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1. INTRODUCTION

Very sincere thanks to the discussants for choosing to
enter a virtual minefield of disagreement in the devel-
opment history of statistics. For we just need to recall
the remark that fiducial is Fisher’s “biggest blunder”
and place it alongside the fact that fiducial was the ini-
tial step toward confidence, which arguably is the most
substantive ingredient in modern model-based theory:
the two differ in minor developmental detail, with fidu-
cial offering a probability distribution as does Bayes
and with confidence offering just probabilities for in-
tervals and special regions. Statistics has spent far more
time attacking incremental steps than it has seeking in-
sightful resolutions.

As a modern discipline statistics has inherited two
prominent approaches to the analysis of models with
data; of course such is not all of statistics but is a
critical portion that influences the discipline widely.
How can a discipline, central to science and to criti-
cal thinking, have two methodologies, two logics, two
approaches that frequently give substantially different
answers to the same problems. Any astute person from
outside would say, “Why don’t they put their house in
order?” And any serious mathematician would surely
ask how you could use a lemma with one premise
missing by making up an ingredient and thinking that
the conclusions of the lemma were still available. Of
course, the two approaches have been around since
1763 and 1930 with regular disagreement and yet no
sense of urgency to clarify the conflicts. And now even
a tired discipline can just ask, “Who wants to face those
old questions?”: a fully understandable reaction! But is
complacency in the face of contradiction acceptable for
a central discipline of science?

A statistical model differs from a deterministic
model in having added probability structure that de-
scribes the variability typically present in most appli-
cations. So, in an application with a statistical model
and related data it would then seem quite natural that
that variability would enter the conclusions concerning
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the unknowns in an application: what do I know deter-
ministically, and what do I know probabilistically?

And that is what Bayes proposed in 1763: probability
statements concerning the unknowns of an investiga-
tion. Many have had doubts and said there was no merit
in the proposal; and many have acceded and became
strong believers. And then Fisher (1930) also offered
probabilities concerning the unknowns of an investi-
gation, but by a different argument, and the turf fight
began! Bayes had hesitantly examined a special prob-
lem and added a random generator for the unknown
parameter, and Fisher had worked more generally and
used just the randomness that had generated the data
itself.

But then a third person, Lindley (1958), from the
same country said that the second person, Fisher,
couldn’t use the term probability for the unknowns in
an investigation, as the term was already taken by the
first person, Bayes. And strangely the discipline com-
plied! Decades went by and anecdotes were traded and
things were often vitriolic.

2. WHAT DOES THE ORACLE SAY?

Consider some regular statistical model f (y; θ), to-
gether with a lower β-confidence bound θ̂β(y), and
also a lower β-posterior bound θ̃ (y) based on a prior
π(θ): What does the oracle see concerning the usage
of these bounds? He can investigate any long sequence
of usages of the model, and He would have available
the data values yi and of course the preceding param-
eter values θi that produced the yi values; He would
thus have access to {(θi, yi) : i = 1,2, . . .}.

First consider the lower confidence bound. The or-
acle knows whether or not the θi is in the confidence
interval (θ̂β(yi),∞), and He can examine the long-
run proportion of true statements among the assertions
that θi is in the confidence interval (θ̂β(yi),∞), and He
can see whether the confidence claim of a β-proportion
true is correct. In agreement with the mathematics of
confidence, that proportion is just β .

Now consider the lower posterior bound. The or-
acle knows whether θi is in the posterior interval
(θ̃β(yi),∞), and He can examine the long-run pro-
portion of true statements that θi is in the posterior
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interval (θ̃β(yi),∞). Now suppose the long-run pat-
tern of θi values just happened to correspond to the
pattern π(θ); then in full agreement with the mathe-
matics of the Bayes calculation, the Oracle would see
that long-run proportion of true statements among as-
sertions that θi is in the posterior interval (θ̃β(yi),∞)

was correct, was just the stated β .
But what if the long-run pattern of θi values was dif-

ferent from the introduced π(θ) pattern? Then in wide
generality the long-run proportion of true statements
among assertions that θi is in the posterior interval
(θ̃β(yi),∞) would not be β! In other words, the con-
fidence procedure is always right, and the Bayes pro-
cedure is typically wrong, unless the prior was guessed
correctly. Seems like a poor trade-off!

Now consider further what a prior actually does in
producing parameter bounds or quantiles that are dif-
ferent from the confidence bound. From an asymptotic
viewpoint a prior can be expanded as exp(aθ/n1/2 +
cθ2/n) to the third order, as mentioned but not pur-
sued in Section 6(iv). This provides a direct displace-
ment of the confidence bound in standardized units and
produces an O(1)-shift away from the claimed β value,
either up or down depending on the sign of a! Hardly
an argument for using the Bayes procedure unless there
was some very urgent need for a quick and dirty calcu-
lation.

3. RESPONSE TO THE DISCUSSANTS

Christian Robert

Christian presents a very committed Bayes view-
point and quite correctly admonishes me for not dis-
tinguishing what Thomas Bayes did and what has
followed in the same theme. But going beyond the mi-
nor detail, Bayes added a distribution for a parame-
ter, a distribution that was not part of the binomial
example under consideration and then used that dis-
tribution for probability analysis. And much of mod-
ern Bayesian statistics does precisely that: introduces
an artifact distribution for expediency or convenience
and then works reassuringly within accepted probabil-
ity calculus. Indeed, this is the primary theme of the
article: adding something arbitrary gives something ar-
bitrary no matter how attractive the material labeled
probability might or might not be, or no matter what
might be available by other methods of analysis. If one
faces a probability-type claim, it is fair enough to sim-
ulate and evaluate the claim, and that is what coverage
probability is all about, as the invincible Oracle well
knows.

The marginalization paradoxes do appear in the liter-
ature but are widely neglected and not “extensively dis-
cussed” as Christian suggests. They apply to any pro-
posal for a distribution to describe an unknown vector
parameter, whether obtained by the Bayes inversion of
a density or the frequentist inversion of a pivot, such as
fiducial, confidence structural or other. There is an im-
mutable contradiction built into the hope to describe a
vector parameter by a distribution. Curvature of an in-
terest parameter has emerged as the critical source for
this contradiction. Take a bivariate parameter, a data
point and an interest parameter value: if the parameter
is linear, the confidence and the Bayes values are equal;
if then parameter curvature is introduced, we have that
the confidence value and the Bayes value change in op-
posite directions! One has the coverage property and
the “other” acquires bias at twice the rate of the de-
parture from linearity. And the “other” uses the name
probability with an assertiveness coming from the use
of the probability calculus, conveniently overlooking
that an artifact was introduced in place of the input
needed for the validity of the probability calculus for
the application.

Maybe it is time to address the Pandora’s box and
check for a Madoff pyramid: too good to be true.

Larry Wasserman

Larry presents a pragmatic view of the Bayes ap-
proach, acknowledging its rich flexibility but recom-
mending coverage cautions. His five examples are most
welcome concerning the wider spheres of application
and he is to be complemented on the skillful innova-
tions. I do quarrel, however, with his reinforcement of
personality cults in statistics. It seems that statistics has
suffered greatly from this externalization of the scien-
tific method, as if there were different flavors of sci-
entific thinking and mathematical logic and that these
might gain concreteness when personalized.

Kesar Singh and Minge Xie

Confidence for estimation and exploration? It is
deeply unfortunate that statistics chooses at many steps
to malign its major innovators, for example, Fisher
with his “biggest blunder” as a referent for the initia-
tive that gave us confidence. What Fisher didn’t do was
present his major innovations in a fully packaged form
ready to withstand a few centuries of challenges and
modification: What? We still have to do a little bit of
thinking! Tough! He clearly must generously have ex-
pected others to have his insight and wisdom!
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Fiducial, confidence, structural or other? It is just
pivot inversion with variation in context, conditions or
interpretation: the big risk was described by Dawid,
Stone and Zidek (1973) and curvature is now identi-
fied as the prime cause. To have different names to fine
tune for different applications or different explorations
would seem to take emphasis away from the proper cal-
ibration of the tool, as the primary concern for most
applications.

Statistics routinely combines likelihoods as appro-
priate, so it is not correct to attribute this to Bayesian
learning; perhaps the central sectors of statistics were
just slow to glamorize the good things in their statisti-
cal modeling. Putting a prior on a likelihood is a dif-
ferent operation downstream from assembling the like-
lihood in the relevant broader context, although it does
seem convenient for the Bayes approach to co-opt it
as their own contribution when it was somewhat ne-
glected by the “others.”

Tong Zhang

Where does the pivot come from? Fisher’s de-
velopment of confidence or whatever attracted the
mathematicians’ criticisms, mostly because it wasn’t
proposed in a fully developed form. It was then shred-
ded, fully ignoring the emerging recognition of its
innovative genius. Certainly the need to clarify the ori-
gin of the key ingredient, “the pivot,” is of fundamen-
tal importance, as Tong suggests: using all the data in
an appropriately balanced way, respecting continuity
and parameter direction from data, and more. Whether
these should be bundled under a term optimality may
be questionable, but doesn’t diminish the importance
of the individual criteria; for some recent emphasis on
continuity see Fraser, Fraser and Staicu (2010).

4. SOME CONCLUDING INVOCATIVE REMARKS

An inference distribution for a vector parameter is
inherently a contradiction. Information from two dif-
ferent sources can be reported separately, with com-
bination not by principle. Combining likelihoods is a

consequence of combining models, typically follow-
ing from independence; the Bayes claim that it comes
from the use of the Bayes argument is after the fact and
disingenuous. Inverting a density and inverting a pivot
are different except in the linear case, but the first can
sometimes approximate the second.

The question was asked: “Is Bayes posterior just
quick and dirty confidence?” And the case was made
for “Yes”: Bayes posterior is just quick and dirty confi-
dence: quick in the sense of easier than using quantiles
to determine how θ affects data; and approximate in
the sense of a wide spread need to use approximation
methods.

Not everyone liked the blunt question. One discus-
sion expresses discomfort with such a direct confronta-
tion to the Bayes approach; one discussion adds addi-
tional support examples; and the two remaining dis-
cussions speak more to methods and modifications of
confidence distributions, overlooking the risks. But no
one argued that the use of the conditional probability
lemma with an imaginary input had powers beyond
confidence, supernatural powers.
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