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We consider a standard splitting algorithm for the rare-event sim-
ulation of overflow probabilities in any subset of stations in a Jackson
network at level n, starting at a fixed initial position. It was shown
in [8] that a subsolution to the Isaacs equation guarantees that a
subexponential number of function evaluations (in n) suffices to es-
timate such overflow probabilities within a given relative accuracy.
Our analysis here shows that in fact O(n2βV +1) function evaluations
suffice to achieve a given relative precision, where βV is the number
of bottleneck stations in the subset of stations under consideration
in the network. This is the first rigorous analysis that favorably com-
pares splitting against directly computing the overflow probability of
interest, which can be evaluated by solving a linear system of equa-
tions with O(nd) variables.

1. Introduction. The development of rare-event simulation algorithms
for overflow probabilities in stable open Jackson networks has been the sub-
ject of a substantial amount of papers in the literature during the last
decades (see Section 2 for the specification of an open Jackson network).
A couple of early references on the subject are [22] and [1]. Subsequent work
which has also been very influential in the development of efficient algorithms
for overflows of Jackson networks include [24, 13, 14, 18, 16, 10, 21, 12] and
[8]. The survey papers of [17] and [7] provide additional references on this
topic.

The two most popular approaches that are applied to the construction
of efficient rare-event simulation algorithms are importance sampling and
splitting (see [3]). Importance sampling involves simulating the system under
consideration (in our case the Jackson network) according to a different set
of probabilities in order to induce the occurrence of the rare event. Then, one
attaches a weight to each simulation corresponding to the likelihood ratio
of the observed outcome relative to the nominal/original distribution. In
splitting, on the other hand, there is no attempt to bias the behavior of the
system. Instead, the rare event of interest (in our case overflow in a Jackson
network) is decomposed into a sequence of nested “milestone” events whose
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subsequent occurrence is not rare. The rare event occurs when the last of the
milestone events occurs. The idea is to keep splitting the particles as they
reach subsequent milestones. Of course, each particle is associated with a
weight corresponding to the total number of times it has split, so that the
overall estimation (which is the sum of the weights corresponding to the
particles that make it to the last milestone) provides an unbiased estimator
of the probability of interest.

The most popular performance measure for efficiency analysis of rare-
event simulation algorithms for Jackson networks corresponds to that of
“asymptotic optimality” or “weak efficiency”. In order to both explain the
computational complexity implied by this notion and to put in perspective
our contributions let us discuss the class of problems we are interested in:
Starting from any fixed state, we consider the problem of computing the
probability that the total number of customers in any fixed set of stations in
the network reaches level n prior to reaching the origin. In other words, we
consider the probability that the sum of the queue lengths in any given subset
of stations reaches level n within a busy period. The number of stations in
the whole network is assumed to be d and the number of bottleneck stations
(i.e. stations with the maximum traffic intensity in equilibrium) is β.

Weak efficiency guarantees that a subexponential number of replications
(as a function of the overflow level, say n) suffices for computing the un-
derlying overflow probability of interest within a given relative accuracy.
In contrast, as we shall explain in Section 2, overflow probabilities in the
setting of Jackson networks can be computed by solving a linear system of
equations with O(nd)1 unknowns. It is well known that Gaussian elimina-
tion then requires O(n3d) operations (additions and multiplications) to find
the exact solution. Moreover, since in our case the associated linear system
has some sparsity properties the linear equations can be solved in at most
O(n3d−2) operations (see the discussion in Section 2). Our analysis for the
solution of the associated linear system of equations is not intended to be ex-
haustive. Our objective is simply to make the point that naive Monte Carlo
(which indeed takes an exponential number of replications in n to achieve
a given relative accuracy) is not the natural benchmark that one should be
using in order to test the performance of an efficient simulation estimator
for overflows in Jackson networks. Rather, a more natural benchmark is the
application of a straightforward method for solving the associated system
of linear equations. It would be interesting to provide a detailed study of
various methods for solving linear systems of equations (such as multi-grid

1Given two non-negative functions f (·) and g (·), we say f (n) = O (g (n)) if there exists
c, n0 ∈ (0,∞) such that f (n) ≤ cg (n) all n ≥ n0.
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procedures) that are suitable for our environment and can even be combined
with the ideas behind efficient simulation procedures. This, however, would
be the subject of an entire paper and therefore is left as a topic for future
research.

Our goal here is to analyze a class of splitting algorithms similar to those
introduced in [24] for the evaluation of overflow probabilities at level n.
Further analysis was given in [8], where the authors provide necessary and
sufficient conditions for the design of the “milestone events” in order to
achieve subexponential complexity in n.

Our contribution is to show that if the milestone events are properly
placed as suggested by [8], the splitting algorithm requires O(n2β+1) func-
tion evaluations (basically simple operations, see page 5 for a definition and
discussion) to achieve a fixed relative error. Since clearly the number of bot-
tleneck stations β is at most d, the complexity of splitting is O(n2d+1), which
is substantially smaller than that of the direct solution of the associated lin-
ear system. Our analysis therefore provides theoretical justification for the
superior performance observed when applying splitting algorithms compared
to directly solving the associated linear system. The precise statement of our
main results is given in Theorem 1, at the end of Section 5.

We believe that our results shed light into the type of performance that
can be expected when applying particle algorithms beyond the setting of
Jackson networks. This feature should be emphasized, specially given the
fact that a linear time algorithm for computing overflows in Jackson net-
works has been developed very recently (see [4]). Contrary to particle meth-
ods, which are versatile and that can in principle be applied in great gener-
ality, the algorithm in [4] takes advantage of certain properties of Jackson
networks which are not shared by all classes of systems.

In addition, our results also provide interesting connections to recent per-
formance analyses studied in the context of state-dependent importance
sampling algorithms for a class of Jackson networks. These connections
might eventually help guide the users of rare event simulation algorithms
to decide when to apply importance sampling or splitting. For instance,
consider the overflow at level n of the total population of a tandem network
with d stations. The work of [10] proposes an importance sampling estima-
tor based on the subsolution of an associated Isaacs equation. In particular,
[10] shows that if exponential tiltings are applied using the gradient of the
associated subsolution as the tilting parameter (depending on the current
state), the corresponding algorithm is weakly efficient. It turns out that
many subsolutions can be constructed by varying certain so-called “mollifi-
cation parameters”. A recent analysis based on Lyapunov inequalities given
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in [6] shows that a natural selection of mollification parameters guarantees
O(n2(d−β)+1) function evaluations to achieve a given relative error. Our anal-
ysis here therefore guarantees that one can achieve a running time of order
O(nd+1) if one chooses importance sampling when there are more than d/2
bottleneck stations in the network and splitting if there are less than d/2
bottleneck stations. Although our analysis is still not sharp we believe that
our results provide a significant step forward in understanding the connec-
tions between splitting and importance sampling.

The rest of the paper is organized as follows. A brief discussion on com-
plexity and efficiency considerations is given in Section 2. Then we discuss
the necessary large deviations asymptotics for Jackson networks required
for our analysis in Section 3. The introduction of the splitting algorithm as
well as connections to the theory developed in [8] is given in Section 4. Our
complexity analysis is finally given in Section 5.

2. Complexity and efficiency. We shall review concepts of efficiency
and complexity in rare event simulation. We start our discussion in the
context of a generic class of rare event simulation problems. Consider a
sequence of events {En, n = 1, 2 . . .} with pn , P (En) → 0 as n ր ∞
(Without loss of generality, we might assume that pn → 0 exponentially
fast as nր 0.) The design of an efficient rare-event simulation algorithm is
typically associated with the construction of an unbiased estimator, say p̂n,

such that pn = E [p̂n]. A number of m i.i.d. replications {p̂
(1)
n , . . . , p̂

(m)
n } is

produced, the average of which forms an estimate of pn, namely

p̂n (m) =
1

m

m∑

j=1

p̂(j)n .

By virtue of Chebyshev’s inequality we obtain the following property for the
relative error, |p̂n (m)− pn|/pn, of the estimate

(1) P (|p̂n (m)− pn|/pn > ǫ) ≤
Var (p̂n)

mp2nǫ
2
.

Hence, for a pre-determined upper bound ǫ of relative error, if we choose
the number of replications m such that

(2) m ≥ ǫ−2δ−1 (cvn)
2 ,

where cv2n = Var (p̂n) /p
2
n is the squared coefficient of variation of p̂n, we can

guarantee that the relative error is no larger than ǫ with probability at least
1− δ.
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Equation (2) stipulates that m needs to grow at least at the same rate as
cv2n does in order to keep the relative error within a desirable threshold. If cv2n
grows at a subexponential rate (i.e. if log (cvn)

2 = o (1/ log pn) , as n ր ∞)
the estimator is said to have asymptotic optimality, logarithmic efficiency
or weak efficiency. In this case, the number of replications needs to increase
subexponentially in n to achieve a prescribed level of relative accuracy. The
name “asymptotic optimality” is derived from the fact that weak efficiency
implies that the exponential rate of decay to zero of the Ep̂2n coincides with
that of p2n and therefore is maximal (by virtue of Jensen’s inequality).

Obviously, one has to keep in mind that weak efficiency measures the
optimality of the estimator for a given level of computational budget. For
the splitting algorithm, it is apparent that the computational effort varies
drastically with the degree of splitting performed; one must therefore take
into account the cost involved in generating each replication of p̂n. We mea-
sure such cost in terms of the number of elementary function evaluations
which we will take to be simple addition, multiplication, comparison, and
the generation of a single uniform random variable. Ultimately, setting up
the splitting algorithm requires the evaluation of just two logarithms of
quantities which are readily available from the problem’s input. We do not
count these evaluations in the cost per replication. When we incorporate
the computational cost per replication of the estimator, (2) says that the
total number of function evaluations needed has to keep pace with the work-
normalized squared coefficient of variation, i.e., cv2n ·Nn, where Nn is the cost
per replication of p̂n. We will show in Section 5 that Nn is closely related
to the expected total number of the survival particles in a single run of the
splitting algorithm.

In the setting of Jackson networks, it is important to recognize that over-
flow probabilities can be obtained by solving a system of linear equations.
Therefore, a reasonable benchmark procedure for testing “efficiency” in any
simulation based algorithm is to compare costs with those associated with di-
rectly solving the linear system. Jackson networks are basically multidimen-
sional simple random walks with constrained behavior on the boundaries.
In particular, they are Markov chains living on a countable state-space. The
overflow probabilities can be conveniently expressed as first passage time
probabilities, which in turn can be characterized as the solution to certain
linear system of equations thanks to its countable state-space Markov chain
structure. We shall quickly review how to obtain such linear system for a
generic Markov chain Q = {Qk : k ≥ 0} living on a countable state-space
S with transition matrix {K (x, y) : x, y ∈ S}. Let A, B be two disjoint
subsets of S, define σA , inf{k ≥ 0 : X ∈ A}, σB , inf{k ≥ 0 : X ∈ B}
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and put p (x) = Px (σA ≤ σB). A simple conditioning argument on the first
transition leads to

(3) p (x) =
∑

y∈S

K (x, y) p (y)

subject to the boundary conditions

p (x) = 1 for x ∈ A, p (x) = 0 for x ∈ B.

In fact, p (·) is the minimum non-negative solution to the above system
(see [5]).

Now, if Q describes the state of the embedded discrete time Markov chain
corresponding to a Jackson network with d stations then S = Zd

+. The
transition dynamics of a Jackson network are specified as follows (see [23]
p. 92). Inter-arrival times and service times are all independent and expo-
nentially distributed random variables. The arrival rates are given by the
vector λ = (λ1, . . . , λd)

T and service rates are given by µ = (µ1, . . . , µd)
T .

(By convention all of the vectors in this paper are taken to be column vec-
tors and T denotes transposition.) A job that leaves station i joins station j
with probability Pi,j and it leaves the system with probability

Pi,0 , 1−

d∑

j=1

Pi,j.

The matrix P = {Pi,j : 1 ≤ i, j ≤ d} is called the routing matrix. We shall
consider open Jackson networks, which satisfy the following conditions:

i) ∀i, either λi > 0 or λj1Pj1j2 . . . Pjki > 0 for some j1, . . . , jk.
ii) ∀i, either Pi0 > 0 or Pij1Pj1j2 . . . Pjk0 > 0 for some j1, . . . , jk.
iii) The network is stable (i.e. a stationary distribution exists).

These conditions simply require that each station will receive jobs either
directly from the outside or routed from other stations, and each job will
leave the system eventually. Our main interest lies in the evaluation of pn (x)
assuming that B = {0} and An = {y : vT y = n} where v is a binary vec-
tor which encodes a particular subset of the network (i.e., the i-th position
of the vector v is 1 if station i falls in the subset of interest, and 0 oth-
erwise). We shall denote by V (x) = xT v the mapping recording the total
population in the stations corresponding to the vector v. The case in which
v = 1 = (1, 1, . . . , 1)T corresponds to the total population of the system.
So, pn (x), or more precisely pVn (x), corresponds to the overflow probability
in the subset encoded by v within a busy period starting from x. In this
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setting, it follows (as we shall review in the next section) that pVn (x) −→ 0
exponentially fast in n as nր ∞ and the system of equations (3) has O(nd)
unknowns. Gaussian elimination requires O(n3d) function evaluations to find
the solution of such system. But since each state of the Markov chain in this
case has possible interactions with only a small fraction of the entire state-
space, it is therefore possible to permutate the states (say in lexicographic
order) so that the system is banded (i.e. the associated matrix is sparse in
the sense that its non-zero entries fall to a diagonal band.) One can show
that the bandwidth is O(nd−1), and therefore solving such a banded linear
system requires O(nd · (nd−1)2) = O(n3d−2) operations (see, e.g., [2]).

Estimators that possess weak efficiency (in a work-normalized sense) are
guaranteed to run at subexponential complexity. When comparing to the
above polynomial algorithms of solving systems of linear equations, the ef-
ficiency analysis of such estimators appears to be insufficient. We will show
in later analysis that the multilevel splitting algorithm suggested by Dean
and Dupuis [8], applied to estimate the overflow probabilities in Jackson
networks, requires fewer function evaluations than directly solving the asso-
ciated system of linear equations.

3. Jackson networks: Notation and properties. As we mentioned
in the previous section, a Jackson network is encoded by two vectors of
arrival and service rates, λ = (λ1, . . . , λd)

T and µ = (µ1, . . . , µd)
T , together

with a routing matrix P = {Pi,j : 1 ≤ i, j ≤ d}. Without loss of generality,

we assume that
∑d

i=1 (λi + µi) = 1. The network is assumed to be open and
stable so conditions i), ii), and iii) described in the previous section are in
place.

Given the stability assumption, the system of equations given by

(4) φi = λi +
d∑

j=1

φjPji, ∀i = 1, 2, . . . , d

admits a unique solution φT = λT (I − P )−1 (see [3]). The traffic intensity
at station i in the system in equilibrium is given by ρi which is defined by

(5) ρi =
φi
µi

=
[λT (I − P )−1]i

µi
,

and satisfies ρi ∈ (0, 1) for all i = 1, 2, . . . , d. Define ρ∗ = max1≤i≤d ρi and
let β be the cardinality of the set {i : ρi = ρ∗}.

We shall study the queueing network by means of the embedded discrete
time Markov chain Q = {Q(k) : k ≥ 0}, where Q(k) = (Q1(k), . . . , Qd(k)).



ANALYSIS OF A SPLITTING ESTIMATOR 313

For each k, Qi(k) represents the number of customers in station i immedi-
ately after the k-th transition epoch of the system. As mentioned before,
the process Q lives in the space S = Zd

+.
Let V (x) = xT v be the total population in the stations corresponding

to the binary vector v. We are interested in the overflow probability in any
given subset of the Jackson network. More precisely, we wish to estimate

pVn = P {total population in stations encoded by v reaches

n before returning to 0, starting from 0}.(6)

In turn, pVn can be expressed in terms of the following stopping times,

T{x} , inf{k ≥ 1 : Q (k) = x},

T V
n , inf{k ≥ 1 : V (Q (k)) ≥ n}.

Indeed, if we use the notation Px(·) , P(·|Q(0) = x) then we can rewrite pVn
as

(7) pVn = P0(T
V
n ≤ T{0}).

Similarly,

(8) pVn (x) = Px(T
V
n ≤ T{0}).

The asymptotic analysis of pVn (x) can be studied by means of large de-
viations theory. We shall indicate how this theory can be applied to specify
an efficient splitting algorithm in the next section. In the mean time, let us
provide a representation for the dynamics of the queue length process that
will be convenient in order to motivate the elements of the efficient splitting
algorithm that we shall analyze.

As mentioned earlier, Jackson networks are basically constrained random
walks. The constraints arise because the number of customers in each sta-
tion must be non-negative. Thinking about Jackson networks as constrained
random walks facilitates the introduction and motivation of the necessary
large deviations elements behind the description of the splitting algorithm.
In order to specify the dynamics of the embedded discrete time Markov
chain in terms of a random walk type representation we need to introduce
notations which will be useful to specify the transitions at the boundaries
induced by the non-negativity constraints.

The state-space Zd
+ can be partitioned into 2d different regions which are

indexed by all the subsets E ⊆ {1, . . . , d}. The region encoded by a given
subset E is defined as

∂E = {z ∈ Z
d
+ : zi = 0, i ∈ E, zi > 0, i /∈ E}.
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The interior of the domain is given by ∂∅ and the origin is represented by
∂{1,2,...,d}. Subsets other than the empty set represent the “boundaries” of the
state-space and correspond to system configurations in which at least one
station is empty. The collection of all possible values that the increments
of the process Q can take depends on the current region at which Q is
positioned. However, in any case, such collection is a subset of

V , {ei,−ei + ej ,−ej : i, j = 1, 2, . . . , d},

where ei is the vector whose i-th component is one and the rest are zero. An
element of the form ei represents an arrival at station i, an element of the
form −ei + ej represents a departure from station i that flows to station j
and an element of the form −ej represents a departure from station j out of
the system. The set of all possible departures from station i is a subset of

V
−
i , {w : w = −ei or w = −ei + ej for some j = 1, . . . , d}.

Because of the non-negativity constraints on the boundaries of the system
we have to be careful when specifying the transition dynamics. First we
define a sequence of i.i.d. random variables {Y (k) : k ≥ 1} so that for each
w ∈ V

P (Y (k) = w) =





λi if w = ei,

µiPij if w = −ei + ej ,

µiPi0 if w = −ei.

The dynamics of the queue-length process admit the random walk type
representation given by

(9) Q(k + 1) = Q(k) + ζ (Q(k), Y (k + 1)) ,

where ζ (·) is the constrained mapping and it is defined for x ∈ ∂E via

ζ (x,w) ,

{
0 if w ∈ ∪i∈EV

−
i ,

w otherwise.

The large deviations theory associated with Jackson networks is somewhat
similar (at least in form) to that of random walks, technical results can be
found in [9, 15] and [19]. One has to recognize, of course, that the non-
smoothness of the constrained mapping as a function of the state of the
system creates substantial technical complications, but we will leave aside
this issue in our discussion because our objective is simply to describe the
form of the necessary large deviations results for our purposes. An extremely
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important role behind the development of large deviations theory for light-
tailed random walks is played by the log-moment generating function of the
increment distribution. So, given the similarities suggested by the dynamics
of (9) and those of a simple random walk it is not surprising that the log-
moment generating function of the increments, namely,

(10) ψ (x, θ) , logE
[
exp

(
θT ζ (x, Y (k))

)]

also plays a crucial role in the large deviations behavior of pVn (x) as nր ∞.
In order to understand the large deviations behavior of pVn it is useful

to scale space by 1/n, thereby introducing a scaled queue length process
{Qn (k) : k ≥ 0} which evolves according to

Qn(k + 1) = Qn(k) +
1

n
ζ (Qn(k), Y (k + 1)) .

Suppose that Qn (0) = y = x/n and note that T{0} and T V
n can also be

written as

T{0} = inf{k ≥ 1 : Qn (k) = 0}, T V
n = inf{k ≥ 1 : V (Qn (k)) ≥ 1}.

Note that using the scaled queue length process one can write

(11) pVn (y) = E

[
pVn (y +

1

n
ζ (y, Y (1)))

]
.

Here with a slight abuse of notation we use pVn (y) to mean

P
(
T V
n ≤ T{0}|Qn(0) = y

)
.

Large deviations theory dictates that

(12) pVn (y) = exp (−nWV (y) + o (n))

as n ր ∞ for some non-negative function WV (·). In order to characterize
WV (·) we can combine the previous expression together with (11) and a
formal Taylor expansion to obtain

1 =
1

pVn (y)
E

[
pVn (y +

1

n
ζ (y, Y (1)))

]

≈ E exp{−nWV [y +
1

n
ζ (y, Y (1))] + nWV (y)}

= E exp{−∂WV (y)
T ζ (y, Y (1)) + o (1)}

= exp (ψ (y,−∂WV (y)) + o (1)) .
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Sending nր ∞ we formally arrive at the equation

(13) ψ (y,−∂WV (y)) = 0

together with the boundary condition WV (y) = 0 if V (y) ≥ 1. The previ-
ous equation is the so-called Isaacs equation which characterizes the large
deviations behavior of pVn (·) and it was introduced together with a game
theoretic interpretation by Dupuis and Wang in [11]. The solution to (13)
is understood in a weak sense (as viscosity solution) because the function
WV (·) is typically not differentiable everywhere. Nevertheless, it coincides
with a certain calculus of variations representation which can be obtained
out of the local large deviations rate function for Jackson networks (see [19]).

An asymptotic lower bound for WV (y) can be obtained by finding an
appropriate subsolution to the Isaacs equation, in which the equality signs
in (13) are appropriately replaced by inequalities thereby obtaining a so-
called subsolution to the Isaacs equation. In particular, W V (·) is said to be
a subsolution to the Isaacs equation if

(14) ψ(y,−∂W V (y)) ≤ 0

subject to W V (y) ≤ 0 if V (y) ≥ 1. The subsolution property guaran-
tees W V (y) ≤ WV (y), which translates to an asymptotic logarithmic up-
per bound of pVn (y). The subsolution is said to be maximal at zero if
W V (0) = WV (0). Not surprisingly, subsolutions are easier to construct
than solutions and, as we shall discuss in the next section, beyond their
use in the development of asymptotic upper bounds they can be applied to
the design of efficient simulation procedures. The use of subsolutions to the
Isaacs equation for the design of efficient simulation algorithms was intro-
duced in [11]. A derivation of the subsolution equation (14) following the
same spirit leading to (13) using Lyapunov inequalities is given in [6].

As we mentioned in Section 2, the efficiency analysis of a rare-event sim-
ulation estimator depends on the growth rate of its coefficient of variation.
We are interested in an asymptotic analysis that goes beyond the error term
exp(o (n)) given by the large deviations approximation (12). So, we must
enhance the large deviations approximations in order to provide a more pre-
cise estimate for pVn . Developing such an estimate is the aim of the following
proposition which follows as a consequence of Proposition 3 in Section 5 of
this paper (see also Proposition 1 and the analysis in Section 5 in [4]).

Proposition 1. There exists K > 0 (independent of x and n) such that

pVn (x) ≤ KP{V (Q (∞)) = n}/P{Q (∞) = x},
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where Q∞ is the steady state queue length. Moreover, if ‖x‖ ≤ c for some
c ∈ (0,∞) then2

(15) pVn (x) = Ω[P{V (Q (∞)) = n}/P{Q (∞) = x}]

as nր ∞.

Remark. It is important to keep in mind that we shall mostly work
with the process Q (·) directly, as opposed to the scaled version Qn (·) which
is used in the analysis of [8].

The previous proposition provides the necessary means to estimate pVn
up to a constant; we just need to recall that the distribution of Q (∞) is
computable in closed form (see [23] p. 95). In particular, we have that

π (m1, . . . ,md) =
d∏

j=1

P (Qj (∞) = mj)

=
d∏

j=1

(1− ρj) ρ
mj

j , j = 1, . . . , d, and mj ≥ 0.

We shall use π (·) to denote the stationary measure of Q. In simple words,
the previous equation says that the steady state queue length process has
independent components which are geometrically distributed. In particu-
lar, P (Qj (∞) = m) = ρmj (1 − ρj) for m ≥ 0. The next proposition follows
directly from standard properties of the geometric distribution (see Propo-
sition 3 in [4]). Before we proceed, it’s useful to look at V (Q(∞)) in the
following way. Without loss of generality, we assume

V (Q(∞)) = vTQ(∞) = Qj1(∞) + · · ·+Qjs(∞),

i.e., {j1, j2, . . . , js} are the stations encoded by the vector v. Further suppose
that we can group these s stations into k groups by their traffic intensities.

In other words, stations in {i
{1}
1 , . . . , i

{1}
m1 } have traffic intensity equal to ρt1 ,

. . . , stations in {i
{k}
1 , . . . , i

{k}
mk

} have traffic intensity equal to ρtk ; and we
have m1 + · · · +mk = s. Now if we define

Mi = Q
j
{i}
1

(∞) + · · ·+Q
j
{i}
mi

(∞),

2Given two non-negative functions f (·) and g (·), we say f (n) = Ω (g (n)) if there exists
c, n0 ∈ (0,∞) such that f (n) ≥ cg (n) for all n ≥ n0.
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then it’s clear that theMi’s are negative binomially distributed with param-
eters mi and pi = 1− ρti . Therefore,

V (Q(∞)) =M1 + · · · +Mk,

is the sum of negative binomial random variables.

Proposition 2. P [V (Q (∞)) = n] = Θ(e−nγV nβV −1),3 where γV =
− log ρV∗ , in which ρV∗ = max{ρi : vi = 1}; and βV =

∑
i I{ρi = ρV∗ , vi = 1}

is the number of bottleneck stations in the target subset corresponding to v.

Proof. We have just showed that V (Q (∞)) is the sum of negative bi-
nomial random variables, so it suffices to show that if M1, . . . ,Mk are inde-
pendent random variables so that Mi is negative binomial with parameters
(mi, pi) and p1 < · · · < pk, then

(16) P (M1 + · · ·+Mk = n) = Θ (P (M1 = n))

as n ր ∞; that is, the tail of the probability mass function of the sum
of independent negative binomials has the same behavior as the tail of the
heaviest terms in the sum (in this case M1 has the heaviest tail among the
Mj ’s). In turn, it is easy to verify that P (M1 = n) = Θ((1− p1)

nnm1−1), so
to show the proposition we just need to verify (16). We proceed by induction
in k. First, let us treat the case k = 2. Assume that p1 < p2 and note that

P (M1 +M2 = n)

=

n∑

j=0

P (M1 = n− j)P (M2 = j)

=
n∑

j=0

(1− p1)
n−jpm1

1

(
m1 + n− j − 1

m1 − 1

)
(1− p2)

jpm2
2

(
m2 + j − 1

m2 − 1

)

=

n∑

j=0

(1− p1)
n−j(1− p2)

jΘ((n− j)m1−1 jm2−1)

= (1− p1)
nnm1−1

n∑

j=0

(
1− p2
1− p1

)j

Θ(jm2−1).

Since (1− p2)/(1− p1) ∈ (0, 1) it follows that the previous sum converges as
nր ∞ and therefore we conclude that (16) for k = 2. Now we assume that

3Given two positive functions f (·) and g (·), recall that f (n) = Θ(g (n)) if f (n) =
O (g (n)) and f (n) = Ω (g (n)).
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the claim is valid for some value k > 2, we need to verify the claim for k+1.
Assume without loss of generality that p1 < · · · < pk < pk+1 (otherwise
re-label the random variables so that the order of the probabilities is as
stated). Note that, by induction hypothesis,

P (M1 + · · ·+Mk+1 = n) =
n∑

j=0

P (M1 + · · · +Mk = n− j) P (Mk+1 = j)

= Θ




n∑

j=0

P (M1 = n− j)


P (Mk+1 = j) .

The rest of the analysis then proceeds just as in the case of k = 2 analyzed
earlier, therefore we conclude the proof of the proposition.

4. The splitting algorithm. The previous section discussed some large
deviations properties required to guide the construction of an efficient split-
ting scheme using the theory developed in the work of Dean and Dupuis
[8]. In order to explain the construction suggested by Dean and Dupuis
let us first discuss the general idea behind the splitting algorithm that we
shall analyze; a variation of which was first applied to Jackson networks by
Villen-Altamirano and Villen-Altamirano [20].

The strategy is to divide the state-space into a collection of regions {Cn
j :

0 ≤ j ≤ ln (x)} which are nested and that help define “milestone” events
that interpolate between the initial position of the process and the target set,
which corresponds to the region Cn

0 . That is, in our setting we put Cn
0 , {x ∈

S : V (x) ≥ n} and the remaining Cn
j ’s are placed so that Cn

0 ⊆ Cn
1 ⊆ · · · ⊆

Cn
Mn

. How to construct the level sets Cn
j in order to induce efficiency will be

discussed below. An observation that is intuitive at this point, however, is
that one should have Mn = Θ(n) so that the next milestone event becomes
accessible given the current level. For the moment, let us assume that the
Cn
j ’s have been placed. The splitting algorithm proceeds as follows.

Algorithm SA.

1.– Initiate the simulation procedure with a single particle starting from
position x ∈ Cn

k for a given k ≥ 1. Let w1 = 1 be the initial weight
associated with such particle.

2.– Evolve the initial particle until either it hits {0} or it hits level Cn
k−1.

If the particle hits {0}, then the particle is said to die. If the particle
reaches level Cn

k−1 then it is replaced by r identical particles (for a
given integer r > 1). The replacing particles are called the immediate
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descendants or children of the initial particle, which in turn is said
to be their parent. The children are positioned precisely at the place
where the parent particle reached level Cn

k−1. The weight wj associated
with the j-th children (enumerate the children arbitrarily) has a value
equal to the weight of the parent particle multiplied by 1/r.

3.– The procedure starting from step 1 is replicated for each of the off-
spring particles in place; carrying over the value of each of the weights
at each level for the surviving particles (the weights of the particles
that die can be disregarded).

4.– Steps 1 to 3 are repeated until all the particles either die or reach
level Cn

0 .

Dean and Dupuis in [8] show how to apply large deviations theory to
select the Cn

j ’s in order to obtain a weakly efficient splitting algorithm. One
needs to balance the number of the Cn

j ’s so that it is not unlikely for a
given particle to reach the next level while keeping the total number of
particles controlled. We now provide a formal motivation for the use of large
deviations for constructing the Cn

j ’s in a balanced way.
It is convenient, as we did in our formal large deviations discussion in the

previous section, to consider the scaled process Qn (·). Let us assume that
the splitting mechanism indicated in Algorithm SA is in place and that our
initial position is set at level Q (0) = x, so that Qn (0) = y = x/n. The Cn

j ’s
are typically constructed in terms of the level sets of a so-called importance
function which we shall denote by U (·). In particular, put Dn , {y ∈ n−1S :
V (y) < 1} and set Cn

j = nLzn(j), where

(17) Lz , {y ∈ Dn : U (y) ≤ z},

and the zn (j)’s are appropriately chosen momentarily. Then, define

(18) ln (x) = min{j ≥ 0 : x ∈ Cn
j } = min{j ≥ 0 : y ∈ Lzn(j)}.

The total weight corresponding to a particle that reaches level Cn
0 given that

it started at level ln (x) is r
−ln(x). In order to have at least a weakly efficient

algorithm we wish to achieve two constraints. The first one imposes the
aggregate weight of a particle reaching level Cn

0 to be pVn (x) exp (−o (n));
this would guarantee that the second moment of the resulting estimator
achieves asymptotic optimality. The second constraint dictates that the ex-
pected number of particles that make it to Cn

0 , which is roughly rln(x)pVn (x)
exhibits subexponential growth (i.e. exp(o(n))); this would guarantee a cost
per replication that is subexponential. Note that both constraints lead to
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the requirement of rln(x)pVn (x) = exp (o (n)). So, given a subsolution WV (·)
to the corresponding Isaacs equation, which implies that

pVn (x) ≤ exp
(
−nW̄V (x/n) + o (n)

)
,

it suffices to ensure that

(19) ln (x) log (r)− nWV (x/n) = o (n) .

The behavior of ln (x) as n ր ∞ only relates to the properties of the func-
tion U (·) and it is really independent of the large deviations behavior of
the system. In particular, picking zn (j) = ∆j/n,∆ > 0 yields ln (x) =
⌈nU (x/n) /∆⌉ and therefore, equation (19) suggests that one should se-
lect U (y) = ∆WV (y) / log (r) with WV (0) = WV (0) in order to obtain a
weakly efficient estimator for pVn . This is precisely the conclusion obtained
in the work of [8] who present a rigorous analysis that justifies the previous
heuristic discussion. Our development in the next section will sharpen the
efficiency properties of the sampler proposed in [8] when applied to Jackson
networks. So, we content ourselves with the previous heuristic motivation
for the splitting method that we will analyze in the next section and which
in turn is based on the viscosity subsolution given by

(20) W̄V (y) = ̺T y − log ρV∗ ,

where ̺i = log ρi for i = 1, . . . , d, see e.g., [12] and [8].
We close this section with a precise definition of the estimator that we

will analyze. First, given a constant ∆ > 0 (the level size) define W̄V (·)
as indicated in (20) for each y = x/n with x ∈ S. Then, select an integer
r > 1 and define U (y) = ∆WV (y) / log (r). Given the initial position x
define the sets {Cn

j : 1 ≤ j ≤ ln (x)} as indicated above (see equation (18)).
Run Algorithm SA and let Nn be the number of particles that survive up
to Cn

0 ; their corresponding final weight is 1/rln(x). Our estimator for pVn (x)
is simply

(21) Rn (x) = Nn (x) /r
ln(x).

Now, for the sake of analytical convenience, when analyzing the second
moment of Rn (x) we will adopt the so-called fully branching representation
of the previous estimator (see [8]). Such fully branching representation is
obtained by splitting death particles at level zero. In particular, we modify
Algorithm SA to obtain the following algorithm:
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Algorithm SFB.

1.– Initiate the simulation procedure with a single particle starting from
position x ∈ Cn

k for a given k ≥ 1. Let w1 = 1 be the initial weight
associated with such particle.

2.– Evolve the initial particle until it either hits {0} (and die) or hits level
Cn
k−1 (remain active or alive), in either case the particle becomes the

parent and is replaced by r descendants, positioned where the parent
is located (either {0} or the location where it enters level Cn

k−1). The
weight of the j-th particle is set to equal the weight of its parent
multiplied by 1/r.

3.– For each living offspring particle, the procedure starting from step 1 is
replicated. For each dead offspring particle, replace it by r descendants,
set the weight of each child to be that of the parent multiplied by 1/r.

4.– Steps 1 to 3 are repeated until all the particles either die or reach
level Cn

0 .

In other words, after ln (x) iterations we have r
ln(x) total particles labeled

1, 2, . . . , rln(x), each with weight 1/rln(x). We define Ij as the indicator func-

tion of the event that the j-th particle is in Cn
0 so that Nn (x) =

∑rln(x)

j=1 Ij .
The fully branching representation of Rn (x) is simply

(22) Rn (x) = r−ln(x)
rln(x)∑

j=1

Ij .

5. Analysis of splitting estimators. We are now in a good position
to perform a refined efficiency analysis for the estimator Rn (x). We shall
break our analysis into two parts. The first part corresponds to the expected
number of particles generated per run and the second part deals with the
second moment of Rn (x). We establish upper bounds on both quantities
that enable us to reach the conclusion that this multilevel splitting algorithm
substantially outperforms the direct polynomial time algorithm for solving
the associated system of linear equations.

Our analysis takes advantage of the time reversed process associated with
the underlying Jackson network which we shall now define. Given the tran-
sition matrix {K (x, y) : x, y ∈ S} of the process Q, we define the reversed
Markov chain Q̃ = {Q̃ (k) : k ≥ 0} via the transition matrix K̃ (·):

K̃ (y, x) = K (x, y)π (x) /π (y) ,

for x, y ∈ S. It turns out that Q̃ also describes the queue length process of
an open stable Jackson network with stationary distribution equal to π (·),
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(see [23] p. 95). We will use P̃x (·) to denote the probability measure in path
space associated with Q̃ given that Q̃ (0) = x.

The following result is similar to that of Proposition 1 in [4]. However,
our representation in (23) is slightly more useful for our purposes.

Proposition 3.

pVn (x) =
P̃π

(
Q̃ (0) ∈ Cn

0 , T̃{x} ≤ T̃{0}, T̃{x} < T̃ V
n

)

π(x)Px(T{x} ≥ T V
n ∧ T{0})

(23)

=
P̃π

(
Q̃ (0) ∈ Cn

0 , σ̃{x} < T̃{0} < T̃ V
n

)

π(0)P0

(
σ{x} < T V

n ∧ T{0}
)(24)

where T̃ V
n = inf{k ≥ 1 : V (Q̃(k)) ≥ n} = inf{k ≥ 1 : Q̃(k) ∈ Cn

0 },
T̃{x} = inf{k ≥ 1 : Q̃(k) = x}, σ{x} , inf{k ≥ 0 : Q(k) = x} and σ̃{x} ,

inf{k ≥ 0 : Q̃(k) = x}. Moreover, there exists δ > 0 (independent of x 6= 0
and n) such that

(25) Px(T{x} ≥ T V
n ∧ T{0}) ≥ δ.

Proof. We assume that x 6= 0. The case x = 0 is included in the analysis
of (24). First, we observe that

pVn (x)=Px

(
T V
n <T{0}, T{x}<T

V
n ∧T{0}

)
+Px

(
T V
n <T{0}, T{x} ≥T

V
n ∧T{0}

)

= pVn (x)Px

(
T{x}<T

V
n ∧ T{0}

)
+ Px

(
T V
n < T{0}, T{x} ≥ T V

n ∧ T{0}
)
.

Therefore,

pVn (x) =
Px

(
T V
n < T{0}, T{x} ≥ T V

n ∧ T{0}
)

Px

(
T{x} ≥ T V

n ∧ T{0}
) .

Following the same technique as in Proposition 1 in [4] we have that

π (x)Px

(
T V
n < T{0}, T{x} ≥ T V

n ∧ T{0}
)

(26)

=
∞∑

k=0

π (x)Px

(
T V
n < T{0}, T{x} ≥ T V

n ∧ T{0}, T
V
n = k

)

=

∞∑

k=1

π (x)
∑

y0=x,y1,..,yk−1∈S\({0,x}∪Cn
0 ),yk∈Cn

0

K (y0, y1)× · · · ×K (yk−1, yk)

=

∞∑

k=1

∑

y0=x,y1,..,yk−1∈S\({0,x}∪Cn
0 ),yk∈Cn

0

K̃ (y1, y0)× · · · × K̃ (yk, yk−1)π (yk) .
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Letting ỹi = yk−i for i = 1, . . . k we see that the summation in each of the
terms above ranges over paths ỹ0, . . . , ỹk satisfying that ỹ0 ∈ Cn

0 , T̃{x} = k

(so in particular ỹk = x) and also that T̃{0} ≥ k, T̃ V
n > k. So, we can interpret

the previous sum as

P̃π

(
Q̃ (0) ∈ Cn

0 , T̃{x} ≤ T̃{0}, T̃{x} < T̃ V
n

)
.

This yields part (23). Part (24) corresponds to Proposition 1 of [4]; it follows
using the same trick as in the analysis of display (26), after multiplying and
dividing by π (0) when computing the probability of going from zero to the
target set via the point x. The most interesting part is the bound (25),
which is essentially the argument in Proposition 7 of [4], but we discuss
it here to make our exposition self contained. We need to show that there
exists δ > 0, such that Px(T{x} ≥ T V

n ∧ T{0}) ≥ δ uniformly over x 6= 0.
The strategy follows the following steps: 1) Argue first that the probability
is positive if x 6= 0 and, therefore, bounded away from zero over compact
sets in x, 2) Now consider the case in which x is outside a suitably defined
compact set, then argue that by intersecting with an event involving finitely
many service times and routing events inside the network, we can reach
a system configuration with m1 fewer customers in the system than the
total number initially present in configuration x, 3) Finally, once we have
m1 fewer customers, argue, using the stability of the Jackson network, that
with high probability, the system will eventually empty before coming back
to any configuration with as many customers as the initial configuration x.
Thus, effectively our plan is to show that

inf
x:x 6=0

Px(T{x} ≥ T V
n ∧ T{0}) ≥ δ.

We now proceed to carry over the previous program. First, if x 6= 0, we
must clearly have that Px(T{x} ≥ T{0}) > 0 (i.e. for each x 6= 0, the event
T{x} > T{0} is a possible event). To see this, we argue as follows. Note that
we have an open Jackson network, so each customer in the system must
eventually leave the system if no arrivals are allowed to enter the network. So,
if we intersect with the event that the next inter-arrival time into the system
is sufficiently large (which clearly is an event with positive probability), we
can work only with the current customers inside the network, which are
distributed in each of the stations according to the state of the system x.
Let us use ||x|| to denote the L1 norm of x (since the components of x are
non-negative, ||x|| is just the sum of the components of x). If ||x|| ≤ m0

for some constant m0, we can always construct an event with the property
that, given the initial configuration of the system x, everybody leaves the



ANALYSIS OF A SPLITTING ESTIMATOR 325

network prior to an arrival and before we find the network once again in
the initial configuration x. Observe that if we are forced to cycle back to
the initial configuration x with probability one assuming that no arrivals are
allowed into the system, then it would not be true that each customer must
eventually leave the system and this violates the condition that the network
is open. Therefore, since the set of configurations x such that ||x|| ≤ m0 is
finite we can find δ0 > 0 (possibly depending on m0) such that

(27) inf
x:x 6=0,||x||≤m0

Px(T{x} ≥ T{0}) ≥ δ0.

Now, we proceed with part 2) of the program. Let us assume that ||x|| >
m0 for m0 > 0 chosen momentarily. Following the same type of reasoning
described earlier we have that if m1 < m0, then we can find δ1 > 0 (possibly
depending on m1) such that

inf
||x||≥m0

Px(T{x} ≥ T||x||−m1
) > δ1,

where T||x||−m1
= inf{k ≥ 1 : ||Q (k)|| = ||x||−m1}. In simple words, we can

make sure that m1 customers leave the system prior to an arrival and prior
to cycling back to configuration x, regardless of the initial configuration
x; this is done by intersecting with an event that depends on the order in
which finitely many services are completed and jobs are routed through the
network. Therefore, we have that

Px(T{x} ≥ T{0}) ≥ Px(T{x} ≥ T{0}, T{x} ≥ T||x||−m1
)

≥ δ1 inf
ξ:||ξ||=||x||−m1

Pξ(T||x|| ≥ T{0}).

Finally, we proceed with step 3) of the program, namely, arguing that if m1

is chosen sufficiently large, then one can actually find ε > 0 such that

(28) sup
ξ:||ξ||=||x||−m1

Pξ(T||x|| < T{0}) < 1− ε.

Let Ñ = ||x|| and assume that ξ is such that ||ξ|| = Ñ − m1. We observe
that if δ2 > 0 is chosen small enough, then
(29)
Pξ(T||x||<T{0}) = Pξ(T||x||<T{0},T||x||≤ Ñδ2) + Pξ(T||x||<T{0},T||x||>Ñδ2).

Now, note that
(30)

Pξ(T||x|| < T{0},T||x|| > Ñδ2) = Eξ[I(T||x|| > Ñδ2)PQ(Ñδ2)
(T||x|| < T{0})].
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Given the initial configuration ξ, large deviation results for Jackson networks
(see [15]) guarantee that for any ǫ0 > 0,

Pξ

(
||Q(Ñδ2)− Ñq (δ2) || > Ñǫ0

)
= exp

(
−ÑI (ǫ0) + o(Ñ)

)
,

as Ñ ր ∞ for some I (ǫ0) > 0 and some q (δ2) (which corresponds to
the fluid limit evaluated at δ2). In the language of large deviations, the
fluid limit corresponds to the zero-cost trajectory. And trajectories outside
of the band that centers on the fluid limit have probabilities that decay
exponentially fast. Moreover, since the network is stable and open, we have
that ||q (δ2) || < 1 − δ3 for some δ3 > 0. Therefore, once again appealing to
the large deviations results of [15], we obtain that if ǫ0 < δ3, then

sup
{q:||q−q(δ2)||<ǫ0}

PÑq

(
T||x|| < T{0}

)
≤ sup

{q:||q||≤1−δ3+ǫ0<1}
PÑq

(
TÑ < T{0}

)

=O
(
e−δÑ

)
,

for some δ > 0. Consequently,

Eξ

(
I
(
T||x|| > Ñδ2

)
PQ(Ñδ2)

(
T||x|| < T{0}

))

≤ P

(
||Q
(
Ñδ2

)
− Ñq (δ2) || > ǫ0Ñ

)
+ sup

{q:||q||≤1−δ3+ǫ0<1}
PÑq

(
T||x|| < T{0}

)

= O
(
e−δÑ

)
,

for some δ > 0. Therefore the right hand side of (30) decreases exponentially
fast in Ñ . It suffices then to study the first term in (29). Note that

Pξ(T||x|| < T{0},T||x|| ≤ Ñδ2) ≤ Pξ(∪k≤Ñδ2
{||Q (k) || ≥ Ñ})

(31)
≤
∑

k≤Ñδ2

Pξ(||Q (k) || ≥ Ñ).

We will apply a Chernoff-bound argument to bound the right hand side of
the previous display. Fix an integer m3 > 0 and write k = m3s+ l for some
integer s ≥ 0 and l ∈ {0, 1, . . . ,m3 − 1}. Let Q (0) = ξ and note that

||Q (k) || − ||ξ|| = ||Q (m3s+ l) || − ||Q (m3s) ||

+
s−1∑

j=0

[||Q (m3(j + 1)) || − ||Q (m3j) ||].
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Because the network is stable it follows that one can choosem3 > 0 (depend-
ing only on the characteristics of the network) so that if ||z|| ≥ Ñ(1−2δ2) >
m3, then

Ez[||Q (m3) || − ||z||] ≤ −ε1.

In simple words, if the initial population is very large, on average we shall
expect more customers to leave than those who arrive. Clearly, one also
has that ||Q (m3) || − ||z|| ≤ m3 (at most m3 people leave or arrive in m3

transitions of the network), so we have that one can compute a constant
m4 > 0, uniform in z as long as ||z|| ≥ Ñ(1− 2δ2) > m3 such that

logEz exp(θ[||Q (m3) || − ||z||]) ≤ −ε1θ +m4θ
2.

So, selecting θ∗ > 0 sufficiently small we obtain that

(32) logEz exp(θ
∗[||Q (m3) || − ||z||]) ≤ −ε1θ

∗/2.

Now we are in good shape to apply the Chernoff-bound argument. Note that

Pξ(||Q (k) || ≥ Ñ) ≤ Pξ(||Q (k) || − ||ξ|| ≥ m1)

≤ exp (−θ∗m1) exp(θ
∗m3)

· Eξ

(
θ∗ exp

(
s−1∑

j=0

[||Q (m3(j + 1)) || − ||Q (m3j) ||]

))
.

Note that we can apply (32) repeatedly to estimate the exponential of the
the expectation in the previous display given that ||ξ|| = Ñ −m1 and that
k ≤ Ñδ2, which in particular (because Jackson networks increase or decrease
by at most one unit in each transition, and recall that Ñ is large, so that
m1 < Ñδ2), implies that ||Q (k)|| ≥ Ñ(1 − 2δ2) if k ≤ Ñδ2. Therefore, we
obtain that

Pξ(||Q (k) || ≥ Ñ) ≤ exp (−θ∗m1) exp(θ
∗m3) exp(−sε1θ

∗/2)

= exp (−θ∗(m1 −m3)) exp(−[k/m3]ε1θ
∗/2).

Adding over k and choosing m1 sufficiently large we conclude that the right
hand side of (31) can be made arbitrarily small. (Note that having selected
m1, we then choose m0 > m1 in the discussion following (27)). This com-
bined with our analysis for (30) allows us to conclude (28) and therefore we
conclude our result.

Proposition 1 and 2 from Section 3 follow as a consequence of this result, the
rest of the details are given in Section 5 of [4]. Nevertheless, in the interest
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of making this paper as self-contained as possible, without compromising its
length, we mention that the most difficult part remaining in Proposition 1
involves the lower bound in equation (15). For this part, one can use identity
(24) combined with a similar analysis behind (25) to show that there exists
δ > 0 such that for all n large enough

P̃π

(
σ̃{x} < T̃{0} < T̃ V

n |Q̃ (0) ∈ Cn
0

)
≥ δ.

The rest of the argument behind Proposition 1 and 2 from Section 3 then
follows from elementary properties of the steady-state distribution π (·).

Given the subsolution we proposed in Section 4, the importance function
can be written as

U (x/n) = W̄V (x/n)
∆

log r
=

(
1

n
̺Tx− log ρV∗

)
∆

log r
(33)

= C

(
∆−

1

n
αTx∆

)
,

where C = − log ρV∗ / log r, and α = ̺ / log ρV∗ . The level index function also
simplifies to

(34) ln (x) =

⌈
nU (x/n)

∆

⌉
=

⌈
nC

(
1−

1

n
αTx

)⌉
= ⌈C(n− αTx)⌉.

We shall first look at the expected number of surviving particles of the
splitting algorithm which characterizes the stability of the algorithm. One
shall keep in mind that when the complexity of the splitting algorithm is
concerned, what actually matters is the total function evaluation involved in
each run. An upper bound is obtained for this quantity, as measured by the
sum of all particles generated at interim levels weighted by the maximum
remaining function evaluations associated with each of them. We first have
the following result.

Proposition 4. The expected terminal number of particles for the split-
ting algorithm specified by (∆, U) above satisfies

(35) E [Nn (x)] = Θ
(
nβV −1

)

where βV , introduced in Proposition 2, denotes the number of bottleneck
stations corresponding to the vector v.
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Proof. It can be seen from the fully-branching algorithm that

E [Nn (x)] = rln(x) pVn (x) .

From Proposition 2 we know that pVn (x) = Θ(π−1(x)e−γV nnβV −1). Since

e−γV = elog ρ
V
∗ = e−C log r = r−C , we can write pVn (x) = Θ(π−1(x)r−nCnβV −1).

Hence, plug in ln(x) = ⌈C(n − αTx)⌉, and note that π−1(x) = c̃rCαTx for
some positive constant c̃, we have

E [Nn (x)] = Θ
(
rCαT xr−nCnβV −1r⌈C(n−αT x)⌉

)
= Θ

(
nβV −1

)
.

As pointed out earlier, the number of terminal surviving particles, al-
though a reasonable proxy to measure the stability of the algorithm, is not
suitable for quantifying the complexity. We also need to take into account
the number of function evaluations required to generate Rn (x). The next
result addresses precisely this issue.

Proposition 5. The expected computational effort per run required to
generate a single replication of Rn (x) is O(nβV +1).

To prove this, we need the following result, which upper bounds the prob-
ability that a particle makes it to the level Cn

ln(x)−m. We first state the result
and postpone the proof until after the proof of Proposition 5.

Proposition 6. For a given generation m, denote by Qm,j the position
of the j-th particle, then

(36) Px

(
Qm,1 ∈ Cn

ln(x)−m

)
= O

((
m− 1

C

)βV −1 (
ρV∗
)m−1

C

)
.

Given this result, we now proceed to prove Proposition 5.

Proof of Proposition 5. Let Nn
m, m = 0, . . . . , ln (x), be the number

of particles that survive to level Cn
ln(x)−m. Again fully-branching algorithm

allows us to write

E[Nn
m] = rmPx

(
Qm,1 ∈ Cn

ln(x)−m

)
.

Thanks to Proposition 6, along with
(
ρV∗
)−1/C

= r, we have

(37) E[Nn
m] = O

(
rm
(
m− 1

C

)βV −1 (
ρV∗
)m−1

C

)
= O

(
r

(
m− 1

C

)βV −1
)
.

Also let ηm,j be the remaining computational effort of the j-th particle at
the start of the m-th level until it either reaches the next level or it dies
out. Put η̄m,j (xj) to be the expectation of ηm,j given that the position of



330 J. BLANCHET, K. LEDER AND Y. SHI

the j-th particle at the start of level m is xj. Note that the norm of the
position of xj is less than c ·m for a given constant c that depends on the
traffic intensities of the system but not on the position of the particle per-se.
Therefore, it is easy to see that

(38) sup
1≤j≤Nn

m

η̄m,j (xj) ≤ c ·m,

for some c ∈ (0,∞). Intuitively, each particle at level m either advances
to the next level, or it dies out by hitting the zero level before moving to
the next one, since it takes Θ (1) work to cross one single layer, ηm,j is
dominated by the work required to die out, and hence its mean is bounded
from above by c×m for some constant c. Using (37) and (38), we can bound
the expected total work per run as follows

E



ln(x)−1∑

m=0

Nn
m∑

j=1

ηm,j


 =

ln(x)−1∑

m=0

E




Nn
m∑

j=1

η̄m,j (xj)




≤

ln(x)−1∑

m=0

E [Nn
m] · c ·m

≤ c′ ·

ln(x)−1∑

m=0

(
m− 1

C

)βV −1

m

= O
(
nβV +1

)
,

for some positive constant c and c′ where in the last step we use the definition
of ln(x) given in (34).

It remains to prove Proposition 6.

Proof of Proposition 6. We begin the proof with an important prop-
erty implied by the splitting algorithm:

V (Qm,1) > 0 ⇔ Qm,1 ∈ Cn
ln(x)−m = nL(ln(x)−m)∆/n

⇔ Qm,1 ∈ {z ∈ nDn : U (z/n) ≤ (ln (x)−m)∆/n}

⇔ Qm,1 ∈

{
z ∈ nDn : C

(
1−

1

n
αT z

)

(39)

≤
1

n

(
C
(
n− αTx

)
−m+ 1

)}

⇔ Qm,1 ∈ {z ∈ nDn : αT z ≥ αTx+
m− 1

C
}

⇔ Qm,1 ∈ {z ∈ nDn : ̺T z ≤ ̺Tx− (m− 1) log r}
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where we used the representations of U (·) and ln (x) in (33) and (34) and the
definition of Lz in (17). In other words, if a particle survives m generations
then its current position is beyond the mth level, which implies that the
weighted sum of system population, with weight given by the vector ̺, is
bounded from above by that of the initial position adjusted by a linear
function in m. If we define the stopping time T̂m

C
, inf{k ≥ 1 : αTQ (k) ≥

αTx + m−1
C } = inf{k ≥ 1 : ̺TQ (k) ≤ ̺Tx − (m− 1) log r}, the above

property also implies that Qm,1 ∈ Cn
ln(x)−m ⇔ T̂m

C
< T0. Following an

argument similar to the proof of (23) in Proposition 3 (in fact easier because
here we are interested in an upper bound only), it follows that there exists
constant ĉ > 0, independent of x and m, such that

Px

(
Qm,1 ∈ Cn

ln(x)−m

)
= Px

(
T̂m

C
< T0

)

≤
ĉ

π (x)
P
[
̺TQ (∞) ≤ ̺Tx− (m− 1) log r

]

=
ĉ

π (x)
P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]
.

To finish the proof we need the following Lemma.

Lemma 1.

P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]
= Θ

[
P

(
Z
(
βV , 1− ρV∗

)
≥ αTx+

m− 1

C

)]

= Θ

[(
m− 1

C

)βV −1 (
ρV∗
)m−1

C

]

where Z (n, p) denotes a NBin (n, p) (negative binomial) random variable.

Proof of Lemma. Note that

αTQ (∞) = Q (∞)T
̺

log ρV∗

=

d∑

i=1

Qi (∞) I
(
ρi = ρV∗

)
+

d∑

i=1

Qi (∞) I
(
ρi 6= ρV∗

) log ρi
log ρV∗

= Z
(
βV , 1 − ρV∗

)
+W.

One direction is elementary, since αTQ (∞) ≥ Z
(
βV , 1− ρV∗

)
, we clearly

have
(40)

P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]
≥ P

[
Z
(
βV , 1 − ρV∗

)
≥ αTx+

(m− 1)

C

]
.
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For the other direction, note that there exists constants c4 > 0, and ρ̃ < ρV∗
such that

W =
d∑

i=1

Qi (∞) I
(
ρi 6= ρV∗

) log ρi
log ρV∗

≤ c4

d∑

i=1

Qi (∞) I
(
ρi 6= ρV∗

)

≤st c4Z (d− βV , 1 − ρ̃) ,

where “ ≤st” denotes that the left hand side is stochastically dominated by
the right hand side. As a result,

αTQ (∞) ≤st Z
(
βV , 1− ρV∗

)
+ c4Z (d− βV , 1− ρ̃) .

But since 1 − ρV∗ < 1 − ρ̃, a similar argument as given in the proof of
Proposition 2 allows us to obtain
(41)

P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]
≤ c0P

[
Z
(
βV , 1− ρV∗

)
≥ αTx+

(m− 1)

C

]
,

for some finite constant c0 that is independent of m. Combining (40) and
(41), we have

P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]

(42)

= Θ

[
P

(
Z
(
βV , 1− ρV∗

)
≥ αTx+

(m− 1)

C

)]
.

Using again Proposition 3 of [4], we reach the conclusion that

P

[
αTQ (∞) ≥ αTx+

(m− 1)

C

]
= Θ

[(
m− 1

C

)βV −1 (
ρV∗
)m−1

C

]

The result of Proposition 6 directly follows.

To facilitate the analysis of the second moment of Rn (x) we add the
following notations. We follow the analysis in [8] to make our exposition
here self-contained. For a given generation m, denote by Qm,j the position
of the j-th particle; recall that the accumulated weight up to the m-th stage
of such a particle is rm. Let χm,j be the disjoint grouping of particles in the
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next generation (i.e., m + 1) according to their “parents” in generation m.
For k ∈ χm,j , denote by dk the offsprings of this particle at the final stage
ln (x). We then have the following expansion of the second moment of Rn (x):

Ex






rln(x)∑

j=1

Ij r
−ln(x)




2


(43)

=

ln(x)−1∑

m=0

Ex




rm∑

j=1

∑

k,l∈χm,j ,k 6=l



∑

mk∈dk

Imk
r−ln(x)





∑

ml∈dl

Iml
r−ln(x)






+ Ex



rln(x)∑

j=1

Ij r
−2ln(x)


 ,

where we define Imk
to be the indicator function of the event that parti-

cle mk is in the set Cn
0 . The second term above is essentially the diagonal

terms of the second moment (43), and for the off-diagonal terms, for each
generation, we categorize particles according to their common ancestors, a
technique used by [8]. For the first term, we have

ln(x)−1∑

m=0

Ex




rm∑

j=1

∑

k,l∈χm,j ,k 6=l



∑

mk∈dk

Imk
r−ln(x)





∑

ml∈dl

Iml
r−ln(x)






=

ln(x)−1∑

m=0

Ex




rm∑

j=1

I (V (Qm,j) > 0)
(
r−m

)2

·
∑

k,l∈χm,j ,k 6=l


1

r

∑

mk∈dk

Imk
r−(ln(x)−m−1)




1

r

∑

ml∈dl

Iml
r−(ln(x)−m−1)




 .

Conditioning on the whole genealogy up to step m, we obtain

Ex




rm∑

j=1

I (V (Qm,j) > 0)
(
r−m

)2

·
∑

k,l∈χm,j ,k 6=l


1

r

∑

mk∈dk

Imk
r−(ln(x)−m−1)




1

r

∑

ml∈dl

Iml
r−(ln(x)−m−1)






= Ex




rm∑

j=1

I (V (Qm,j) > 0)
(
r−m

)2
Ex




∑

k,l∈χm,j,k 6=l
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
1

r

∑

mk∈dk

Imk
r−(ln(x)−m−1)




1

r

∑

ml∈dl

Iml
r−(ln(x)−m−1)



∣∣∣Qm,j






= Ex




rm∑

j=1

I (V (Qm,j) > 0) r−2m
∑

k,l∈χm,j ,k 6=l

1

r
EQm,j



∑

mk∈dk

Imk
r−(ln(x)−m−1)


 1

r
EQm,j



∑

ml∈dl

Iml
r−(ln(x)−m−1)






 .

Note that EQm,j
[
∑

mk∈dk
Imk

r−(ln(x)−m−1)] = pVn (Qm,j), and W =∑
k,l∈χm,j ;k 6=l r

−2 = (r − 1)/r. Summing over m we obtain

Ex






rln(x)∑

j=1

Ij r
−ln(x)




2
− Ex




rln(x)∑

j=1

Ijr
−2ln(x)




= W

ln(x)−1∑

m=0

Ex




rm∑

j=1

I (V (Qm,j) > 0) r−2mpVn (Qm,j)
2




= W

ln(x)−1∑

m=0

r−m
Ex

[
I (V (Qm,1) > 0) pVn (Qm,1)

2
]
.

Combining this with the diagonal term in (43), which can be readily ex-
pressed as r−ln(x)pVn (x), we arrive at the following expansion for the second
moment of Rn (x):

Ex

[
Rn (x)

2
]

= W

ln(x)−1∑

m=0

r−m
Ex

[
I (V (Qm,1) > 0) pVn (Qm,1)

2
]

(44)
+ r−ln(x)pVn (x) .

The next result takes advantage of expression (44) to obtain an upper bound
for Ex[Rn (x)

2].

Proposition 7. The second moment of Rn (x) satisfies

(45) E [Rn (x)]
2 = pVn (x)2 O

(
nβV

)
.

where βV is the number of bottleneck stations in the subset corresponding
to V .



ANALYSIS OF A SPLITTING ESTIMATOR 335

In order to prove the previous result, we will show that the second mo-
ment of Rn (x) is dominated by the first item on the right hand side of the
equality in (44). In turn, the asymptotic behavior of such term hinges on the
conditional distribution of the exact position of the particle in generation
m, Qm,1 in Cn

ln(x)−m.

Proof. Using the equivalence observed in (39), the expectation term in
the sum of (44) can be expressed as

Ex

[
I (V (Qm,1) > 0) pVn (Qm,1)

2
]

= Ex

[
I
(
̺TQm,1 ≤ ̺Tx− (m− 1) log r

)
pVn (Qm,1)

2
]

(46)

= Ex

[
pVn (Qm,1)

2 |̺TQm,1 ≤ ̺Tx− (m− 1) log r
]
Px

(
T̂m

C
< T0

)

where we used the property derived in (39). Before we proceed, let us define
the inverse mapping V −1 : Z+ → Zd

+ by

V −1(n) = {x ∈ Zd
+ : V (x) = n},

i.e., the configuration of the network such that the total population in sta-
tions encoded by v is n. For the first item in (46), we have

Ex

[
pVn (Qm,1)

2 |̺TQm,1 ≤ ̺Tx− (m− 1) log r
]

≤ KE

[
π2
(
V −1(n)

)

π2 ({Qm,1})
|̺TQm,1 ≤ ̺Tx− (m− 1) log r

]
(47)

= Kπ2
(
V −1(n)

)
c1Eπ

[
e−2̺TQm,1 |̺TQm,1 ≤ ̺Tx− (m− 1) log r

]

where c1,K are some constants independent of n. Here for the inequal-
ity we used Proposition 1. To reach the equality we used the fact that
π−1 ({Qm,1}) = c1e

−̺TQm.1 for some positive constant c1. As for the ex-
pectation term in (47), since the process Q (·) has for each dimension an
increment at most of unit size, we can write

Eπ

[
e−2̺TQm,1 |̺TQm,1 ≤ ̺Tx− (m− 1) log r

]
(48)

= Eπ

[
e−2̺TQm,1 |̺Tx− (m− 1) log r − δ ≤ ̺TQm,1 ≤ ̺Tx− (m− 1) log r

]

≤ c2 exp
(
−2̺Tx+ 2 (m− 1) log r

)

= c3 exp

(
−2

m− 1

C
log ρV∗

)
= c3

(
ρV∗
)−2m−1

C ,
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where c2, c3 and δ are some positive constants. Combining this with

Px

(
T̂m

C
< T0

)
= O

((
m− 1

C

)βV −1 (
ρV∗
)m−1

C

)

according to Proposition 6, we obtain the following upper bound for the
expectation term in the sum of expression (44):

Ex

[
I (V (Qm,1) > 0) pVn (Qm,1)

2
]

= Kπ2
(
V −1(n)

)
π−2(x)

(
ρV∗
)−2m−1

C O

((
m− 1

C

)βV −1 (
ρV∗
)m−1

C

)
(49)

= O

(
pVn (x)2 rm−1

(
m− 1

C

)βV −1
)

where for the second equality we used again Proposition 1 and the fact that
ρV∗ = r−C . Putting the bound in (49) back to the sum in the first item of
(44), we have

ln(x)−1∑

m=0

r−m
Ex

[
I (V (Qm,1) > 0) pVn (Qm,1)

2
]

= r−1

ln(x)−1∑

m=0

O

(
pVn (x)2

(
m− 1

C

)βV −1
)

(50)

= pVn (x)2 O
(
nβV

)
.

Finally, note that the second item of (44) is dominated by (50), and it
follows immediately that

E [Rn (x)]
2 = pVn (x)2O

(
nβV

)
.

Equipped with these results, we are ready to summarize our discussions
in the statement of the following Theorem, which is the main result of this
paper.

Theorem 1. To estimate the overflow probability pVn (x) using Rn (x),
the number of function evaluations needed for a given level of relative error
is O(n2βV +1).
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Proof. Recall from Section 2 that the number of function evaluations
sufficient to achieve a pre-determined level of relative accuracy for the split-
ting estimator is proportional to the work-normalized squared coefficient of
variation. This is therefore immediate by combining the upper bound analy-
sis of the computational effort per run in Proposition 5 along with the upper
bound of the second moment of Rn (x) available in Proposition 7.

A direct comparison to the O(n3d−2) complexity of solving a system of
linear equations (see Section 2) yields the immediate conclusion that the
splitting algorithm is “efficient” in the sense that it is an improvement over
the “benchmark” polynomial algorithm. Even in the worst case scenario,
when we look at the total population of the network and the network is to-
tally symmetric, i.e., all stations are bottlenecks (βV = d > 3), the number
of function evaluations needed is a substantial reduction of nd−3. In the case
where βV = 1, the algorithm only requires a number of function evaluations
that at most grows cubically in the level of overflow n. Furthermore, if the
number of bottlenecks is less than half of the total number of stations, i.e.
βV < d/2, the splitting algorithm enjoys a running time of order smaller
than O(nd), which is not worse than storing the vector that encodes the
solution to the associated linear system. If, on the other hand, more than
half of the stations are bottlenecks, faster importance sampling based algo-
rithms do exist at least for the case of tandem networks; see the analysis in
[6], which implies that O(n2(d−β)+1) function evaluations suffice to obtain an
estimator with a given relative precision. Overall, the analysis thus provides
some sort of guidance on the choice of simulation algorithms. It is meaning-
ful to point out that the previous comparison is not based on the sharpest
analysis. In fact we only resort to a rather crude upper bound in the anal-
ysis of the second moment of Rn (x) in (47). A sharper result is possible by
bounding the expectation term in (46) with more care. But as pointed out
in the Introduction, even though there is still room for a more refined anal-
ysis, we believe our work provides substantial insights leading to a better
understanding of the relations between these two classes of algorithms.

Remark 1. Numerical experiments have been performed for this class of
algorithms in [8]. We replicated some of their experiments and from the nu-
merical evidence we could see that there is still room for a sharper bound. In
particular, when studying overflow for the total population of the network,
our experiments suggest a computational cost roughly similar to O(nβV ) (as
opposed to O(n2βV +1)) for a fixed level of relative error. We have chosen not
to present the numerical details in this paper since we think a sharper anal-
ysis is needed for a better interpretation of the results. The rough O(nβV +1)
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additional effort in our estimate, we believe, comes from the application of
(36) in the proofs of both Proposition 5 and Proposition 7. Note that the
bound becomes too loose when the position of the survival particle at level
m satisfying V (Qm,1) > 0 is no longer O(1). Instead, conditional on a parti-
cle surviving at level m = Θ(n), the particle is with high probability in the
most likely fluid trajectory to overflow. However, to account for its exact
position, we would need a conditional local central limit theorem correc-
tion. This accounts for a factor of nβV /2 in both 1) expected computational
effort per run for a single replication of the estimator and 2) the second
moment of the estimator. Combining these two terms seems to explain most
of the gap between our bound and what appears to be the actual empirical
performance.
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