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Bayesian Nonparametric Shrinkage Applied
to Cepheid Star Oscillations
James Berger, William H. Jefferys and Peter Müller

Abstract. Bayesian nonparametric regression with dependent wavelets has
dual shrinkage properties: there is shrinkage through a dependent prior put
on functional differences, and shrinkage through the setting of most of the
wavelet coefficients to zero through Bayesian variable selection methods.
The methodology can deal with unequally spaced data and is efficient be-
cause of the existence of fast moves in model space for the MCMC compu-
tation.

The methodology is illustrated on the problem of modeling the oscillations
of Cepheid variable stars; these are a class of pulsating variable stars with
the useful property that their periods of variability are strongly correlated
with their absolute luminosity. Once this relationship has been calibrated,
knowledge of the period gives knowledge of the luminosity. This makes these
stars useful as “standard candles” for estimating distances in the universe.

Key words and phrases: Nonparametric regression, wavelets, shrinkage
prior, sparsity, variable selection methods.

1. INTRODUCTION

1.1 Nonparametric Bayesian Shrinkage

Bayesian analysis has long been a major method-
ological vehicle for implementation of shrinkage ideas
in complex scenarios. There are two primary ways
in which such shrinkage is implemented. The first is
through use of prior distributions which shrink the un-
knowns in some fashion—to prespecified locations or
prespecified subspaces, depending on the problem and
type of prior. Thus an unknown normal mean could be
shrunk toward a specified prior mean; a collection of
unknown normal means could be shrunk toward the
hyperplane in which the means are equal; and an un-
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known real function could be shrunk toward the sub-
space of monotonic functions. This is the Bayesian
version of the type of shrinkage originating with Stein
(1956) and James and Stein (1961).

The second major Bayesian vehicle for shrinkage is
Bayesian variable selection, which sets some of the
unknown parameters to zero. This is often an overly
drastic shrinkage, but is certainly not so in the context
of model selection, or in the context of nonparametric
function estimation. In the latter setting, the unknown
parameters that are set to zero are typically coefficients
of basis elements from a basis representation of the
function, and sparsity considerations strongly encour-
age such shrinkage.

Both of these shrinkage concepts are herein utilized
in nonparametric function estimation with dependent
wavelets. The motivating application is to Cepheid
variable stars and is described in the next subsection;
the functions to be estimated can have arbitrary shapes,
but are quite smooth. It is to induce sufficient smooth-
ness that will utilize both types of shrinkage discussed
above.

1.2 The Astronomical Problem

There is a class of stars, called Cepheid variables,
that pulsate with a regular and distinctive periodic sig-

3

http://www.imstat.org/sts/
http://dx.doi.org/10.1214/11-STS384
http://www.imstat.org
mailto:berger@stat.duke.edu
mailto:bill@astro.as.utexas.edu
mailto:pmueller@math.utexas.edu


4 J. BERGER, W. H. JEFFERYS AND P. MÜLLER

nature. The stars actually grow larger and then smaller,
and as a result their luminosities vary periodically
along with their colors. Since there is a physical re-
lationship between the star’s linear diameter, its lumi-
nosity, and its color, there are actually two independent
periodically varying quantities.

A very interesting and useful property of these stars
is that their mean luminosities are highly correlated
with their pulsation period, in that the shorter-period
stars are less luminous than the longer-period ones.
This is very well approximated as a linear relation be-
tween the log of the period and the log of the luminos-
ity. As a consequence, if one knows the slope and inter-
cept of this relationship, and measures the period of a
Cepheid (which is trivial), one can infer the luminosity
with quite high precision. This makes these stars very
useful as “standard candles,” because knowledge of a
star’s luminosity as well as its observed brightness al-
lows us to compute the distance from the inverse square
law. Knowing the distance to the individual Cepheid
also gives us the distance to the galaxy or cluster of
stars in which it is embedded. Thus, these stars are fun-
damental in setting the distance scale of the universe.

The most challenging feature of the problem statis-
tically is that the key photometry and radial velocity
curves for a star are unknown, and have no simple
structure. In Barnes et al. (2003), Fourier polynomials
of finite (but unknown) degree were used to represent
these two curves. For instance, Figure 1 presents the
data concerning the radial velocity of the surface of the
star T Moncerotis, at various phases of the star’s period
(the actual data are indicated by the ×’s) together with
a fifth-order trigonometric polynomial fit to the data.

Because of the possibility of quite arbitrary shapes for
the photometry and velocity curves for Cepheid vari-
able stars, we instead desired to model the curves via
much more flexible wavelet decompositions.

1.3 Computational Implementation

Posterior inference in this setup is formally equiv-
alent to variable selection in a normal linear regres-
sion problem with massively many candidate covari-
ates. Posterior simulation requires averaging and/or se-
lection across alternative models defined by the set
of basis functions (wavelets) which are included in
the model. In the context of normal-linear regres-
sion, common approaches are guided search in the
model space using the Occam’s Window principle
(Madigan and Raftery, 1994; Raftery, Madigan and
Hoeting, 1997); Markov chain Monte Carlo simula-
tion across the model space (George and McCulloch,
1997; Smith and Kohn, 1996); and importance sam-
pling or Gibbs sampling based on analytic approxi-
mations to the marginal posterior distribution on the
model indicator (Clyde, DeSimone and Parmigiani,
1996; Clyde, Parmigiani and Vidakovic, 1998). See,
for example, Clyde (1999), Hoeting et al. (1999) and
Clyde and George (2004) for reviews. In this paper we
introduce a scheme for fast posterior simulation across
the model space, marginalizing over the wavelet co-
efficients. We use a computational strategy similar to
that used by George and McCulloch (1997) and Smith
and Kohn (1996) to allow fast computation of marginal
model probabilities when considering models differing
by only one wavelet basis function.

FIG. 1. The radial velocity data (the ×’s) for T Mon, and their fit to a fifth-order trigonometric polynomial.
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2. WAVELET REPRESENTATION

Wavelet decomposition allows representation of any
square integrable function f (x) as

f (x) = ∑
k∈Z

cJ0kφJ0k(x) + ∑
j≥J0

∑
k∈Z

djkψjk(x).(1)

Here ψjk(x) = 2j/2ψ(2j x − k) and φjk(x) = 2j/2 ·
φ(2j x − k) are wavelets and scaling functions at level
of detail j and shift k. In the context of statistical mod-
eling, (1) allows for inference about random functions
by defining a probability model for the coefficients
θ = (cJ0k, djk, j ≥ J0; k ∈ Z), that is, (1) provides
a parameterization of a random function f in terms of
the wavelet coefficients θ . See, for example, Vidakovic
and Müller (1999) or Ferreira and Lee (2007), Chap-
ter 5, for a review of wavelet representations relevant
for statistical modeling.

Perhaps the most common application of (1) in sta-
tistical modeling is to nonlinear regression where f (x)

represents the unknown mean response E(y|x) for an
observation y with covariate x. Chipman, Kolaczyk
and McCulloch (1997), Clyde, Parmigiani and Vi-
dakovic (1998), Vidakovic (1998), Semadeni, Davison
and Hinkley (2004), Tadesse et al. (2005), Wang and
Wood (2006), ter Braak (2006) and Abramovich, An-
gelini and De Canditiis (2007), among many others,
discuss Bayesian inference in such models assuming
equally spaced data, that is, covariate values xi are
on a regular grid. For equally spaced data the discrete
wavelet transformation is orthogonal. Together with as-
suming independent measurement errors and a priori
independent wavelet coefficients this leads to posterior
independence of the djk . Thus the problem essentially
reduces to a sequence of univariate problems, one for
each wavelet coefficient. See, for example, Yau and
Kohn (1999) for a review. Generalizations of wavelet
techniques to non-equidistant (NES) design impose ad-
ditional conceptual and computational burdens. A rea-
sonable approximation is to bin observations in equally
spaced bins and proceed as in the equally spaced case.
If only few observations are missing to complete an
equally spaced grid, treating these few as missing data
leads to efficient implementations (Antoniadis, Gré-
goire and McKeague, 1994; Cai and Brown, 1998). We
propose instead an approach which does not depend on
posterior independence. Our approach includes infor-
mative dependent priors with positive prior probabili-
ties for vanishing wavelet coefficients.

3. SHRINKAGE OF f (x)

3.1 Shrinkage Toward a Smooth Subspace

Because of the wavelet representation that will be
used, a function space prior can be defined by con-
sidering the function at the discrete points {i/n, i =
1, . . . , n}, where n = 2J . Letting fi = f (i/n), consider
the difference process di = fi − fi−1.

A function space prior that “shrinks toward smooth-
ness” can be defined by imposing positive correla-
tions on the di . Specifically, let d = (d1, . . . , dn), and
define the prior to be p(d) = N(0,�) with �ij =
λ exp(−β|i−j |); that is, we assume a multivariate nor-
mal prior with scale parameter λ and log correlations
proportional to distance.

Let �(11) denote the left upper (n − 1) × (n − 1)

submatrix of � and partition � into

� =
[
�(11) �(12)

�(21) �(22)

]
.

Let v = Var(
∑n

i=1 di) = λ
∑n

i=1
∑n

j=1 exp(−β|i − j |).
Assuming f0 ∼ N(0, λσ 2

0 ) we find

p(f0, . . . , fn−1|f0 = fn) = N(0, λV ),

with V = AH0A
′,

A =

⎡
⎢⎢⎢⎣

1 0 · · · 0
1 1 · · · 0
. . .

1 1 · · · 1

⎤
⎥⎥⎥⎦ ,

H0 =
[
σ 2

0 0
0 H

]
and

H = �(11) − �(12)�
′
(12)/v.

In view of the normalization property, ‖φjk‖ = 1,
scaling coefficients at the highest level of detail J are
approximately proportional to the represented func-
tion, cJk ≈ 2−J/2fk . Therefore the multivariate normal
prior on (f0, . . . , fn−1) implies p(cJ ) = N(0, rJ · λV )

where rJ = 2−J . Following common practice in the
use of wavelet decomposition, we will ignore the pro-
portionality constant rJ and assume

p(cJ ) = N(0, λV ).

As long as we also drop rJ in the reconstruction of
f (x), ignoring the proportionality constant will leave
the final inference unchanged.

The prior p(cJ ) = N(0, λV ) implies a dependent
multivariate normal prior for the vector of all wavelet
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FIG. 2. For β = 0.1, the left panel plots simulations from the prior process on the unknown function conditioning on all wavelet coefficients
included; the right panel shows for comparison prior simulations conditional on setting those coefficients equal to zero which are excluded
by the universal wavelet thresholding rule with

√
2nσ̂ of Donoho and Johnstone (1994).

coefficients d = (cJ0k, djk, j = J0, . . . , J, k = 0, . . . ,

2j − 1)

p(d|γ = 1) = N(0, λ
).(2)

In principle 
 can be found by explicitly computing
the linear operator of the wavelet decomposition. But
from a computational point of view this is unnecessary
and undesirable. Instead Vannucci and Corradi (1999)
show how 
 can be derived from V as a bivariate
wavelet decomposition of V .

3.2 Shrinkage Through Wavelet Sparsity

One of the important advantages of wavelet bases
over alternative bases for L2 functions is the parsi-
mony property of wavelet representations. Reasonably
regular functions are well approximated with only few
nonzero wavelet coefficients. Therefore “shrinkage to-
ward smoothness” can also be induced by setting many
of the wavelet coefficients to be zero. We thus assume
positive prior probability for vanishing wavelet coeffi-
cients.

Let γ = (γ1, . . . , γl) denote the vector of indices
of nonzero wavelet coefficients, that is, djk = 0 iff
(jk) /∈ γ . We define a prior distribution on γ with ge-
ometrically decreasing probability for nonzero wavelet
coefficients in higher levels of detail j :

Pr(djk = 0) = 1 − αj+1.

See, for example, Abramovich, Sapatinas and Silver-
man (1998) for a discussion of the choice of α.

We write θγ for the subvector of nonzero wavelet
coefficients djk , and we use γ = 1 for the full model
which includes all coefficients γ = ((jk), j = J0, . . . ,

J and k = 0, . . . ,2j − 1). The prior p(θγ |γ ) for the
wavelet coefficients under model γ is implied from (2)
by conditioning the multivariate normal on θh = 0,
h /∈ γ . Let � = V −1 and write �(γ ) for the submatrix
with rows and columns (γ1, . . . , γl). Then

p(θγ |γ ) = N
(
0, λ�−1

(γ )

) = N(0, λ
).(3)

We use 
 to generically denote �−1
(γ ), suppressing the

dependence on γ to simplify notation.

3.3 Illustration of the Shrinkage Effects

Figures 2 and 3 demonstrate the “shrinkage toward
smoothness” behavior of the priors in Sections 3.1
and 3.2. The figures give realizations from the pri-
ors specified in the two subsections. Figure 2 utilizes
β = 0.1 from the prior in Section 3.1 and Figure 3 uti-
lizes β = 0.9. The smaller β induces much more de-
pendence, clearly resulting in smoother functions.

The left panel of each figure is generated from use of
only the prior in Section 3.1, that is, all the wavelet co-
efficients are kept. In contrast, the right panels of each
figure show what happens when many of the wavelet
coefficients are set to zero. (For simplicity, these were
produced using a standard wavelet thresholding rule.)
Clearly, setting many wavelet coefficients to zero does
seem to result in considerable additional shrinkage to-
ward smoothness.

4. POSTERIOR SIMULATION

We implement posterior inference using Markov
chain Monte Carlo simulation. Marginalizing over θγ ,
we use the posterior probabilities p(γ |y) to define a
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FIG. 3. Prior simulations as in Figure 2, but using β = 0.9 (very little dependence).

Metropolis–Hastings scheme which proposes moves in
the model space by adding or deleting one wavelet ba-
sis function at a time. The computational effort of the
proposed scheme is comparable to that of George and
McCulloch (1997) and Smith and Kohn (1996), who
suggest schemes based on algorithms by Chambers
(1971) and (1979) which allow fast updating of a
Choleski decomposition of the cross-product matrix
X′X. The algorithms proposed by George and McCul-
loch (1997) and Smith and Kohn (1996) allow compu-
tation of marginal posterior probabilities with O(q2)

basic operations, where q is the number of covariates
(basis functions) included in the model. We describe a
similar efficient updating algorithm in a form suitable
for the wavelet regression problem.

Notation. Let Aij be the element in the ith row and
j th column of a matrix A, with Ai being its ith column
vector. For a vector γ = (γ1, . . . , γl) we denote with
Aγ the submatrix consisting of columns (γ1, . . . , γl),
with A(γ ) the submatrix consisting of columns and
rows (γ1, . . . , γl), and with A(−γ ) the submatrix with
rows and columns γ = (γ1, . . . , γl) removed.

Let xi, yi , i = 1, . . . ,N , denote the observed data.
Let h = 1, . . . ,2J index the wavelet coefficients d =
(cJ0k, djk) and let X denote the design matrix

Xih =
{

ψjk(xi) for h = 2J0 + 1, . . . , n,

φJ0k(xi) for h = 1, . . . ,2J0,

where (jk) are the wavelet indices corresponding to
the hth element in the vector d of wavelet coefficients.

Likelihood. For a given model γ the wavelet decom-
position of the unknown velocity curve f implies a
likelihood

yi |θ, γ
i.i.d.∼ N(Xγ θγ , S), i = 1, . . . ,N,(4)

where S = diag(σ 2
i ) with known variances σ 2

i , i =
1, . . . ,N .

Posterior. Together with prior (3) the likelihood
implies a multivariate normal posterior p(θγ |y, γ ) =
N(μ,) with

−1 = (Xγ )′S−1Xγ︸ ︷︷ ︸
Qγ

+1/λ�(γ ) and

μ =  · (Xγ )′S−1y︸ ︷︷ ︸
vγ

.

Again, to simplify notation we suppress the depen-
dence on γ in μ and .

4.1 Down Move

Assume γ = (γ1, . . . , γl) and consider a move
“down” to the submodel γ ∗ = (γ1, . . . , γl−1). Partition
 into

 =
[
(−l) ̃l

̃′
l ll

]

and similarly μ = (μ(−l),μl). Then

p(θγ ∗ |y, γ ∗) = N(μ∗,∗),

with ∗ = (−l) − ̃l
−1
ll ̃′

l and μ∗ = μ(−l) +
̃−1

ll (−μl). Similarly, 
∗ = 
(−l) − 
̃
−1
ll 
̃′

l .
The corresponding ratio of marginal probabilities is

p(y|γ ∗)
p(y|γ )

=
(

λ
ll

ll

)1/2

e−(1/2)μ2
l /ll .

This expression is easily verified using the candidate
formula p(y|γ ) = p(θγ |γ )p(y|θγ , γ )/p(θγ |y, γ ) and
substituting θγ = 0.
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(a) α = 0.5, β = 0.1 (b) α = 0.5, β = 0.9

(c) α = 0.7, β = 0.1 (d) α = 0.7, β = 0.9

FIG. 4. Posterior inference for T Moncerotis. In all four panels, the thick smooth line shows the posterior mean curve. The gray shaded
margins show central 50% (light gray) and central 90% (dark gray) intervals. The points are the observed data points, with little error bars
showing 2 standard deviations for the measurement error. Panel (a) shows inference under β = 0.1 and α = 0.5. Panels (b) through (d) show
posterior inference using β = 0.9 (b and d) and α = 0.7 (c and d). Fixing β = 0.9 essentially assumes independence of the di and implies
less smoothing; setting α = 0.7 greatly decreases the number of wavelet coefficients set to zero.

4.2 Up Move

Consider a move from γ to γ ∗ = (γ ∗
1 , γ ). Denote

with (μ,) and 
 the posterior and prior moments un-
der the (current) model γ :

p(θγ |γ, y) = N(μ,) and p(θγ |γ ) = N(0, λ
).

Similarly, let (μ∗,∗) and 
∗ denote the posterior and
prior moments under the (proposed) model γ ∗:

p(θγ ∗ |γ ∗, y) = N(μ∗,∗) and

p(θγ ∗ |γ ∗) = N(0, λ
∗).

For posterior simulation we use a lower triangu-
lar Choleski decomposition of the posterior vari-
ance/covariance matrix, T T ′ =  and T ∗′T ∗ = ∗.
The new moments μ∗,∗ and 
∗ and the Choleski
decomposition T ∗ are computed using the following
expressions.
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Let Q∗ = (Xγ ∗
)′S−1Xγ ∗

, �∗ = �(γ ∗), Q = (Xγ )′ ·
S−1Xγ and � = �(γ ) and partition

Q∗ =
[
Q∗

11 Q̃∗′
1

Q̃∗
1 Q

]
and �∗ =

[
�∗

11 �̃∗′
1

�̃∗
1 �

]
.

Let b = Q̃∗
1 + 1/λ�̃∗

1, h = b, c = Q̃∗
11 + 1/λ�∗

11,
b0 = �̃∗

1, h0 = 
�̃∗
1 and c0 = �∗

11. Then

∗ =
[

0 0
0 

]
+ 1

c − b′h

[
1 −h′

−h hh′
]

and


∗ =
[

0 0
0 


]
+ 1

c0 − b′
0h0

[
1 −h′

0
−h0 h0h

′
0

]
,

μ∗ =
(

0
μ

)
+ (c − b′h)∗

1∗′
1 v(γ ∗),

and T ∗ is obtained by augmenting T with a new first

column w = ∗
1/

√
∗

11 to

T ∗ =
[

0
w T

]
.

The corresponding ratio of marginal probabilities is, by
symmetry to the down move,

p(y|γ )

p(y|γ ∗)
=

(
λ
∗

11

∗
11

)1/2

e−(1/2)μ∗2
1 /∗

11 .

5. EXAMPLE

We apply the above methodology to the data for the
star T Moncerotis, as shown in Figure 1, for the choices
β = 0.1 (strong dependence of the di) and α = 0.5 (in-
ducing a moderate level of sparsity). The resulting non-
parametric posterior is difficult to summarize; some
features of this posterior are presented in Figure 4(a).

It is, of course, one of the strengths of the Bayesian
approach to shrinkage that uncertainty in the shrink-
age estimate [the posterior mean of f (x), given by the
thick center line in Figure 4(a)] can also be given. This
is crucial in characterizing the (considerable) uncer-
tainty in the eventual estimate of distance to the star
(see Barnes et al., 2003).

Figure 4 also indicates the effect on the T Moncero-
tis data of each of the shrinkage priors in Sections 3.1
and 3.2. Panel (b) shows the effect of the prior in Sec-
tion 3.1; setting β = 0.9 effectively makes the di inde-
pendent. Panel (c) shows the effect of the prior in Sec-
tion 3.2; setting α = 0.7 greatly decreases the number
of wavelet coefficients set to zero. In both cases, the
posterior functions appear to be unreasonably rough
and the uncertainty in the shrinkage estimate appears
to be unreasonably large. Panel (d), which effectively
uses neither of the shrinkage techniques, is especially
unsatisfactory.
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