the individuals. The population consists of cooperators and defectors la-
beled by 1’s and 0’s, respectively. Their fitness is described through payoffs from
encounters as follows. Consider a 2 × 2 payoff matrix

� =
(

�11 �10

�01 �00

)
=

(
b − c −c

b 0

)
.(1.1)

Here, while positive constants are natural candidates for both benefit b and cost c,
we allow arbitrary reals for their possible values unless otherwise mentioned. Each
entry �ij of � denotes the payoff that an i-player receives from a j -player. Hence,
the payoff of a cooperator is bn−ck if n of its k neighbors are cooperators, and the
payoff of a defector is bm if m of its neighbors are cooperators. Then the fitness
of an individual located at x is given by a convex combination of the baseline
fitness with weight 1 − w and its payoff with weight w. The baseline fitness is
normalized to 1 for convenience. The parameter w is interpreted as the intensity
of selection. Therefore, weak selection means that payoff is a small proportion of
fitness compared to the baseline fitness.

In contrast to game theory where strategies are decided by rational players, evo-
lutionary game theory considers the random evolution of interacting players in
which the “fitter” strategies have better chances to replicate. We study two of the
updating mechanisms under weak selection in [18] for the evolution of cooperation
throughout our work. Under the death–birth updating, we kill a random individual
and then let its neighbors compete for the vacant vertex with success probability
proportional to the fitness of its neighbors. Under the imitation updating, a random
individual updates its strategy, but now it will either adhere to its original strategy
or imitate one of the neighbors’ strategies with success probability proportional to
fitness. In this way, each updating mechanism defines a Markov chain on config-
urations consisting of 1’s and 0’s, or more specifically, a spin system in the sense
of Liggett [11] where each vertex can adopt only two possible opinions, 1 and 0.
Despite the simplicity of the transition rates, the readers may observe that the spin
systems pose certain difficulty in terms of the classical approaches in interacting
particle systems. For example, as a result of the asymmetry of payoffs, there is no
symmetry between 1’s and 0’s in the two spin systems. In addition, it is not hard
to see that in general the two spin systems are not attractive.

We are now ready to describe the b/c rules for the two evolutionary games
which are surprisingly simple criterions for criticality in the asymptotic. The de-
gree of a graph is defined in [18] to be the average number of neighbors per vertex.
Put a single cooperative mutant on the vertices with a random location. Then the
clever, but nonrigorous, calculations in the supplementary notes of [18], supported
by several numerical simulations, lead to the following b/c rule for the death–birth
updating under weak selection on certain large graphs of degree k; selection fa-
vors cooperation whenever b/c > k and selection opposes cooperation whenever
b/c < k. Here, selection favors (resp., opposes) cooperation if the probability that
a single cooperative mutant converts the defecting population completely into a
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cooperative population is strictly higher (resp., lower) than the fixation probability
1/N of a neutral mutant. [See (2.8) for the latter probability. Equation (2.8) also
shows, in particular, that if the graph is regular, then the fixation probability of a
neutral mutant at an arbitrary location without further randomization is precisely
1/N .] A similar b/c rule under the imitation mechanism is discussed in the sup-
plementary notes of [18], with the modification that the cutoff point k should be
replaced by k + 2. We remark that the work [18] also considers the birth–death up-
dating (in contrast to the death–birth updating) and its associated b/c rule. See [21]
for a further study of these b/c rules. For more b/c rules see [8, 16] and [20], to
name but a few. The monograph [17] gives an authoritative and excellent introduc-
tion to evolutionary dynamics.

Lying at the heart of the work [18] to obtain selective advantage of cooperators
is the introduction of structured populations. This is manifested by the role of a
fixed degree as population size becomes large. Consider instead a naive model
where only fractions of players in a large population are concerned and the same
payoff matrix (1.1) is in effect for evolutionary fitness. The fractions zC and zD of
cooperators and defectors are modeled through replicator equations as

żC = zC(ρC − ρ̄),
(1.2)

żD = zD(ρD − ρ̄).

Here, by the equality zC + zD = 1, the payoffs for cooperators and defectors are
ρC = bzC − c and ρD = bzC , and ρ̄ is the average payoff given by zCρC + zDρD .
By (1.2), the fraction of cooperators satisfies the following logistic differential
equation:

żC = −czC(1 − zC).

Hence, any proper fraction of cooperators must vanish eventually whenever cost c

is positive. See, for example, Chapter 7 in [10], Chapter 4 in [17] or Section 3 in [9]
for this model and more details. As discussed in more detail later on, a similar
result holds in any unstructured population of finite size under the death–birth
updating. Informally, a spatial structure, on one hand, promotes the formation of
cliques of cooperators which collectively have a selective advantage and, on the
other hand, reduces the exploitation of cooperators by defectors.

In [19], Ohtsuki and Nowak gave a rigorous proof of the b/c rules on large
cycles under weak selection, in particular for the two updating mechanisms. The
results in [19] exploit the fact that on cycles the fixation probabilities under each
updating mechanism satisfy a system of birth–death-process type difference equa-
tions, and exact fixation probabilities can be derived accordingly. It is easy to get
the exact solvability of fixation probabilities by the same approach on complete
graphs, although on each fixed one of these graphs cooperators are always opposed
under weak selection for the death–birth updating. (See [18] and Remark 1.1(3).
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Note that the degree of a complete graph has the same order as the number of ver-
tices.) It seems, however, harder to obtain fixation probabilities by extending this
approach beyond cycles and complete graphs.

In this work, we will view each of the two spin systems as a voter model per-
turbation on a (finite, connected and simple) graph of arbitrary size. Voter model
perturbations are studied in Cox and Perkins [7] and further developed in general-
ity in Cox, Durrett and Perkins [6] on transient integer lattices Z

d for d ≥ 3. On
the infinite lattices considered in [6] (often sharp) conditions, based on a related
reaction diffusion equation, were found to ensure the coexistence of 1’s and 0’s, or
to ensure that one type drives the other out. In particular, a rigorous proof of the
b/c rule under the death–birth updating on these infinite graphs is obtained in [6].
Here, in the context of finite graphs, the voter model perturbation associated with
each of the spin systems fixates in one of the the two absorbing states of all 1’s
or all 0’s, and we give a first-order approximation to the fixation probabilities by
expansion. In spite of the apparent differences in the settings, there are interest-
ing links between our fixation probability expansions and the reaction diffusion
equation criteria in [6].

Let us now introduce voter model perturbations as a family of spin systems.
Denote by x a vertex and by η a configuration. Let c(x, η) be the flipping rate
of the (nearest-neighbor) voter model at x given η. Hence, c(x, η) is equal to the
probability of drawing a neighbor of x with the opposite opinion to that of x. Then
interpreted narrowly in the context considered in this paper, the rates of a voter
model perturbation are given by

cw(x, η) = c(x, η) + wh1−η(x)(x, η) + w2gw(x, η) ≥ 0(1.3)

for a small perturbation rate w > 0. Here, h1, h0 and gw for all w small are uni-
formly bounded. We refer the readers to Chapter V in [11] here and in the follow-
ing for the classical results of voter models and to Section 1 in [6] for a general
definition of voter model perturbations on transient integer lattices.

We discuss in more detail the aforementioned result in [6] which is closely
related to the present work. A key result in [6] states that on the integer lattices
Z

d for d ≥ 3, the invariant distributions of a voter model perturbation subject to
small perturbation can be determined by the reaction function through a reaction-
diffusion PDE. (See Section 1.2 in [6].) Here, the reaction function takes the form

u �−→ lim
s→∞

∫
D(0, η)Pμu(ξs ∈ dη), u ∈ [0,1],(1.4)

where ((ξs),Pμu) denotes the voter model starting at the Bernoulli product mea-
sure μu with density μu(η(x) = 1) = u, and the difference kernel D is defined
by

D(x,η) = η̂(x)h1(x, η) − η(x)h0(x, η)(1.5)

with η̂(x) ≡ 1 − η(x). By the duality between voter models and coalescing ran-
dom walks, the reaction function defined by (1.4) can be expressed explicitly as
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a polynomial with coefficients consisting of coalescing probabilities of random
walks.

The justification in [6] of the b/c rule for the death–birth updating on transient
integer lattices is under a slightly different definition, for the sake of adaptation to
the context of infinite graphs. Precisely, the result in [6] states that whenever b/c >

k (resp., b/c < k) and there is weak selection, given infinitely many cooperators
(resp., defectors) at the beginning, any given finite set of vertices will become
occupied by cooperators (resp., defectors) from some time onward almost surely.
Here, k refers to the degree of each vertex in the underlying lattice and is equal
to 2d on Z

d . The b/c rule under the imitation updating on the same integer lattices
is verified in [5], under the same definition in [6] except that, as pointed out in [18],
the cutoff point k needs to be replaced by k + 2.

We now discuss our result for voter model perturbations on (finite, connected
and simple) graphs of arbitrary size. We first work with discrete-time Markov
chains of the voter model perturbations. We assume, in addition, the chain starting
at any arbitrary state is eventually trapped at either of the two absorbing states,
the all-1 configuration 1 and the all-0 configuration 0. This is a property enjoyed
by both updating mechanisms under weak selection. We proceed analytically and
decompose the transition kernel P w of a voter model perturbation with perturba-
tion rate w as the sum of the transition kernel P of the voter model and a signed
kernel Kw . We apply an elementary expansion to finite-step transitions of the P w-
chain in the spirit of Mayer’s cluster expansion [13] in statistical mechanics. Then
we show every linear combination of the fixation probabilities of 1 and 0 sub-
ject to small perturbation admits an infinite series expansion closely related to the
voter model. A slight refinement of this expansion leads to our main result for the
general voter model perturbations on which our study of the b/c rules relies.

Precisely, our main result for the voter model perturbations on finite graphs
(Theorem 3.8) can be stated as follows. Regard the voter model perturbation with
perturbation rate w as a continuous-time chain (ξs) with rates given by (1.3). Re-
call by our assumption that the chain starting at any state is eventually trapped at
either of the absorbing states 1 and 0. Define τ1 for the time to the absorbing state 1
and

H(ξ) = ∑
x∈V

H(x, ξ)π(x)(1.6)

for any H(x, ξ). Here, π(x) is the invariant distribution of the (nearest-neighbor)
random walk on G given by

π(x) = d(x)

2 · #E
(1.7)

with d(x) being the degree of x, that is, the number of neighbors of x. (See, e.g., [1]
and [12] for random walks on graphs.) Then as w −→ 0+, we have the following



642 Y.-T. CHEN

approximation:

P
w(τ1 < ∞) = P(τ1 < ∞) + w

∫ ∞
0

E[D(ξs)]ds + O(w2).(1.8)

Here, P
w and P (with expectation E) denote the laws of the voter model pertur-

bation with perturbation rate w and the voter model, respectively, both subject to
the same, but arbitrary, initial distribution, and D is the difference kernel defined
by (1.5). Moreover, the integral term on the right-hand side of (1.8) makes sense
because D(ξs) ∈ L1(dP ⊗ ds).

We apply the first-order approximation (1.8) to the two evolutionary games only
on regular graphs. (A graph is a k-regular if all vertices have the same degree k and
a graph is regular if it is k-regular graph for some k.) Under weak selection, the
approximation (1.8) implies that we can approximate P

w(τ1 < ∞) by P(τ1 < ∞)

and the 0-potential of D ∫ ∞
0

E[D(ξs)]ds,(1.9)

all subject to the same initial distribution. Moreover, the comparison of P
w(τ1 <

∞) for small w with P(τ1 < ∞) is possible whenever the 0-potential is nonzero,
with the order determined in the obvious way. For notions to be introduced later
on, we take as initial distribution the uniform distribution un on the set of config-
urations with exactly n many 1’s, where 1 ≤ n ≤ N − 1. Each 0-potential in (1.9)
starting at un can be derived from the same 0-potentials starting at Bernoulli prod-
uct measures μu with density u ∈ [0,1]. Furthermore, each 0-potential with start-
ing measure μu can be expressed in terms of some (expected) coalescing times
of coalescing random walks. This is in contrast to the involvement of coalescing
probabilities for the reaction functions in the context in [6]. By resorting to a sim-
ple identity in [1] between meeting times and hitting times of random walks, we
obtain explicit forms of the coalescing times involved. Hence, by (1.8), we obtain
the fixation probabilities explicit up to the first-order term, and the precise result is
stated as follows.

THEOREM 1. Let G be any (finite, connected and simple) graph on N vertices.
Suppose in addition that G is k-regular, that is, every vertex of G has precisely de-
gree k. Fix 1 ≤ n ≤ N −1 and let P

w
un

denote the law of the particular evolutionary
game with small intensity of selection w and initial distribution un.

(1) Under the death–birth updating, we have

P
w
un

(τ1 < ∞) = n

N
+ w

[
kn(N − n)

2N(N − 1)

][(
b

k
− c

)
(N − 2) + b

(
2

k
− 2

)]
+ O(w2)

as w −→ 0+.
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(2) Under the imitation updating, we have

P
w
un

(τ1 < ∞) = n

N
+ w

[
k(k + 2)n(N − n)

2(k + 1)N(N − 1)

]

×
[(

b

(k + 2)
− c

)
(N − 1) − (2k + 1)b − ck

k + 2

]
+ O(w2)

as w −→ 0+.

Here, in either (1) or (2), we use Landau’s notation O(w2) for a function θ(w)

such that |θ(w)| ≤ Cw2 for all small w, for some constant C depending only on
the graph G and the particular updating mechanism.

Before interpreting the result of Theorem 1 in terms of evolutionary games, we
first introduce the following definition which is stronger than that in [18]. We say
selection strongly favors (resp., opposes) cooperation if for every nontrivial n, that
is, 1 ≤ n ≤ N − 1, the following holds: The probability that n cooperative mutants
with a joint location distributed as un converts the defecting population completely
into a cooperative population is strictly higher (resp., lower) than n/N . [Here,
n/N is the fixation of probability of n neutral mutants again by (2.8).] Under this
definition, Theorem 1 yields simple algebraic criteria for both evolutionary games
stated as follows.

COROLLARY 1. Suppose again that the underlying social network is a k-
regular graph on N vertices.

(1) For the death–birth updating, if(
b

k
− c

)
(N − 2) + b

(
2

k
− 2

)
> 0 (resp., < 0),

then selection strongly favors (resp., opposes) cooperation under weak selection.
(2) For the imitation updating, if(

b

(k + 2)
− c

)
(N − 1) − (2k + 1)b − ck

k + 2
> 0 (resp., < 0),

then selection strongly favors (resp., opposes) cooperation under weak selection.

Applied to cycles, the algebraic criteria in Corollary 1 under the aforementioned
stronger definition coincide with the algebraic criteria in [19] for the respective
updating mechanism. See also equation (3) in [21] for the death–birth updating.

As an immediate consequence of Corollary 1, we have the following result.

COROLLARY 2. Fix a degree k.
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(1) Consider the death–birth updating. For every fixed pair (b, c) satisfying
b/k > c (resp., b/k < c), there exists a positive integer N0 such that on any k-
regular graph G = (V,E) with #V ≥ N0, selection strongly favors (resp., opposes)
cooperation under weak selection.

(2) Consider the imitation updating. For every fixed pair (b, c) satisfying
b/(k + 2) > c [resp., b/(k + 2) < c], there exists a positive integer N0 such that
on any k-regular graph G = (V,E) with #V ≥ N0, selection strongly favors (resp.,
opposes) cooperation under weak selection.

In this way, we rigorously prove the validity of the b/c rule in [18] under each
updating mechanism. It is in fact a universal rule valid for any nontrivial number
of cooperative mutants, and holds uniformly in the number of vertices, for large
regular graphs with a fixed degree under weak selection.

REMARK 1.1. (1) Although we only consider payoff matrices of the special
form (1.1) in our work, interests in evolutionary game theory do cover general
2 × 2 payoff matrices with arbitrary entries. (See, e.g., [18] and [19].) In this case,
a general 2 × 2 matrix �∗ = (�∗

ij )i,j=1,0 is taken to define payoffs of players with
an obvious adaptation of payoffs under �. For example, the payoff of a cooperator
is (�∗

11 − �∗
10)n + k�∗

10 if n of its k neighbors are cooperators. In particular, if
�∗ satisfies the equal-gains-from-switching condition (Nowak and Sigmund [15])

�∗
11 − �∗

10 = �∗
01 − �∗

00,(1.10)

then the results in Theorem 1, Corollaries 1 and 2 still hold for �∗ by taking � in
their statements to be the “adjusted” payoff matrix

�a :=
(

�∗
11 − �∗

00 �∗
10 − �∗

00
�∗

01 − �∗
00 0

)
,(1.11)

which is of the form in (1.1). See Remark 5.1 for this reduction.
(2) We stress that when n = 1 or N − 1 and the graphs are vertex-transitive [4]

(and hence, regular) such as tori, the exact locations of mutants become irrelevant.
It follows that the randomization by un is redundant in these cases.

(3) Let G be the complete graph on N vertices so that the spatial structure is
irrelevant. Consider the death–birth updating and the “natural case” where benefit
b and cost c are both positive. With the degree k set equal to N − 1, Theorem 1(1)
gives for any 1 ≤ n ≤ N − 1 the approximation

P
w
un

(τ1 < ∞) = n

N
+ w

n(N − n)

2N

[
−c(N − 2) −

(
2 − N

N − 1

)
b

]
+ O(w2)

as w −→ 0+. Hence, cooperators are always opposed under weak selection when
N ≥ 3.
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The paper is organized as follows. In Section 2, we set up the standing assump-
tions of voter model perturbations considered throughout this paper and discuss
their basic properties. The Markov chains associated with the two updating mecha-
nisms in particular satisfy these standing assumptions, as stated in Propositions 2.1
and 2.2. In Section 3, we continue to work on the general voter model perturba-
tions. We develop an expansion argument to obtain an infinite series expansion
of fixation probabilities under small perturbation rates (Proposition 3.2) and then
refine its argument to get the first-order approximation (1.8) (Theorem 3.8). In
Section 4, we return to our study of the two evolutionary games and give the proof
of Theorem 1. The vehicle for each explicit result is a simple identity between
meeting times and hitting times of random walks. Finally, the proofs of Proposi-
tions 2.1 and 2.2 (that both updating mechanisms define voter model perturbations
satisfying our standing assumptions) are deferred to Section 5.

2. Voter model perturbations. Recall that we consider only finite, connected
and simple graphs in this paper. Fix such a graph G = (V,E) on N = #V vertices.
Write x ∼ y if x and y are neighbors to each other, that is, if there is an edge of G

between x and y. We put d(x) for the number of neighbors of x.
Introduce an auxiliary number λ ∈ (0,1]. Take a nearest-neighbor discrete-time

voter model with transition probabilities

P(η,ηx) = λ

N
c(x, η), x ∈ V,

(2.1)

P(η,η) = 1 − λ

N

∑
x

c(x, η).

Here, ηx is the configuration obtained from η by giving up the opinion of η at x

for

η̂(x) := 1 − η(x)

and holding the opinions at other vertices fixed and we set

c(x, η) = #{y ∼ x;η(y) = η̂(x)}
d(x)

.

We now define the discrete-time voter model perturbations considered through-
out this paper as follows. Suppose that we are given functions hi and gw and a
constant w0 ∈ (0,1) satisfying

sup
w∈[0,w0],x,η

(|h1(x, η)| + |h0(x, η)| + |gw(x, η)|) ≤ C0 < ∞.(A.1)

cw(x, η) := c(x, η) + wh1−η(x)(x, η) + w2gw(x, η) ≥ 0,(A.2)

cw(x,1) = cw(x,0) ≡ 0 for each x ∈ V(A.3)
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for each w ∈ [0,w0]. Here, 1 and 0 denote the all-1 configuration and the all-0 con-
figuration, respectively. In (A.2), we set up a basic perturbation of voter model rates
up to the second order. In terms of the voter model perturbations defined below by
cw(x, η), we will be able to control the higher order terms in an expansion of fixa-
tion probabilities with the uniform bound imposed in (A.1). The assumption (A.3)
ensures that the voter model perturbations have the same absorbing states 1 and 0
as the previously defined voter model.

Under the assumptions (A.1)–(A.3), we define for each perturbation rate w ∈
[0,w0] a voter model perturbation with transition probabilities

P w(η, ηx) = λ

N
cw(x, η), x ∈ V,

(2.2)

P w(η, η) = 1 − ∑
x

λ

N
cw(x, η).

[Here we assume without loss of generality by (A.1) that each P w(η, ·) is truly
a probability measure, in part explaining the need of the auxiliary number λ.] In
particular P 0 ≡ P .

NOTATION. We shall write P
w
ν for the law of the voter model perturbation

with perturbation rate w and initial distribution ν and set Pν := P
0
ν . In particular we

put P
w
η := P

w
δη

and Pη := Pδη , where δη is the Dirac measure at η. The discrete-time

and continuous-time coordinate processes on {1,0}V are denoted by (ξn;n ≥ 0)

and (ξs; s ≥ 0), respectively. Here, and in what follows, we abuse notation to read
“n” and other indices for the discrete time scale and “s” for the continuous time
scale whenever there is no risk of confusion.

Our last assumption, which is obviously satisfied by the P -voter model thanks
to the connectivity of G, is

P
w
η (ξn ∈ {1,0} for some n) > 0 for every η ∈ {1,0}V(A.4)

for each w ∈ (0,w0]. Since 1 and 0 are absorbing by the condition (A.3), it follows
from the Markov property that the condition (A.4) is equivalent to the condition
that the limiting state exists and can only be either of the absorbing states 1 and 0
under P

w for any w ∈ (0,w0].
PROPOSITION 2.1 ([6]). Suppose that the graph is k-regular. Then the Markov

chain associated with the death–birth updating with small intensity of selection w

is a voter model perturbation with perturbation rate w satisfying (A.1)–(A.4) with
λ = 1 and

h1 = −(b + c)kf0f1 + kbf00 + kf0(bf11 − bf00),
(2.3)

h0 = −h1.
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Here,

fi(x, η) = 1

k
#{y;y ∼ x,η(y) = i},

(2.4)

fij (x, η) = 1

k2 #{(y, z);x ∼ y ∼ z, η(y) = i, η(z) = j}.

PROPOSITION 2.2. Suppose that the graph is k-regular. Then the Markov
chain associated with the imitation updating with small intensity of selection w

is a voter model perturbation with perturbation rate w satisfying (A.1)–(A.4) with
λ = k

k+1 and

h1 = k[(b − c)f11 − cf10] − k2

k + 1
f1[(b − c)f11 − cf10 + bf01]

− k

k + 1
bf 2

1 ,

(2.5)

h0 = kbf01 − k2

k + 1
f0[(b − c)f11 − cf10 + bf01]

− k

k + 1
f0[(b − c)f1 − cf0],

where fi and fij are as in (2.4).

The proofs of Propositions 2.1 and 2.2 are deferred to Section 5.
The assumptions (A.1)–(A.4) are in force from now on.
Let us consider some basic properties of the previously defined discrete-time

chains. First, as has been observed, we know that

1 = P
w(τ1 ∧ τ0 < ∞) = P

w(τ1 < ∞) + P
w(τ0 < ∞),

where we write τη for the first hitting time of η. Observe that P
w(τ1 < ∞) is

independent of the auxiliary number λ > 0. Indeed, the holding time of each con-
figuration η 
= 1,0 is finite and the probability of transition from η to ηx at the end
of the holding time is given by

cw(x, η)∑
y∈V cw(y, η)

,

which is independent of λ > 0.
We can estimate the equilibrium probability P

w(τ1 < ∞) by a “harmonic sam-
pler” of the voter model from finite time. Let p1(ξ) be the weighted average of 1’s
in the vertex set

p1(η) = ∑
x

η(x)π(x),(2.6)
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where π(x) is the invariant distribution of the (nearest-neighbor) random walk on
G and is given by (1.7). Since p1(1) = 1 − p1(0) = 1 and the chain is eventually
trapped at 1 or 0, it follows from dominated convergence that

lim
n→∞ E

w[p1(ξn)] = P
w(τ1 < ∞).(2.7)

On the other hand, the function p1 is harmonic for the voter model

Eη[p1(ξ1)] = p1(η) + λ

N · 2#E

×
( ∑

η(x)=0

#{y ∼ x;η(y) = 1} − ∑
η(x)=1

#{y ∼ x;η(y) = 0}
)

= p1(η).

In particular, (2.7) applied to w = 0 entails

Pη(τ1 < ∞) = p1(η) =
∑

η(x)=1 d(x)

2 · #E
,(2.8)

where the last equality follows from the explicit form (1.7) of π .

REMARK 2.3. Since every harmonic function f for the voter model satisfies

f (η) ≡ Eη[f (ξτ1∧τ0)],
(2.8) implies that the vector space of harmonic functions is explicitly characterized
as the span of the constant function 1 and p1. Recall also the foregoing display
gives a construction of any harmonic function with preassigned values at 1 and 0.
(See, e.g., Chapter 2 in [1].)

3. Expansion. We continue to study the discrete-time voter model perturba-
tions defined in Section 2. For each w ∈ [0,w0], consider the signed kernel

Kw = P w − P,

which measures the magnitude of perturbations of transition probabilities. We also
define a nonnegative kernel |Kw| by |Kw|(η, η̃) = |Kw(η, η̃)|.

LEMMA 3.1. For any w ∈ [0,w0] and any f : {1,0}V −→ R, we have

Kwf (η) = λ

N

∑
x

[
wh1−η(x)(x, η) + w2gw(x, η)

][f (ηx) − f (η)](3.1)

and

‖|Kw|f ‖∞ ≤ 4C0w‖f ‖∞,(3.2)

where C0 is the constant in (A1).
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PROOF. We notice that for any η and any x,

Kw(η,ηx) = λ

N

[
wh1−η(x)(x, η) + w2gw(x, η)

]
,

Kw(η, η) = −∑
x

λ

N

[
wh1−η(x)(x, η) + w2gw(x, η)

]
,

by the definitions of cw and P w . Our assertions (3.1) and (3.2) then follow at one
stroke. �

Using the signed kernel Kw , we can rewrite every T -step transition probability
P w

T of the voter model perturbation as

P w
T (η0, ηT ) = ∑

η1,...,ηT −1

P w(η0, η1)P
w(η1, η2) · · ·P w(ηT −1, ηT )

= ∑
η1,...,ηT −1

(P + Kw)(η0, η1) · · · (P + Kw)(ηT −1, ηT )(3.3)

= PT (η0, ηT ) +
T∑

n=1

∑
j∈IT (n)

∑
η1,...,ηT −1

�
w,j
T (η0, . . . , ηT ).

Here, IT (n) is the set of strictly increasing n-tuples with entries in {1, . . . , T }, and
for j = (j1, . . . , jn) ∈ IT (n)

�
w,j
T (η0, . . . , ηT )(3.4)

is the signed measure of the path (η0, η1, . . . , ηT ) such that the transition from
ηr to ηr+1 is determined by Kw(ηr, ηr+1) if r + 1 is one of the (integer-valued)
indices in j and is determined by P(ηr, ηr+1) otherwise. For convenience, we set
for each j ∈ IT (n)

Q
w,j
T (η0, ηT ) = ∑

η1,...,ηT −1

�
w,j
T (η0, . . . , ηT )

as the T -step transition signed kernel, and we say Q
w,j
T has n faults (up to time T )

and j is its fault sequence. Then by (3.3), we can write for any f : {1,0}V −→ R,

E
w
η0

[f (ξT )] = Eη0[f (ξT )] +
T∑

n=1

∑
j∈IT (n)

∑
η1,...,ηT

�
w,j
T (η0, . . . , ηT )f (ηT )

(3.5)

= Eη0[f (ξT )] +
T∑

n=1

∑
j∈IT (n)

Q
w,j
T f (η0).

Write I(n) ≡ I∞(n) for the set of strictly increasing n-tuples with entries in N.
We now state the key result which in particular offers an expansion of fixation
probabilities.
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PROPOSITION 3.2. Recall the parameter w0 > 0 in the definition of the voter
model perturbations. There exists w1 ∈ (0,w0] such that for any harmonic func-
tion f for the voter model,

f (1)Pw
η (τ1 < ∞) + f (0)Pw

η (τ0 < ∞) = f (η) +
∞∑

n=1

∑
j∈I(n)

Q
w,j
jn

f (η),(3.6)

where the series converges absolutely and uniformly in w ∈ [0,w1] and in η ∈
{1,0}V.

REMARK 3.3. (i) There are alternative perspectives to state the conclusion of
Proposition 3.2. Thanks to Remark 2.3 and the fact Q

w,j
T 1 ≡ 0, it is equivalent to

the validity of the same expansion for p1 defined in (2.6) (for any small w). By
Remark 2.3 again, it is also equivalent to an analogous expansion of any linear
combination of the two fixation probabilities under P

w .
(ii) The series expansion (3.6) has the flavor of a Taylor series expansion in w,

as hinted by Lemma 3.6.

The proof of Proposition 3.2 is obtained by passing T to infinity for both sides
of (3.5). This immediately gives the left-hand side of (3.6) thanks to our assump-
tion (A.4). There are, however, two technical issues when we handle the right-hand
sides of (3.5). The first one is minor and is the dependence on T of the summands
Q

w,j
T f (η0). For this, the harmonicity of f implies that such dependence does not

exist, as asserted in Lemma 3.4. As a result, the remaining problem is the absolute
convergence of the series on the right-hand side of (3.6) for any small parameter
w > 0. This is resolved by a series of estimates in Lemmas 3.5, 3.6 and finally
Lemma 3.7.

LEMMA 3.4. For any harmonic function f for the voter model, any T ≥ 1,
and any j ∈ IT (n),

Q
w,j
T f (η0) ≡ Q

w,j
jn

f (η0),

where we identify j ∈ Ijn(n) in the natural way.

PROOF. This follows immediately from the martingale property of a harmonic
function f for the voter model and the definition of the signed measures �

w,j
T

in (3.4). �

LEMMA 3.5. There exist C1 = C1(G) ≥ 1 and δ = δ(G) ∈ (0,1) such that

sup
η 
=1,0

Pη(ξn 
= 1,0) ≤ C1δ
n for any n ≥ 1.(3.7)
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PROOF. Recall that the voter model starting at any arbitrary state is eventually
trapped at either 1 or 0. By identifying 1 and 0, we deduce (3.7) from some stan-
dard results of nonnegative matrices, for suitable constants C1 = C1(G) ≥ 1 and
δ ∈ (0,1). (See, e.g., [2], Lemma I.6.1 and Proposition I.6.3.) �

LEMMA 3.6. Let C1 = C1(G) and δ = δ(G) be the constants in Lemma 3.5,
and set C = C(G,C0) = max(4C0,C1). Then for any j ∈ I(n), any w ∈ [0,w0]
and any harmonic function f for the voter model,

‖Qw,j
jn

f ‖∞ ≤ ‖f ‖∞wnC2nδjn−n.(3.8)

PROOF. Without loss of generality, we may assume ‖f ‖∞ = 1. By definition,

Q
w,j
jn

f (η0) = ∑
η1,...,ηjn

�
w,j
jn

(η0, . . . , ηjn)f (ηjn).(3.9)

If �
w,j
jn

(η0, . . . , ηjn) is nonzero, then none of the η0, . . . , ηjn−1 is 1 or 0. In-
deed, if some of the ηi , 0 ≤ i ≤ jn − 1, is 1, then ηi+1, . . . , ηjn can only be 1
by (A.3) and therefore Kwf (ηjn−1) = 0. This is a contradiction. Similarly, we
cannot have ηi = 0 for some 0 ≤ i ≤ jn − 1. Hence, the nonvanishing summands
of the right-hand side of (3.9) range over �

w,j
jn

(η1, . . . , ηjn)f (ηjn) for which none

of the ηj1, . . . , ηjn−1 is 1 or 0. With η0 fixed, write �
w,j′
U,η0

for the signed measure

�
w,j′
U restricted to paths starting at η0. Thus we get from (3.9) that

Q
w,j
jn

f (η0) = �
w,j
jn,η0

[
f (ξjn)1[ξ1,...,ξjn−1 
=1,0]

]
.

Here, our usage of the compact notation on the right-hand side is analogous to the
convention in the modern theory of stochastic processes. Recall that |Kw| stands
for the kernel |Kw|(η, η̃) = |Kw(η, η̃)|, and put |�|w,j′

η0,U
for the measure on paths

(η0, . . . , ηU) obtained by replacing all the Kw in �
w,j′
U,η0

by |Kw|. Since ‖f ‖∞ = 1,
the foregoing display implies

|Qw,j
jn

f (η0)| ≤ |�|w,j
jn,η0

(ξ1, . . . , ξjn−1 
= 1,0)

≤ |�|w,(j1,...,jn−1)

jn−1,η0
(ξ1, . . . , ξjn−1−1 
= 1,0)

×
(

sup
η 
=1,0

Pη(ξjn−jn−1−1 
= 1,0)
)
‖|Kw|1‖∞

with j0 = 0, where supη 
=1,0 Pη(ξjn−jn−1−1 
= 1,0) bounds the measure of the yet
“active” paths from jn−1 to jn − 1 and ‖|Kw|1‖∞ bounds the measure of the
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transition from jn − 1 to jn. Iterating the last inequality, we get

|Qw,j
jn

f (η0)| ≤ ‖|Kw|1‖n∞
n∏

r=1

(
sup

η 
=1,0
Pη(ξjr−jr−1−1 
= 1,0)

)
(3.10)

≤ (4C0)
nwn

n∏
r=1

(
sup

η 
=1,0
Pη(ξjr−jr−1−1 
= 1,0)

)
,

where the last inequality follows from Lemma 3.1. Since
∑n

r=1(jr − jr−1 − 1) =
jn − n and C = max(4C0,C1), Lemma 3.5 applied to the right-hand side of (3.10)
gives

|Qw,j
jn

f (η0)| ≤ wn(C2)nδjn−n.(3.11)

The proof of (3.8) is complete. �

LEMMA 3.7. Recall the constants C = C(G,C0) and δ = δ(G) in Lem-
mas 3.6 and 3.5, respectively. There exists w1 ∈ (0,w0] such that

∞∑
n=1

∑
j∈I(n)

wn
1(C2)nδjn−n < ∞.(3.12)

PROOF. Observe that every index in
⋃∞

n=1 I(n) can be identified uniquely by
the time of the last fault and the fault sequence before the time of the last fault.
Hence, letting S denote the time of the last fault and m the number of faults within
{1, . . . , S − 1}, we can write for any w > 0

∞∑
n=1

∑
j∈I(n)

wn(C2)nδjn−n =
∞∑

S=1

S−1∑
m=0

(
S − 1

m

)
wm+1(C2)m+1δS−m−1.(3.13)

For each S, write

S−1∑
m=0

(
S − 1

m

)
wm+1(C2)m+1δS−m−1 = wC2δS−1(1 + wC2δ−1)S−1.(3.14)

With δ ∈ (0,1) fixed, we can choose w1 ∈ (0,w0] small such that

C2(1 + w1C
2δ−1)S−1 ≤

(
1√
δ

)S−1

for any large S. Apply the foregoing inequality for large S to the right-hand side
of (3.14) with w replaced by w1. This gives

S−1∑
m=0

(
S − 1

m

)
wm+1

1 (C2)m+1δS−m−1 ≤ w1
(√

δ
)S−1

,
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where the right-hand side converges exponentially fast to 0 as δ < 1. By (3.13),
the asserted convergence of the series in (3.12) now follows. �

PROOF OF PROPOSITION 3.2. We pick w1 as in the statement of Lemma 3.7.
By Lemma 3.6 and the choice of w1, the series in (3.6) converges absolutely and
uniformly in w ∈ [0,w1] and η ∈ {1,0}V.

By (3.5) and dominated convergence, it remains to show that

lim
T →∞

T∑
n=1

∑
j∈IT (n)

Q
w,j
T f (η0) =

∞∑
n=1

∑
j∈I(n)

Q
w,j
jn

f (η0).

To see this, note that by Lemma 3.4, we can write

T∑
n=1

∑
j∈IT (n)

Q
w,j
T f (η0) =

T∑
n=1

∑
j∈I(n)

jn≤T

Q
w,j
jn

f (η0),

where the right-hand side is a partial sum of the infinite series in (3.6). The valid-
ity of (3.6) now follows from the absolute convergence of the series in the same
display. The proof is complete. �

For the convenience of subsequent applications, we consider from now on the
continuous-time Markov chain (ξs) with rates given by (A.2). We can define this
chain (ξs) from the discrete-time Markov chain (ξn) by

ξs = ξMs ,

where (Ms) is an independent Poisson process with E[Ms] = sN
λ

. (Recall our time
scale convention: “n” for the discrete time scale and “s” for the continuous time
scale.) Under this setup, the potential measure of (ξs) and the potential measure of
(ξn) are linked by

E

[∫ ∞
0

f (ξs) ds

]
= λ

N
E

[ ∞∑
n=0

f (ξn)

]
(3.15)

for any nonnegative f . In addition, the fixation probability to 1 for this continuous-
time Markov chain (ξs) is the same as that for the discrete-time chain (ξn). (See
the discussion after Proposition 2.2.)

We now state a first-order approximation of P
w(τ1 < ∞) by the voter model.

Recall the difference kernel D defined by (1.5) with hi as in (A.1) and the π -
expectation D defined by (1.6).

THEOREM 3.8. Let ν be an arbitrary distribution on {1,0}V. Then as w −→
0+, we have

P
w
ν (τ1 < ∞) = Pν(τ1 < ∞) + w

∫ ∞
0

Eν[D(ξs)]ds + O(w2).(3.16)
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Here, the convention for the function O(w2) is as in Theorem 1. Moreover, D(ξs) ∈
L1(dPν ⊗ ds).

PROOF. It suffices to prove the theorem for ν = δη0 for any η0 ∈ {1,0}V. Re-
call that the function p1 defined by (2.6) is harmonic for the voter model, and
hence, the expansion (3.6) applies. By (3.8) and Lemma 3.7, it is plain that

∞∑
n=2

∑
j∈I(n)

Q
w,j
jn

p1(η0) = O(w2).(3.17)

We identify each j ∈ I(1) as j = (j) = j and look at the summands Q
w,j
j p1. Write

E
w,j for the expectation of the time-inhomogeneous Markov chain where the tran-

sition of each step is governed by P except that the transition from j − 1 to j is
governed by P w . Then

Q
w,j
j p1(η0) = E

w,j
η0

[p1(ξj )] − Eη0[p1(ξj )]
= Eη0

[
E

w
ξj−1

[p1(ξ1)] − Eξj−1[p1(ξ1)]]
(3.18)

= Eη0[Kwp1(ξj−1)]
= Eη0[Kwp1(ξj−1); τ1 ∧ τ0 ≥ j ],

where the last equality follows from the definition of Kw and the fact that 1 and 0
are both absorbing. Moreover, we deduce from Lemma 3.1 that

Kwp1(η) = λ

N
wD(η) + λ

N
w2Gw(η),(3.19)

where

Gw(x,η) = gw(x, η)
(
1 − 2η(x)

)
.

Note that Eη0[τ1 ∧τ0] < ∞ by Lemma 3.5. Hence, by (3.18) and (3.19), we deduce
that

∞∑
j=1

Q
w,j
j p1(η0) = λw

N

∞∑
j=1

Eη0[D(ξj−1)] + O(w2)

(3.20)

= wEη0

[∫ ∞
0

D(ξs) ds

]
+ O(w2),

where the last equality follows from (3.15). Moreover, D(ξs) ∈ L1(dPη0 ⊗ ds).
The approximation (3.16) for each w ≤ w2 for some small w2 ∈ (0,w1] now fol-
lows from (3.17) and (3.20) applied to the expansion (3.6) for p1. The proof is
complete. �
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4. First-order approximations. In this section, we give the proof of The-
orem 1. We consider only regular graphs throughout this section. (Recall that a
graph is regular if all vertices have the same number of neighbors.)

As a preliminary, let us introduce the convenient notion of Bernoulli transforms
and discuss its properties. For each u ∈ [0,1], let μu be the Bernoulli product mea-
sure on {1,0}V with density μu(ξ(x) = 1) = u. For any function f : {1,0}V −→ R,
define the Bernoulli transform of f by

Bf (u) :=
∫

f dμu =
N∑

n=0

[ ∑
η:#{x;η(x)=1}=n

f (η)

]
un(1 − u)N−n,

(4.1)
u ∈ [0,1].

The Bernoulli transform of f uniquely determines the coefficients

Af (n) := ∑
η:#{x;η(x)=1}=n

f (η), 0 ≤ n ≤ N.

Indeed, Bf (0) = f (0) = Af (0) and for each 1 ≤ n ≤ N ,

Af (n) = lim
u↓0+

1

un

(
BI (u) −

n−1∑
i=0

ui(1 − u)N−iAf (i)

)
.

The Bernoulli transform Bf (u) is a polynomial
∑N

i=0 αiu
i of order at most N .

Let us invert the coefficients Af (n) from αi by basic combinatorics. By the bino-
mial theorem,

ui =
N−i∑
n=0

(
N − i

n

)
ui+n(1 − u)N−i−n.

Hence, summing over i + n, we have

N∑
i=0

αiu
i =

N∑
n=0

[
n∑

i=0

αi

(
N − i

n − i

)]
un(1 − u)N−n,

and the uniqueness of the coefficients Af implies

Af (n) =
n∑

i=0

αi

(
N − i

n − i

)
, 0 ≤ n ≤ N.(4.2)

As a corollary, we obtain∫
f dun = 1(N

n

)Af (n) = 1(N
n

) n∑
i=0

αi

(
N − i

n − i

)
, 1 ≤ n ≤ N − 1,(4.3)

if we regard un, the uniform distribution on the set of configurations with pre-
cisely n many 1’s, as a measure on {1,0}V in the natural way.
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We will specialize the application of Bernoulli transforms to the function

I (η) :=
∫ ∞

0
Eη[D(ξs)]ds.

To obtain the explicit approximations (up to the first order) asserted in Theorem 1,
we need to compute by Theorem 3.8 the 0-potentials

∫ ∞
0 Eun[D(ξs)]ds for 1 ≤

n ≤ N − 1 under each updating mechanism. On the other hand, we will see that
the Bernoulli transform of each 0-potential I is analytically tractable and

BI (u) = �u(1 − u)(4.4)

for some explicit constant �. Note that we have AI (N) = AI (0) = 0 for the up-
dating mechanisms under consideration. Hence, the formula (4.3) entails∫ ∞

0
Eun[D(ξs)]ds = �n(N − n)

N(N − 1)
, 1 ≤ n ≤ N − 1,(4.5)

since
(N−1
n−1

) − (N−2
n−2

) = (N−2
n−1

)
for n ≥ 2 and

(N−1
0

) = (N−2
0

) = 1.

4.1. Proof of Theorem 1(1). Assume that the graph G is k-regular. Recall that
the death–birth updating defines a Markov chain of voter model perturbation sat-
isfying (A.1)–(A.4) by Proposition 2.1 under weak selection. The functions hi

in (A.1) for this updating are given by (2.3). Hence, the difference kernel D is
given by D(x, ξ) = h1(x, ξ), and for any x ∈ V,

1

k
Eμu[D(x, ξs)] = −(b + c)Eμu[f0f1(x, ξs)] + bEμu[f00(x, ξs)]

+ bEμu[f0f11(x, ξs)] − bEμu[f0f00(x, ξs)]
(4.6)

= −(b + c)Eμu[f0f1(x, ξs)] + bEμu[f0f11(x, ξs)]
+ bEμu[f1f00(x, ξs)].

In analogy to the computations in [6] for coalescing probabilities, we resort
to the duality between voter models and coalescing random walks for the right-
hand side of (4.6). Let {Bx;x ∈ V} be the rate-1 coalescing random walks on G,
where Bx starts at x. The random walks move independently of each other until
they meet another and move together afterward. The duality between the voter
model and the coalescing random walks is given by

Pη

(
ξs(x) = ix, x ∈ Q

) = P
(
η(Bx

s ) = ix, x ∈ Q
)

for any Q ⊂ V and (ix;x ∈ Q) ∈ {1,0}Q. (See Chapter V in [11].) Introduce two
independent discrete-time random walks (Xn;n ≥ 0) and (Yn;n ≥ 0) starting at
the same vertex, both independent of {Bx;x ∈ V}. Fix x and assume that the chains
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(Xn) and (Yn) both start at x. Recall that we write η̂ ≡ 1 − η. Then by duality, we
deduce from (4.6) that

1

k
Eμu[D(x, ξs)] = −(b + c)

∫
μu(dη)E[η̂(BX1

s )η(BY1
s )]

+ b

∫
μu(dη)E[η̂(BX1

s )η(BY1
s )η(BY2

s )]

+ b

∫
μu(dη)E[η(BX1

s )η̂(BY1
s )η̂(BY2

s )]

= −c

∫
μu(dη)E[η(BY1

s )] + c

∫
μu(dη)E[η(BX1

s )η(BY1
s )](4.7)

+ b

∫
μu(dη)E[η(BY1

s )η(BY2
s )]

− b

∫
μu(dη)E[η(BX1

s )η(BY2
s )]

+ b

∫
μu(dη)E[η(BX1

s ) − η(BY1
s )].

For clarity, let us write from now on Pρ and Eρ for the probability measure and
the expectation, respectively, under which the common initial position of (Xn) and
(Yn) is distributed as ρ. Recall that D(ξ) is the π -expectation of x �−→ D(x, ξ)

defined by (1.6). Write Mx,y = inf{t ∈ R+;Bx
t = B

y
t } for the first meeting time of

the random walks Bx and By , so Bx and By coincide after Mx,y . Then from (4.7),
the spatial homogeneity of the Bernoulli product measures implies that

1

k
Eμu[D(ξs)] = −cu + c[uPπ(MX1,Y1 ≤ s) + u2Pπ(MX1,Y1 > s)]

+ b[uPπ(MY1,Y2 ≤ s) + u2Pπ(MY1,Y2 > s)]
− b[uPπ(MX1,Y2 ≤ s) + u2Pπ(MX1,Y2 > s)]

= −cu(1 − u)Pπ(MX1,Y1 > s) − bu(1 − u)Pπ(MY1,Y2 > s)

+ bu(1 − u)Pπ(MX1,Y2 > s).

To obtain BI , we integrate both sides of the foregoing equality with respect to s

over R+. This gives

BI (u) = ku(1 − u)(−cEπ [MX1,Y1] − bEπ [MY1,Y2] + bEπ [MX1,Y2]).(4.8)

We now turn to a simple identity between first meeting times and first hitting
times. Let Ty = inf{n ≥ 0;Xn = y}, the first hitting time of y by (Xn). Observe
that for the random walks on (connected) regular graphs, the invariant distribution
is uniform and Ex[Ty] = Ey[Tx] for any x, y. Hence, the proof of Proposition 14.5
in [1] implies

E[Mx,y] = 1
2Ex[Ty], x, y ∈ V.(4.9)
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Write

f (x, y) := Ex[Ty] = Ey[Tx], x, y ∈ V,

where Ex = Eδx .

LEMMA 4.1. For any z ∈ V,

Ez[f (X0,X1)] = Ez[f (Y1, Y2)] = N − 1,(4.10)

Ez[f (X1, Y1)] = Ez[f (Y0, Y2)] = N − 2,(4.11)

Ez[f (X1, Y2)] =
(

1 + 1

k

)
(N − 1) + 1

k
− 2.(4.12)

PROOF. The proof of the equality Ez[f (X0,X1)] = N − 1 can be found in
Chapter 3 of [1] or [12]. We restate its short proof here for the convenience of
readers. Let T +

x = inf{n ≥ 1;Xn = x} denote the first return time to x. A standard
result of Markov chains says Ex[T +

x ] = π(x)−1 = N for any x. The equalities
in (4.10) now follow from the Markov property.

Next, we prove (4.11). By (4.10) and the symmetry of f , we have

N − 1 = Ez[f (X0,X1)] = ∑
x∼z

1

k
Ez[Tx]

= ∑
x∼z

∑
y∼z

1

k2 (Ey[Tx] + 1) = Ez[f (Y1,X1)] + 1,

so Ez[f (X1, Y1)] = N − 2. Here, our summation notation
∑

x∼z means summing
over indices x with z fixed, and the same convention holds in the proof of (4.12)
and Section 5 below. A similar application of the Markov property to the coordi-
nate Y1 in Ez[f (Y0, Y1)] gives Ez[f (Y0, Y2)] = N − 2. This proves (4.11).

Finally, we need to prove (4.12). We use (4.10) and (4.11) to get

Ez[f (X0,X1)] = 1 + Ez[f (X1, Y1)]
= 1 + ∑

x∼z

∑
y∼z
y 
=x

1

k2 Ex[Ty]

= 1 + ∑
x∼z

∑
y∼z

y 
=x

1

k2

( ∑
w∼y

1

k
Ex[Tw] + 1

)
(4.13)

= 1 + ∑
x∼z

∑
y∼z

y 
=x

1

k2 + ∑
x∼z

∑
y∼z

∑
w∼y

1

k3 Ex[Tw] − ∑
x∼z

∑
w∼x

1

k3 Ex[Tw]

= 2 − 1

k
+ Ez[f (X1, Y2)] − 1

k
Ez[f (X1,X0)].(4.14)
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Here, in (4.13) we use the symmetry of f , and the last equality follows from (4.10).
A rearrangement of both sides of (4.14) and an application of (4.10) then lead
to (4.12), and the proof is complete. �

Apply Lemma 4.1 and (4.9) to (4.8), and we obtain the following result.

PROPOSITION 4.2. For any u ∈ [0,1],

BI (u) = ku(1 − u)

2

[(
b

k
− c

)
(N − 2) + b

(
2

k
− 2

)]
.(4.15)

Finally, since BI (u) takes the form (4.4), we may apply (4.5) and Proposi-
tion 4.2 to obtain the explicit formula for the coefficient of w in (3.16), subject to
each initial distribution un. This proves our assertion in Theorem 1(1).

4.2. Proof of Theorem 1(2). The proof of Theorem 1(2) follows from almost
the same argument for Theorem 1(1) except for more complicated arithmetic. For
this reason, we will only point out the main steps, leaving the detailed arithmetic
to the interested readers. In the following, we continue to use the notation for the
random walks in the proof of Theorem 1(1).

Fix x ∈ V and assume the chains (Xn) and (Yn) both start at x. By Proposi-
tion 2.2, we have

1

k
Eμu[D(x, ξs)]

= Eμu[(b − c)̂ξs(x)f11(x, ξs) − cξ̂s(x)f10(x, ξs) − bξs(x)f01(x, ξs)]
− k

k + 1
Eμu

[(
(b − c)f11(x, ξs) − cf10(x, ξs) + bf01(x, ξs)

)
× (̂

ξs(x)f1(x, ξs) − ξs(x)f0(x, ξs)
)]

− 1

k + 1
Eμu

[
bξ̂s(x)f 2

1 (x, ξs)

− ξs(x)f0(x, ξs)
(
(b − c)f1(x, ξs) − cf0(x, ξs)

)]
=

∫
μu(dη)

(
E[(b − c)η̂(Bx

s )η(BY1
s )η(BY2

s ) − cη̂(Bx
s )η(BY1

s )η̂(BY2
s )

− bη(Bx
s )η̂(BY1

s )η(BY2
s )]

− k

k + 1
E

[(
(b − c)η(BY1

s )η(BY2
s ) − cη(BY1

s )η̂(BY2
s )

+ bη̂(BY1
s )η(BY2

s )
)

× (
η(BX1

s ) − η(Bx
s )

)]
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− 1

k + 1
E[bη̂(Bx

s )η(BX1
s )η(BY1

s )

− (b − c)η(Bx
s )η̂(BX1

s )η(BY1
s )

+ cη(Bx
s )η̂(BX1

s )η̂(BY1
s )]

)
,

where the last equality follows again from duality. The last equality gives

1

k
Eμu[D(x, ξs)]

=
∫

μu(dη)E

[
bη(BY1

s )η(BY2
s ) + c + b

k + 1
η(Bx

s )η(BY1
s )

− cη(BY1
s ) − b

k + 1
η(Bx

s )η(BY2
s ) + kc − b

k + 1
η(BX1

s )η(BY1
s )

− kb

k + 1
η(BX1

s )η(BY2
s ) + c

k + 1
η(Bx

s )η(BX1
s )

− c

k + 1
η(Bx

s )

]
.

Recall that X1
(d)= Y1. Hence, by the definition of D and Pπ , the foregoing implies

that

1

k
Eμu[D(ξs)] = −bu(1 − u)Pπ(MY1,Y2 > s)

− 2c + b

k + 1
u(1 − u)Pπ(MX0,X1 > s)

+ b

k + 1
u(1 − u)Pπ(MY0,Y2 > s)

− kc − b

k + 1
u(1 − u)Pπ(MX1,Y1 > s)

+ kb

k + 1
u(1 − u)Pπ(MX1,Y2 > s).

Again, we integrate both sides of the foregoing display with respect to s and then
apply (4.9) and Lemma 4.1 for the explicit form of BI . The result is given by the
following proposition.

PROPOSITION 4.3. For any u ∈ [0,1],

BI (u) = k(k + 2)u(1 − u)

2(k + 1)

[(
b

(k + 2)
− c

)
(N − 1) − (2k + 1)b − ck

k + 2

]
.



SHARPNESS OF TWO SIMPLE RULES 661

Our assertion for Theorem 1(2) now follows from an application of Proposi-
tion 4.3 similar to that of Proposition 4.2 for Theorem 1(1). The proof is now
complete.

5. Proofs of Propositions 2.1 and 2.2.

5.1. Proof of Proposition 2.1. Suppose that ξ ∈ {1,0}V is the present configu-
ration on the graph. Let ni(x) = ni(x, ξ) be the number of neighboring i players
for an individual located at vertex x for i = 1,0. Let w ∈ [0,1] denote the intensity
of selection. By definition, the fitness ρi(x) = ρi(x, ξ) of an i-player located at x

is given by

ρi(x) = (1 − w) + w [�i1 �i0 ]
[
n1(x)

n0(x)

]
= (1 − w) + w�in(x).(5.1)

Here, �i is the payoff row of an i-player of the matrix � and n(x) is the column
vector [n1(x) n0(x)]�. Hence, there exists w0 > 0 depending only on k and �
such that ρi > 0 for every w ∈ [0,w0] (see [6]).

The game with the death–birth updating under weak selection defines a Markov
chain with transition probabilities P w taking the form (2.2) and

cw(x, ξ) = r1−ξ(x)(x, ξ) ≥ 0,(5.2)

ri(x, ξ) =
∑

y∼x ρi(y)1ξ(y)=i∑
y∼x[ρ1(y)ξ(y) + ρ0(y)̂ξ(y)] .(5.3)

It has been shown in Section 1.4 of [6] that the rates cw define voter model
perturbations satisfying (A.1) and (A.2). Moreover, λ = 1 and the functions hi

in the expansion (A.2) are given by (2.3). Plainly, cw(x,1) ≡ r0(x,1) ≡ 0 and
cw(x,0) ≡ r1(x,0) ≡ 0. Hence, (A.3) is also satisfied.

It remains to check that (A.4) is satisfied. Since (A.4) is satisfied when w = 0,
it is enough to show that

P(ξ, ξx) > 0 ⇐⇒ P w(ξ, ξx) > 0(5.4)

for any ξ 
= 1,0 and any x. However, this is immediate from (5.3) if we notice that
ρi(·) and the constant function 1, both regarded as measures on V in the natural
way, are equivalent. Our proof of Proposition 2.1 is complete.

REMARK 5.1. Suppose now that payoff is given by a general 2 × 2 payoff
matrix �∗ = (�∗

ij )i,j=1,0 subject only to the “equal-gains-from-switching” condi-
tion (1.10). Let us explain how to reduce the games with payoff matrix �∗ to the
games with payoff matrix �a under weak selection, where �a is defined by (1.11).

In this case, payoffs of players are as described in Remark 1.1, and fitness is
given by

ρ�∗
i (x) = (1 − w) + w�∗

i n(x), x ∈ V.(5.5)
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Here again, �∗
i is the payoff row of an i-player. We put the superscript �∗ (only

in this remark) to emphasize the dependence on the underlying payoff matrix �∗,
so, in particular, the previously defined fitness ρ in (5.1) is equal to ρ�.

Suppose that the graph is k-regular. The transition probabilities under the death–
birth updating with payoff matrix �∗ are defined in the same way as before
through (5.2) and (5.3) with ρ replaced by ρ�∗

. Note that n1(x) + n0(x) ≡ k.
Then for all small w

1

1 − (1 − k�∗
00)w

ρ�∗
i (x) = 1 + w

1 − (1 − k�∗
00)w

�a
i n(x)

= 1 + wa

1 − wa
�a

i n(x)

= 1

1 − wa
ρ�a

i (x)

for some wa . Here, w and wa are defined continuously in terms of each other by

wa = w

1 + k�∗
00w

and w = wa

1 − k�∗
00w

a
,

so limwa→0 w = limw→0 wa = 0. Consequently, by (5.2) and (5.3), the foregoing
display implies that the death–birth updating with payoff matrix �∗ and inten-
sity of selection w is “equivalent” to the death–birth updating with payoff matrix
�a and intensity of selection wa , whenever wa or w is small. Here, “equivalent”
means equality of transition probabilities.

A similar reduction applies to the imitation updating by using its formal defini-
tion described in the next subsection, and we omit the details.

5.2. Proof of Proposition 2.2. Under the imitation updating, the Markov chain
of configurations has transition probabilities given by

P w(ξ, ξx) = 1

N
dw(x, ξ),

(5.6)

P w(ξ, ξ) = 1 − 1

N

∑
x

dw(x, ξ),

where

dw(x, ξ) = s1−ξ(x)(x, ξ),(5.7)

si(x, ξ) =
∑

y∼x ρi(y)1ξ(y)=i∑
y∼x[ρ1(y)ξ(y) + ρ0(y)̂ξ(y)] + ρ1−i (x)

(5.8)

and the fitness ρi are defined as before by (5.1). We assume again that the intensity
of selection w is small such that ρi > 0. To simplify notation, let us set the column
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vectors

f(x) = [f1(x) f0(x) ]�,

fi•(x) = [fi1(x) fi0(x) ]�,

ni•(x) = [ni1(x) ni0(x) ]�,

where the functions fi and fij are defined by (2.4). By (5.1) and (5.8), we have

si(x, ξ) = (1 − w)ni(x) + w�ini•(x)

(1 − w)(k + 1) + w
∑1

j=0 �j nj•(x) + w�1−in(x)

= (1 − w)k/(k + 1)fi(x) + k2/(k + 1)w�ifi•(x)

(1 − w) + wk2/(k + 1)
∑1

j=0 �j fj•(x) + wk/(k + 1)�1−if(x)

= k/(k + 1)fi(x) + w(k2/(k + 1)�ifi•(x) − k/(k + 1)fi(x))

1 + w(k2/(k + 1)
∑1

j=0 �j fj•(x) + k/(k + 1)�1−if(x) − 1)
.

Note that the functions fi and fij are uniformly bounded. Apply Taylor’s expan-
sion in w at 0 to the right-hand side of the foregoing display. We deduce from (5.7)
that the transition probabilities (5.6) takes the form (2.2) with λ = k

k+1 and the
rates cw satisfying (A.1) and (A.2) for some small w0. Moreover, the functions hi

are given by

hi = (k�ifi• − fi) − fi

(
k2

k + 1

1∑
j=0

�j fj• + k

k + 1
�1−if − 1

)

= k�ifi• − k2

k + 1
fi

( 1∑
j=0

�j fj•
)

− k

k + 1
fi�1−if.

By the definition of � in (1.1), we get (2.5). The verifications of (A.3) and (A.4)
follow from similar arguments for those of (A.3) and (A.4) under the death–birth
updating, respectively. This completes the proof of Proposition 2.2.
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