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Claudio Fuentes and George Casella

We congratulate Morris and Tang for an interesting
addition to empirical Bayes methods, and for tackling
a difficult and nagging problem in variance estimation.
The ADM adjustment appears to bring on interesting
properties, not just in variance estimation but also in
estimation of the means. In this discussion we want to
focus on the latter topic, and see how the ADM-derived
estimators of a normal mean perform in a decision-
theoretic way. To facilitate this we will stay with the
simple model

yi |θi ∼ N(θi,V ), θi ∼ N(0,A).(1)

1. THE JAMES–STEIN ESTIMATOR AS
GENERALIZED BAYES (NOT!)

We first address the comment of Morris and Tang in
Section 2.5, that the prior A ∼ Unif(0,∞) is strongly
suggested because the James–Stein estimator is the
posterior mean if we take A ∼ Unif(−V,∞). Profes-
sor Morris has noted this before, and in the interest of
understanding, we want to show this calculation and
comment on its relevance.

Writing y = (y1, . . . , yk) and θ = (θ1, . . . , θk), the
posterior expected loss from model (1), with the A ∼
Unif(−V,∞) prior, is∫ ∞

−V

∫
�p

|θ − δ(y)|2
(2)

· e−|y−θ |2/(2V )

(2πV )k/2

e−|θ |2/(2A)

(2πA)k/2 dθ dA,

and factoring the exponent in (2) and writing B =
V/(V + A) shows that

θ |y,A ∼ N
(
(1 − B)y,V (1 − B)

)
,
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A|y ∼
(

1

V + A

)k/2

e−(1/(2(V +A)))|y|2 .

The Bayes rules is the posterior mean, which we can
calculate as

E(θ |y) = E[E(θ |y,A)]
= E[(1 − B)y|y] = [1 − E(B|y)]y.

We now, very carefully, calculate E(B|y), yielding

E(B|y) ∝
∫ ∞
−V

(
V

V + A

)(
1

V + A

)k/2

· e−(1/(2(V +A)))|y|2 dA

= V

∫ ∞
1/V

tk/2−1e−t |y|2/2 dt

+ V

∫ 1/V

0
tk/2−1e−t |y|2/2 dt,

where we make the transformation t = 1/(V +A), with
the first integral coming from A ∈ (−V,0). Noting that
the integrand is the kernel of a chi-squared density, we
finally have

E(B|y) ∝ V �(k/2)2k/2

(|y|2)k/2 [P(χ2
k ≥ |y|2/V )

(3)
+ P(χ2

k ≤ |y|2/V )],
where χ2

k is a chi-squared random variable with k

degrees of freedom. Since the chi-squared probabili-
ties sum to 1, normalizing this expectation (dividing

by �(k/2−1)2k/2−1

(|y|2)k/2−1 ) results in E(B|y) = V (k − 2)/|y|2,
yielding the James–Stein estimator. There are a num-
ber of things to note:

1. If this were a valid calculation, it would contra-
dict such important papers as Brown (1971) and Straw-
derman and Cohen (1971), which provided complete
characterizations of admissible generalized Bayes esti-
mators.
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2. In fact, Strawderman and Cohen [(1971), Sec-
tion 4.5], explicitly tell us that the James–Stein esti-
mator cannot be generalized Bayes.

3. In fact, the calculation leading to E(B|y) =
V (k − 2)/|y|2 is invalid. To see this note that, starting
from (1), with A ∼ U(−V,∞), the prior on θ is

∫ ∞
−V

e−|θ |2/(2A)

(2πA)k/2 dA,

and, even if we take k to be even to avoid complex in-
tegration, it is straightforward to verify that the integral
over (−V,0) is infinite.

What does this tell us about the James–Stein estima-
tor? The “bad” part of the integral, which leads to the
piece in (3) corresponding to P(χ2

k ≥ |y|2/V ), is to be
avoided. We can informally interpret this as pointing to
the region where |y|2/V is small, resulting in shrink-
age factors that could be greater than 1 (in absolute
value), and result in the James–Stein estimator both
changing the sign and expanding y. When we lop off
this part, we are led to estimators such as the positive-
part James–Stein estimator, or admissible estimators,
like those based on (32) in Morris and Tang.

2. MINIMAXITY OF ADM

The lesson from the previous section is to avoid es-
timators that do not control the shrinker to be between
0 and 1. So we turn to ADM and ask if it can do this.
We find, interestingly, that the ADM approach will, al-
most automatically, give us a minimax estimator and,
moreover, it controls the shrinker.

Typically, minimax estimators have been constructed
using empirical Bayes arguments and a bit of customiz-
ing, or using formal Bayes derivations with priors like
A ∼ Unif(0,∞). The derivation of Morris and Tang in
Section 2.7 is a straightforward differentiation, and we
can apply the following theorem. [This is Theorem 5.5,
Chapter 5, Lehmann and Casella (1998), and can be
traced back to Baranchik (1970).]

THEOREM 1. Under model (1), the estimator

δ(y) =
(

1 − Vg(|y|)
|y|2

)
y

is minimax under the loss |θ − δ(y)|2 if

1. the function g(|y|) is nondecreasing,
2. 0 ≤ g(|y|) ≤ 2(k − 2).

In the notation of Morris and Tang, we are consid-
ering the case r = 0, and writing T = |y|2/(2V ), the
ADM shrinkage factor is

B̂ = 1

T

[
2(m − c + 1)T

T + m + 1 + √
(T − m − 1)2 + 4cT

]
.(4)

Morris and Tang note that B̂ is monotone decreasing
in T , but for minimaxity we need the function in square
brackets, which corresponds to g(·) of the theorem, to
be nondecreasing. As T → ∞, the function converges
to m − c + 1. If this is the maximum, and is less than
2(k − 2), then the estimator will be minimax. In fact, it
is straightforward (but tedious) to show that the deriva-
tive of the function in square brackets is always non-
negative, so the function is nondecreasing and the esti-
mator is minimax. For c = 1 the bound can be satisfied
by taking m = (k − 2)/2, for k ≥ 3.

Unfortunately, this is as far as we can go. The es-
timator based on (4), which is reminiscent of a ridge
regression estimator, cannot be admissible. Again we
can trace this back to Strawderman and Cohen (1971),
and also Berger and Srinivasan (1978). The problem is
that (being a bit informal here) admissible estimators
must be analytic in the complex plane which is not the
case with those based on (4).

Lastly, we wanted to see the risk performance of
ADM. Morris and Tang set m = (k − 2)/2, but there
is actually a range of values of m for which the estima-
tor is minimax. To clarify, denote (k − 2)/2 = m∗, the
Morris and Tang choice, and consider the m in (4) to be
a variable. Then, for c = 1 the estimator is minimax for
all m ≤ 2(k − 2). In Figure 1 we see, in the left panel,
the risk of five ADM estimators, along with the risk of
the James–Stein estimator for comparison. There we
see that the choice of m completely orders the ADM
risk, with m∗ = (k − 2)/2 being the best choice, result-
ing in an estimator with risk similar to that of James–
Stein. In the right panel we compare the ADM estima-
tor, with m∗ = (k −2)/2, to the James–Stein estimator,
its positive-part version, and the admissible estimator
with B given in (32). There we see that ADM compares
favorably with the James–Stein estimator, is uniformly
dominated in risk by the admissible estimator, but not
by the positive-part estimator, whose risk crosses that
of ADM for large |θ |.

3. IS ADM AUTOMATIC?

The automatic appearance of the ADM minimax es-
timator gives support to the claim of Morris and Tang
that “ADM maintains the spirit of MLE while making
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FIG. 1. For dimension k = 10, the left panel shows the risk of the James–Stein estimator (dashed line) and five ADM estimators (solid
lines), for m = (k − 2)/2, (k − 2)/4, (k − 2)/6, (k − 2)/8, (k − 2)/10. The risk function increases uniformly as the denominator increases,
so m∗ = (k − 2)/2 gives the smallest risk. The right panel shows the risk of the ADM estimator with m∗ = (k − 2)/2 (solid), the James–Stein
estimator (dashed), the positive-part estimator (dotted), and the admissible estimator with B of (32) (dash-dot).

small sample improvements.” In fact, examination of
the ADM shrinker B , and its risk functions, shows that
“automatic” ADM produces an estimator that does not
shrink as strongly as either the admissible estimator or
the positive-part and, hence, can have smaller risk for
larger values of the norm of θ . It is not clear to us that
such small sample properties as minimaxity will con-
tinue to hold for other models, for example for the es-
timation of a Poisson mean, where many similar mini-
maxity results hold. However, the results of Morris and
Tang are encouraging and certainly deserve further in-
vestigation.
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