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Discussion of “Objective Priors:
An Introduction for Frequentists”
by M. Ghosh
Trevor Sweeting

The paper by Ghosh provides a useful introduction
to the main ideas underlying objective priors and how
these ideas might profitably be used by frequentist
statisticians, both at a theoretical and practical level.
The aspects likely to be of most interest to this group
of statisticians are those concerning probability match-
ing, allowing valid frequentist procedures to be derived
via a formal Bayesian analysis. But they should also be
interested in priors that arise from decision-theoretic
considerations, not least since the consideration of risk
criteria, such as mean squared error for estimation or
operating characteristic function for testing, is ubiqui-
tous in the frequentist approach. As pointed out by the
author, at a theoretical level the shrinkage argument,
which I have also used extensively in the past, provides
a neat way of deriving frequentist asymptotic results.

My discussion will focus on an examination of the
main criteria that have been used to obtain objective
priors and, partly related to this, the extent to which
the theory and practical application can be extended
to more complex scenarios. Before launching into this
I would just like to comment on the commonly used
term “objective” in the present context. As soon be-
comes apparent in this field, there is an array of pos-
sible criteria available for the development of objec-
tive priors, some of which depend on a specific choice
of parameterization, and there may be no unique solu-
tion even for a given criterion. Thus the choice quickly
ceases to be purely objective. My own preference is to
use the term “nonsubjective,” which indicates that the
prior is detached from subjective beliefs about param-
eters but which does not impart such a strong sense of
broad agreement as to what the prior should be in any
particular case.
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1. COMPARISON OF CRITERIA

First, a general point about alternative criteria for the
development of objective priors. I have a strong prefer-
ence for criteria that would lead to the use of properly
calibrated subjective priors whenever they are avail-
able, so that the consideration of objective priors in
some sense generalizes a property of a fully subjective
Bayesian approach. In a sense this is true of probabil-
ity matching since this leads to (approximately) correct
coverage of posterior regions in hypothetical repeated
sampling. This in turn implies that these regions will
also be calibrated over repeated use, as would automat-
ically be the case if a properly elicited subjective prior
were to be used. The same cannot be said for moment
matching in the sense described in Section 5.2; there
seems nothing in this criterion that would lead one to
use a subjective prior when available.

Similarly, consideration of a proper scoring rule in
a decision-theoretic approach would indicate the use of
an elicited subjective prior whenever one is available.
As a consequence, I would be uneasy using a decision-
theoretic criterion that was not based on a proper scor-
ing rule. For example, it does seem surprising that,
even in the scalar parameter case, Jeffreys’ prior turns
out not to be optimal under the distance measure (3.13)
with β = −1. The problem is that, unlike the Bernardo
criterion that arises when β = 0 (see later), none of
these distance measures corresponds to an average re-
gret based on some primitive loss function that pro-
duces a (negative) score when data x are observed and
a prior predictive distribution π(x) is adopted. So there
seems to be no obvious sense in which we would re-
cover a subjective prior distribution whenever one is
available.

Although there is some reference to predictive prob-
ability matching in Sections 5 and 6, the paper is
largely a review of objective priors obtained via para-
metric criteria, which usually require a focus on one
or more specified parameters of interest. This has cer-
tainly been the most popular area of study and, as
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a technical device for obtaining frequentist procedures,
it performs a useful function. However, the focus on
parameters is a cause for concern for many Bayesian
statisticians. Such approaches normally require a spe-
cific choice of parameters of interest, such as in quan-
tile probability matching or the construction of group
reference priors. The idea that an analysis should be
redone when the spotlight turns to alternative sets of
parameters is disturbing. In particular, in complex real-
world applications there will potentially be many para-
metric functions of interest. An alternative to quantile
matching is higher-order matching for highest poste-
rior density or other regions, which may not require
a specific choice of interest parameters. However, there
is an infinite variety of ways in which a region can be
chosen. Indeed, in the scalar parameter case, given any
prior it is possible to choose the region in such a way
that higher-order matching is achieved (Severini, 1993;
Sweeting, 1999).

An alternative approach is to study the behavior of
predictive distributions. This is appealing as the pa-
rameterization then becomes irrelevant. Just as in the
parametric case one can consider predictive probability
matching (Datta, Ghosh and Mukerjee, 2000; Severini,
Mukerjee and Ghosh, 2002) and predictive risk (Ko-
maki, 1996; Sweeting, Datta and Ghosh, 2006), and
Ghosh has contributed to both of these areas. In the
former case the criterion (4.23) is replaced by the fol-
lowing. Let Y be a future observation from the model
and let y(π,α) denote the (1 − α)-quantile of the pre-
dictive distribution of Y based on the prior π . If it is
also the case that

pr{Y > y(π,α)|θ} = α + O(n−r ),

then we have predictive probability matching; typi-
cally r will be 2 here. In the latter case we can consider
the regret when the prior π is adopted and θ is the true
parameter value. Adopting the logarithmic scoring rule
− logπ(y|x), which is the unique local proper scoring
rule, this has the general form

dY |X(θ,π) = Eθ

[
log

{
f (Y |X,θ)

π(Y |X)

}]
.(1)

Priors that attempt to control this risk might be consid-
ered to be more ‘general purpose’ than priors that re-
quire the specification of certain parametric functions.

Having used a sensible broad criterion to obtain
a prior, one could then go on to investigate its paramet-
ric properties. For example, there may be more than
one prior that produces the same (low) predictive risk
and the choice between these priors might be made on

the basis of a particular interest parameterization. In
Examples 1 and 2 of the paper the right Haar prior
π(μ,σ) ∝ σ−1 is exactly predictive probability match-
ing and also arises as a minimax prior under (1) (Liang
and Barron, 2004). We can then see that, for example,
it is exactly probability matching when the interest pa-
rameter is μ or σ and second-order probability match-
ing when θ = μ/σ is the interest parameter, as shown
in Example 2 (continued).

It is instructive to compare the above predictive risk
criterion with the basic reference prior approach of
Bernardo (1979, 2005). The reference prior criterion in
Section 3.1 is maximization of the Kullback–Leibler
divergence between the prior and posterior distribu-
tions. As shown by Clarke and Barron (1994), this is
equivalent to finding the minimax solution under the
regret

dX(θ,π) = Eθ

[
log

{
f (X|θ)

π(X)

}]
.(2)

Note that (2) is based on the proper scoring rule
− logπ(x). This may be contrasted with (1), which is
based on the proper scoring rule − logπ(y|x), as sug-
gested by Geisser in his discussion of Bernardo (1979).
The former is based on scoring the prior predictive
distribution, which is arguably less relevant than the
posterior predictive distribution on which the latter is
based. We are not so much interested in predicting
the data already observed as new data yet to be ob-
served. This distinction is reminiscent of model fitting,
where it is the fit to as yet unobserved data that is more
relevant than the fit to observed data. Note also that
working in terms of the posterior predictive distribution
avoids problems of impropriety of the prior, requiring
only that π(x) < ∞. Thus, to continue the discussion
of Example 1 in the paper, in contrast to the predictive
criterion (1), Jeffreys’ prior emerges as the minimax
solution under (2), whereas it is inadmissible under (1).

In more complex examples (1) involves a compli-
cated function that includes components of skewness
and curvature of the model. However, it is argued in
Sweeting, Datta and Ghosh (2006) that it is more ap-
propriate to consider the regret

dY |X(τ,π) = E
[
log

{
τ(Y |X)

π(Y |X)

}]
,(3)

where the expectation is taken over the joint distribu-
tion of X and Y under the prior τ . This is because
we are not so much interested in comparing the per-
formance of π with that in a lower-dimensional sub-
model at a fixed parameter value as comparing its per-
formance with that of other nondegenerate prior dis-
tributions for the current model. Moreover, when an
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elicited prior τ is available criterion (3) will lead us
to use this prior. An asymptotic analysis of (3) and the
adoption of a minimax criterion, for example, produces
sensible priors in specific examples. Another appealing
aspect is that the asymptotic predictive criterion does
not depend on the amount of prediction.

2. MORE COMPLEX MODELS

Some of the most important and challenging ap-
plications of the day, such as environmental science,
biomedicine, neuroscience and genomics, demand
large, sophisticated and often high-dimensional mod-
els. The results in Section 4 of the paper on first- and
second-order matching priors are mathematically at-
tractive, but there is clearly a need to explore the ex-
tent to which these results can be profitably used in
more complex models. As the author points out in Sec-
tion 6, objective priors have been successfully devel-
oped for a number of more complex problems. How-
ever, there remains a need for semi-automated proce-
dures so that suitable “safe” default priors can be devel-
oped rapidly for arbitrary model structures. Major diffi-
culties include the difficulty or impossibility of obtain-
ing a closed form expression for Fisher’s information
and, even if this is possible, of solving the required par-
tial differential equations. Levine and Casella (2003)
proposed an algorithm for the implementation of prob-
ability matching priors for a single interest parameter
in the presence of a single nuisance parameter. How-
ever, the implementation requires a substantial amount
of computing time. An alternative approach is outlined
in Sweeting (2005), where it is shown that suitable
data-dependent priors can be developed in some cases.
Staicu and Reid (2008) proposed an elegant analytic
solution based on higher-order approximation of the
marginal posterior distribution. It seems to me, how-
ever, that some form of data-driven approach will be
the only viable way to extend probability matching
ideas to general frameworks.

Apart from computational difficulties, the major the-
oretical difficulty of all the approaches to objective
prior construction that rely on sample size asymp-
totics is the potential breakdown of the theory in high-
dimensional parameter spaces. In some cases it may
be possible to identify directions in the parameter
space about which the data are relatively uninforma-
tive. This can be conveniently explored, for example,
via an eigenanalysis of the observed information ma-
trix. Although the model is high-dimensional, most
of the variation of the likelihood may take place on

a lower-dimensional manifold of the parameter space.
This means, of course, that the model is close to being
non-identifiable, which causes difficulties if the param-
eters themselves are of direct interest. However, this
may be amenable to analysis using a predictive ap-
proach. If a parameter only enters weakly in the model,
then the predictive distribution should not depend criti-
cally on the prior chosen for that parameter and asymp-
totic theory should apply in such cases.

Although versions of probability matching priors
and reference priors in nonregular cases have been in-
vestigated by Ghosal (1997, 1999) and Berger, Ber-
nardo and Sun (2009), it will be a major challenge to
develop multidimensional priors in an automatic way
when some aspects of the model are regular and others
nonregular.

I suspect that the application of objective priors for
high-dimensional problems will be of greater inter-
est to Bayesian than to frequentist statisticians. Given
the difficulties of deriving such priors in these cases,
the frequentist may well abandon this route and ex-
plore alternative simulation-based approaches. On the
other hand, a suitable high-dimensional prior is essen-
tial for the Bayesian statistician to operate at all. Yet
the greater the dimension of the model the less likely it
is that reliable prior information will be available on all
the parameters, let alone on their mutual dependencies.
Furthermore, as noted earlier, it is less likely that there
will be just one or two parameters of interest, so I be-
lieve that the quest will focus more on the identification
of safe, general purpose priors that allow the inclusion
of subjective information when available, rather than
on priors tailored to specific parameters. If this am-
bition is realized, then the resulting priors should be
thought of as no more than “reference” priors, in the
broad sense of the word, and should not replace the
need for sensitivity analysis.

3. SOME OTHER DIFFICULTIES

Many Bayesian statisticians remain sceptical about
the need for objective priors to represent ignorance and
a common practice is to utilize proper but diffuse pri-
ors instead. However, care has to be taken that the tail
behavior of such priors is not too thin, otherwise the
prior may have the unexpected effect of dominating the
likelihood. Consider a random sample from N(μ,σ 2).
Suppose that μ and σ 2 are taken to be a priori inde-
pendent with normal and inverse Gamma distributions,
respectively. How diffuse should these distributions
be and how sensitive are the results to these choices?
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Specifically, suppose that Xi ∼ N(μ,φ−1), where φ

is the precision parameter, and μ,φ are a priori in-
dependent with μ ∼ N(0, c−1), φ ∼ Gamma(a, b).
Suppose we observe data 529.0,530.0,532.0,533.1,

533.4,533.6,533.7,534.1,534.8,535.3. Take a = b =
c = ε. What is the effect of the choice of ε? The value
c = 0.001 is not small enough: the “noninformative
prior” dominates the likelihood and the mean of the
marginal posterior of μ is close to zero. Effectively,
this happens because the normal tail of the prior for μ

is thinner than the Student t-tail of the integrated likeli-
hood of μ. The value c = 0.0002 is also not sufficiently
small, although if a Gibbs sampler starting near the
sample values is run, then it will not detect the prob-
lem at all until after a large number of iterations and it
will appear from trace plots as if the sampler has con-
verged. A value of c less than 0.0001 is needed for the
likelihood to dominate the prior. If we run into such
problems in simple models like this, then there has
to be a great deal of concern for higher-dimensional
models. So objective priors do matter; it is virtually
impossible to reliably elicit a high-dimensional prior
distribution and there are pitfalls associated with using
vague but proper priors.

Yet another difficulty arises when the likelihood does
not tend to zero at the boundary of the parameter space.
In that case an improper prior may lead to an improper
posterior, forcing the use of a proper prior. The objec-
tive selection of such a prior is likely to be problematic.
An example is the dispersion parameter in a Dirichlet
process mixture model. Some authors simply set the
hyperparameters in a Gamma prior to be very small,
but clearly this requires great care as we know that in
the limit we will obtain an improper posterior.

4. CONCLUDING REMARKS

I do think that frequentist interest in Bayesian statis-
tics should be rather more than simply its potential
use as a device to obtain valid frequentist procedures.
When there is some concern about the priors adopted,
Bayesians will often “look over their shoulder” at fre-
quentist properties, if only to check that the prior is not
producing some anomalous behavior (cf. Example 3
in the paper). Likewise, frequentist statisticians should
find it useful to do the same, possibly to provide an in-
dication that they are not falling seriously foul of the
conditionality principle, or possibly to see to what ex-
tent their confidence statements have direct probability

interpretations. Finally, I would like to thank the author
for his interesting review of this area and for stimulat-
ing me to think a little more about the basis for the
construction of objective priors and the challenges that
confront this field of research.
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