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1. Introduction

The main purpose of this survey paper is to study the asymptotic shpe of
simply generated random trees in complete generality; this includesanditioned
Galton{Watson trees as a special case, but we will also go beyond #i case.
De nitions are given in Section 2; here we only recall that simply generated
trees are de ned by a weight sequencewy ), and that the case when the weight
sequence is a probability distribution yields conditioned Galton{Watson trees.
It is well-known that in the case of a critical conditioned Galton{Wats on tree,
i.e., when the de ning o spring distribution has expectation 1, the ra ndom tree
has a limit (as the size tends to in nity); this limit is an in nite random tre e,
the size-biased Galton{Watson tree de ned by Kesten [4], see also Aldous4],
Aldous and Pitman [6] and Lyons, Pemantle and Peres§4]. It is also well-known
that this case is less special than it might seem; there is a notion of edyvalent
weight sequences de ning the same simply generated random tresee Sectior¥,
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and a large class of weight sequences have an equivalent probabilityeight se-
quence de ning a critical conditioned Galton{Watson tree. Many pr obabilists,
including myself, have often concentrated on this \standard" ca® of critical
conditioned Galton{Watson trees and dismissed the remaining caseas uninter-
esting exceptional cases. However, some researchers, in panar mathematical
physicists, have studied such cases too. Bialas and Burdd §| studied one case
(Example 10.7 below) and found a phase transition as we leave the standard
case; this can be interpreted as a condensation making the tree Bhy with one
or a few nodes of very high degree. This interesting condensationas studied
further by Jonsson and Stefnsson §7], who showed that (in the power-law
case), there is a limit tree of a di erent type, having one node of in nite degree.

We give in the present paper a uni ed treatment of the limit as the sizetends
to in nity for all simply generated trees, including both the well-know n result in
the standard case of critical Galton{Watson trees and the \exceptional" cases
(i.e., when no equivalent probability weight sequence exists, or whenugh a
sequence exists but not with mean 1). We will see that there is a well-elned
limit in the form of an in nite random tree for any weight sequence. In the
non-standard cases, this in nite random limit has exactly one node & in nite
degree, so its form di ers from the standard case of a critical Galon{Watson
tree where all nodes in the limit tree have nite degrees, but neverheless the
trees are similar; see Section§ and 7 for details.

Some important notation, used throughout the paper, is introduced in Sec-
tion 3, while Sections4 and 6 contain further preliminaries. The main limit
theorem for simply generated random trees is stated in Sectioi, together with
some other, related, limit theorems concerning node degrees andrfge subtrees.
The dierences between di erent types of weight sequences areigcussed fur-
ther in Section 8, and this is continued in Section9 with a summary of the main
results from Section19 on the maximum outdegree in the random tree.

The proofs of the limit theorems for random trees use a well-known @nnec-
tion to a random allocation model that we call balls-in-boxes; this moctl exhibits
a similar behaviour, with condensation in the non-classical cases, se.g. Bialas,
Burda and Johnston [L4]. The model is de ned in Section11, and the relation
between the models is described in Sectiof5. The balls-in-boxes model is in-
teresting in its own right, and it has been used for several other aplications;
we give some examples from probability theory, combinatorics and sttistical
physics in Section12. We therefore also develop the general theory for balls-in-
boxes with arbitrary weight sequences (in the range where the meaoccupancy
is bounded). In particular, we give in Section11theorems corresponding to (and
in some ways extending) our main theorems for random trees.

The limit theorems for balls-in-boxes are proved in Sectionsl3{ 14, and then
these results are used to prove the limit theorems for random treg in Sections
15(17.

The remaining sections contain additional results. Section18 gives asymp-
totic results for the partition functions of the models. The very long Section19
gives results on the largest degrees in random trees, and the largtenumbers of
balls in a box in the balls-in-boxes model; the section is long because thee are
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several di erent cases with di erent types of behaviour. (See als the summary

in Section 9.) In particular, we study in Section 19.6 the case when there is
condensation, and investigate whether this appears as condersan to a single

box (or node), or whether the condensation is distributed over seeral boxes
(nodes); it turns out that both cases can occur. We give also, in Sgtion 19.7,

applications to the size of the largest tree in random forests. In Saion 20, the

condensation in random trees is discussed in further detail. Finally, sme ad-
ditional comments, results and open problems are given in Section®l and 22,

Section 21 mentions brie y various other types of asymptotic results for simply

generated random trees, and Sectio22 discusses alternative ways to condition
Galton{Watson trees.

This paper contains many known results from many di erent sources, to-
gether with some new results. (We believe, for example, that the tBorems in
Section 7 are new in the present generality.) We have tried to give relevant ref
erences, but the absence of references does not necessarily lymihat a result
is new.

2. Simply generated trees
2.1. Ordered rooted trees

The trees that we consider are (with a few explicit exceptionsyooted and ordered
(such trees are also callegblane trees). Recall that a tree isrooted if one node
is distinguished as theroot o; this implies that we can arrange the nodes in a
sequence of generations (or levels), where generationconsists of all nodes of
distance x to the root. (Thus generation O is the root; generation 1 is the setof
neighbours of the root, and so on.) Ifv is a node with v 6 o, then the parent of
v is the neighbour ofv on the path from v to o; thus, every node except the root
has a unique parent, while the root has no parent. Conversely, foany nodev,
the neighbours ofv that are further away from the root than v are the children
of v. The number of children of v is the outdegreed* (v) > 0 of v. Note that if
Vv is in generation x, then its parent is in generationx 1 and its children are
in generationx + 1.

Recall further that a rooted tree is ordered if the children of each node are

See e.g. Drmota 83| for more information on these and other types of trees.
(The trees we consider are callegblanted plane treesin [33].) We identify trees

that are isomorphic in the obvious (order preserving) way. (Formdly, we can

de ne our trees as equivalence classes. Alternatively, we may setea specic

representative in each equivalence class as in Sectid@)

Remark 2.1. Some authors prefer to add an extra (phantom) node as a parent
of the root; such trees are callecblanted (An alternative version is to add only
a pendant edge at the root, with no second endpoint.) There is an oldious
one-to-one correspondence between trees with and without thextra node, so
the di erence is just a matter of formulations, but when comparing results one
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should be careful whether, for example, the extra node is counteor not. The

extra node yields the technical advantage that also the root has idegree 1 and
thus total degree = 1 + d* (v); it further gives each embedding in the plane
a unique ordering of the children of every node (in clockwise order &m the

parent, say). Nevertheless, we nd this device less natural and & will not use
it in the present paper. (We use outdegrees instead of degrees éassume that
an ordering of the children as above is given; then there are no prdéms.)

We are primarily interested in (large) nite trees, but we will also consider
in nite trees, for example as limit objects in our main theorem (Theorem 7.1).
The in nite trees may have nodes with in nite outdegree d* (v) = 1 ; in this
case we assume that the children are ordered;; v,;::: (i.e., the order type of
the set of children isN).

We let T,, be the get of all ordered rooted trees withn nodes (including the
root) and let Ts := rlﬁl Th be the set of all nite ordered rooted trees; see
further Section 6.

Remark 2.2. Note that T, is a nite set. In fact, it is well-known that its size
jTnj is the (n  1):th Catalan number

12n 2 _ @0 2

Co1= = =1 2.
"1Th on 1 ni(n 1)

(2.1)
see e.g.33, Section 1.2.2 and Theorem 3.2],40, Section 1.2.3] or L03 Exercise
6.19(e)], but we do not need this.

For any tree T, we let jTj denote the number of nodes; we callT| the size of
T. As is well known, for any nite tree T,

d"(v)=jTj 1 (2.2)

v2T

since every node except the root is the child of exactly one node.

2.2. Galton{Watson trees

An important class of examples of random ordered rooted trees isigen by the
Galton{Watson trees. These are de ned as the family trees of Galton{Watson
processes: Given a probability distribution ( «)i_, on Zs o, or, equivalently, a
random variable with distribution ( «)i_,, we build the tree T recursively,
starting with the root and giving each node a number of children that is an
independent copy of . (We call ( k)i, the ospring distribution of T; we
sometimes also abuse the language and call the o spring distribution.) In
other words, the outdegreesd” (v) are i.i.d. with the distribution ()}, -
Recall that the Galton{Watson process is calledgjbcritical, critical or super-
critical as the expected number of childrenE = i-:() k x satises E < 1,
E =1or E > 1. ltisa standard basic fact of branching process theory thafl
is nite a.s.if E 6 1 (i.e., in the subcritical and critical cases), butT is in nite
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with positive probability if E > 1 (the supercritical case), see e.g. Athreya and
Ney [8].

The Galton{Watson trees have random sizes. We are mainly interesd in
random trees with a given size; we thus de neT, asT conditioned onjTj= n.
These random treesT, are called conditioned Galton{Watson trees. By de ni-
tion, T, has sizejTpj = n.

It is well-known that several important classes of random trees ca be seen
as conditioned Galton{Watson tree, see e.g. Aldous4], Devroye [32], Drmota
[33] and Section 10.

2.3. Simply generated trees

The random trees that we will study are a generalization of the Galt;m{Watson
trees. We suppose in this paper that we are given a xedwveight sequencev =
(wk)k> o Oof non-negative real numbers. We then de ne theweight of a nite tree
T2 Tt by v
W(T) = W+ (V)! (23)
v2T

taking the product over all nodesv in T. Trees with such weights are called
simply generated treesand were introduced by Meir and Moon B5]. To avoid
trivialities, we assume that wg > 0 and that there exists somek > 2 with
wg > 0.

We let T, be the random tree obtained by picking an element off ,, at random
with probability proportional to its weight, i.e.,

w(T).

P(Th =T)= ) T2Th; (2.4)
Zn
where the normalizing factor Z,, is given by
X
Zn = Zn(w) = w(T); (2.5)
T2Th

Z, is known as the partition function . This de nition makes sense only when
Z, > 0; we tacitly consider only suchn when we discussT,,. Our assumptions
Wo > 0 and wx > O for somek > 2 imply that Z, > 0 for in nitely many n,

see Corollary15.6 for a more precise result. (In most applications,w; > 0, and

then Z, > 0 for everyn > 1, so there is no problem at all. The archetypical
example with a parity restriction is given by the random (full) binary tr ee, see
Example 10.3 for which Z, > 0 if and only ian is odd.)

One particularly important case is when &:O wx = 1, so the weight se-
guence (V) is a probability distribution on Zs . (We then say that (wy) is a
probability weight sequencg In this case we let be a random variable with
the corresponding distribution: P( = k) = wy; we further let T be the random
Galton{Watson tree generated by . It follows directly from the de nitions that
for every nitetree T 2 T, P(T = T) = w(T). Hence

Zn = P(jTj=n) (2.6)
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and the simply generated random treeT, is the same as the random Galton{
Watson tree T conditioned onjT | = n, i.e., it equals the conditioned Galton{
Watson tree T, de ned above.

It is well-known, see Section4 for details, that in many cases it is possible
to change the weight sequencewy) to a probability weight sequence without
changing the distribution of the random trees T,; in this case T, can thus be
seen as a conditioned Galton{Watson tree. Moreover, in many casethis can
be done such that the resulting probability distribution has mean 1. In such
cases it thus su ces to consider the case of a probability weight segence with
mean E = 1; then T, is a conditional critical Galton{Watson tree. It turns
out that this is a nice and natural setting, with many known results proved by
many di erent authors. (In many papers it is further assumed that has nite
variance, or even a nite exponential moment. This is not needed fo the main
results presented here, but may be necessary for other resultSee also Sections
8, 19and 21)

3. Notation

We consider a xed weight sequencev = (W )k> 0. The support supp(w) of the
weight sequencen = (wy) is Tk : wy > 0g. We de ne

I = 1 (w):=supsupp(w) =supfk:wyg > 0g6 1 ; (3.1)

(When considering T,,, we assume, as said abovay, > 0 and wx > 0 for some
k > 2; this can be written 02 supp(w) and ! > 2.)
We further de ne (assuming that the support contains at least two points)

spanw) :=maxfd> 1:dj(i j)wheneverw;;w; > 0g: (3.2)
Since we assumeavp > 0, i.e., 02 supp(w), we can simplify this to
spanw) =maxfd> 1:dji wheneverw; > Og; (3.3)

the greatest common divisor of supp{).
We let 2

(2)=  wZ (3.4)
k=0
be the generating function of the given weight sequence, and let 2 [0;1 ] be
its radius of convergence. Thus

= 1=limsupw, : (3.5)
k!l
( ) is always dened, with 0 < ( ) 6 1. Note that (assuming ! > 0)
(1)= 1;in particular,if = 1,then ( ) = 1. On the other hand,
if < 1,thenboth ( )= 1 and ( ) < 1 are possible. If > 0, then
()% ( )ast% by monotone convergence.
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We further de ne, for t such that (t)< 1,
Py
tAt) _ oo kwith
() oo Witk
( t) is thus de ned and nite at leastfor0 6 t< ,andif ( )< 1, then
() is still de ned by ( 3.6), with ()6 1 (note that the numerator in ( 3.6)
may diverge in this case, but not for 06 t < ). Moreover, if ( )= 1, we
dene ( ):=limy, (t)6 1. (The limit exists by Lemma 3.1(i) below, but
may be in nite.)
Alternatively, ( 3.6) may be written

(t):=

(3.6)

(ex):ex%:d—dxog(ex): (3.7)

The function will play a central role in the sequel. This is mainly becaus e
of Lemma4.2 below, which gives a probabilistic interpretation of ( t). Its basic
properties are given by the following lemma, which is proved in SectiorL3.

Lemma 3.1. Let w = (wk)i., be a given weight sequence witivo > O and
wg > 0 for somek > 1 (i.e., ! (w) > 0).

(i) If 0< 6 1, then the function

P
t o) _ PLO kwi tK

(0= 5 = PR (38)
is nite, continuous and (strictly) increasing on [0; ), with (0)=0 .
@iy If 0O< 61 ,then (t)! ( )6 1 ast%
(i) For any , is continuous[O; ]! [0;1 ].
(ivy If <1 and ( )=1,then ( ):=Ilmy (t)=1.
V) If =1, ,then ( ):=limy (t)=1!161.
Consequently, if > 0, then
( )=lim (t)= sup (t)2(@O;11: (3.9
t% 06 t<
We de ne
=0 ) (3.10)
In particular, if ()< 1, then
= & 6 1: (3.11)
()
It follows from Lemma 3.1that =0 | =0, and that if > 0, then
=(C )=lm (t)=sup (t)2(@©0;17]: (3.12)
1% 06 t<

It follows from (3.8) that 6 !.

Note that all these parameters depend on the weight sequence = (wy); we
may occasionally write e.g.! (w) and (w), but usually we for simplicity do not
showw explicitly in the notation.
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P
Remark 3.2. Let Z(z) denote the generating function Z (z) := rlﬁl Z,z".
Then
Z(z)= z( 2(2)); (3.13)

as shown already by Otter P3]. This equation is the basis of much work on
simply generated trees using algebraic and analytic methods, see e.Brmota
[33], but the present paper uses di erent methods and we will use .13 only
in a few minor remarks.

3.1. More notation

We d_ene No=Zs0:=f0;1;2;:::9, N1 = Zso := f1;2;:::9, No := No [flg
and Nj := Ny [flg

All unspeci ed limits are as n!1 . Thus, a, b, meansa,=k ! 1 as
nt1 .Weuse!® and!? for convergence in probability and distribution,

respectively, of random variables, and? for equality in distribution. We use oy
and O, in the standard sensesoy(a,) is an unspeci ed random variable X
such that X =a, 1" 0Dasn!1 , and Op(an) is a random variable X, such
that X,=a, is stochastically bounded (usually calledtight). We say that some
event holdsw.h.p. (with high probability) if its probability tendstolas n!1l
(See further e.g. 2).)

A coupling of two random variables X and Y is formally a pair of random
variables X  and Y ° de ned on a common probability space such thatX 2 X ©

and Y £ Y% with a slight abuse of notation we may continue to write X
and Y, thus replacing the original variables with new ones having the same
distributions.

We write X, ¢ X 9 for two sequences of random variables or vectorX
and X0 if there exists a coupling of X, and X2 with X, = X? w.h.p.; this
is equivalent to dry (Xn;X0) ! 0asn!l , where dry denotes the total
variation distance.

We use Cy;Cp;::: to denote unimportant constants, possibly di erent at
di erent occurrences.

Recall that d* (v) = d7 (v) always denotes theoutdegreeof a nodev in a tree
T. (We use the notation d* (v) rather than d(v) to emphasise this.) We will not
use the total degreed(v) = 1+ d* (v) (when v 6 0), but care should be taken
when comparing with other papers.

4. Equivalent weights

If a;b> 0 and we changewy to
W = abfwy; (4.1)
then, for every treeT 2 T,,, w(T) is changed to, using @.2),

w(T) = ab 4 Mw(T) = a"" w(T): (4.2)
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Consequently,Z, is changed to
E, = a" lZn; (4.3)

and the probabilities in (2.4) are not changed. In other words, the new weight
sequence §) de nes the same simply generated random treesl, as ().
(This is essentially due to Kennedy [F3], who did not consider trees but showed
the corresponding result for Galton{Watson processes. See alsaldous [4].)
We say that weight sequence i) and (wy) related by (4.1) (for some a;b >
0) are equivalent (This is clearly an equivalence relation on the set of weight
sequences.)

Let us see how replacing\{k) by the equivalent weight sequence §) a ects
the parameters de ned above. The support, span and are not a ected at all.

The generating function ( t) is replaced by

X R
gt):=  wt<=  at<=a( bt); (4.4)
k=0 k=0
with radius of convergencee = =b. Further, ( t) is replaced by
teqt) tab qbt) _
€ t) a( bt)
Hence, if > 0, is replaced by, using 8.12),

§n:=

( bi): (4.5)

e=sup §t)= sup (bt)= sup (9=
06 t< e 06 t<=b 06 s<

if =0then e= e=0= istrivial. In other words, is invariant and depends

only on the equivalence class of the weight sequence.

Lemma 4.1. There exists a probability weight sequence equivalent favy) if
and only if and only if > 0. In this case, the probability weight sequences
equivalent to (wg) are given by

tka

Pk = W; (4.6)

forany t> Osuchthat (t)< 1.

Proof. The equivalent weight sequencew) given by (4.1) is a probability dis-
tribution if and only if

1= w=a wb=a(b)
k=0 k=0

i.e., ifandonly if ( b)< 1 anda= ( b) !. Thus, there exists a probability
weight sequence equivalent to\{rk) if and only if there exists b > 0 with ( b) <
1,ie., ifand only if > O0; in this case we can choose any sudhand take
a:= (b 1, which yields (4.6) (with t = b). O



Simply generated trees and random allocations 113

We easily nd the probability generating function and thus moments of the
probability weight sequence in @.6); we state this in a form including the trivial
caset = 0.

Lemma 4.2. Ift>0and (t)< 1, then

__ tka_
Pk = W,

de nes a probability weight sequencépk). This probability distribution has prob-
ability generating function

k> O 4.7)

* tz
@= pat= @.8)
k=0
and a random variable with this distribution has expectation
t qt)
E = )= —5=(1 (4.9)
(1)
and variance
var =t qt); (4.10)
furthermore, for any s> 0 and x > O,
(e’t) ( e%t)
P( >x)6 e ¥ 6 e : (4.11)
(1 (0)
If t< ,then E and Var are nite. If t = , however,E and Var may
be innite (we dene Var =1 whenE = 1, butVar may be innite also

when E is nite); ( 4.9){(4.10 still hold, with 94 ) 6 1 de ned as the limit
limss,  4s). The tail estimate (4.11) is interesting only whent < , when we
may choose anys < log( =t) and obtain the estimate O(e ¥).

Proof. Direct summations yield

P
X 1o tkw
po= —— K=1 (4.12)
k=0
and, more generally,
P
X Lowetkzk o (t
k= _ k=0 Wk _ (7).

- Pkz ( t) ( t) ; (4.13)

showing that (px) is a probability distribution with the probability generating
function ¢ given in (4.8).

The expectation E = (1) is evaluated by di erentiating ( 4.8) (for z < 1
and then taking the limit as z! 1 to avoid convergence problems if = ), or
directly from (4.7) as

P
E = * Kpk = 7&:0 kwit
=0 (
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Similarly, the variance is given by, using @.8) and (4.9),

_ Syt Ay ot A 2 _
var = X1+ Y1) ( d)?= ERANE) o %):

Alternatively,

P P

2

P
t O(t) = ti |]<-=0 ktka - |]<-:0 k2tk\Nk i-=0 ktka
d (1) (1) ()
X X 2
= Kn kpe =E 2 (E)?=Var :
k=0 k=0
(In the caset = and Var = 1, we use this calculation fort® <t and let
o t.)
Finally, by (4.8),

In particular, taking t = 1, we recover the standard facts that if (wg) is a
probability distribution, so (1) = 1, then it has expectation 1) = (1) and
variance Y(1).

Remark 4.3. We see from Lemma4.1 that the probability weight sequences
equivalent to (wyx) are given by (4.6), wheret 2 (0; Jwhen ( ) < 1 and
t2 (0; Ywhen ( )= 1.BylLemma3.lt7' E = ( t)is an increasing
bijection (0; ]! (0; Jand (0; )! (O; ). Hence, any equivalent probability
weight sequence is uniquely determined by its expectation, and the gssible
expectations are (Q J(when ( )< 1)or(0; )(when ( )=1).

Remark 4.4. Note that we will frequently use (4.6) to de ne a new probability
weight sequence also if we start with a probability weight sequencewy). Proba-
bility distributions related in this way are called conjugated or tilted. Conjugate
distributions were introduced by Craner [ 27] as an important tool in large de-
viation theory, see e.g. B1]. The reason is essentially the same as in the present
paper: by conjugating the distribution we can change its mean in a wg that
enables us to keep control over sums,.

5. A modi ed Galton{Watson tree

Let ( k)k>o be a probability distribution on Ng and let be a random variable
on No with distribution ()i, :

P( =K = « k=0;1;2::: (5.1)

We assume that the expectation = E = |k x 6 1 (the subcritical or
critical case).
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In this case, we de ne (based on Kesten7q4] and Jonsson and Steinssong7])
a modi ed Galton{Watson tree P as follows: There are two types of nhodesor-
mal and special with the root being special. Normal nodes have o spring (out-
degree) according to independent copies of, while special nodes have o spring
according to independent copies ob, where

(
be .. Kk k=0;120:00

P( k) : 1 k=1 (5.2)
(Note that this is a probability distribution on Nj;.) Moreover, all children of a
normal node are normal; when a special node gets an in nite numbeof children,
all are normal; when a special node gets a nite number of children, oe of its
children is selected uniformly at random and is special, while all other cldren
are normal.

Thus, for a special node, and any integerg;k with 1 6 j 6 k < 1, the
probability that the node has exactly k children and that the j:th of them is
special isk y=k=.

Since each special node has at most one special child, the specialdes form
a path from the root; we call this path the spine of P we distinguish two
di erent cases:

(T1) If = 1 (the critical case), then b< 1 as. so each special node has a
special child and the spine is an in nite path. Each outdegreed* (v) in b
is nite, so the tree is in nite but locally nite.

In this case, the distribution of Pin (5.2) is the size-biaseddistribution of

, and P is the size-biased Galton{Watson tree de ned by Kesten 74], see
also Aldous H], Aldous and Pitman [6], Lyons, Pemantle and Peres §4]
and Remark5.7 below. The underlying size-biased Galton{Watson process
is the same as theQ-processstudied in Athreya and Ney [8, Section 1.14],
which is an instance of Doob'sh-transform. (See Lyons, Pemantle and
Peres B4] for further related constructions in other contexts and Geiger
and Kau mann [ 45] for a generalization.)
An alternative construction of the random tree P is to start with the spine
(an in nite path from the root) and then at each node in the spine attach
further branches; the number of branches at each node in the $pe is a
copy of b 1 and each branch is a copy of the Galton{Watson treeT with
o spring distributed as ; furthermore, at a node wherek new branches are
attached, the number of them attached to the left of the spine is uiformly

critical Galton{Watson tree T is a.s. nite, it follows that P as. has
exactly one in nite path from the root, viz. the spine.

(T2) If < 1 (the subcritical case), then a special node has with probability
1 no special child. Hence, the spine is a.s. nite and the numbet. of
nodes in the spine has a (shifted) geometric distribution Ge(1 ),

PL=Y)=@1 ) % =120 (5.3)
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The tree P has a.s. exactly one node with in nite outdegree, viz. the top
of the spine.JP has a.s. no in nite path.

In this case, an alternative construction of P is to start with a spine of
random length L, whereL has the geometric distribution (5.3). We attach
as in (T1) further branches that are independent copies of the Galton{
Watson tree T; at the top of the spine we attach an in nite humber of
branches and at all other nodes in the spine the number we attach ia

copy of 1 where 2 (Pjb< 1) has the size-biased distribution
P( = k) = k k= . The spine thus ends with an explosion producing
an in nite number of branches, and this is the only node with an in nite
degree. This is the construction by Jonsson and Stefnssorb6[].

Example 5.1. Inthe extreme case =0, or equivalently =0a.s.,i.e.,, =1
and x =0for k > 1, (5.2 shows that b= 1 a.s. Hence, every normal node has
no child and is thus a leaf, while every special node has an in nite numbieof
children, all normal. Consequently, the root is the only special nodethe spine
consists of the root only (i.e., its length L = 1), and the tree P consists of
the root with an in nite number of leaves attached to it, i.e., P is an in nite
star. (This is also given directly by the alternative construction in (T2) above.)
In contrast, T consists of the root only, sojTj = 1. In this case there is no
randomness inT or P.

Remark 5.2. In case (1), if we remove the spine, we obtain a random forest
that can be regarded as coming from a Galton{Watson process withimmi-
gration, where the immigration is described by an i.i.d. sequence of radom
variables with the distribution of b 1, see Lyons, Pemantle and Peresf]. (In
the Poisson case, Grimmett §7] gave a slightly di erent description of P using
a Galton{Watson process with immigration.)

In case (T2), we can do the same, but now the immigration is di erent: at a
random (geometric) time, there is an in nite immigration, and after t hat there
is no more immigration at all.

Remark 5.3. Some related modi cations of Galton{Watson trees having a
nite spine have been considered previously. Sagitov and Serralp2 construct
(as a limit for a certain two-type branching process) a random treesimilar
to the one in (T2) above (with a subcritical ), with a nite spine having a
length with the geometric distribution ( 5.3); the di erence is that at the top of
the spine, only a nite number of Galton{Watson trees T are attached. (This
number may be a copy of 1 as at the other points of the spine, or it may
have a dierent distribution, see [102.) Thus there is no explosion, and the
tree is nite. Another modi ed Galton{Watson tree is used by Addar io-Berry,
Devroye and Janson 1J; the proofs use a truncated version of T1) above (with
a critical ), where the spine has a xed lengthk; at the top of the spine the
special node becomes normal and reproduces normally with children. Geiger
[44] studied T conditioned on its height being at leastn, see Section22, and
gave a construction of it using a spine of lengthn, but with more complicated
rules for the branches. See also the modi ed tree®,,, %, B, in Section 20.
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The invariant random sin-tree constructed by Aldous [2] in a more general
situation, is for a critical Galton{Watson process another related tree; it has an
in nite spine as P, but diers from P in that the root has + 1 children (and
thus normal children) instead of b n this case, it may be better to reverse the
orientation of the spine and consider the spine as an in nite path v ,v 1vg
starting at 1 (there is thus no root); we attach further branches (copies of
T) as above, with all v, i < 0, special (the number of children is a copy offb,
but the top node vo normal (the number of children is a copy of , and all are
normal).

Kurtz, Lyons, Pemantle and Peres [F8] and Chassaing and Durhuus 23] have
constructed related trees with in nite spines using multi-type Galto n{Watson
processs.

emark 5.4. If has the probability generating function ' (x) := Ex =
t:o «xK, then Phas by (5.2) the probability generating function

py R
Ex =  k (xK=x qx); (5.4)

k=0
at least for 06 x< 1. (Also for < 1 when b may take the value 1 .)

Remark 5.5. In case (T1), the random variable bis a.s. nite and has mean

X X
Eb=" kpb=k)= K2, =E 2= 2+1; (5.5)
k=0 k=0

where 2:=Var 6 1 .Incase (T2), we haveP(b= 1)> OandthusE b=1 .
This suggests that in results that are known in the critical case 1), and where
2 appears as a parameter (see e.g. Sectid), the correct generalization of
2 to the subcritical case (T2) is not Var but E b 1=1. (See Remark5.6
below for a simple example.) We thus de ne, for any distribution ( )i-, with
expectation 6 1, (

2. —-1-
rzgb gz 0 Th

1; < 1 (5:6)

Remark 5.6. Let Ix(T) denote the number of nodes with distancek to the
root in a rooted tree T. (This is thus the size of the k:th generation.) Trivially,
lo(T) = 1, while [1(T) = d7 (0), the root degree.
It follows by the construction of P and induction that in case (T1), using
(5.9,
El(P)=1+ k(EP 1)=k 2+1; «k>oO (5.7)

In case (T2), we have if > 0 andk > 1 a positive probability that L = k and
then Ik('b) = 1. Thus Elk('b) = 1 . Consequently, using 6.6), if 0 < 6 1,
then

Ely(P)= k"2+1; k> L (5.8)
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However, this fails if = 0; in that case, Il('b) =1 but Ik('b) =0 for k > 2,
see Example5.1.

Remark 5.7. As said above, in the case = 1, the tree P is the size-biased
Galton{Watson tree, see [74, 6] and [84]. For comparison, we give the de nition
of the latter, for an arbitrary distribution ( «)k>o with nite mean > O: Let,
as above, have the distribution ( ), see 6.1), and let  have the size-biased
distribution de ned by

P( :k):k_"; k=0;1;2;::: (5.9)

(Note that this is a probability distribution on Nj.) Construct T as P above,
with normal and special nodes, with the only dierence that the number of
children of a special node has the distribution of in (5.9).

In the critical case = 1, we have = bandthus T = P, but in the
subcritical case < 1, T and P are clearly di erent. (Note that T always is
locally nite, but P is not when < 1.) When > 1, P is not even de ned,
but T is. (As remarked by Aldous and Pitman [6], in the supercritical caseT
has a.s. an uncountable number of in nite paths from the root, in catrast to
the case 6 1 when the spine a.s. is the only one.)

T can also be constructed by the alternative construction in 1) above
starting with an in nite spine, again with the di erence that b 1is replaced
by 1. T can also be seen as a Galton{Watson process with immigration
in the same way as in Remark5.2.

By (5.9), the probability that a given special node in T hask > 1 children,
with a given one of them special, is

ZP( =k)= 1 f= (5.10)

Let T be a xed tree of height *, and let u be a node in the ":th (and last)
generation in T. Let T () denote T truncated at height ". It follows from
(5.10 and independence that the probability that T () = T and that u is
special (i.e.,u is the unique element of the spine at distance from the root)
equals P(T() = T). Hence, summing over thel-(T) possibleu,

PTO=T)= MPTI=T); (5.11)

which explains the name size-biased Galton{Watson tree. (As an altnative,
one can thus dene T directly by (5.11), noting that this gives consistent
distributions for m =1;2;:::, see Kesten 74].) See further Section22.2

6. The Ulam{Harris tree and convergence

It is convenient, especially when discussing convergence, to reghour trees as
subtrees of the in nite Ulam{Harris tree de ned as follows. (See e.g Otter [ 93],
Harris [51, xVI.2], Neveu [91] and Kesten [74].)
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De nition 6.% The Ulam{Harris tree U; is the in nite rooted tree with node

setV; = ﬁzo N'{, the set of all nite strings i; ik of positive integers,
including the empty string ; which we take as the rooto, and with an edge
joining iy ixandi; igxs forany k> 0 andiyg;:::;ik+1 2 Ni.

Thus every nodev = i; iy has outdegreed® (v) = 1 ; the children of v are
the strings v1, v2,v3, ..., and we let them have this order soU; becomes an
in nite ordered rooted tree. The parent of i;  ix (k> 0)isi; ik 1.

The family T of ordered rooted trees can be identi ed with the set of all
rooted subtreesT of U; that have the property

L i 2V(T) =) i1 ikj 2 V(T)forallj 6 i (6.1)

Equivalently, by identifying T and its node setV (T), we can regardT as the
family of all subsetsV of V; that satisfy

12V, (6.2)
i1 ka1 2V =) i1 ik2V; (6.3)
in ki2V =) i1 ixj2Vv forall j6i (6.4)

Welet T ;= fT 2 T:jTj < 1g be the set of all nite ordered rooted trees
and T, := fT 2 T :jTj= ngthe set of all ordered rooted trees of size.

If T2 T, we let as aboved® (v) = d (v) denote the outdegree ofv for every
v 2 V(T), For convenience, we also de ned* (v) = 0 for v 2 V(T); thus d* (v)
is de ned for everyv 2 V; , and the tree T 2 T is uniquely determined by the
(out)degree sequenced; (v))vav, - It is easily seen that this gives a bijection

betweenT and the set of sequencesd() 2 Ngl with the property
d, i,i =0 when i>dji, i.: (6.5)

The family Ty of locally nite trees corresponds to the subset of all such
sequences with alld, < 1 , and the family T of nite trees correspond to the
subset of all such sequencesl() with all d, < 1 and only nitely many d, 6 0.

In this way we have Ty Ty T Ngl ; note that Ty = T\ N§*, so
T T Ng-.

We give Ny the usual compact topology as the one-point compacti cation of
the discrete spaceNy. Thus Ny is a compact metric space. (One metric, among
many equivalent ones, is given by the homomorphisrm 7! 1=(n + 1) onto

fl=ngl_, [f Og R.) We give Ngl the product topology and its subspacesT;,
Ty and T the induced topologies. Thusﬁg1 is a compact metric space, and

its subspacesT;, Ty and T are metric spaces. (The precise choice of metric on
these spaces is irrelevant; we will not use any explicit metric exceptiiey in

Section 20.) Moreover, the condition (6.5) de nes T as a closed subset dﬁgl ;
thus T is a compact metric space. [ and Ty are not compact. In fact, it is
easily seen that they are dense proper subsets af. T; is a countable discrete

space.)
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In other words, if T, and T are trees inT, then T, ! T if and only if the
outdegrees converge pointwise:

di (v)! di(v) foreachv2V;: (6.6)
It is easily seen that it su ces to consider v 2 V(T), i.e., (6.6) is equivalent to
dr (v)! di(v) for eachv 2 V(T); (6.7)

since (6.7) implies that if v 2V (T), then v 2V (T,) for su ciently large n, and
thus dﬂ (v) = 0. (Consider the last node w in V(T) on the path from the root
to v and usedy (w) ! dy(w).)

Alternatively, we may as above consider the node se¥V (T) as a subset of
V1 and regardT as the family of all subsets ofV; that satisfy (6.2){( 6.4). We
identify the family of all subsets of V; with f0;1g"* , and give this family the
product topology, making it into a compact metric space. (Thus, cawergence
means convergence of the indicatodfv 2 g for eachv 2 Vi .) This induces a
topology on T, where T, ! T means that, for eachv 2 V; , if v 2 V(T), then
v 2 V(T,) for all large n, and, conversely, ifv 2V (T), then v Z V(T,) for all
large n.

If v=ip:::ix with k> 0, thenv 2 V(T) if and only of ix 6 d;(il:::il< 1)
It follows immediately that V(T,) ! V/(T) in the sense just described, if and
only if (6.6) holds. The two de nitions of T, ! T above are thus equivalent (for
T, and thus also for its subsetsT; and Ty;).

Furthermore, we see, e.g. from §.6), that the convergence of trees can be
described recursively: LetT(;y denote the j:th subtree of T, i.e., the subtree

even whend; (0) = 1 .) Then, T, ! T if and only if

(i) the root degrees converged; (0) ! dy(0), and further,

(Note that T, () is de ned for large n, at least, by (i).)

It is important to realize that the notion of convergence used hereis a local
(pointwise) one, so we consider only a single at a time, or, equivalently, a nite
set of v; there is no uniformity in v required.

If T is a locally nite tree, T 2 Ty, then dy(v) < 1 for eachv, and thus
(6.6) means that for eachv, d’{n (v) = d* (v) for all suciently large n.

Let T(M) denote the tree T truncated at height m, i.e., the subtree of T
consisting of all nodes in generations Q::;m. If T is locally nite, then each
T(™ is a nite tree, and it is easily seen from (6.7) that convergence toT can
be characterised as follows:

Lemma 6.2. If T is locally nite, then, for any trees T, 2 T,
Tt T TM1 TM for eachm
0 T{M =T for eachm and all large n:

(The last condition means for n larger than somen(m) depending onm.) [
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This notion of convergence for locally nite trees is widely used; see.g. Otter
[93] and Aldous and Pitman [6].

In general, if T is not locally nite, this characterization fails. (For example,
if Sp, 16 n 6 1, is a star where the root has outdegreen and its children
all have outdegree 0, thenS, ! S; , but Sﬁm) 6 Sim) ferall nand m > 1))
Instead, we have to localise also horizontally: LetvI™ := =% f1;:::;mg¥, the
subset ofV; consisting of strings of length at mostm with all elements at most
m. Foratree T 2 T, let TI™ be the subtree with node setv (T)\ VI™I i.e., the
tree T truncated at height m and pruned so that all outdegrees are at mosim.
It is then easy to see from 6.6) that the following analogue and generalization
of Lemma 6.2 holds:

Lemma 6.3. For any treesT;T, 2 T,

T.! T TM™1 TM for eachm

0 TIm =TI for eachm and all large n:

(The last condition means for n larger than somen(m) depending onm.) O

Our notion of convergence for general tree§ 2 T was introduced in this
form by Jonsson and Steansson §7] (where the truncation TIM is called aleft
ball).

Remark 6.4. It is straightforward to obtain versions of Lemmas 6.2{ 6.3 for
random treesT, T,, and convergence in probability or distribution. For example:
For any random treesT;T, 2 T,

d

T, ! T T T for eachm: (6.8)

If T2 Ty, a.s., then we also have

om0 MY TM for eachm; (6.9)

Ty !
see e.g. Aldous and Pitman §]. The proofs are standard using the methods in
e.g. Billingsley [15].

7. Main result for simply generated random trees

Our main result for trees is the following, proved in Section16. The case when

> 1and 2 < 1 was shown implicitly by Kennedy [73] (who considered
Galton{Watson processes and not trees), and explicitly by Aldous ad Pitman
[6], see also Grimmett 7], Kolchin [76], Kesten [74] and Aldous [4]. Special
cases with 0O< < 1 and =0 are given by Jonsson and Stefnsson§7] and
Janson, Jonsson and SteAnssonBH], respectively.

Theorem 7.1. Let w = (wk)k>o0 be any weight sequence withvg > 0 and
wi > 0 for somek > 2.
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@i If > 1,let be the unique number in[0; ]suchthat ( )=1.
@ If < 1let :=

In both cases,06 < 1 andO< ( )< 1. Let

ko= %; k> 0; (7.1)
then ( «)k>o is a probability distribution, with expectation

=( )=min(;1)61 (7.2)
and variance 2= 9 )6 1. Let P be the in nite modi ed Galton{Watson

tree constructed in Section5 for the distribution ( ¢)k>o. Then T, 1 P oas
n!1l ,in the topology de ned in Section 6.
Furthermore, in case (i), =1 (the critical case) and Pis locally nite with

an in nite spine; in case (i) = < 1 (the subcritical case) and® has a nite
spine ending with an explosion.

Remark 7.2. Note that we can combine the two cases > 1 and < 1 and
de ne, using Lemma3.1and with ( )=

n o}
=max t6 :(t)61: (7.3)

Remark 7.3. In case(ii), there is no > 0 with ( ) =1, see Lemma3.1
Hence the de nition of can also be expressed as follows, recalling t{ :=
t qt)=( t) from (3.6): is the unique number in [0 ] such that

)= )% (7.4)
if there exists any such ; otherwise := . (Equation (7.4) is used in many
papers to de ne , inthe case > 1))

Remark 7.4. If0<t< ,then

d () _tq (H_ (Y
dt t t2 t2

(t)y 1:

Since (t) is increasing by Lemmag3.1, it follows that ( t)=t decreases on [0 ]

and increases on | ], so can, alternatively, be characterised as the (unique)
minimum point in [0; ] of the convex function ( t)=t, cf. e.g. Minami [89] and

Jonsson and Stefinsson§7]. Consequently,

(7.5)

(This holds also when =0, trivially, since then ( t)=t= 1 for everyt> 0.)
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Remark 7.5. By Remark 7.4, is, equivalently, the (unique) maximum point in
[0; ]oft=( t), which by (3.13 is the inverse function of the generating function
Z (2). It follows easily that

=Z( z); (7.6)
where z = = ( ) is the radius of convergence o ; see also Corollaryl18.17.
Notethat0 6 7 < 1 andthat 7 =0 | =0 | = 0. Otter [ 93

uses ({.6) as the de nition of  (by him denoted a); see also Minami 89].

Remark 7.6. When = 0 (which is equivalent to = 0), the limit P is the
non-random in nite star in Example 5.1, so Theorem7.1 gives T, PP,

Remark 7.7. We consider brie y the cases excluded from Theorenv.l The
case whenwg = 0 is completely trivial, since then w(T) = 0 for every nite tree,
so T, is unde ned. The same holds (forn > 2) whenwg > 0 but wy = 0 for all
k> 1,ie., when! =0.

The case whenwg > 0 andw; > 0 but wy = 0 for k > 2, so! =1, is
also trivial. Then w(T) = 0 unless T is a rooted path P, for somen. Thus
Zn = W(Py) = wow] 1 and (a.s.) T, = P,, which converges asn!1 to
the innite path P; . We have =1 = !, but, in contrast to Theorem 7.1,

= 1, with dened e.g. by (7.3). Further, interpreting ( 7.1) as a limit, we
have ¢ = «1, so ( k) is the distribution concentrated at 1; thus (5.2) yields

b=1as., soP consists of an in nite spine only, i.e. P=p;. Consequently,
T, 1% P holds in this case too.

Remark 7.8. If we replace {vy) by the equivalent weight sequence &) given
by (4.1), then (7.3) and (4.5) show that is replaced by

e:=maxft6 e: §t)6 lg=maxft6 =b: ( bt)6 1g= =hb: (7.7)

The corresponding probability weight sequence given by 7.1) thus is, using
(4.9,
_ ekwk _ (=b)"ald<wk _ ka

*T ke a() () ©

so the distribution ( ) is invariant and depends only on the equivalence class
of (wy).

(7.8)

Remark 7.9. If > 0, then > 0 and the distribution ( ) is a probabil-
ity weight sequence equivalent to (v ). There are other equivalent probability
weight sequences, see Lemmd.1, but Theorem 7.1 and the theorems below
show that ( k) has a special role and therefore is a canonical choice of a weight
sequence in its equivalence class. Remark.3 shows that ( k) is the unique
probability distribution with mean 1 that is equivalent to ( wy), if any such
distribution exists. If no such distribution exists but > 0, then ( ) is the
probability distribution equivalent to ( wy) that has the maximal mean.

A heuristic motivation for this choice of probability weight sequence isthat
when we construct T, as a Galton{Watson tree T conditioned onjTj = n, it



124 S. Janson

is better to condition on an event of not too small probability; in the critical
case this probability decreases as 372 provided 2 < 1 ,see §3 ( > 1) and
[76, Theorem 2.3.1] ( > 1, 2 < 1), and always subexponentially, but in the
subcritical and supercritical cases it typically decreases expongially fast, see
Theorems18.7 and 18.11

As a special case of Theoren7.1 we have the following result for the root
degreed’{n (0), proved in Section 15.

Theorem 7.10. Let (Wk)kso and ( k)kso be as in Theorem7.1. Then, as
n'i |
P(d’{n (0g=d)! dg d>0: (7.9)

Consequently, regardingd$n (0) as a random number inNo,
& (!’ B (7.10)

where Pis a random variable in Ny with the distribution given in (5.2).

Note that the sum P (1) d ¢ = of the limiting probabilities in ( 7.9) may be
less than 1; in that case we do not have convergence to a proper i@ random
variable, which is why we regardd$n (0) as a random number inNo.

Theorem 7.10 describes the degree of the root. If we instead take a random
node, we obtain a di erent limit distribution, viz. ( ). We state two versions
of this; the two results are of the types calledannealed and quenchedin sta-
tistical physics. In the rst (annealed) version, we take a randomtree T, and,
simultaneously, a random nodev in it. In the second (quenched) version we X
a random tree T, and study the distribution of outdegrees in it. (This yields
a random probability distribution. Equivalently, we study the outdeg ree of a
random node conditioned on the treeT,.)

Theorem 7.11. Let (Wk)k>0 and ( «)k>o be as in Theorem7.1.

(i) Let v be a uniformly random node inT,. Then, asn!1 ,

P(d’{n v=d! ¢ d>0 (7.12)
(i) Let Ng be the number of nodes inT,, of outdegreed. Then
% " 4 d> o0 (7.12)

The proof is given in Section17. (When > 1, this was proved by Otter [93],
see also Minami 89].) See Section21.2 for further results.

Instead of considering just the outdegree of a random node, i.e.,stnumber of
children, we may obtain a stronger result by considering the subtre containing
its children, grandchildren and so on. (This random subtree is called dringe
subtree by Aldous [2].) We have an analogous result, also proved in Sectiofh?.
Cf. [2], which in particular contains (i) below in the case > land ?< 1;
this was extended by Bennies and Kersting11] to the general case > 1. (Note
that the limit distribution, i.e. the distribution of T, is a fringe distribution in
the sense ofZ] only if =1,i.e. ifandonlyif > 1)
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Theorem 7.12. Let (Wk)k>o0 and ( k)k>o be as in Theorem7.1, and let T be
the Galton{Watson tree with o spring distribution ( ). Further, if v is a node
in T,, let T,., be the subtree rooted av.

(i) Let v be a uniformly random node inT,. Then, Ty, ' , .e., for any
xed tree T,
P(Maw=T)! P(T=T): (7.13)

(i) Let T be an ordered rooted tree and letNt := jfv : T,., = Tgj be the
number of nodes inT, such that the subtree rooted there equal. Then

NTT 1P P(T = T): (7.14)

Remark 7.13. Aldous [2] considers also the tree obtained by a random re-
rooting of T,, i.e., the tree obtained by declaring a uniformly random nodev
to be the root. Note that this re-rooted tree contains T,., as a subtree, and
that, provided v 6 o, there is exactly one branch from the new root not in this
subtree, viz. the branch starting with the original parent of v. Aldous [2] shows,
at leastwhen > 1 and 2 < 1, convergence of this randomly re-rooted tree
to the random sin-tree in Remark 5.3. The limit of the re-rooted tree is thus
very similar to the limit of T, in Theorem 7.1, but not identical to it.

8. Three di erent types of weights

Although Theorem 7.1 has only two cases, it makes sense to treat the case= 0
separately. We thus have the following three (mutually exclusive) caes for the
weight sequence \W):

. >1.Then0< < 1 and 6 6 1. The weight sequence \{i)
is equivalent to ( k), which is a probability dislgibution with mean =
() =1 and probability generating function &:O «Z¥ with radius of
convergence= > 1.

II.0< < 1.Then0< = < 1. The weight sequence ) is equivalent
to ( k), which is a probability distripption withmean = ( )= <1
and probability generating function i:o Z* with radius of convergence
= =1.

.  =0.Then = =0, and (wk) is not equivalent to any probability
distribution.

If we consider the modi ed Galton{Watson tree in Theorem 7.1, then Ill is
the case discussed in Exampl&.1; excluding this case, | and Il are the same as
(T1) and (T2) in Section 5.

We can reformulate the partition into three cases in more probabilisic terms.
If is a non-negative integer valued random variable with distributign given by
p« = P( = k), k > 0, then the exponential momentsof areER = i:o pRK
for R > 1. (Equivalently, E€" for r := log R > 0.) We say that , or the
distribution ( px), has some nite exponential momentif ER < 1 for some
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R > 1; this is equivalent to the probability generating function P i:o P z*
having radius of convergence strictly larger than 1.

Consider again a probability distribution (wy) equivalent to (wy), with e =
t“we=( t) for somet 6 . By Section 4, the radius of convergence of the prob-
ability generating function € z) of this distribution is =t cf. (4.4). Hence, the
distribution ( wy) has some nite exponential moment if and only if 0<t <
The cases KllI can thus be described as follows:

. > 1. Then (wg) is equivalent to a probability distribution with mean
= 1 (with or without some exponential moment). Moreover, ( ) in
(7.1) is the unique such distribution.
. 0 < < 1.Then (wg) is equivalent to a probability distribution with mean
< 1 and no nite exponential moment. Moreover, ( k) in (7.1) is the
unique such distribution.
I1l.  =0. Then (wy) is not equivalent to any probability distribution.

Case | may be further subdivided. From an analytic point of view, it is natural
to split | into two subcases:

la. > 1;equivalently, 0< < 6 1. The weight sequence \{x) is equiva-
lentto ( ), whichisa pro@bility distribution with mean =1 and prob-
ability generating function i:o X with radius of convergence= > 1.
In other words, (wy) is equivalent to a probability distribution with mean

=1 and some nite exponential moment. (Then ( ) is the unique such
distribution.) By ( 7.6), the condition can also be written analytically as
Z( z) < ,aversion used e.g. in35]. (This case is calledgeneric in [35]
and [67].)

Ib. =1;then0< = < 1. The weight sequence \{) is equivalent to
( k), which is a qgobability distribution with mean 1 and probability gen-
erating function LO «z¥ with radius of convergence= = 1. In other
words, (W) is equivalent to a probability distribution with mean = 1and
no nite exponential moment. (Then ( ) is the unique such distribution.)

Case la is convenient when using analytic methods, since it says thathe
point s strictly inside the domain of convergence of , which is convenient br
methods involving contour integrations in the complex plane. (See e.gDrmota
[33] for several such results of di erent types.) For that reason, many papers
using such methods consider only case la. However, it has repedtg turned
out, for many di erent problems, that results proved by such methods often
hold, by other proofs, assuming only that we are in case | with nite variance of
( k). (In fact, as shown in [59], it is at least sometimes possible to use complex
analytic methods also in the case when = and ( ) has a nite second
moment.) Consequently, it is often more important to partition case | into the
following two cases:

| . > 1and( k) has variance ? < 1 . In other words, (wy) is equivalent
to a probability distribution () with mean = 1 and nite second
moment 2.
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| . =1and( ) has variance ? = 1 . In other words, (wy) is equivalent
to a probability distribution with mean =1 and in nite variance.

Note that la is a subcase of |, since a nite exponential moment implies
that the second moment is nite.

When > 1, the quantity 2 is another natural parameter of the weight
sequence\), which frequently occurs in asymptotic results, see e.g. Sectiof1.
(When < 1, the natural analogue is1 , see Remark5.5.) By Theorem 7.1 (or
(4.10), 2= 9 ), so (assuming > 1), we have case | when 9 )< 1
and| when 9 )= 1 .Moreover,when > 1,then( ¢)hasmean =1, and
it follows from (4.8) that the variance 2 of ( ) also is given by the formula g]

2 0 )

2= N+ 2= M= 7 (8.1)
Hence | isthe case > 1and °{ )< 1 ;equivalently, either > 1or =1
and )< 1.

Remark 8.1. We have seen that except in case lll, we may without loss of
generality assume that the weight (vy) is a probability weight sequence. If this
distribution is critical, i.e. has mean 1, we are in case | with x = wy, so we do
not have to change the weights.

If the distribution ( wy) is supercritical, then > 1 and we are in case la; we
can change to an equivalent critical probability weight. Hence we negr have to
consider supercritical weights. (Recall that by Remark4.3, is the supremum
of the means of the equivalent probability weight sequences.)

If the distribution ( wy) is subcritical, we can only say that we are in case |
or Il. We can often change to an equivalent critical probability weight, but not
always.

9. The maximum degree

Theorem 7.1 studies convergence of the random tred, in the topology de ned
in Section 6, which really means local convergence close to the root; we haveese
that the limit is of somewhat di erent types depending on the weight sequence,
with condensation in the form of a node of in nite degree in the limit tree P in
cases Il and Il but not in case I.

An alternative way to study the condensation (or absence of it) is b study
the largest degree in the tree. This is discussed in detail in Sectioi9 (in the
more general setting of random allocations). We give here a shortusnmary of
the main results, showing a similar picture: the maximum degree is typially
rather small (logarithmic) in case | but larger (of order n) in cases Il and llI,
which can be interpreted as a condensation; however, there arexeeptions in the
latter cases, and we do not have general theorems covering all psible weight
sequences.

The relation between the two ways of looking at condensation is discssed in
Section 20.
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We denote, as in Sectionl9, the maximum outdegree in the treeT, by Y(y);
we use further the notation in Theorem 7.1 and Section8.

Casela: > 1

In this case 0< < 6 1, and we have a logarithmic bound due to Meir and
Moon [86] (Theorem 19.3):

1
Y 6 W logn + op(log n); (9.1)
if further w, “ 1 1= ask!1 , then
Y,
® e 1 (9.2)

In particular, if = 1, then Y3y = oy(logn).

Moreover, if w+1 =W ! a> 0ask!1 ,then Yy = k(n)+ Oy(1) for some
deterministic sequencek(n), so Y(y is essentially concentrated in an interval of
length O(1) (Theorem 19.1§. The distribution of Y(yy is asymptotically given by
a discretised Gumbel distribution (Theorem 19.19, but di erent subsequences
may have di erent limits and no limit distribution exists.

Similarly, if wi+1 =wk ! 0, then Yy, 2fk(n);k(n)+1gsoY(y is concentrated
on at most two values, and often (but not always) on a single value (heorems
19.16and 19.23.

Casel: >1l1land 2<1

The maximum outdegree Y(;) is asymptotically distributed as the maximum
@ of ni.i.d. copies of ; this holds in the strong sense that the total variation
distance

drv Yo: @ ! O (9.3)
(Theorem 19.7 and Corollary 19.11). SinceE 2 < 1 , this implies in particular
Y(]_) = op(nlzz): (94)
Casel: >1and 2=1
We have
Ya) = 0p(n) (9.5)

(Theorem 19.2), and this is (more or less) best possible (Example9.27). How-
ever, (9.3) does not always hold in this case (Examplel9.27).
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Case ll: 0< < 1

In this case, if further (wy) satis es an asymptotic power-law w, ck as
k!1 ,then Jonsson and Stensson§7] showed that

Yo =@ )n+ op(n); (9.6)

while the second largest node degre&, = 0p(n) (Theorem 19.34 and Re-
mark 19.35. However, if the weight sequence is more irregular, this is no longer
always true; it is possible (at least along a subsequence) tha¥;y = 0p(n),
which can be seen as incomplete condensation; it is also possible (at #along
a subsequence) thaty,) too is of ordern, meaning condensation to two or more
giant nodes (Example19.37).

Caselll: = =0

This is similar to case Il. In some regular cases we haved(6), which now says
Y1) = n+ 0p(n), and then necessarilyY; = oy(n) (Example 19.39, but there
are exceptions in other cases with an irregular weight sequence (Brples19.38
and 19.39.

10. Examples of simply generated random trees

One of the reasons for the interest in simply generated trees is tlianany kinds
of random trees occuring in various applications can be seen as simpfjenerated
random trees and conditioned Galton{Watson trees. We give some important
examples here, see further Aldous3 4], Devroye [32] and Drmota [33].

We see from Theorem7.1 and Section 8 that any simply generated random
tree de ned by a weight sequence with > 0 can be de ned by an equivalent
probability weight sequence, and then the tree is the correspondig conditioned
Galton{Watson tree. Moreover, the probability weight sequence ( ) de ned
in (7.1) is the canonical choice of o spring distribution. Recall that ( ) is
characterised by having mean 1, whenever this is possible (i.e., in casg i.e.,
we prefer to have critical Galton{Watson trees.

Example 10.1 (ordered trees) The simplest example is to takewy, = 1 for

every k > 0. Thus every tree has weight 1, andT, is a uniformly random

ordered rooted tree with n nodes. Further, Z, is the number of such trees; thus
Z, is the Catalan number C, ;, see Remark2.2 and (2.1). (For this reason,

these random trees are sometimes calleGatalan trees)

We have
t—X o= 1 10.1
(0= =1 (10.1)
and 0
(t)=t (t)=L: (10.2)

(v t
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Thus =1and = 1 (cf. Lemma 3.1(iv)), and ( ) =1 yields = 1=2.
Hence (7.1) yields the canonical probability weight sequence

k=2 k% k>o (10.3)

In other words, the uniformly random ordered rooted tree is the onditioned
Galton{Watson tree with geometric o spring distribution Ge(1=2). (This is
the geometric distribution with mean 1. Any other geometric distribu tion yields
an equivalent weight sequence, and thus the same conditioned GalgWatson
tree.)

The size-biased random variable? in (5.2) has the distribution

PP=Kk=k y=k2 kK% k>1; (10.4)

thus P 1 has a negative binomial distribution NBin(2;1=2). It follows that

in the in nite tree P, if v is a node on the spine (for example the root) and
d-(v); dR (v) are the numbers of children of it to the left and right of the spine,
respectively, then

1 .
—— —pPP=j+k+1=2 ] k2
j+k+1 (5= ) (10.5)

=20t 2KY jk>0

Pd-(v)=jandd?(v)= k =

thus d-(v) and d?(v) are independent and both have the same distribution
Ge(1=2) as .
We have 2:=Var = 9 )= 2, see Theorem7.1and (8.1), and EP =
2+1=3, see (5.5.

Example 10.2 (unordered trees) We have assumed that our trees are ordered,
but it is possible to consider unordered labelled rooted trees too by imosing
a random order on the set of children of each node. Note rst thatfor ordered
trees, the ordering of the children implicitly yields a labelling of all nodesas
in Section 6. Hence, any ordered tree withn nodes can be explicitly labeled by

is the same as a uniformly random unlabelled ordered rooted tree witla random
labelling. (For unordered trees, a uniformly random labelled tree is dierent
from a uniformly random unlabelled tree. We consider only labelled unodered
trees here. In fact, unlabelled unordered trees are not simply gesrated trees;
more formally, there is no weight sequence such that the corresmaling simply
generated random tree, with the orderings of the children of eacimode ignored,
is a uniformly random unlabelled unordered tree.) Q

An unordered labelled rooted tree with outdegreesd; corresponds to ™, d;!
di erent ordered labelled rqoted trees. If we takew, = 1=kl, we give each of
these ordered trees weight™ , di! *, so their total weight is 1. Hence, the simply
generated random tree with the weight sequence @Ek!) yields, by ignoring the
orderings of the children of each node, a uniformly random unordexd labelled
rooted tree.
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In this sense, a uniformly random unordered labelled rooted tree isguivalent
to a simply generated random tree withwy = 1=Kk!, and with a minor abuse of
notation, we may say that a uniformly random unordered labelled roded tree
is simply generated (with wy = 1=Kk!).

The number of unordered labelledunrooted trees with n nodes isn" ?, see
e.g. [L03 Section 5.3], a result given by Cayley 22] and known as Cayley's
formula. (Although attributed by Cayley to Borchardt [ 17] and even earlier
found by Sylvester [L04], see e.g. 103 p. 66].) Equivalently, the number of
unordered labelled rooted trees withn nodes isn” . Hence random such trees
are sometimes calledCayley trees However, this name is also used for regular
in nite trees.

We have, with wy, = 1=K!,

b3 tk
(t)= — = ¢ (10.6)
k!
k=0
and
(t)= # =t (10.7)
Thus =1 and ( ) = 1yields = 1. Hence (7.1) yields the canonical
probability weight sequence
e 1
k= W; k> 0: (10.8)

In other words, the uniformly random labelled unordered rooted tree is (equiva-
lent to) the conditioned Galton{Watson tree with Poisson o spring d istribution

Po(1). (Any other Poisson distribution yields an equivalent weight sequence,
and thus the same conditioned Galton{Watson tree.)

The size-biased random variable? in (5.2) has the distribution

el

P(b: k): k K = 7(k 1)|,

k> 1; (10.9)
thus P 1 has also the Poisson distribution Po(1), ieb 1 4 (It is only for
a Poisson distribution that b 12 J)
We have 2:=Var = Y )=1land EP= 2+1=2 cf (8.1 and (5.5).
The partition function is given by
nn le n
n! :
This is a special case of th&orel distribution in (12.29 below; Borel [18] proved
a result equivalent to (10.10 for a queueing problem, see also Otterd3], Tanner

[107, Dwass B6], Takacs [10€], Pitman [99], Example 12.6 and Theorem 15.5
below. Equivalently, using (4.3),

Zn( )= P(Tj=n)= (10.10)

nn1

Zn(W) = €2Zn( )= (10.11)

n!
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Recall that Z,, is de ned by the sum (2.5) over unlabelled ordered rooted trees;
if we sum over labelled ordered rooted trees, we obtainn!Z,, which by the
argument above corresponds to weight 1 on each labelled unordeteooted tree;
i.e., the number of labelled unordered rooted trees is1! Z,(w) = n" 1. Thus
(10.1) is equivalent to Cayley's formula for the number of unordered trees given
above. p

By (10.11), the generating function Z (z) is ,1]:1 n" 1z"=nl, known as the
the tree function; see (2.22{(12.29 in Example 12.6

Example 10.3 (binary trees I). The namebinary tree is used in (at least) two
di erent, but related, meanings. The rst version (Drmota [ 33, Section 1.2.1]),
sometimes calledfull binary tree or strict binary tree, is an ordered rooted tree
where every node has outdegree 0 or 2. We obtain a uniformly rancho full
binary tree by taking the weight sequence withwg = wy = 1, and wg = 0 for

k 6 0; 2. Note that this weight sequence has span 2; this is the standardx@mple
of a weight sequence with spar> 1. As a consequence, a full binary tree of size
n exists only if n is odd. (This is easily seen directly; see Corollaryi5.6 for a
general result.)

We have
(t)=1+ t? (10.12)
and ¥ )
I (9 O S
(t)= Ty i+ (10.13)
Thus =1, =2(cf. Lemma 3.1(v)), and ( )=1yields =1.Hence (7.2)

yields the canonical probability weight sequence
k=31 k=02 (10.14)

In other words, the random full binary tree is the conditioned Galton{Watson
tree with o spring distribution = 2X where X Be(1=2). (In the Galton{
Watson tree T, thus each node gets either twins or no children, each outcome
with probability 1 =2.)

The size-biased random variable? has P(b= 2)=1 by ( 10.19 and (5.2, so
b-=2and b 1=1as.

We have 2:=Var =1land EP= 2+1=2 cf (8.1 and (5.5).

Example 10.4 (binary trees Il). The second version of ainary tree (Drmota
[33, Example 1.3]) is a rooted tree where every node has at most oreft child
and at most oneright child. Thus, each outdegree is 0, 1 or 2; if there are two
children they are ordered, and, moreover, if there is only one childit is marked
as either left or right. (There is a one-to-one correspondence Iween binary
trees of this type with n nodes and the full binary trees in Example10.3 with
2n + 1 nodes, mapping a binary tree T to a full binary tree T where T?is
obtained from T by adding 2 d external nodesat every node with outdegreed,
conversely, we obtainT by deleting all leaves inT® and keeping only the nodes
that have outdegree 2 inT? (the internal nodes).)
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There are thus two types of nodes with outdegree 1, but only oneype each
of nodes with outdegrees 0 or 2. If we ignore the type of child at edcnode
with only one child, we obtain an ordered tree with all outdegrees6 2, and
each such tree withn; nodes of degree 1 corresponds td'2 binary trees. This
number equals the weight given by the weight sequencey = 1, wy =2, w, =1,
and wg =0 for k > 3, i.e.,, wg = ﬁ . Hence, a simply generated random tree
with this weight sequence has the same distribution as the orderedrée obtained
from a uniformly distributed random binary tree; conversely, we may obtain a
uniformly distributed random binary tree by taking a simply generated random
tree with wy = E and randomly labelling each single child as left or right.

In this sense, we may say that a uniformly distributed random binary tree is
(equivalent to) a simply generated random tree with wy =

The choicewy = [ yields

K -

()=1+2t+t2=(1+ t)? (10.15)
and t qt) 2t

Thus =1, =2,and ( )=1yields =1.Hence (7.1) yields the canonical
probability weight sequence

k> 0: (10.17)

In other words, a uniformly random binary tree of this type is (equivalent to)
the conditioned Galton{Watson tree with binomial o spring distribut ion
Bi(2;1=2). (Any other distribution Bi(2 ;p), 0 <p < 1, is equivalent and yields
the same conditioned Galton{Watson tree.)

The size-biased random variableP has by 5.2 P(b =1)= P(b =2)= %;
thus B 1 Bi(1;1=2).

We have 2:=Var =1=2andEbP= 2+1=3=2, cf. (8.1 and (5.5).

Example 10.5 (Motzkin trees). A Motzkin tree is a ordered rooted tree with
each outdegrees 2. The di erence from Example 10.4is that there is only one
type of a single child. Thus we count such trees and obtain uniformly andom
Motzkin trees by taking wo = w; = wp =1 and wg =0, k > 3. (We thus have
the same set of trees as in Exampld 0.4, but di erent probability distributions

on it.)
We have
(t)=1+ t+t (10.18)
and 142t

Thus =1, =2,and ( )=1yields =1.Hence (7.1) yields the canonical
probability weight sequence

K= 5 k=0;1;2: (10.20)
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In other words, a uniformly random Motzkin tree is the conditioned Galton{
Watson tree with o spring distribution  uniform on f0; 1; 2g.
The size-biased random variableP has, by (5.2) and (10.20, the distribution

P(P=1)= L, P(P=2)= Z;thus P 1 BI(1;2=3).

We have 2:=Var =2=3andEP= 2+1=5=3, cf. (8.1 and (5.5).

Example 10.6 (d-ary trees). In a d-ary tree, each node hagl positions where a
child may be attached, and there is at most one child per position. (Tees with
children attached at di erent positions are regarded as di erent trees.) This
generalises the binary trees in Examplel0.4, which is the special casel = 2.
Sincek children may be attached in g ways (with a given order), the argu-
ment in Example 10.4 shows that a uniformly random d-ary tree is equivalent

to a simply generated random tree withwy = g . We have

(t)=(1+ t) (10.21)
and
_tqy _ odt
(t)= v - Tt (10.22)
Thus =1, =!=d,and ( )=1yields =1=d 1). Hence (7.1 yields

the canonical probability weight sequence

= = = — ; > 0 .
K K (d 1)% “d K g g ; k>0 (10.23)
In other words, a uniformly random d-ary tree is (equivalent to) the condi-
tioned Galton{Watson tree with binomial o spring distribution Bi(d; 1=d).
(Any other distribution Bi( d;p), 0 < p < 1, is equivalent and yields the same
conditioned Galton{Watson tree.)

The size-biased random variablé? has the distribution

d 1 1kx1d 14dEKk
b: = = - _— N N
PO=K=kk= | | 3 3 s k> 1, (10.24)
thus P 1 has the Binomial distribution Bi(d 1;1=d).
We have 2:=Var =1 1=dandEP= 2+1=2 1=d cf. (8.1 and
(5.9.
Example 10.7. Let be a real constant and letwy = (k+1) . (The case
=0 is Example 10.1) Then =1.
If 1 < 6 1,then ( )=1,s0 =1 by(3.10 and Lemma 3.1(iv).
If > 1,then ( )= ()< 1 and
P
Gwe _ (1) ()
@) ()

while = (1)= 1 if 6 2. Hence, see also Bialas and Burddl§],

= (1) = : > 2 (10.25)

=1 ( D=2 ()0 = =2:47875.:: (10.26)
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and > 1( 1 < < . (It can be shown that is a decreasing function
of for > 2)Inthe case = o, whenthus =1, we further have 2= 1
by (8.1), since °{1) = 1 when 6 3. This is thus case | , in the notation of
Section 8.

Inthe case > ( wethushaveO< < 1,andT, convergesto arandom tree
P with one node of in nite degree, see Theoreni/.1 and Section5. If 6 o,
then > 1 and the limit tree P is locally nite. We thus see a phase transition
at = (o when we vary in this example.

Note, however, that there is nothing special with the rate of deceasek °;
the value of o depends on the exact form of our choice of the weightsy in
this example, and re ects the values for smallk rather than the asymptotic
behaviour. For example, as remarked by Bialas and Burdal3], just changing
wo would change ¢ to any desired value in (21 ). With a dierent wp, (1) =

() 1+ wp, and a modication of (10.25 shows that the critical value ¢
yielding =1 is given by, see [L3],

2(0 (o =1 wop: (10.27)

In particular, o> 3forwg< 1+ (2) 2 (3)=0:24082::; in this case, for
the critical = o, we thenhave =1and ?< 1, see 8.1).

See 3] for some further analytic properties. For example, if o < 3 (for
example whenwp = 1), then, as % o, we have 1 o o )¥FCo 2,
wherec > 0 and the exponent can take any value> 1.

Example 10.8. Take wy = k!. The generating function (t) = P t:o k!'t“ has
radius of convergence =0 so we are in case lll, and there exists no equivalent
conditioned Galton{Watson tree.

Theorem 7.1 shows that T,, converges to an in nite star, see Remark7.6 and
Example 5.1. This means that the root degree converges in probability tol ,
and that the outdegree of any xed child converges to 0 in probability, i.e.,
equals 0 w.h.p. Note, however, that we cannot draw the conclusionhat the
outdegrees ofall children of the root are 0 w.h.p.; Theorem7.1 and symmetry
imply that the proportion of children of the root with outdegree > 0 tends to
0, but the number of such children may still be large. (Theorem7.11(ii) yields
the same conclusion.)

In fact, for this particular example wy = k!, it is shown by Janson, Jonsson
and Stefinsson p4], using direct calculations, that w.h.p. all subtrees attached
to the root have size 1 or 2, and that the number of such subtreesf size 2 has
an asymptotic Poisson distribution Po(1). (This number thus w.h.p. equals Ny,
and I,(T,), and also the number of children of the root with at least one child.)

Example 10.9. If we instead take wy = k! with 0 < < 1, then as in
Example 10.8§ =0 and T, converges to the in nite star in Example 5.1 In this
case, if (for simplicity) 1= 2 N, then N;(T,)=nt ' tP i1 for16i6 bl= c,
while N;j = 0 w.h.p. for each xed i > bl= c; furthermore, among the subtrees
attached to the root, w.h.p. there are subtrees of all size$ bl= c+ 1, and all
possible shapes of these trees, with the number of each type teing to 1 in
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probability, but no larger subtrees. See Janson, Jonsson and $esson [64] for
details.

If we take wy = k! with > 1, then w.h.p. T, is a star with n 1 leaves, so
Ng=0for16 d<n 1.

See also the examples in Sectioh2.

11. Balls-in-boxes

The balls-in-boxesmodel is a model for random allocation ofm (unlabelled)
balls in n (labelled) boxes; herem > 0 and n > 1 are given integers. The set of
possible allocations is thus

n X0 o)
Bmn = (Y1;::5:Yn) 2 N§ : yi=m ; (11.1)

wherey; counts the number of balls in boxi.
We suppose again thatw = (wg)i-, is a xed weight sequence, and we de ne

N
w(y) = Wy, (11.2)
i=1

Given m and n, we choose a random allocatiorBm:n with probability pro-
portional to its weight, i.e.,

) = w(y)

P(Bmn =y m;

Y 2Bmn; (11.3)
where the normalizing factor Z(m;n), again called the partition function , is
given by X
Z(m;n)= Z(m;n;w) := w(y): (11.4)
Y 2B min

We consider only m and n such that Z(m;n) > 0; otherwise By, is unde-

Remark 11.1. The names balls-in-boxes and balls-in-bins are used in the liter-
ature for several di erent allocation models. We use balls-in-boxe$or the model
de ned here, following e.g. Bialas, Burda and Johnston 14].

Example 11.2 (probability weights) . In the special case wheny) is a prob-
ability weight sequence, let 1; 2;::: be i.i.d. random variables with the distri-
bution (wy). Then w(y)= P (1;:::; o)=Yy foranyy =(yi1;:::;¥n). Hence
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where we de ne

X
Sy = i (11.6)

i=1
Moreover,Bm.n has the same distribution as (1;:::; n)conditionedonS, = m:
(v )y mny e S = m (11.7)

We will use this setting (and notation) several times below. (This corstruction
of a random allocationB ., is used by Kolchin [76] and there called thegeneral
scheme of allocation)

We can replace the weight sequence by an equivalent weight sequenfor the
balls-in-boxes model just as we did for the random trees in Sectiod.

Lemma 11.3. Suppose that we replace the weigh{svk) by equivalent weights
(@) where wy, = ab‘we with a;b > 0 as in (4.1). Then the weight of an
allocation y = (y1;:::;Y¥n) 2 Bm:n is changed to

w(y) = a"b"w(y); (11.8)
and the partition function Z(m;n) = Z(m;n;w) is changed to
EZ(m;n):= Z(m;n;w) = a"b"Z(m;n); (11.9)

while the distribution of By, is invariant. Thus B, depends only on the
equivalence class of the weight sequence.

Proof. We have, by the de nition ( 11.2),

¥ ¥ P, Y
w(y) = wy, = ab'wy, =a"b =Y wy, = a"b"w(y); (11.10)
i=1 i=1 i=1

which shows (1.8, and (11.9 follows by (11.4. Consequently, for everyy 2
Bm:n , we havew(y)=2(m;n) = w(y)=Z(m;n) so the probability P(Bm:n = y)
in (11.3 is unchanged, which completes the proof.

Our aim is to describe the asymptotic distribution of the random allocation
Bmn asm;n!1 ; we consider the case whem=n ! for some real , and
assume for simplicity that 06 <! = I (w). (Cases withm=n!1 are
interesting too in some applications, for example in Sectionl9.7, but will not
be considered here. See e.g. Kolchin, Sevast'yanov and Chistyak§x/7], Kolchin
[76] and Pavlov [96] for such results in special cases.) The rst step is to note
that the distribution of By, = (Y1;:::;Yy) is exchangeablei.e., invariant under
any permutation of Yi;:::;Y,. Hence, the distribution is completely described
by the (joint) distribution of the numbers of boxes with a certain nu mber of
balls, so it su ces to study these numbers.

For any allocation of ballsy = (y1;:::;yn) 2 N§, and k > 0, let

Ni(y) = jfi:yi = kgj; (11.11)
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the number of boxes with exactlyk balls. Thus, if y 2 Bm.n, then

X
Nk(y)=n and KNk(y)= m: (11.12)
k=0 k=0

We thus want to nd the asymptotic distribution of the random varia bles
Nk(Bmn ), k=0;1;:::. Our main result is the following, which will be proved
in Section 14 together with the other theorems in this section.

Theorem 11.4. Let w = (wk)k>o be any weight sequence withvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
with 06 <!

@i If 6 ,let be the unique number in0; ]suchthat ( )=
@ 1f > ,let :=

In both cases,06 < 1 andO< ( )< 1. Let

Wik k_

K = Tk k> 0: (11.13)

Then ( k)k>o is a probability distribution, with expectation
=( )=min( ; ) (11.14)

and variance 2= 9 )6 1 . Moreover, for every k > 0,
N (Bmn)=n!1" (11.15)

If we regard the weight sequencev as xed and vary (i.e., vary m(n)), we
see thatif 0< < 1, there is a phase transition at =

Note that and  in Theorem 7.1 are the same as in Theoreml1.4 with

= 1. Indeed, we will later see that the random trees correspondtan=n 1
and thus =1.

Remark 11.5. The argument in Remark 7.4 extends and shows that is the
(unique) minimum point in [0; ]Jof ( t)=t ;i.e

(11.16)

By (11.19, there are roughly n y boxes with k balls. Summing this ap-
pr|QX|mat|on over all k we would getn boxes (as we should) with a total of
n .- k x = n balls. However, the total number of balls ism n , so in
the case > , (11.19 shows that about n( )= n( ) balls are m|ssmg.
Where are they? p

The explanation is that the sums i:o KNk (Bm:n )=n= m are not uniformly
summable, and we cannot take the limit inside the summation sign. The Iniss-
ing balls" appear in one or several boxes with very many balls, but thee \giant"



Simply generated trees and random allocations 139

boxes are not seen in the limit (1.15 for xed k. In physical terminology, this
can be regarded as condensation of part of the mass (= balls). Wetidy this
further in Section 19.6. The simplest case is that there is a single giant box with

( )n balls. We shall see that this happens in an important case (Theo-
rem 19.34 see alsoBialas, Burda and Johnston[14, Fig. 1] for some numerical
examples), but that there are also other possibilities (Examplesl9.3419.39.

Recall that for simply generated random trees, which as said aboveorre-
spond to balls-in-boxes with = 1, Theorem 7.1 too shows that there is a
condensation when < = 1 (since then < 1 by (7.2); in this case the
condensation appears as a node of in nite degree in the random limitree P of
type (T2), see Section5. We shall in Section 20 study the relation between the
forms of the condensation shown in Theorem§.1and 11.4

We further have the following, essentially equivalent, version of Therem11.4,
where we assume only thatm=n is bounded, but not necessarily convergent.

Theorem 11.6. Let w = (wy)k>0 be any weight sequence witlvg > 0 and
wg > 0 for somek > 1. Suppose thatn /1 and m = m(n) with m=n 6 C for
someC <! .

De ne the function :[0;1)! [0;1]by (x):=supft6 : (t)6 xg
Then (x) is the unique number in[0; ] such that ( (X)) = x whenx 6 ,
and (x) = whenx > ; furthermore, the function x 7! (x) is continuous.
We have06 (m=n)< 1 andO< ( (m=n)) < 1, and for everyk > 0,

Nk(Bmn)  wk( (m:n))k P
n ( (m=n))

Furthermore, for any C <! , this holds uniformly asn!1  for all m = m(n)
with m=n 6 C.

0: (11.17)

which is shown by a physicists' proof by Bialas, Burda and Johnston 14].

Theorem 11.7. Let w = (wy)k>0 be any weight sequence witlvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
where06 <! ,andlet( k)x>o be as in Theorem11.4. Then, for every ~ > 1

PY™M) =y v M) =y v (11.18)
arbitrarily extended to in nite length, converges in distribution, as an element

of N} , to a sequence of i.i.d. random variables with the distribution ( i)k o.
(See e.g. 15, Problem 3.7].)
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Remark 11.8. We have assumedyg > 0 in the results above for convenience,
and because this condition is necessary when discussing simply geatd trees,
which is our main topic. The balls-in-boxes model makes sense also wiheyy = 0,
but this case is easily reduced to the caseg > 0: Let :=minfk:wg > 0g. If

> 0, then this means that each box has to have at least balls. (In particular,
we needm > n .) There is an obvious correspondence between such allocations
in Bm.n and allocations in By, ., obtained by removing balls from each
box. Formally, if y =(y1;:::;Yn) 2Bmn lete =(¢1;:::8) with @ = vy, ,
and note that if we shift the weight sequence towy = wy+ , then w(g) = w(y);
thus B has the same distribution asB,, n.n  for w, with  extra balls added
in each box. It follows easily that the results above hold also in the caswg = 0.
(We interpret we K=( ) for =0 as the appropriate limit value. Note also
that it is essential to use (3.2) and not (3.3) when wgp =0.)

Remark 11.9. Similarly, we can always reduce to the case spam() = 1: If
span(w) = d, then the number of balls in each box has to be a multiple ofd,
so we may instead consider an allocation ofm=d \superballs", each consisting
of d balls. This means replacing eachY; by Y;=d and using the weight sequence
(wgk ). We prefer, however, to allow a general span in our theorems, foease of
our applications to simply generated trees where the correspond@reduction is
more complicated. (For trees, we may replace each branch by d-fold branch.
In the probability weight sequence case with Galton{Watson trees.this replaces

the random variable by ( 1 + + q)=d, with 4 i.i.d., but the roots
gets a di erent o spring distribution  =d; more generally, for a general weight
sequencew, we replace (t) by ( t¥79)9, except at the root where we use dif-
ferent weights with the generating function ( t=9). We will not use this and
leave the details to the reader.)

Remark 11.10. We have assumedn=n! <! in Theoremsl1l.4and 11.7,
and similarly m=n 6 C <! in Theorem 11.6 hence, forn large at least,
m=n <! .Infact, m=n 6 ! is trivially necessary, see Lemmd3.3 When!< 1 ,
the only remaining case (assumingm=n converges) is thusm=n ! | with
m=n 6 ! ; in this case, it is easy to see that {1.19 and (11.18 hold with , =1
and ¢ =0, k6 !.(This can be seen as a limiting case of1(1.13 with =1 )

In fact, if ' < 1, so the boxes have a nite maximum capacity! , then the

complementationy; 7! ! yi yields a bijection of By., onto Bin  m:n, Which
preserves weights if ) simultaneously is re ected to w = (w; ). Hence,
Bm:n corresponds toBy, m.n (for w), and results form=n! ! < 1 follow

from results form=n! 0.
As said above, we do not consider the case=1 and m=n!1 , when the
average occupancy tends to in nity.

12. Examples of balls-in-boxes

Apart from the connection with simply generated trees, see Sectio 15, the
balls-in-boxes model is interesting in its own right.
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We begin with three classic examples of balls-in-boxes, see ekgller [38, 11.5]
and Kolchin [76], followed by further examples from probability theory, combi-
natorics and statistical physics, including several examples of rasom forests.
(We return to these examples of random forests in Sectioi9.7, where we study
the size of the largest tree in them.)

Example 12.1 (Maxwell{Boltzmann statistics; multinomial distribution) . Con-
sider a uniform random allocation of m labelled balls in n boxes. This is the
same as throwingm balls into n boxes at random, independently and with
each ball uniformly distributed. (In statistical mechanics, this is known as the
Maxwell{Boltzmann statistics.) It is elementary that the resulting random allo-

Y
P(Yy;iiiYn)=(y1;iiiiyn) =n ™ =min ™ % (12.1)

If we take wx = 1=k!, we see that the probabilities in (12.1) and (11.3 are
proportional, and thus must be identical, so the weight sequence @&k!) yields
the uniform random allocation of labelled balls. We see also that then

Z(m;n)= nm=m!: (12.2)

Alternatively, we may take a Poisson distribution Po(a): wx = ake 2=kl;
this is an equivalent weight sequence for anya > 0. We see directly that then
Sn Po(na) so (11.5 yields

Z(m;n)=(na)me "=ml; (12.3)

hence we see again thatX1.3 and (12.1) agree.

Comparing with Example 10.2 and using Lemmal7.1below, we see that the
multiset of degrees in a random unordered labelled tree of size has exactly the
distribution obtained when throwing n 1 balls into n boxes at random.

With wyg = 1=k! we have, as in Examplel10.2 (10.6{(10.7 and =! =

= 1. Hence, ifm=n! ,we have = andthus y = *e =kl so ()
is the Po( ) distribution, which thus is the canonical choice of weights. (In the
asymptotic case; for givenm and n one might choose Pof=n), cf. (11.17).)

Theorem 11.7 (or (11.15) shows that if m=n! < 1 , then the asymptotic
distribution of the numbers of balls in a given urn is Po( ).

The idea to study the multinomial distribution as a vector of i.i.d. Poisson
variables conditioned on the sum is an old one that has been used reptedly,
see e.g. Kolchin, Sevast'yanov and Chistyakov77], Holst [52, 53], Kolchin [7€],
Janson p5].

Example 12.2 (Bose{Einstein statistics). The weight sequencewy = 1 yields
a uniform distribution over all allocations of m identical and indistinguishable

bility 1 =jBmpnj=1=""" 1,

m
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This is known as Bose{Einstein statistics in statistical quantum mechanics;
it is the distribution followed by bosons (In the simple case with no forces acting
on them.)

Comparing with Example 10.1, and using Lemmal7.1below, we see that the
multiset of degrees in a random ordered tree of size has exactly the distribution
obtained by a uniform random allocation of n 1 balls into n boxes.

As in Example 10.1we have @0.){(10.2 and =1, =1 .lfm=n! <
1, then the equation ( )= s, by (10.2, =(1 )= , and thus

= I (12.4)
Any geometric distribution Ge(p) with 0 <p < 1 is a weight sequence equiv-
alent to (wg), and (12.4 shows that the canonical choice T7.1) is, using (10.2),

k

- k — .
k=@ ) "= D (12.5)
which is the distribution Ge(1 ) =Ge(l=( +1)). By Theorem 11.7, this is
also the asymptotic distribution of balls in a given urn.

See also Holst$2, 53] and Kolchin [76].

Example 12.3 (Fermi{Dirac statistics) . The other type of particles in statisti-
cal quantum mechanics idermions; they exclude each other (thePauli exclusion
principle) so all allocations of them have to satisfyY; 6 1, i.e.,Y; 2f0;1g. A
random allocation uniform among all such possibilities is known agermi{Dirac
statistics; this is thus equivalent to a uniform random choice of one of the r’;
subsets ofm boxes.

We obtain this distribution by the choice wy = w; =1 and wg =0 for k > 2;
thus

(tH)=1+1t (12.6)
and ¢
We have =1 and =! =1. (Formally, ( 12.6) is the cased = 1 of (10.21),

but note that we assumed > 2 in Example 10.6)
If m=n! < 1, we thus have a rather trivial example of the general theory
with =(1+ )= and thus
= — 12.8
i (12.8)
and () = (1 ;7 0;0;:::), i.e., the Bernoulli distribution Be( ). (Any
Bernoulli distribution Be( p) with 0 <p < 1 is equivalent.)
Since! =1, the corresponding conditioned Galton{Watson tree is trivially
the deterministic path P,, a case which we have excluded above.

Example 12.4 (Polya urn [ 53]). Consider a multicolour RPolya urn containing
balls of n di erent colours, see Eggenberger and Polya 87]. Initially, the urn
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contains a > 0 balls of each colour. Balls are drawn at random, one at a time.
After each drawing, the drawn ball is replaced together withb > 0 additional
balls of the same colour. (It is natural to take a and b to be integers, but the
model is easily interpreted also for arbitrary reala; b > 0, see e.g.58].)

Make m draws, and letY; be the number of times that a ball of colouri is

_ m Qinzl a@a+b (a+(yi 1)b
~ yiiinyn na(na+ b (na+(m  1)b)
Q n a=b+y; 1 (129)
i=1 Vi .
na=b+m 1

m

Hence, as noted by Holst $3], this equals the random allocation given by the
weights
a=b+ k 1

Wi = K =( 1K

i:b ; k=0;1;:::: (12.10)

Note that the casea = byields wy = 1 and the uniform random allocation in
Example 12.2 (Bose{Einstein statistics). We have

R azb+ k 1

. =@ t) &P, (12.11)

(1=

k=0
with radius of convergence =1, and thus

a t

Hence, = (1)= 1 ,andforany 2 [0;1),
b
Py (12.13)

The equivalent probability weight sequences are, by Lemmat.1, given by

k -
Ewie_asbr k1o pad gere 1 (12.14)
(1 k
which is the negative binomial distribution NBin( a=b;1 t) (where the parameter
a=bis not necessarily an integer). The canonical choice, which by Theems11.4
and 11.7is the asymptotic distribution of the number of balls of a given colour,
is NBin(a=b;1 )= NBin( a=b;afa+ b )). See also Holst $3] and Kolchin [76].
Note that the caseb= 0 (excluded above) means drawing with replacement;
this is Example 12.1, which thus can be seen as a limit case. (This corresponds

to the Poisson limit NBin( a=b;afa+ b)) ¢ Po( )asb! 0.
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Example 12.5 (drawing without replacement). Consider again an urn with
balls of n colours, with initially a balls of each colour. (This time,a > 1 is an
integer.) Draw m balls without replacement, and let as aboveY; be the number
of drawn balls of colouri. (The casea = 1 yields the Fermi{Dirac statistics in
Example 12.3)

Formally, this is the caseb= 1 of Example 12.4, and a similar calculation
shows that Q,

a

P (Yiii5Yn) = (Vaiiiiiyn) = —om (12.15)
m

hence this is the random allocation given by the weights

Wi = E ; k=0;1;::: (12.16)
We have thus (t) =(1+ t)?, exactly as in Example 10.6 with d = a.

The equivalent probability weight sequences are the binomial distribdions
Bi(a;p), 0 < p < 1, and the canonical choice is, for & <a ,( k) =Bi( a; =a),
ie.

k a k k a k
a a a (a )
= _ = S A— 12.17
K k a a k a2 ( )
See also Holst$3] and Kolchin [76].
Note that taking the limit as a!1 , we obtain drawing with replacement,

which is Example 12.1; this corresponds to the Poisson limit Bi@; =a) 1
Po( )asa!1l

Example 12.6 (random rooted forests [f6]). Consider labelled rooted forests
consisting of n unordered rooted trees with togetherm nodes, all of which are
labelled. (Thus m > n.) We may assume that then roots are labelled 1:::;n;

m n

the roots are given.) Hence, the number of forests with the allocabn (ty;:::;tn)
is
N Yooto2 Yot 1
..... tt “=(m n)! =(m n) -
ty Loty 1 o o (ti 1) i tj!
(12.18)

Hence, a uniformly random labelled rooted forest corresponds to aandom al-
location B, with the weight sequence

kk 1
k!’

Note that here wy = 0 unlike almost everywhere else in the present paper; in

the notation of Remark 11.8 we have = 1. (As discussed in Remark11.8 we

Wi = k> 1; and wg =0: (12.19)
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can reduce to the casenvg > 0 by considering 1 1;:::;ty, 1), which is an
allocation in By, n.n ; this means that we count only non-root nodes. We prefer,
however, to keep the setting above withwy = 0, noting that the results above
still hold by Remark 11.8)

If Fr., denotes the number of labelled rooted forests wittm labelled nodes
of which n are given as roots, then 1£2.18 implies

Fmn =(m  n)lZ(m;n): (12.20)

It is well-known that Fg., = nm™ " 1 a formula also given by Cayley P2,
see e.g.103 Proposition 5.3.2] or P9]; thus

nmm n 1
Z(m;n) = W (12.21)
We have 2
k 1
(t):= kkl t“ = T(1); (12.22)
k=1 '

the well-known tree function (known by this name since it is the exponential
generating function for rooted unordered labelled trees, cf. Exaple 10.2). Note
that T (z) satis es the functional equation

T(z) = ze"®; (12.23)
see e.g.40, Section I1.5]. Equivalently,

z=T(2)e T, (12.24)

which by di erentiation leads to

__T@ .
Hence,
_tw_ 1
(9= =1 7@ (12.26)

By (12.22 and Stirling's formula, ( t) has radius of convergence = e 1.
Furthermore, (12.24 implies that ( ) = T(e !) = 1. Hence, (12.2 yields

=( )=1,andifl6 < 1,then = ( )is solved by
T()=1 O (12.27)

and thus, using (12.249),

= 1o ¢ »=. (12.28)
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The probability weight sequences equivalent to (v ) are by Lemma4.1 given
by, substituting x = T(t), and thus t = xe * by (12.29,
tk kk ltk (kX)k le kx
REToT Tok - kL

k> 1 (12.29)

where 06 t 6 e * and thus 06 x 6 1. This is known as aBorel distribution ;
it appears for example as the distribution of the sizgjT j of the Galton{Watson
tree with o spring distribution Po( x). (This was rst proved by Borel [ 1§]. It
follows by Theorem 15.5below, with the probability weight sequence Pok); see
also Otter [93], Tanner [107], Dwass B6], Takacs [10€], Pitman [99].) It follows
that the random rooted forest considered here has the same disbution as
the forest de ned by a Galton{Watson process with starting with n individuals
(the roots) and Po(x) o spring distribution, conditioned to have total size m;
cf. Example 12.8 below. See further Kolchin [f6] and Pavlov [96].

In particular, the choice x = 1 (t = e 1) in (12.29 yields the equivalent
probability weight sequence

« kk 1e k.

W = € "Wg = ki ; k> 1; (12.30)

which by Stirling's formula satis es the asymptotic power-law

& plzzk s=2. ask!1l : (12.31)

Moreover, the canonical distribution for a given > 1 is, using (12.28,
Kk 1 k Kk 1 1 k1

- - k(D= .
= TOR S W e : (12.32)

By Theorems11.4and 11.7, and Remark 11.8 this is the asymptotic distribution
of the size of a given (or random) tree in the forest, sayT;. The asymptotic
distribution of jT,j is thus the distribution of the size T j of a Galton{Watson
tree with o spring distribution Po(1 1= ). Moreover, T; is, given its sizejTyj,
uniformly distributed over all trees on jT;j nodes, and the same is true for the
Poisson Galton{Watson tree T by Example 10.2 Consequently, T; 1 as
n!l with m=n . (We may regard T1 as an ordered tree, ordering the
children of a node e.g. by their labels.)

The same random allocationB ., also describes the block lengths in hashing
with linear probing; see Janson p6]. Indeed, there is a one-to-one correspondence
between hash tables and rooted forests, see e.g. Knutfi§, Exercise 6.4-31] and
Chassaing and Louchard 24].

Example 12.7 (random unrooted forests) Consider labelled unrooted forests
consisting of n trees with together m nodes, all of which are labelled. (Thus
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can be chosen in o, Ways, and givenV (T;), the tree T; can by Cayley's
formula be chosen int!" ? ways. Hence, the number of unrooted forests with

N :
m I T (12.33)

Hence, a uniformly random labelled unrooted forest correspondsct a random
allocation B, with the weight sequence

k> 1; and Wo =0: (12.34)

As in Example 12.6 we havewg = 0, but this is no problem by Remark 11.8
If Fy., denotes the number of labelled unrooted forests withm labelled nodes
and n labelled trees, then (2.33 implies

Fan = mlZ(m;n): (12.35)

There is no simple general formula forF., , as there is for the rooted forests in
Example 12.6 and hence no simple formula forZ (m; n). Asymptotics are given
by Britikov [ 20]. (See Examplel8.16for one case. The asymptotic formula when
m=n! > 2 foll?)ws similary from Theorem 19.34ii), and when m=n! < 2
with m= n + o(" n) from Theorem 18.12)
We have
X kk 2

k!

(t):= th=T@) 3T (12.36)

k=1
whereT (t) is the tree function in (12.29. (The latter equality is well-known, see

e.g. B0, 11.5.3]; it can be shown e.g. by showing that both sides have the same
derivative T (t)=t; there are also combinatorial proofs.) Hence, using12.25,

toA) _ T _ 1
(ty (v 1 T@O)=2

(t):= (12.37)
cf. the similar (12.26 in the rooted case.
As for (12.29, has the radius of convergence = e !, but now, by (12.37,
= () =2is nite, so there is a phase transition at = 2. The parameter
is by the de nition in Theorem 7.1and (12.37 givenby T( ) =2 2= =
2(  1)= for 6 2;thus, using (12.29,

2—le 20 D=. g2

o o (12.38)
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The probability weight sequences equivalent to (v ) are by Lemma4.1 given
by, again substituting t = xe * or x = T(t),
B kk 2tk B X(kX)k 2e kx.
T TM@A TM=2)k! (1 x=2)k! ’

P k> 1; (12.39)

where 06 t 6 e ! and thus 06 x 6 1. In particular, taking x =1 (t = e 1),
we obtain the equivalent probability weight sequence
) 2kk Ze k.

W =2wge © = T k> 1; (12.40)

which by Stirling's formula satis es the asymptotic power-law
&) 922:k 5=2. ask!1l : (12.41)

Moreover, the canonical distribution for a given > 1is, by (12.38 and (12.39,
for k > 1,

Kk 2 k _<kk2 2_1klezk( )= . 6 2:

TTO@ TR ok et > 5

‘ (12.42)

By Theorems11.4and 11.7, and Remark11.8 this is the asymptotic distribution
of the size of a given (or random) tree in the forest, sayl;.

We shall see in Theorem19.49that the phase transition at = 2 is seen
clearly in the size of the largest tree in the forest: ifm=n ! < 2, then the
largest tree is of sizeOp(logn), while if m=n! > 2, then there is a unique

giant tree of size ( 2)n + 0y(n); for details see Theorems19.34and 19.49
and, more generally, Luczak and Pittel B3]. This is thus an example of the
condensation discussed after Theorem 1.4 (and similar to the condensation in
Theorem 7.1when < 1).

Example 12.8 (simply generated forests and Galton{Watson forests) A simply

N4
W(Tg; i Th) = w(Ti); (12.43)

where w(T;) is given by (2.3), for some xed weight sequencew. A simply
generated random forestwith n trees and m nodes, wheren and m are given
with m > n, is such a forest chosen at random, with probability proportional
to its weight. Note that in the special casen = 1, this is the same as a simply
generated random tree de ned in Section2. More generally, for anyn, a simply
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form an allocation in By , and it is easily seen that this is a random allocation
Bm:n de ned by the weight sequence Zx)i., , whereZ is the partition function
(2.5) for simply generated trees with weight sequencev (and Zg = 0).

A simply generated random forest can thus be obtained by a two-stge pro-
cess, combining the constructions in Section® and 11. Note that equivalent
weight sequencew yield equivalent weight sequences4y) by (4.3), and thus
the same simply generated random forest.

In the special case whenw is a probability weight sequence, we also de ne
a Galton{Watson forest with n trees, for a givenn, as a sequenceT;:::;T)
of n i.i.d. Galton{Watson trees; it describes the evolution of a Galton{Wat son
process started withn particles. (It can also be seen as a single Galton{Watson
tree T with the root chopped o, conditioned on the root degree beingn, pro-
vided that this root degree is possible.) Note that the probability distribution of
the forest is given by the weights in (L2.43. Hence, in the probability weight se-
guence case, the simply generated random forest equals tieenditioned Galton{
Watson forest with n trees and m nodes, de ned as a Galton{Watson forest
with n trees conditioned on the total size beingm; in other words, it describes
a Galton{Watson process started with n particles conditioned on the total size
being m.

Random forests of this type are studied by Pavlov 9€], see also Flajolet and
Sedgewick 40, Example [11.21].

For example, taking wx = 1=k!, we have by (10.1) Z, = k* =kI, k >
1; this is the weight sequence used in Exampld.2.6 so we obtain the same
random allocation of tree sizes as there; moreover, given the tresizes, the
trees are uniformly random labelled unordered rooted trees by Exaple 10.2
Consequently, for this weight sequence, the simply generated ralom forest is
the random labelled forest with unordered rooted trees in Examplel2.6. The
same random forest is obtained by the equivalent probability weight gquence
wx = xKe *=kl, with0 <x 6 1, so it equals also the conditioned Galton{Watson
forest with o spring distribution Po( x), cf. Example 12.6

Another example is obtained by takingwy =1 for all k > 0. Then every forest
has weight 1, so the this simply generated random forest is a uniforiy random
forest of ordered rooted trees. (Anordered rooted forest) By Example 10.1,
the weight sequence Z) is then given by the Catalan numbers in 2.1): Zy =
Ck 1=k 2)=(k!(k 1)), k> 1.

Further examples are given by starting with the other examples of andom
trees in Section10.

We shall see in Theorem18.11that if the weight sequencew is as in Theo-
rem 7.1, and further span(w) =1, > land ?< 1, then

k
Ze P L) a2, (12.44)

Recallingz(=( ))= by (7.6), we may replaceZy by the equivalent proba-
bility weight sequence
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. Zx “_ Z .
BEz=y O T () P

k 32 (12.45)

so we have the asymptotic behaviou®, ck 372 for every such weight sequence
w, where only the constantc = 1= 2 2 depends onw. This explains why
random forests of this type have similar asymptotic behaviour, in caotrast to
the unrooted forests in Example 12.7 which are given by random allocations
de ned by a weight sequence ck 572, see (12.41); see further Example 12.1Q

Example 12.9. Let, asin Example10.7, wy = (k+1) for some real constant

. Then =1.AsshowninExample10.7, =1 if 6 2,and < 1 if > 2;
in the latter case, is given by (10.25. This example is studied further in e.g.
Bialas, Burda and Johnston [L4].

Example 12.10 (power-law). More generally, suppose thatwy ck as
k!1 , for some real constant and c > 0, i.e., that wy asymptotically satis-
es a power-law. Qualitatively, we have the same behaviour as in Examles10.7
and 12.9 but numerical values such as the critical in (10.26 will in general
be di erent.

We repeat some easy facts: rst, =1, ! =1 and spanfw) = 1.
If 1 < 6 1,then ( )= ()= 1; hencep =1 by Lemma 3.1(iv).
f1< 6 2then ( )< 1 but )= [, kwx = 1; hence again

=( )=1 by (3.1).
On the other hand, if > 2,then (1) <1 and %1)< 1 ,andthus < 1

by (3.11). Summarising:
<19 > 2 (12.46)

In the case > 2, there is thus a phase transition when we vary .

Suppose > 2,s0 < 1.If > ,then = =1, and the canonical
distribution () is by (11.13 given simply by = wy=(1). This distribution
then has mean = < 1 by (11.149;since ¢y k ask!1l | the variance

2=1 if2< 6 3,while <1 when > 3.

Note that Examples 12.6 and 12.7 with random forests are of this type,
provided we replacewy by the equivalent sy := e Kwy; Stirling's formula shows
that &y ck where = 3=2 for rooted forests and = 5=2 for unrooted
forests, see 12.3]) and (12.4]) (with a di erent choice of constant factor in the
latter). The di erent values of  explains the di erent asymptotical behaviours
of these two types of random forests: by the results above, théail behaviour
of wg implies that = 1 for rooted forests but < 1 for unrooted forests, as
we have shown by explicit calculations in Examplesl2.6 and 12.7. Recall that
this means that there is a phase transition and condensation for hig m=n in
the unrooted case but not in the rooted case.

More generally, (12.45 shows that simply generated random forests under
weak assumptions have the same power-law behaviour of the weiglsequence
with = 3=2 as the special case of (unordered) rooted forests in Example.6.
Thus = 1 and there is no phase transition. (At least not in the rangem =
O(n) that we consider. Pavlov [96] show a phase transition atm = ( n?).)
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Example 12.11 (unlabelled forests) Consider, as Pavlov p7], rooted forests
consisting of n rooted unlabelled unordered trees, assuming that the trees, or
equivalently the roots, are labelled %:::;n, but otherwise the nodes are unla-
belled. A uniformly random forest of this type with m nodes can be seen as
balls-in-boxes with the weight sequence t¢), where tx is the number of un-
labelled unordered rooted trees withk nodes. In this case there is no simple
formula for the generating function ( z), but there is a functional equation,
from which it can be shown thatt, ¢k 32 Kk where 0:3382 as usual is
the radius of convergence of (z) and ¢c;  0:4399, see Otter 92| or, e.g., Dr-
mota [33, Section 3.1.5]. Furthermore, ( ) = 1; thus (tx ¥) gives an equivalent
probability weight sequence witht, X ¢k 32 ask !'1 . The asymptotic be-
haviour of the weight sequence is thus the same as for labelled roatdorests in
Example 12.6 and more generally for Galton{Watson forests (under weak con-
ditions) in Example 12.8 and we expect the same type of asymptotic behaviour
in spite of the fact that the unlabelled forest is not simply generated this is seen
in detail in Pavlov [96] for the size of the largest tree. In particular, we have

= 1 by Example 12.10and (12.46, and thus there is no phase transition at
nite

Similarly, Bernikovich and Pavlov [12] consideredunrooted forests consist-
ing of n unordered trees labelled 1:::;n with a total of m unlabelled nodes.
These are described by the weight sequencéy( where ty is the number of un-
rooted unlabelled unordered trees withk nolges. Again, there is no no simple
formula for the generating function ( z) .= t z¥, but there is the relation
(2)=( 2) 3(2z)?+ 3 (2% found by Otter [ 92], which leads to the asymp-
totic formula t, ¢k 372 K where is as above andc, 0:5347, see also
Drmota [33, Section 3.1.5]. In this case, iy “=( )) gives an equivalent proba-
bility weight sequence whichis (c,=( ))k 2 ask!1 , which is the same
type of asymptotic behaviour as for the weight sequence for labelte unrooted
forests in Example12.7, we thus expect the same type of asymptotic behaviour
as for those forests. In particular, < 1 by Example 12.1Q a numerical calcu-
lation gives := 9 )=( ) 2:0513, see Bernikovich and Pavlov]2].

Note that both types of \unlabelled" forests considered here hae the n trees
labelled 1;:::;n (but the individual nodes are not labelled). Completely unla-
belled forests cannot be described by balls-in-boxes (as far as wadw), since
the number of (non-isomorphic) ways to label the trees dependsrothe forest.

Example 12.12 (the backgammon model) The model with wy, = 1=k! for
k> 1 as in Example12.1, but wg > 0 arbitrary, was considered by Ritort [10Q
and Franz and Ritort [41, 42], who called it the backgammon modelWe have

b3
()= wo+
K=

k
he ed+w 1 (12.47)
K
and
tet t _
(1) 1+(wy 1e

(t)= (12.48)
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Thus = = 1.Theequation ( )= can be written
( e =(wo 1); (12.49)
and the solution can be written
= +W (wy 1e = T@ we ; (12.50)

where W (z) is the Lambert W function [26] de ned by W (z)eV (?) = z and
T(z) is the tree function in (12.22 (analytically extended to all real z <e 1);
note that W(z) = T( 2z) by (12.29, see P#6|.
The canonical probability weight sequence {1.13 is, using (12.48 and
()=
k k 1g ke

GRS TR ST Tk k> 1; (12.51)

and o= e wp.

Example 12.13 (random permutations and recursive forests) Consider per-

in some order; for convenience, we consider all possible orders ade ne a cycle-
labelled permutationto be a permutation with the cycles labelled %:::;n, in
arbitrary order. Given a cycle-labelled permutation with exactly n cycles, lety;

say) corresponds to a random allocatiorB,., de ned by the weight sequence
k> 1; and wo =0: (12.53)

Note that here, as in Example 12.6 wg = 0, and Remark 11.8 applies with
=1.
The number of permutations with n (unlabelled) cycles is by (2.52

m!Z(m;n)=n!; (12.54)

where we divide byn! in order to ignore the labelling above.

The same balls-in-boxes model withwy, = 1=k, k > 1, also describesandom
recursive forests see Pavlov and Losevadg].

We have 2

(t)= %: log(1 t) (12.55)
k=1
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with radius of convergence =1 and
T () (@ Blog t)’
so = (1)= 1,cf. Example12.10( =1).
The equivalent probability weight sequences are by Lemmat.1 given by
k

(12.56)

— X .
T kjin@  x)j’

with probability generating function ( xz)=( x) = log(1 xz)=log(1 x).
This distribution is called the logarithmic distribution . See further Kolchin, Sev-
ast'yanov and Chistyakov [77] and Kolchin [76].

By Remark 11.8 we obtain results on random permutations with m cycles
asm=n! 2 [1;1), see for example Kazimirov F1]. However, it is of greater
interest to consider random permutations without constraining the number of
cycles. This can be done using methods similar to the ones used hereut
is outside the scope of the present paper; see e.g. Kolchin, Sevganhov and
Chistyakov [77], Kolchin [76] and Arratia, Barbour and Tavae [ 7]. Note that
even if we condition on the number of cycles, a typical random permtation of
f1;:::;mg has about logm cycles, so we are interested in the case logm
and thusm=n!1 , which we do not considered here.

Other random objects that can be decomposed into componentsan be stud-
ied similarly, for example random mappings [ 6]; our results apply only to ran-
dom objects with a given number of components (in some cases), bsimilar
methods are useful for the general case; see Kolchiig and Arratia, Barbour
and Tavae [7].

P 0<x< I (12.57)

13. Preliminaries

Proof of Lemma 3.1. (i): Since Yt) = P +_o kwt* 1 has the same radius of
convergence as ,and ( t) > wp > O fort > 0O, it is immediate that is
well-de ned, nite and continuous for t 2 [0; ). Furthermore, if 0 <t< | then

t t) is by (4.10 the variance of a non-degenerate random variable, and thus
t Yt) > 0. Hence (t) is increasing, completing the proof of(i) .

@iiy: If ()= 1, the claim is just the de nition of () in Section 2. (Note
that the existence of the limit follows from (i) .) We may thus assume ( )< 1 ;
thent % implies (t)! ( )< 1 and qt)! 9 )6 1 by monotone
convergence, and thus

t oMt
1 o)
(1) )
(iii) : The case =0 is trivial, and the case > 0 follows from (i) and (ii) .
(iv): Forany ~ > 0,

— q
(t):= (

P P.
(t)y "= _&F (k witt kg0 = TTC o (ki (13.1)

k k
k=0 Wkt k=0 Wkl
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If < 1 and ( )= 1, we thus have,

(1t ‘>%!0 ast % ;

so () > 0.Since’ is arbitrary, this shows ( )= 1, proving (iv).
(v): If =1, choose with w- > 0. Then (13.1) implies

S
- t
( >0y 0 asti1
so (1) “>0.Hence, (1)>supf :w >0g="1.
Conversely,
P kw tK
(t)= ko Tk Wktk 6! forallt2[o; ),
k=0 VYVk

so ( )6 !, completing the proof of (v).
Finally, ( 3.9) follows from (i) and (ii) . O

Remark 13.1. Alternatively, the fact that ( t) is increasing can also be seen
as follows: Let 0< a < b < and let Y be a random variable with dis-
tribution P(Y = k) = wgak=( a) (cf. Lemma 4.2). Then ( a) = EY and
(b= E Y(b=9Y =E(b=9",so (a) 6 ( b)is equivalent to the correlation
inequality E Y (b=9Y > EY E(b=9", which says that the two random vari-
ablesf (Y) := Y and g(Y) := (b=9" are positively correlated; it is well-known
that this holds (as long as the expectations are nite) for any two increasing
functions f and g and any Y, see 0, Theorem 236] where the result is at-
tributed to Chebyshev, and it is easy to see that, in fact, strict inequality holds
in the present case. (The latter inequality is an analogue of Harris' orrelation
inequality [51] for variables Y with values in a discrete cubef 0; 1gN ; in fact, the
inequalities have a common extension to variables with values iRN . Cf. also
the related FKG inequality, which extends Harris' inequality; see for example
[48] where also its history is described.)

For a third proof that ( t) is increasing, note that (3.7) shows that is
(strictly) increasing if and only if log ( €*) is (strictly) convex, which is an easy
consequgnce of Helder's inequality, (See e.g3], Lemma 2.2.5(a)] and note that
(€)= ﬁzo e wy is the moment generating function of (v ) in the case that
(wy) is a probability weight sequence.)

Lemma 3.1 shows that is a bijection [0; ]! [0; ( )] =[0; ], so it has
awell-dened inverse 1 :[0; ]! [O; ]. We extend this inverse to [Q1 ) as
follows.

Lemma 13.2. For x> 0dene = (x)2][0;1]by

(x):=supfté : (t)6 xg: (13.2)
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Then (x) is the unique number in[0; ] such that ( (X)) = x whenx 6 ,
and (x) = whenx > . Furthermore, the function x 7! (x) is continuous,
and, for any x > O,

( (xX)=min( x; ): (13.3)

If x<! ,then06 (x) <1 and0< ( (x)) < 1. On the other hand, if
x>1,then X)=( (X)=1.

Proof. By Lemma 3.1 and the de nition ( 3.10, is an increasing continuous
bijection [0; 1! [0; ( )] =1[0; I, thus if 0 6 x 6 , there exists a unique
L(x) 2 [0; ]with ( 1(x)) = x, and (13.2 yields (x) = 1(x). Since
is a continuous bijection of one compact space onto another, its irrse 1 :
[0; 1! [O; ]1is continuous too; thusx 7! (x) = 1(x) is continuous on [Q ].

Furthermore, (13.3 holds for x 6

If x> = ( ) then(13.2yields (x)= ,andthus ( (xX))=( )= ,
so (13.3 holds in this case too.

Combining the two cases we see thak 7! (x) is continuous on [Q 1 ), and
that (13.3 holds.

Now suppose thatx <! and (x)= 1 .Since (x) 6 wethenhave =1,
and Lemma3.1(v) yields ( (x))= ( )= !>x, contradicting (13.3. Thus
(x) < 1 whenx <! . Furthermore, if ( (x)) = 1,then (x) = , since
(t)<1 fort< ,andthus ( )= 1.Iffurther x<! ,and thus = (x) <
1 as just shown, then Lemma3.1(iv) would give ( (x))=( )= 1, again
contradicting (13.3 sincex< 1 . Thus ( (X)) <1 whenx<! .

Conversely, ifx > !, then! < 1, so (t)is a polynomial and = 1.
Lemma3.1(v) showsthat ( )="! 6 x,so0 (13.2yvyields (x)= =1, whence
also ( X)=(1)=1. O

Next, we investigate whenZ (m; n) > 0. We say than an allocation /1;:::; yn)

of m balls in n boxes isgood if it has positive weight, i.e., if y; 2 supp(w) for
everyi. Thus, Z(m;n) > 0 if and only if there is a good allocation inBp, ; in
this case, the random allocationB ., is de ned and is always good.

Provided m is not too small or too large, the m and n for which good allo-
cations exist are easily characterised; the following lemma shows tha simple
necessary condition also is su cient. (The exact behaviour for vey small m is
complicated. The largestm such that Z(m;n) =0 for all n is called the Frobe-
nius number of the set suppfw); it is a well-known, and in general di cult,
problem to compute this, see e.g.10]. The case whenm is close to!n (with
nite !) is essentially the same by the symmetry in Remarkl11.1Q)

Lemma 13.3. Suppose thatwy > 0.

@) If Z(m;n) > O, then spanw)jmand06 m®6 !n.
@iy If ' < 1, then there exists a constantC (depending onw) such that if
spanw) jmandC6 m6 !'n C, thenZ(m;n) > 0.
(i) 1f ! =1, then for eachC%< 1 , there exists a constantC (depending on
w and C9 such that if spanw) jm andC 6 m 6 C%, then Z(m;n) > 0.
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Proof. (i): Z(m;n) > 0 if and only if m = P inzl y; for somey; with wy, > 0,
i.e.,yi 2 supp(w). This implies 06 y; 6 ! and spanfv) jy; for eachi, and the
necessary conditions in (i) follow immediately.

(ii): We may for convenience assume that spanf) = 1, see Remark 11.9,
then, by (3.3), supp(w) nf0g is a nite set of integers with greatest common
divisor 1. Thus, by a well-known theorem by Schur, see e.g1p9, 3.15.2] or B0,
Proposition 1V.2], there is a gonstant C1 such that every integerm > C; can be
written as a nite sum m = ;y; with y; 2 supp(w) (repetitions are allowed);
i.e. we have a good allocation ofm balls in some number” (m) boxes. Choose
one such allocation for eachm 2 [C1;C; + !), and let C, be the maximum
number of boxes in any of them.

IfCi16m6!In Cyl,leta:=bm Cp)=lc. Thenm a! 2[Cy;Cq+ 1),
and has thus a good allocation in at mostC, boxes. We adda boxes with !
balls each, and have obtained a good allocation ah balls using at most

C,+a=0Cr+ b(m Cl):! c6 C, + b('n C,! Cl):! c6 n

boxes. Hence we may add empty boxes and obtain a good allocation Bm:n .
(Recall that 0 2 supp(w).) Thus Z(m;n) > 0 whenC; 6 m6 In C,!.
(ii): We may again assume spanv) = 1. Let K be a large integer and

consider the truncated weight sequencev®) = (w{*)) de ned by
(
wi; k6 K;

(K) ._
W= 0, k>K:

(13.4)

we assume thatk 2 supp(w) and that K is so large thatK > C%+ 1 and
spanfw (X)) = span(w) = 1. Then ! (w(K)) = K, and (ii) shows that for some
Cs, if C36 m6 Kn Cs, then Z(m;n;w) > Z(m;n;w®)) > 0. Hence, if
C36 M6 Chand Z(m;n) =0,then Kn C3<m 6 Ch 6 (K 1)n,
and thus n < C 3, whencem < C %C3. Consequently, if C-C3 6 m 6 C%, then
Z(m;n) > 0. O

Remark 13.4. Inthe case! = 1, itis not always true that there is a constant
C such that Z(m;n) > 0 wheneverm > C. For example, suppose thatwy =1
whenk =0 or k = j! for somej > 0, and wx = 0 otherwise. Then Z(m;n) =0
whenm=(n+1)) 1andn> 2.

Remark 13.5. Lemma 13.3is easily modi ed for the casew, = O; if =
minfk : wx > 0g as in Remark 11.8 then the necessary condition (i) isn 6
m 6 !'n and spanfw) j (m n ), and again this is su cient if m stays away
from the boundaries.

14. Proofs of Theorems 11.4{11.7

We now prove the theorems in Sectiorl1, which we for the reader's convenience
repeat rst.
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Theorem 11.4. Let w = (wk)k>0 be any weight sequence witlvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
with 06 <!

@i If 6 ,let be the unique number in0; ]suchthat ( )=
@ if > ,let :=

In both cases,06 < 1 andO< ( )< 1.Let

Wkk

K = ﬁ; k> 0: (11.13

Then ( «)k>o IS a probability distribution, with expectation
=( )=min(; ) (11.19

and variance 2= 9 )6 1 . Moreover, for every k > 0,
N (Bmn)=n!1’ (11.15

Theorem 11.6. Let w = (wy)k>0 be any weight sequence witlvg > 0 and
wg > 0 for somek > 1. Suppose thatn /1 and m = m(n) with m=n 6 C for
someC <! .

De ne the function :[0;1)! [0;1]by (x):=supft6 : (t)6 xg
Then (x) is the unique number in[0; ] such that ( (X)) = x whenx 6 ,
and (x) = whenx > ; furthermore, the function x 7! (x) is continuous.
We have06 (m=n)< 1 andO< ( (m=n)) < 1, and for everyk > 0,

Nk(Bmn)  wk( (m:n))k P
n ( (m=n) -~

Furthermore, for any C <! , this holds uniformly asn!1  for all m = m(n)
with m=n 6 C.

(11.17)

Theorem 11.7. Let w = (wk)k>0 be any weight sequence witlwvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
where06 <! ,andlet( k)x>o be as in Theorem11.4. Then, for every ~ > 1

l:,(Yl(m;n) - 1;:::;Y\(m;n) =y)! v (11.18

to independent random variables with the distribution( )k» o.

We begin with some lemmas. First we state and prove a version of the tal
central limit theorem (for integer-valued variables) that is convenient for our
application below. We will need it for a triangular array, where the variables we
sum depend onn.

We de ne the span of an integer-valued random variable to be the san of
its distribution, de ned as in ( 3.2).
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Lemma 14.1. Let and @; @;::: blg integer-valued random variables with

™M 1% asnt1 L andletsy = " ™ where (" are independent
copies of (™. Suppose further that is non-degenerate, with spand and nite
variance 2> 0, and that sup, Ej (MWj®< 1 .If d> 1, we assume for simplicity
thatdj anddj (™ for eachn.
Let m = m(n) be a sequence of integers that are multiples af and assume

that E (™ = m(n)=n. Then, asn!1

d+ o(1)
p—=:

P(S{ = m)= —

(14.1)
Proof. The proof uses standard arguments, see e.folchin [76, Theorem 1.4.2];
we only have to check uniformity in (") of our estimates.

If the spand > 1, we may divide , (") and m by d, and reduce to the case
d = 1. Hence we assume in the proof that span() = 1.

Let ' (t):= E€' and' (1) := E€t "™ be the characteristic functions of
and (M. Further, let 'e,(t) := e ™" ' (t) be the characteristic function of
the centred random variable (MW E (M = (M m=n,

Then S{") has characteristic function' n ()", and thus, by the inversion for-
mula and a change of variables,

z z

P(S[(qn) = m) = zi e imt n(t)n dt = zi 'en (t)n dt
p_
LI
= —p= en(x=" n)" dx (14.2)
2 n pﬁ
Z,
1 . P—in, .o p—
= —Pp= en(x= n)"1 jxj< n dx:
2 n 4

Let 2 be the variance of (M. SinceEj (M} are uniformly bounded, 2 <
1 ; moreover, the random variables (") are uniformly square integrable and
it follows from (™M 1% that 21 2. (See e.g.Gut [49, Theorems 5.4.2
and 5.4.9] for this standard argument.) In particular, ?=26 26 2 2 for all
su ciently large n; we consider in the remainder of the proof only such.

Since'e, (1) is the characteristic function of (M E (" which has mean 0
and, by assumption, an absolute third moment that is uniformly bounded, we
have by a standard expansion (see e.g49, Theorems 4.4.1])

en(t)=1 1 22+ O(Ej Mt =1 I 22+ O(jtj®); (14.3)

uniformly in all n andt. In particular, for any xed real X,

2x? %2+ (1)

ey (x= ) = 1 +o(n =1 . (14.4)

and thus D L,
en(x= N1 e X2 (14.5)
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We are aiming at estimating the integral in (14.2) by dominated convergence,
so we also need a suitable bound that is uniform im.
We write (14.3 as

en(t) (1 3 2t2) 6 Cijtj®: (14.6)

Let :=minf !, 2=8C;g > 0. Then, if jtj 6 , recalling our assumption
2=26 2622 wehavel % 2t2>1 22> 0and, by (14.6),

jen(j6 1 2 22+ CijtiP61 1 2+ Cit?61 I %% (14.7)

For 6 jtj6 we claim that there existsng and > 0 such that if n > ng
and 6 jtj6 ,then
j'en(t)j6 1 (14.8)

In fact, if this were not true, then there would exist sequencesn, > k and
tk 2 [; ] (by symmetry, it suces to consider t > 0) such that j' ,, (tk)j =
j'en, (tk)j > 1 1=k. By considering a subsequence, we may assume thgt !
ty ask!1 for somet; 2 [; ]. Since , 1 ()T (1) uniformly
for jtj 6 , and thus ', (tk) ! ' (t1 ). It follows that j' (t; )j = 1 for some
ty 2 [; 1, but this is impossible when span() = 1, as is well-known (and
easily seen fromE€t (9 = j' (t; )j2 = 1, where Cis an independent copy of
). This contradiction shows that (14.8 holds.

We can combine (L4.7) and (14.9); we let ¢; ;= minf 2=8; = ?gand obtain,
for n > ng,

jen()j6 1 cit?6 exp( cit?);  jtj6 ;

and thus

fen(x=" M)i" 6 exp( cx®);  jxj6

This justi es the use of dominated convergence in 4.2, and we obtain by

(14.5

Z,
2 pﬁP(Sr(]”) =m)= ‘en (x:IO "1 jxj < PS dx
z,
! e Xgg=l 2= 2
1
which yields (14.1). (Recall that we have assumedd = 1.) O

Remark 14.2. A simple modi cation of the proof shows that the result still
holds if the condition E (") = m(n)=n is relaxed to m(p = nE (M + 0(p n).
Furthermore, for any m = m(n), P(Srﬂ“) =m)6 zi j'en (1j" dt, and it
follows by the proof above that

d+ o(1).
p—2=

P(s{" = m) 6 = (14.9)

uniformly inall m 2 Z.
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Moreover, both Lemma 14.1 and the remarks above hold, with only minor
modi cations in the proof, also if the condition sup, Ej (Mj% < 1 is relaxed to
uniform square integrability of ("), In particular, if (") = | this assumption
is not needed at all; then the assumption 2 < 1 is the only moment condition
that we need. (This is the classical local central limit theorem for digrete distri-
butions, see e.gGnedenko and Kolmogorov[46, x 49] or Kolchin [76, Theorem
1.4.2])

We use Lemmald4.1to obtain lower bounds of the (rather weak) type exp((n))
for P(S, = m) in the case of a probability weight sequence, for suitablen. We
treat the cases > 1 and =1 separately.

Lemma 14.3. Let w be a probability weight sequence wit® < wo < 1 and
P 1. Let 1; »;::: beiid. random variables with distribution w and let S, :=

n

j=1 i+

Assume thatm = m(n) are integers that are multiples ofd := span(w), and
that m(n)=n! E ;. Then

P(Sh = m)= Z(m;n) = eM:

Proof. Let = j;and :=E = Y1) = (1). Since > 1, we have >
(1) = . Thus, by assumption,m=n! < ,som=n< for all large n; we
consider in the sequel only sucm. By Lemma 3.1 we may then dene ,, 2 [0; )
by ( ») = m=n.Since !iscontinuouson|[Q ),and ()= E = ,we
have
n=  Y(m=n)! )y=1 asn!1 : (14.10)
Let (™ have the conjugate distribution
k
P( (M= k)= ( n )Wk; k> 0; (14.11)
n

by Lemma 4.2 this is a probability distribution with expectation

E®™=( )= m=n: (14.12)

The conditions of Lemma 14.1 are easily veri ed: Since , ! 1 by (14.10, we
have P( (™M = k) ! wy = P( = k) and thus (™ 1% Furthermore, taking
any 2 (1; ) and considering onlyn that are so large that , < ,

k 1 R

R
Ej MWif= K —"_w6 5 kS Kwy < 1
o (o) ©

Furthermore, if d = span( ), then wy > 0 =) djk by (3.3); thus dj and
dj (M (a.s.). Lemma14.1thus applies, and ifw(™ denotes the distribution of
(M in (14.17), then by (11.5 and (14.1),

X
Z(m;n;wMy=p M =m pzdiz; (14.13)
i=1 n
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where 2:=Var .By (11.9, we haveZ(m;n;w(™)=( ) " ™Z(m;n), and
thus, recallingthat ! 1< andhence ( 5)! (1)=1,

P(Sh=m)=Z(m;n)= ,M( )"Z(m;n;w(M)
=exp mlog »+ nlog ( »)+log Z(m;n;w(™)
=exp o(n) : 0

Lemma 14.4. Let w be a probability weight sequence witld < wo < 1 and
p= 1.Let 1; »;::: bei.id. random variables with distribution w and let S,, :=

n

j=1 -

Assume thatm = m(n) are integers that are multiples ofd := span(w), and
that m(n)=n! < 1 with > E ;. Then

P(S, = m) = M

Proof. Let K be a large integer and consider the truncated weight sequence
w®) = (w)) de ned by, as in (13.9),
(

wg; k6 K;

(K) .
W= 0, k>K;

(14.14)

having generating function ¢ (t) = P E:o wi tk, and the corresponding  (t) :=

t 2 (t)= k (t). We assume thatK is so large that spanv(K)) = span(w), and

that K > k for somek > with wg > 0. (Suchk >  exists since < 1)

Thus the weight sequencew () has, by Lemma3.1(v), (w(K))= (1) =

I (w))y > Hence, by Lemma3.1 again, there exists x 2 [0;1 ) such that
k (k)= . Thus the probability distribution <) = ( ) de ned by

k
)= K _y(K) (14.15)
k (k)
has expectation . Since this distribution has nite support it has radius of
convergence ¢ = 1 ; furthermore, m=n! by assumption. Hence Lemmadl4.3
applies to  (K) and yields

z(m;n; ®))= exm: (14.16)
By (11.9 and (14.15,
Z(mn; = (k) " Pzm;n,w)y: (14.17)

Moreover, Z(m;n;w) > Z(m;n;w()) sincew, > w() for eachk. Hence, by

(14.1 and (14.17),
Z(m;n;w) > Z(m;n;w®)y= ™ ()"Z(m;n; )

(14.18)
= ™k (K)e™:
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This holds for every large xed K .

Ifo<t< =1,then ¢()! (thand 2(t)! qt)asK!'l ,so
k! (t)< ()= E 16 .Hence, forlargeK, ()< = «(«k)
so g >t. Consequently, iminfgn ¢ > 1.
On the other hand, ift> =1,let " :=de+1 > , and assumeK > °
Then
P P.
K K K Kk 1- K
_o kwit . t _ t
K (t) = .-'_,kK—O Wkk > ,.'_,kK_ Wkk -~ k=0 WkT" > (14.19)
k=0 Wkt k=0 Wkt k (1)
asK 'l ,since ¢ (t)! (t)=1.Hence,forlargeK, ({t)> = k(«k),

and thus g <t. Consequently, limsup.,; «k 6 1.
Combining these upper and lower bounds, we have

k V1 asK I'1l

If we take t < 1, we thus have for largeK, ¢ >t and hence () > «(t).
Thus, liminf 11 K (k)>limgn k()= ( t)foreveryt< 1, so

liminf (k) > (D=1 :

Given any " > 0, we may thus takeK so large that ¢ <e" and (k) >
e . Then (14.18 yields

Z(m;n;w) > e "m "n+o(n) > e "'m 2"n

for large n. Since" is arbitrary and m = O(n), this shows Z(m;n;w) > e°(™,
and the result follows sinceZ (m;n) 6 1 for any probability weight sequence by
(11.5. O

We next prove Theorems11.4 and 11.6 Theorem 11.6 follows easily from
Theorem 11.4, so it may seem natural to prove Theorem11.4 rst. However,
our proof of Theorem 11.4 uses in one case Theorem1.6 (for another case).
We will therefore rst show that Theorem 11.6follows from Theorem 11.4 and
then show Theorem11.4

Proof of Theorem 11.6 from Theorem 11.4. We prove that Theorem 11.4 for
some weight sequencewy) implies Theorem 11.6 for the same weights. The
assertions about follow from Lemma 13.2 so we turn to (11.17.

Consider a subsequence ofif(n); n). It su ces to show that every such sub-
sequence has a subsubsequence such thatl(17 holds. (See e.g.49, Section
5.7], [65, p. 12] or [15, Theorem 2.3] for this standard argument.)

Sincem=n 6 C by assumption, we can select a subsubsequence such that
m=n ! forsome 6 C <! . Then Theorem 11.4applies and thus (along the
subsubsequence),

Nk(Bmin)  Wk( ( ))k _ Nk(Bmin) ) 1P

- Oy - o 0: (14.20)
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Furthermore, since m=n ! and x 7! (x) is continuous, (m=n) ! ()
(along the subsubsequence); hence

wi( (m=n)*  wie( ()",

( (m=n)) ¢ )

Combining (14.20 and (14.21), we see that (11.17) holds along the subsubse-
quence, which as said above completes the proof 011.17).

That (11.17% holds uniformly is, in fact, automatic since we have shown it for
an arbitrary m(n) (although we stated it for emphasis): Let X ., denote the
left-hand side of (11.17, and let " > 0. Choosem(n) as the integerm 2 [0; Cn]
that maximises P(jXm;n j > ). Since (11.17) says that P(jXmnymj > ") ! O,
we have sup,g cn P Xmnj>")! 0. O

(14.21)

Proof of Theorem 11.4. First, Lemma 13.2shows that de ned by (i) and (ii)
is well-de ned and equals ( ) dened in Lemma 13.2 since <! we have
< 1 and ( )< 1. Further, (13.3 yields

( )=min(; ) (14.22)

Since < 1 and ( ) < 1,  is well-dened by (11.13; furthermore,
by Lemma 4.2 and (14.22, ( ) is a probability distribution with mean and
variance as asserted.

We now turn to proving (11.195, the main assertion. We study three cases
separately.

Case (a): > 0. Then =( ) is a probability weight sequence equivalent to
w = (wg), so we may replace () by ( k) without changing Bn.n . Note that
this changes and to ( )= (w)= and ( )= (w)= =1hy (4.4 and
(4.5. We may thus assume that {vy) equals the probability weight sequence
( k), andthat > =1.By(14.29,then (1)=min( ; ).

We employ the notation of Example 11.2 Note that by (11.14,

E.=(@)=min( ; )6 : (14.23)

Moreover, if > 1,then = ( )> (1) by Lemma 3.1, so (14.22 shows that
in this case,

Ei1=(O)= (14.24)
The allocation ( 1;:::; ) (with a random sum S;) consists ofn i.i.d. com-
ponents, so
X] .
Nk( ;0005 n) = 1f i = kg Bi(n; ) (14.25)

i=1
has a binomial distribution. For every k and " > 0, we have by Cherno's
inequality, see e.g. 5, Theorem 2.1 or Remark 2.5],

PijNk(1;::55 n) ngj>"n 6 exp( cn); (14.26)

for some constantc: > 0 depending on".
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We condition on S, = m, recalling that
1,505 n)iSh=m:; (14.27)

When > 1 we apply Lemma14.3 using m=n ! and (14.24, and when
= 1 we apply Lemma 14.4, using (14.23. In both cases we obtainP(S, =
m) = exp(o(n)) and thus by (14.27),

P iNk(Bmn) nkj>"n =P jN(1;::5; n ng>"jSy,=m
P jNk( 1;::5 ngi>"n
P(Sh = m)

6exp cn+o(n) ! O

Since" is arbitrary, this shows that

Nk(Bm;n) P
n ke

0

as asserted, which completes the proof when> 0.

Case (b): =0 and > 0. We write Ng for Nx(Bmn ). By (11.13 we have
o=1and ¢ =0for k> 0; hence, (1.1 says that No=n 1” 1and Ng=n 1P
0 for k> 0.

Since < , we areincase(i), so = ( )= (0) = 0. In other words,
m=n! 0. The result is trivial (and deterministic) in this case. We have
1% 1%
=7 Ne6 = kNg=D1 o =o: (14.28)
n n n
k=1 k=1

HenceNyg=n! 0= | for everyk > 1. Moreover, (14.28 also implies

No n 1N

L=kl Ky g 14.29

- kLK) 1= g (14.29)
which completes the proof when =0 <
Case (c): = 0. We write again Ny for Nx(Bm:n ), recalling that this is a
random variable. In thiscase =0and = =0 forevery > 0.By (11.13

we thus have ¢ =1 and ¢ = 0 for k > 0; hence, as in case (b), we have
to show that Ng=n 1’ 1 and Nk=n 1P 0fork > 0. By assumption, m=n
converges, so the sequence=n is bounded; let C be a large constant such
that m=n 6 C. Further, let K be a large integer; we assum& > 2C and (for
simplicity) wx > 0. (Note that such K exist since! = 1 when =0.)

We sayg,hat a box issmall if it contains at most K baIIs,Fand large otherwise.
Let NO:= 5 Ny be the number of small boxes andv °:= 5 kN the number
of balls in them. Note rst that by our assumptions, m=n 6 C < K= 2. Hence,

0_ )(' )(' _ 2_m ]
m>m MO= kN > K Ne= KM NY>=—(n N9 (14.30)
K +1 K +1 n
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Thus,n N©%6 n=2 and N°> n=2; in particular N°!'1 . Moreover,

0
M6 M 6 2c <k (14.31)

06 —
NO = n=2

The weight w(y) in (11.2) factorizes as the product over the small boxes
times the product over the large boxes. Thus, if we condition onM © and N°©,
and moreover on the set of theN ° boxes that are small, then the allocations of
the small boxes and the large boxes are independent; moreovehe allocations
to the small boxes form a random allocation of the typeB y o\ o for the truncated
weight sequencen (X) given by (13.4) above. By assumption,wx > 0, and thus

the truncated sequence has <) := 1 (w(K)) = K.,
The truq_tg:ated weight sequencew () has a polynomial generating function
M)ty = " 5 witk with an in nite radius of convergence () = 1 . We have

already proved Theorem11.4in this case, and thus Theoreml11.6also holds in
this case, by the proof above. Applying Theoreml11.6to the truncated weight
sequence and the allocations of small boxes we see that there esist continuous
function x :[0;K)! [0;1 ) such that, conditioned on (M 4 N9),

Nk we(k (MENY o

N© (K) « (M%=N9

Moreover, (14.32 holds uniformly in all (M %N 9 by Theorem 11.6and (14.31).
Hence, denoting the left-hand side of {4.39 by X, we have for every" > 0
P(GXj>" jM%N9 6 (n), for some function (n) ! 0. Taking the expecta-
tion, it follows that also P(jXj >") 6 (n)! 0, and thus (14.32 holds also
unconditionally. Thus,

Nk _ wi( k (M=N9)*

— = + 0,(1); k6 K: 14.33

By (14.3), M%=N°%6 2C, and thus, using Lemma13.2and 2C < K =

Lw®)), « (MEN9Y 6 ¢ (2C) < 1 . Hence, withC; := « (2C),

wo 6 (I (MENY) 6 ((C1)= Cp

0; k6 K: (14.32)

say. Taking k =0 in (14.33 we now nd

No _ wo
NO ™~ (K)  (M®=N9

+0p(1) > "(‘:’—Z + 0p(1): (14.34)

SinceN °> n=2 this shows that there existsc; > 0 (for examplec; := wo=(3C,))
such that w.h.p.

% > ! (14.35)

It follows further from ( 14.39 that we can invert (14.33 for k = 0 (since
x 7! x 1 is continuous for x > 0); thus

NO_ () (M®N9

N = e + 0p(1): (14.36)
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Multiplying ( 14.33 and (14.39 we nd the simpler relation

N2 W (MENYYk + 0p(1); k6 K (14.37)
No Wo
Let " :=minfk > 0 :wg > Og be the smallest non-zero index with positive
weight, and de ne a random variable by

1=
WoN-

= wh (14.38)
It follows from (14.37, with k = ", that = x (M %:N9+ 0,(1). Consequently,
(14.37 yields
Nio o Wi kg (1), k6 K: (14.39)
No Wo ’

We have so far worked with a xed, largeK . However, the de nition (14.38
does not depend on the choice df , and sinceK may be chosen arbitrarily large,
we see that, in fact, (14.39 holds for every k > 0, with the same (random)

Fix again K > 0, and sum (14.39 for k 6 K. This yields

n > X Nk X Wi g

(K)( )
— — = — 4+ 0,(1)= ———2+ 0,(1): 14.40
No 0 No Wo p( ) Wo p( ) ( )

0
Recall that No=n> ¢; w.h.p. by (14.35. We thus have from (14.40
()6 woNl + 0p(1) 6 Wo=0, +1 (14.41)
0

w.h.p. By assumption, =0,so (t) = 1 for everyt> 0. Hence, for every
"> 0we have K)(")! (")=1 asK !'1 , so we may choosé with
(K)(") > wo=¢ + 1. Then (14.4)) shows that < " whp; since" > 0 is
arbitrary, this says that
1?0
We substitute this in (14.39, and obtain Ng=Ng 1?0 for everyk > 1; hence
also
Ne=n'!® 0, k> L (14.42)
Finally, we return to ( 14.30, and see that
K(n N9%6 mé6 Cn: (14.43)

Let " > 0 and chooseK > C="; then (14.43 yields n N°< "n and thus
NO> (1 ™)n. Further, by (14.42,

X
No= N° Nk = N%+ gy(n) > (1 ")n+ op(n);
1

so w.h.p.Ng > (1 2")n. This shows that No=n 1?1, which together with
(14.42 completes the proof in the case =0. O
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This completes the proof of Theorem11.4, and thus also of Theorem11.6

Proof of Theorem 11.7. Conditioned on the numbers Ny = Ny(Bmn ), k =
0;1;:::, the numbers Y1;:::;Y, are obtain by placing Ng 0's, N1 1's, ..., in

Y NYi G _ Y NYi+ O(D.

n i+1 _, n+o(@)’
(14.44)

wherec ::ijj <i :yj = ¥;gj. By Theorem 11.4 this product converges in prob-

ability to ;:1 y; asn!l1l , and the result follows by taking the expectation

(using dominated convergence). O

15. Trees and balls-in-boxes

The proofs of the results for random trees are based on a conn@mn with the
balls-in-boxes model. This connection is well-known, see e.g. Otte®f], Dwass
[36], Kolchin [76], Pitman [99], but for completeness we give full proofs.

We consider a xed weight sequencev = (wy) and the corresponding random

We begin with some deterministic considerations. The idea is to regardhe
outdegrees of the nodes of a tre& as an allocation; we regard the nodes as both
balls and boxes, and ifv is a node, we put the children ofv as balls in boxv.
There are two complications, which will be dealt with in detail below: we have
to specify an ordering of the nodes and we will not obtain all allocatiors.

Let T be a nite tree, with jTj = n. Take the nodes in some prescribed order

ofn 1 ballsinn boxes: (T)=(di;:::;dn) 2By 1.n. Consequently, is an
injective map T, ! B  1.n. Note also that preserves the weight:

w(T) = w((T)) (15.1)

by the de nitions ( 2.3) and (11.2. However, not every allocation corresponds
to a tree, so is not onto. We begin by characterizing the image ( T,). We use
a simple and well-known extension of 2.2).

Lemma 15.1. Let T be a tree andT? a subtree with the same root. Let@ P :=
fv2V(M)nV(TY:v w for somew 2 T% be the set of nodes outsid@& ° with
a parent inside it. Then,

d:(v) = jTi+j@f 1w (15.2)

v2TO
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Proof. The set of children of the nodes inT consists of V(T9)nfog [ @F. O

Lemma 15.2. A sequence(ds;:::;dn) 2 Nj is the degree sequence of a tree
T 2 T, if and only if
X
di > k; 16 k<n; (15.3)
i=1
d=n L (15.4)

yields

()= j@Fi+k L (15.5)

i=1
which yields (15.3 sincej@%j > 1 whenk <n.

in depth- rst order. First, v; is the root and getsd; children. Next, v, is the
rst child of the root and gets d, children. If d, > 0, then vz is the rst child

of v, but if dy = 0, we backtrack and let v3 be the second child ofvy; in any
case,v3 gets d; children, and so on. The point is that (15.3 assures that the
construction will not stop before we haven nodes.) O

The amazing fact is that for any allocation in B, 1.n, exactly one of its
cyclic shifts satis es (15.3). (In particular, exactly 1 =n of all allocations satisfy
(15.3).) To see this, it is simplest to consider the sequenced 1), ; we state
a more general result that we will use later, see e.g. Takacslog, Wendel [108§,
Pitman [99].

Lemma 15.3. Letxy;:::;xp 2f 1;0;1;:::gwithx3+ +x,= r 6 0. For

i22z, letx{;:::;x9 be the cyclic shift de ned byx") := x;.; with_the index
taken modulon, and consider the corresponding partial sum§|£’) = :‘:1 xi(’),
k=0;:::;n. Then there are exactlyr values ofj 2f 1;:::;ng such that
s> r  06k<n: (15.6)
Note that Sg? =0 and. s = rfor every i. The condition (15.6) thus says
that the walk Sc()’); :::;S{) rstreaches r attime n. The caser = 0 is trivial:

sinceSé” =0, (15.6 then is never satis ed for k = 0.

Proof. We extend the de nition of x; for all j 2 Z by taking the index modulo n;
thus Xj+n = Xj. furtherde ne S forallk 2 Z b[¥ So=0and Sx Sk 1= Xk,
k2 Z;thus S = :‘:1 Xi whenk > 0 and S = ?: k+1 Xi whenk < 0. Then
Sken =S¢ rforal k2 z, and sﬁ” =S« S
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Let further
Mg:= min S = min S
1 <i6k k n<i 6k
note that My is nite and M+, = Mg r. Moreover,My+1 6 My and My+1
My isOor 1,sinceSgs1 = Sk + Xk+1 > Sk 1. We have

s> r for06k<n ( Skvj S > 1 for06 k<n
0 Sk+j+r>Sj; for06 k<n
0 Sk+j n>Sj; for06 k<n
0 Si>Sj;forj n6i<j
0 Mj1>S;
0 Mj 1>My:

In each interval of n integers,M decreases by in steps of 1, so there are exactly
r steps down, which completes the proof. O

Proof. Let x; ;== di 1. Then :‘:1 Xj = P :‘:1 d k, so (15.3 is equivalent
to :(:1 B >0 for k < n, which for the shifted sequence is 15.6) with r = 1;
further, ., xi = n 1 n= 1. Hence the result follows by Lemmal5.3
with r = 1. O

We now use our xed weight sequence ). We begin with the partition
function for simply generated trees. This was proved (in the probaility weight
sequence case, which is no real loss of generality) by Otte®3J], see also Dwass
[36]; an algebraic proof uses the Lagrange inversion formula/p], see e.g. Boyd
[19] and Drmota [33, Theorem 2.11]; Kolchin [76] gives a dierent proof by
induction. See also Pitman P9] where the relation between di erent approaches
is discussed.

Theorem 15.5. 1
Zn = HZ(n 1;n):

Proof. By Corollary 15.4, the mapping (T;j) 7! ( T)U), where 0) denotes
a cyclic shift as in Lemma 15.3 is a bijection of T, f 1;:::;ng ! B  1n.
Consequently, by (11.4), (15.1) and (2.5), since the weightw(y) is not changed
by cyclic shifts,

X X _ X X
Z(n 1n)= w (T = nw(( T)) = nw(T) = nZy:
T2T, j=1 T2Th T2Th
O
Corollary 15.6. Suppose thatwg > 0 and ! (w) > 2, with d := span(w) > 1.
If Z, > 0,thenn 1 (mod d). Conversely, for someng (depending onw), if
n 1 (modd) andn > ng, thenZ, > 0.
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Proof. By Theorem 15.5 Z, > 0 () Z(n 1;n) > 0. The result follows from
Lemma 13.3 O

In the same way we can compute various probabilities for the randontree
Tn. We begin with the root degreed* (0); note that for any tree T, v; is the root
0, sod" (0) = d* (v1) = ds.

Lemma 15.7. Forany d> Oandn > 2,

P(d;, (0 = d)= ——dP(Y" " = q: (15.7)
Thus, the distribution of the root degreed$n (0) of T, is the size-biased distribu-
tion of Y™ ",

Lemma 15.7is a special case of Lemmd5.9 below, but we prefer to study
this simpler case rst because it shows the main ideas in the proof witbut the
complications (notational and others) in the more general version

d+ d>k 16 k<n; (15.8)

or, equivalently,

X
di+vp > k+1 d; 06 k<n 1:

i=1

We use Lemmal5.3 again, now with x; = di+1 1 andr = d and see that
forany (dp;:::;dn) 2 B 1 4n 1, €xactly r = d of the n 1 cyclic shifts of

coincide, but this does not matter.) Consequently, using 2.4) and (11.3), and
recalling d* (o) = dy,

X
(n 1)Z,P(dy, (0)=d)y=(n 1) w(T)
T21)'<1:d1(T):d

(di;5d n)2Bn 1 di=d
dZ(n 1;n)P(Y1 = d):

This yields the result by Theorem 15.5 O
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Remark 15.8. More explicitly we have

zZ(n Ln)PY" B = d)= W (dy;iiidn)

(d23:dn)2Bn 1 dn 1
wgZ(n 1 d;n 1)

and thus
Z(n 1 d;n 1)

1 Z(n 1;n)

P(d}, (0) = &) = dwe— d (15.9)
Proof of Theorem 7.10. We haveP(Y" *") = d)! 4 by Theorem 11.7 (with
m=n land =1), and (7.9 follows from Lemma 15.7.

The spaceN, is compact, so every sequence of random variables in it is tight,
and therefore has a subsequence converging in distribution, se&q Section 6].

It follows from (7.9) that if d’{n (0) 14X along a subseguence, thefP(X =
k) = k ¢ for every k 2 Ng, and thus P(X = 1) =1 ﬁzokkzl
Consequently, X 4 bgo d’{n (0) 19 Dbor every convergent subsequence, which
means that the entire sequence converges th see L5, Theorem 2.3]. O

This proves the part of Theorem7.1that describes the root degree. It remains
to consider all other nodes. This will be done by similar arguments. Webegin
with a generalization of Lemma15.7.

Lemma 15.9. Let T92 T; be a xed nite subtree of the Ulam{Harris tree U; ,

X n (n 1;n) .
= d T+l —=P Y =difori=1;0 0 (15.10)
i=1

Proof. We have earlier used the depth-rst order of the nodes to de ne he
degree sequence, but many other orders could be used. In thisqwf, we consider
only trees T that contain the given T%as a subtree, and then we choose the order

the remaining nodes ofT in depth- rst order; let  YT) be the degree sequence
in this order.

Let A, be the set of treesT 2 T, with d$ (vi) = d for all i (which implies
T T9.If T2A,, then the degree sequence {T) thus begins with the given
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YT) of a unique tree in A,,. Note also thlgt (15.3 is automatically satis ed for
k <, since thend, > d°fori 6 k and ¥, d” > k by Lemma 15.2 applied
to TC

Let D := d; + + d-. Consider a sequenced;;:::;dn) 2 By 1.n beginning

X
D+ (xi+1) > +k
i=1

fork=0;:::;n 1, which is equivalent to
X
xi> (D 7); 06 k<n
i=1
Furthermore,
X X
xi= & (n )=(n 1 D) (n )= (O "+1):
i=1 T+l

Lemmal15.3with r = D " +1 thus shows that of the n "~ cyclic permutations

ofd1;:::;dy, exactly D " +1yield a degree sequence (T)of atree T 2 A,,.

In other words, if we take the degree sequencesYT) for all trees T 2 A, and

make thesen ° permutations of each of them, then we obtain every allocation
Yy =(Y1;::5:Yn) 2Bn 1n with y; = di, i =1;:::;7, exactly D~ + 1 times

each. Consequently,

X X
(N )ZyP(Mh2An)=(n ) w(T) = (n Hw( AT
T2A , T2A
X ~
= (D " +1)w(y)
y2B, 1n:yi=d; for i6°
=(D “+1)Z(n Ln)P(Y;=d fori6 ):

The result follows by Theorem 15.5 O
Remark 15.10. Arguing as in Remark 15.8 ws obtain from Lemma 15.9 the
explicit formula, generalizing (15.9), with D := ,_, di and other notations as
above,

_n . Wg, WgZ(n D Lin 7).
= + .
n -~ (O & Z(n 1;n)

(15.11)

Remark 15.11. Note that Lemma 15.9(or (15.11) shows that the probability
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sequenced (;)) still is allowed, i.e., d ¢y > doforall i 6 *. However, if the latter
condition fails for somei, then the probability typically becomes 0. (This is an
interesting case of a symmetry that is not complete.)

For example, considering only the rooto and its rst child 1, we have

P(d; (0= dandd! (1)= d)= P(d} (0)= dand d* (1) = d)
wheneverd; d®> 1; however, if, say,d > 1 and d°= 0, then the right-hand side
is 0 while the left-hand side in general is not.

Remark 15.12. Lemma 15.9 extends with minor modi cations (mainly nota-
tional) to arbitrary nite rooted subtrees TCof U; (not necessarily satisfying
(6.1)). We omit the detalils.

16. Proof of Theorem 7.1

For convenience, we rst repeat the theorem.

Theorem 7.1. Let w = (wg)ks>o be any weight sequence withvg > 0 and
wi > 0 for somek > 2.

@) If > 1, let be the unique number in0; Jsuchthat ( )=1.
@) If < 1,let :=

In both cases,06 < 1 andO< ( )< 1. Let

k= %; k> 0; (7.1)
then ( «)k>o IS a probability distribution, with expectation

=( )=min( ;1)6 1 (7.2)
and variance 2= 9 )6 1. Let P be the in nite modi ed Galton{Watson

tree constructed in Section5 for the distribution ( ¢)k>o. Then T, 19 P oas
n'!1l ,in the topology de ned in Section 6.

Furthermore, in case (i), =1 (the critical case) and bis locally nite with
an in nite spine; in case (i) = < 1 (the subcritical case) and® has a nite
spine ending with an explosion.

Proof. First, as in the proof of Theorem 11.4 Lemma 13.2shows that de ned
by (i) and (ii) is well-de ned and equals (1) de ned in Lemma 13.2 since 1<
26 ! wehave < 1 and ( )< 1. Further, (13.3 yields ( )=min(1; ).
Hence, by Lemma4.2, ( ) is a probability distribution with mean and variance
as asserted. (This is a special case of the corresponding claims in @rem11.4
with  =1. We have =1 here since we relate the random trees to allocations
with m=n 1, and thusm=n! 1.)

The claims in the nal paragraph are obvious from (7.2) and the construction
in Section 5.
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We turn to the main assertion, T, 19 P SinceT is a compact metric
space, any sequence of random trees in is tight, and has thus a convergent
subsequence. (See e.dlq, Section 6].) In particular, this holds for Tj.

Consider a limiting random tree T in T such that T, T along some
subsequence. We will show that thenT 4 b, regardless of the subsequence; this
implies Ty, ! 4P for the full sequence, which then completes the proof.

We have de ned T in Section 6 such that T Ngl using the embedding
T 7! (d7 (V))v2v, . In order to show T 4 P, it thus su ces to show that the

It thus su ces to show ( 16.1). Furthermore, given any nite set V.= V; , we
may enlarge it to a nite set V satisfying (6.2){( 6.4), i.e., a set that is the node
set of some nite tree in Ty. It thus su ces to show ( 16.1) for V = V(T9 with
T2 Ty,

We make one more reduction. Suppose thaV = V(T9 with T°2 T; and
that (16.1) contains a condition d* (vi) = di with di <d7o(vi). Let v = v; and
let u be the last child of v in T thus (recalling the notation in Section 6) u = vj
for some integerj = d7.(v) > d;. By (6.5), any tree T 2 T with dj(v) = d;
has d; (u) = 0, and further (e.g. by (6.5 and induction) d (s) = O for every
descendants of u. Thus, letting T2 denote the subtree ofT °rooted at u, for any
s2 T), the eventfd_{3 (v) = d; and d% (s) > Og is impossible and has probability
0; furthermore, the same holds forT, i.e., P d’%(v) = d and d’%(s) >0 =0.
Consequently, if (16.1) contains a condition d* (vj) = dj with v; 2 T? and
d; > 0, then both sides are trivially 0. On the other hand, if d; = O for all
v 2 T2, then the conditions d* (vj) = d; are redundant in (16.1) and may be
deleted, so we may replacd © by the smaller tree with T? removed. Repeating
this pruning, if necessary, we see that it su ces to show (16.1) for V = V(T9
whenT%2 T is a nite tree and d, > d;o(vi) for every i.

Recall that d; in (16.1) may be in nite. We study three di erent cases sepa-
rately.

Case (a): Everyd, < 1 . This is the case treated in Lemmal5.9 we take the
limtas n!1 in (15.10 and obti'_a,ir] by Theorem 11.7 (with m = n 1 and

=1 <! (w)), letting again D := ,_, d,
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Since we have assumed, 4T along a subsequence, this yields
Pd;(vi)=di fori=1;:::;° =(D " +1) o (16.2)

Now consider the modi ed Galton{Watson tree b (Recall its construction
in Section 5.) If the tree P has d; (vi)=di < 1 forall v; 2 TC then the spine
has to extend outside T The rst point on the spine outside TCis a node in
@7 (regarding T? as a subtree ofP). The condition di (vi) = di for v; 2 TO
determines the boundary @ P of T?in P, which thus not depend on®, and
Lemma 15.1shows thatj@fi=D ~+1.

Fix a node u 2 @P, and consider the eventE, that the spine of P passes

the nodes inT that are special in the construction of P (viz. the nodes on the
path from o to u), and for each special node it speci es which of its children
will be special; furthermore it speci es the number of children for eah node in
T9 special or not. Recall that the probability that a special node hasd < 1
children, with a given one of them being special, is ¢, just as the probability
that a n%mal node hasd children. Thus, by independence, for everyu 2 @,
P(Es) = -, d . This probability thus does not depend onu, so summing over
the D " +1 nodesu?2 @Pwe obtain

X
Pdp(vi)=dfori=1;:" = P(E,))=(D "+1) di;
u2@Te i=1

which together with (16.2 shows (16.1) in this case. (Cf. Remark 5.7 for a
similar argument.)

Case (b): Exactly oned; = 1 . Suppose thatd; = 1 anddi < 1 fori 6 j.
Dene, for06 k6 1,

A= fT2T:di(v)= d fori 6 and d*(v;) = kg:

We thus want to show P(T 2 A ) = P(f’ 2 A1 ). We de ne further

[
Asg = Ax;

K6 k6 1

and note that since Ty, ! ¢ T (along a subsequence), we have (along the subse-
quence), for any nite K,

P(Th 2Ask)! P(T 2Ask): (16.3)

We de ne also (for nite k) the analogous
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P
Then Lemma 15.9 can be written, with D°:= igj di, fork<1,

P(Th 2A¢)=(k+ D% +1) nn - P(Bn 1.n 2 By): (16.4)

Consider, for simplicity, k > k o := maxig; di. Then (14.44 shows that, with
N = Ni(Bn 1;n)y

) N, Y Ny + O(1
P(Bn 1n 2Byx)= EP(Bn 1 2Bk jNo;Ny;ii)= E - Na + O(1)

n . n+0O(1)
i6]
Y
= E & % + 0O N_|2<
n . n n
i6]
(The implicit constants in the O's in this proof may depend on™ and di;:::;d,
but not on n or k.) Consequently, by (16.4),
1 Nk Y Ng Ny
P(Tha 2Ax)= k+0O(1) (1+O0(n ) E — —+0 —
n i8] n n
kNe Y Ng kN
= 1+0k H E —X % +0E
n n n

i6]

P
Summing overk > K, we obtain for any K > k ¢, using LO kNx = n 1 for
any allocation By, 1.,

R
P(Th 2A5k) = P(Th 2 Ak)
o P kKN Y N P kN
— 1+O(K 1) E k> K k Ng; +0 E k>K2 k
n . n n
p i6]
1 kN Y Ng,
= 1+0(K Y E ek KT Na g 1y,
n .n
i6]
(16.5)
By Theorem 11.4 for any xed K,asn!1
P
n 1 kNk Y Ny, X Y
nk<K K % !p 1 k Kk di -
i8] k<K i6]

By dominated convergence, the expectation converges to the s# limit, and
thus (16.3 and (16.5 yield, for K >k o,

_ X Y
PT 2Asx)= 1+0K Y 1 K « a4 (16.6)

k<K i6]
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Finally, let K 11  to obtain

_ X Y Y
PT2A1)= 1 K o=@ ) g (16.7)

k< 1 i6j i6j

Now consider . If d% (vj) = d, = 1, then the spine ends with an explosion
at vj. This xes the spine, and the event that d; (vi) = d; fori 6 j then means,

just as in case (a) when we considered a speci E,, that we have speci ed the
number of children to be d; for these nodes, and for the special nodes (except
vj ) we have also speci ed which child is special. The probability of this is g for
eachi 6 j, and the probability that the special node v; has an in nite number
of children is, by (5.2), 1 . Hence, by independence,

Y
PP2A)=1 ) 4 (16.8)
i8]
which together with (16.7) showsP(T 2 A; ) = P('ij 2 A1), which is (16.) in
this case.

Case (c): More than oned; = 1 . By the de nition of the modi ed Galton{
Watson tree P, there is at most one node with in nite degree, so in this case,

Pd%(Vi)= di fori=1;:::;° =0:

This means that the sum of these probabilities for all sequencesd(;:::;dn)
with at most one in nite value is 1. But we have shown that for such sequences,
the probability is the same for T as for P, so the probabilities for T for these
sequences also sum up to 1. Consequently, if more than o = 1 , then

Pd;(vi): d fori=1;:::;° =0

too, which shows (6.1) in this case.
This shows that (16.1) holds for any vi;:::;vy such that fvy;:::;vng =

V(T9 where T°2 T¢ is a nite tree and (dy;:::;dy) is any sequence ifNy with
di > dy.(vi) for everyi. As discussed above, this implies¥6.1) in full generality
and thus T 2 P, which shows that T, 19 . O

17. Proofs of Theorems 7.11 and 7.12

We begin by stating another version of the correspondence betvea simply gen-
erated trees and the balls-in-boxes model.

Lemma 17.1. We may coupleT, and B, 1., such that the degree sequence
( Tn) is a cyclic shift of B, 1., and, conversely,B,, 1., is a uniformly random
cyclic shift of ( Ty).
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follows. O

Proof of Theorem 7.11. We use the coupling in Lemmal7.1 Then Ng4 in Theo-
rem7.11equalsNg(Bn 1.n)in Theorem 11.4 and thus (7.12) follows by (11.15.

We obtain (7.11) as a simple consequence of7(12), using P(d$n (V) = dj
Ng) = Ng=n and thus P(d$n (v) = d) = ENg=n, cf. the proof of Theorem11.7.
Alternatively, we can arrange so that d’{n (v) = Y, and the result then follows
by Theorem 11.7. O

Proof of Theorem 7.12. We use again the coupling in Lemmal7.1 Let T be a

where we stop when this is a degree sequence of a tree, i.e., when itis&s the
condition in Lemma 15.2 In particular, the subtree rooted at v equalsT if and
onlyif (dj;:::;dj+ 1) =(dq;:::;d). (Clearly, this is impossible if j >n " +1,

then
X

Nr= I (17.1)
j=1

In particular, taking the expectation and using the rotational sym metry,

and thus Theorem 11.7 yields

Y
P(Thy = T)! ¢ = P(T =T),
i=1

which proves (7.13.
In order to show the stronger result (7.14), we condition as in the proof of
Theorem 11.70n Ng; N1 ::: and obtain, see (14.44),

Y .Y

_ Ndi. G _ Ng, + 0 E _ (17.2)
.n i+1 _n n
i=1 i=1
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wherec = jfj<i :dy = dgj. Ifjj kj> andjj k nj>" (.e,] andk
have distance at least, regarded as point on a circle of lengtm), then similarly,
with ¢?:= jfj 6 :d, = digj,

Y Ny, oY Ng & ¢
n i+l _n ° i+1’

E(lj 1k jNo;Ny;::0) =
i=1

and it follows that
Cov(lj;lk jNo;Ny;:::) = O(1=n): (17.3)
For j and k of distance less than™, we use the trivial
jCov(lj;lk jNo;Ng;:::)j6 1Lt (17.4)
There are less thann? pairs (j; k) of the rst type and O(n) pairs of the second
type, and thus by (17.1) and (17.3{( 17.4),
XX

Var(Nt jNo;Ng;:::) = Cov(lj;lk jNo;Ng;:::) = O(n):
j=1 k=1

Consequently,Nt=n E(Nt=nj Ng;Ng;:::) 1?0, and thus by (17.1, (17.2
and Theorem11.4

N+

NT Y Nd'
— = — yNg;ioo + = —
—=E — No;Ny; op(1) -t ()

i=1
1P o = P(T =T):
i=1
18. Asymptotics of the partition functions

We have a simple asymptotic result for the partition function Z(m;n) (to the
rst order in the exponent, at least if > 0):

Theorem 18.1. Letw = (wg)k>o be a weight sequence witlvg > O andwy > 0
for somek > 1. Suppose thain!'1  and m = m(n) with spanfw) jm, m!1
and m=n! where06 <! ,andlet be asin Theoreml11.4.

@) If > 0, then
%IogZ(m;n)! log ( ) log 2(1 ;1): (18.1)
@iy If =0 and > O, then

%IogZ(m;n) i (18.2)
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In both cases, the result can be written

1 _ (1) _ (1)

_ . | = 7 = - 7 .

; logZ(m;n)! IogO6|rt'1%c n log 06|rt1<fl n 61: (18.3)
If06 6 and > 0, the limit can also be writtenlog ( ) ( )log .
The formula (18.1) is shown by a physicists' proof by Bialas, Burda and

Johnston [14].

Remark 18.2. If =0,then =0, and we interpret the right-hand side of
(18.1) as log (0) =log wp; this is in accordance with (18.3).

It is easily seen that the result holds, with this limit, also in the rather t rivial
case whenm is bounded, providedZ(m;n) > 0.

Remark 18.3. If ! < 1, then the result holds also when = !, provided
Z(m;n) > 0, ifwelet =1 asin Remarkl1ll.10and interpret the right-hand
side of (18.1) as the limit value log w; , which again is in accordance with (8.3).
This follows from Remark 18.2 by the symmetry argument in Remark 11.1Q

Remark 18.4. Using the function (x) de ned in Theorem 11.6 the result
(18.1) can also be written, using the continuity of (x) and an extra argument
(which we omit) when =0,

logZ(m;n)=nlog ( (X)) mlog (x)+ o(n) (18.4)

or, equivalently,
z(min)= ()" (x) "em: (18.5)

As in Theorem 11.6, it su ces here that m=n6 C<! (andm!1 ).

Proof of Theorem 18.1. Note that the assumptions imply that Z(m;n) > 0 (at
least for n, and thus m, large) by Lemma13.3 The equivalence between 18.1){
(18.2 and (18.3 follows from (11.16.

(i): Assume rst > 0. Since > 0and > 0, we then have > 0. Thus
w = (wyg) is equivalentto =( ), and Lemma 11.3yields

Z(m;n)= Z(m;n;w)=( )" M™Z(m;n; ):

We saw in the proof of Theoreml11.4, case (a), that Lemmasl4.3and 14.4yield
Z(m;n; ) =exp(o(n)), and thus

Z(m;n)=exp nlog ( ) mlog + o(n) ;

which yields (18.1).

It remains to consider the case =0. Then m=n! 0, and we may assume
m < n=2. In any allocation of m balls, there are at mostm non-empty boxes.
Let us mark 2m boxes, including all non-empty boxes. For each choice of the
marked boxes, we have in them an allocation irBn, om, and only empty boxes
outside; since there are er‘n choices of marked boxes,

Z(m;n) 6 wg 2MZ(m; 2m): (18.6)

n
2m
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On the other hand, any allocation of m balls in 2m boxes can be extended to
an allocation in By, with the last n = 2m boxes empty; thus

Z(m;n) > wj *™Z(m;2m): (18.7)
We have, by Stirling's formula, using m=n! =0,
1 n 1 en 2m  ?2m e 2m m
- = — = — — i — 1 X
- log om 6 - log > - log 5 T log ! o: (18.8)

Moreover, by the case > 0 just proved, we have from (8.1) log Z(m; 2m) =
O(m) = o(n). Consequently, (18.6{( 18.8 yield

logZ(m;n)=(n 2m)logwp + o(n) = nlogwy + o(n);

showing (18.1) in the case =0.

(ii): As in the proof of Lemma 14.4 we use the truncated weight sequence
w () de ned in (14.14, where K is so large that spanv(K)) = span(w) and
(w®))y> | and we let again x and g be the corresponding functions for
wK)anddene « by k(k)= .

Foranyt> 0, x(t)! (t)=1 asK !'1 , and thus (14.19 holds,
showing that for large K, « (t) > andthus g <t. Sincet is arbitrary, this
shows that ¢« ! OasK !'1 . Applying (i) to w(K) and its partition function
Zx we obtain, for every largeK ,

o1 ] 1 L
Ilmmf ﬁIogZ(m,n) > nI!llm ﬁIogZK (m;n)=log (k) log «
> logwp log «:

AsK 11 |, g ! 0 so the right-hand side tends tol , which completes the
proof. O

Remark 18.5. Thecase =0and =0isexcluded from Theorem18.]; in this
case, almost anything can happen. To see this, note rst that by (8.6{( 18.8),
if m=n! =0, then

%IogZ(m; n) =log wo + %IogZ(m; 2m) + o(1): (18.9)

Furthermore, by Theorem 18.1(ii), % logZ(m;2m)!1 asm!1 ,andhence
m=logZ(m;2m) ! 0. We can choosem = m(n) ! 1  with m=n! 0 so
rapidly that m=n m=logZ (m; 2m); then %IogZ(m; 2m) ! 0 and (18.9
yields %IogZ(m; n)! logwp =log (0).

We can also choosen with m=n! 0 so slowly thatm=n  m=logZ (m; 2m);
then 1logZ(m;2m) 11  and (18.9 yields X logZ(m;n)!1

Moreover, we can choosen(n) oscillating between these two cases, and then
liminf 1logZ(m;n) =log (0) and limsup %logZ(m;n)= 1, and we can ar-
range so that every number in [log (0);1 )is a limit point of some subsequence.
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For many weight sequences with = 0, one can choosem(n) such that
%IogZ(m;n) I aforanygivena?2 [log (0) ;1 ]. For example forwy = k! asin
Example 10.8 we have by p4] and Theorem15.5Z(n 1;n) en!and it follows,
arguing similarly to (18.6) and (18.7), that % logZ(m;2m) =log m + O(1), so
taking m an=logn, we obtain %IogZ(m; n)! aby (18.9.

However, if wy increases very rapidly, it may be impossible to obtain con-
vergence of the full sequence to a limit di erent from log (0) or 1, so we
can only achieve convergence of subsequences. For examplewf = 1 and
w1 > Z(k; 2k)?, then Z(k +1;2(k + 1)) > we+1 > Z(k; 2k)?, and it follows
easily from (18.9) that limsup 2 logZ(m;n) > 2liminf X logZ(m;n).

We apply Theorem 18.1to simply generated trees.

Theorem 18.6. Let w = (wg)k>0 be any weight sequence withvg > 0 and
wg > 0 for somek > 2. Suppose thatn 'l with n 1 (mod spanfv)), and
let be as in Theorem7.1. Then

@)

1 .
— | = —- - : :
- logZ,! log ( ) log log 06|rt1<f1 : 2(1 ;17
The limitis niteif > 0,and+1 if =0.
Proof. An immediate consequence of Theorem$5.5and 18.1 O

For probability weight sequences, Theoreml8.6 can be expressed as follows,
cf. Remark 7.9.

Theorem 18.7. Let T be a Galton{Watson tree with o spring distribution
and assume thatP( =0) > 0 and P( > 1) > 0. Suppose thatn ! 1 with
n 1 (mod span()), and let be as in Theorem7.1. Then

1 . : (1

— = | = - 7 01

n|OgP(jTj n)! log( ) log Iogoelrth1 : 2(1 ;0]
If E =1,0rif E < 1land =1, then the limit is O; otherwise it is strictly
negative. In other words,P(jT j = n) decays exponentially fast in the supercritial
case (then < 1) and in the subcritical case with > 1 (then > 1), but only
subexponentially in the critical case and in the subcritichcase with =1 (then

=1).

Proof. We have P(JTj = n) = Z,, see Section2, and we apply Theorem18.6
Since now (Vi) is a probability weight sequence, we have > 1; furthermore,
infosic1 (t)=t 6 (1) =1 = 1, with equality if and only if = 1, see Re-
mark 7.4. The nal claims follow using the de nition of  in Theorem 7.1. [

When > 0 and > O (which are equivalent to > 0), we can also prove
stronger \local" versions of Theorems18.1and 18.6 showing that the partition
function behaves smoothly for small changes imm or n.

Theorem 18.8. Let w = (wk)k>o be a weight sequence withvg > 0 and
wg > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n!



Simply generated trees and random allocations 183

where0< <! |, andlet be asin Theorem11.4. If > 0, then, for every
xed k 2 Z such thatspanw) j k,
Z(m+kn)
W . (18.10)
Proof. For any k > 0, by (11.2{( 11.4),
z k; 1
P(Y, = ky= Wez(m_kin 1), (18.11)

Z(m;n) '

and thus
P(Y1=k) _ wZ(m Kk;n 1)
P(Y:=0)  woZ(m;n 1)

Since Theorem11.7 yields

POL=K) | o Wi
P(Y1=0) o Wo'

we see (replacingn by n + 1) that ( 18.10 holds when k 2 supp(w). Further-
more, the set ofk 2 Z such that (18.10 holds for any allowed sequencen(n) is
easily seen to be a subgroup d (since we may replacan by m k%for any xed
k9. Consequently, by (3.3), this set contains every multiple of spanfv). O

Theorem 18.9. Let w = (wk)k>o be a weight sequence withvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
where06 <! ,andlet be asin Theorem11.4. Then,

Z(m;n+1) |

Z0mm () (18.12)

Proof. By (18.11) with k =0 and Theorem 11.7,

wWoZ(m;n 1)

——————=P(Y1=0) ! = —
Z(m:n) (Y1 =0) 0

and the result follows sincewg 6 0. O
For trees we have a corresponding result:

Theorem 18.10. Let w = (wk)k>o0 be a weight sequence withvg > 0 and
wg > 0 for somek > 2. If > 0andspanw) =1, then

Zn+1 | ( ) .
S 7ul
Proof. By Theorems 15.5and 18.§18.9

Zns1 _ nZ(n;n+1) _n Z(n;n+1) Z(n;n) | 1.
Zo (n 1DZ(n Ln) n 1 Z(mn) Z(n 1n)’ () =
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We assumed here span 1 for convenience only; if spamf{ = d, we instead
obtain, by a similar argument, Z,+4=Z, ! (( )=)d%.

Inthe case > land 2= 9 )< 1 (whichis automatic if > 1), i.e.
our case | , Theorem 18.6 can be sharpened substantially as follows, see Otter
[93], Meir and Moon [85], Kolchin [76], Drmota [33].

Theorem 18.11. Let w = (wx), and ? be as in Theorem7.1, and let
d:=span(w).If > 1land ?<1,then, forn 1 (modd),

S
n 1n n
20' _ ( r)13=2 =d (0(()) () "2 813

Z, P

Proof. Replacing (wk) by ( «) and using (4.3), we see that it su ces to consider
the case of a probability weight sequence with = () =1. By Theorem 15.5
(11.5 and (8.2), in this case the result is equivalent to

PSh=n 1) p——;

which is the local central limit theorem in this case, see e.gkolchin [76, Theorem
1.4.2] or use Lemmal4.1and Remark 14.2 O

There is a corresponding improvement of Theoreml8.1

Theorem 18.12. Letw =(wg), m= m(n), amd 2 be as in Theorem11.4,
and Ietrgj =span(w). If 0< < ,or = and ?< 1, then, form =
n + o( n) withm 0 (mod d),

Z(m;n) pzdiz( ymoom (18.14)
n

Proof. Again it suces to consider the case of a probability weight sequence

with = () =1, this time using (11.9. In this case the result is by (11.5

equivalent to
d

P(Sh=m) p—;

2 2n
which again is the local central limit theorem and follows e.g. by Lemmal4.1
and Remark 14.2 O

Remark 18.13. The asymptotic formula (18.14 holds for arbitrary m = m(n)
with O <c 6 m=n6 C <! andm 0 (modd), and either C < or
C= and % )< 1 (whichmeansthat 9 )< 1 and thus the distribution
(11.13 has nite variance for = ), provided is replaced by (m=n) given by
( (m=n)) = m=n. (Cf. Theorem 11.6) The proof is essentially the same (as in
the proof of Theorem 11.6 it su ces to consider subsequences wherean(n)=n
converges); we omit the details.
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Inthe case = ( =1inthe tree case) and ? = 1 , we have no general
results but we can obtain similar more precise versions of Theorent8.6and 18.1
in the important case of a power-law weight sequence, Exampl&2.1Q (We need
1< 6 2here;if 6 1,then =1 > ,andif > 2,then 2< 1 so
Theorems 18.11 and 18.12 apply, see Example12.10 with = +1. Note
also that span(w) = 1.) The case > is treated in Theorem 19.34 and
Remark 19.35

Theorem 18.14. Suppose for some > 0and with 1< 6 2,

wg ck 1 ask!1l : (18.15)
@ If =1, then,
(@ = n - .
Znn = oyE @ 'Y whenl< < 2
(18.16)
and
Z, (1T @) "n 2(ogn) 2 when =2:  (18.17)
(i) f m= n + o(n' ), then
Z(m;n) & (3:1]:,( =  "n =, whenl< < 2
(18.18)
and
zmny B @ T when =2; (18.19)

c 'unlogn;

Proof. This time, we did not assumewg > 0, but we may do so without loss
of generality in the proof. In fact, if wg = 0, then > 1, so in(i) we always
have wy > 0, and in (i) we can reduce to the casavy > 0 by the method in
Remark 11.8

(i) follows from Theorem 15.5and (ii), taking m = n  1; hence it su ces to
prove (18.18{(18.19.

We have =1, and in the usual notation = andthus = =1.We
reduce to the probability weight sequence case by dividing eachv, by (1)
(which changesc to c=(1)). Let be a random variable with the distribution
( k) =(wg). Then E = . Furthermore, (18.15 yields

X
P( >k)= w ¢ Xk : (18.20)
1=k
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Hence is in the domain of attraction of an -stable distribution, see Feller [39,
Section XVII.5]. More precisely, if we rst consider the case 1< < 2, then
there exists an -stable random variable X such that

Sn n | d
ni=

X (18.21)

(The distribution of X is given by (19.93 and (19.113 below.) Moreover, a lo-
cal limit law holds, see e.gGnedenko and Kolmogorov46, x 50], Ibragimov and
Linnik [ 54, Theorem 4.2.1] orBingham, Goldie and Teugelg[16, Corollary 8.4.3],
which says

P(Sh = )=n 1= g

=+ o) ; (18.22)

uniformly for all integers *, whereg is the density function of X . In particular,
Z(m;n)= P(Sh=m) n ¥ g(0): (18.23)

The results in [39, Sections XVII.5{6] show, if we keep track of the constants
(see e.g. 63 for calculations), that

g0 =(c( ) ¥ i( =) % (18.24)

and (18.18 follows.
In the case =2, [39, Section XVII.5] similarly yields

pi!d

TTogn N (0; c=2); (18.25)

again a local limit theorem holds by b4, Theorem 4.2.1] or L6, Corollary 8.4.3],

and thus 1
P(Sy =)= P P
(Sn =) " hlogn g “nlogn

o(1) ; (18.26)

uniformly in > 2 Z, where nowg(x) is the density function ( c) 172e **=¢ of
N (0; c=2). In particular,

1 1 1
Z(m;n) = P(S, = m) PWQ(O) = F’W F’—?i (18.27)
which proves (18.19. O

Remark 18.15. The proof shows that (18.15 can be relaxed to (L8.20 together
with span(w) = 1.

Example 18.16. Let F3., be the number of labelled unrooted forests with
m labelled nodes andn labelled trees, see Examplel2.7. Using the weights
wg = kK 2=klandwy, = e kw, (2 ) %k 572, we have by (12.39 and (11.9

Fan = mZ(m;n;w)= mle"Z(m;n;w): (18.28)
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At the phase transition m = 2n, Theorem 18.14applies tow with =3=2. We
havec= (2 ) 2 and, by (12.39, (1) = ( ) = 1=2. Hence (18.18 yields,
after simpli cations,
Fann Z@2 e"Z(2n;n; @ s
n o _ nnsw) = nn: £ e
(2nin;w) @eninwe) 75

o "2 "n 2. (18.29)

(The constant can also be written 2 53316 1 (2 =3).) A more general result
is proved by the same method by Britikov [20]. Flajolet and Sedgewick £0,
Proposition VIII.11], show (18.29 by a di erent method (although there is a
computational error in the constant given in the result there).

We en‘g this section by considering the behaviour of the generatinguihction
Z(z) == -, ZnZ". The following immediate corollary of Theorem 18.6 was
shown by Otter [93], see Minami B9 and, for > 1, Flajolet and Sedgewick
[40, Proposition 1V.5]. See also also Remark’.5.

Corollary 18.17. Let (wk)kso and be as in Theorem 7P1 and let 7z be
the radius of convergence of the generating functio# (z) :=  ,_; Znz". Then
z==(). U

Moreover, by (7.6), Z( z)= < 1. Since the generating functionZ (z) has
non-negative coe cients, it follows that Z(z) is continuous on the closed disc
jzj6 z,andjZ(z)j6 there. If we, for simplicity, assume that spanfv) = 1
thenjzZ (z2)j<jZ( z)j= forjzj6 z,z6 z.SincejZj< implies

b3 b3
i(z) z %2)i= wo (k  LwezZ* > wp (k  L)wijzj*
=1 k=1

>Wo (k Dw *=( ) ()=0

it follows that ( Z) Z %Z)60if Z = Z(z) with jzj= 7,26 z; hence
the implicit function theorem and ( 3.13 show that Z (z) has an analytic con-
tinuation to some neighbourhood ofz. Consequently,Z then can be extended
acrossjzj = 7z everywhere except atz = 7. (If span(w) = d, the same holds
exceptatz= e 17 j227)

In our case la ( > 1, or equivalently < ), much more is known: Z has
a square rqpt smgulanty at z with a local expansion of Z (z) as an analytic
function of Z=z7:

Z(z2)= bp 1 z=7+:::; (18.30)
where, with 2 :=Var given by (8.1),
S
2( ) P2

= 2 (18.31)
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see Meir and Moon 85], Flajolet and Sedgewick{40, Theorem VI.6] and Drmota
[33, Section 3.1.4 and Theorem 2.19]; in particularZ then extends analytically
to a neighbourhood of cut attheray[; 1 ). In fact, this extends (in a weaker
form)tothe case > 1and 2< 1 (casel ): (18.30 holds in a suitable region,
with an error term o( 1 z= z), see Janson%9].

Remark 18.18. In the case > 1, (18.30 and (18.3]) yield another proof
of (18.13 by standard singularity analysis, see e.gDrmota [33, Theorem 3.6]
and Flajolet and Sedgewick[40, Theorem VI.6 and VII.2]; this argument can
be extended to the case > 1 and 2 < 1, seeDrmota [33, Remark 3.7] and
Janson[59, Appendix]. When > 1, an expansion with further terms can also
be obtained, see Minami 89] and Flajolet and Sedgewick[40, Theorem VI.6].

In the other cases (2= 1 or < 1), the asymptotic behaviour of Z at the
singularity 7 depends on the behaviour of (z) at its singularity . It seems
di cult to say anything detailed in general, so we study only a few examples.
We assume 6 1 and! > 1;thus Lemma3.limpliesthat < 1, ( )< 1
and 9 )< 1.We assume also> 0 and span() = 1.

Example 18.19. Suppose that 0< < 1 and that ( z) has an analytic
extension to a sectorD. = fz:jarg( 2z)j< =2+ andjz j< gfor
some > 0, and that in this sector D . , for somea 6 0 and non-integer > 1,
and somef (z) analyticat (which can be taken as a polynomial of degree ),

(z)=f(2)+al 2z) +0] zj asz! : (18.32)

(We have to have > 1 since { ) < 1. For > 2 integer, see instead
Example 18.20Q) If we assume that has no further singularities on jzj = , this
implies by singularity analysis, seeFlajolet and Sedgewick[40, Section VI1.3],

Wi %k Lk ask!l (18.33)
The converse does not hold in general, but can be expected if the wght sequence
is very regular. For example, (18.32 holds (in the plane cutat [; 1)) if wy =
(k+1) ,k>1,asinExamplel0.7, with = +1>2, =landa= ( ),
see e.g.40, Section V1.8].
Let F(Z):= Z=( Z), so (3.13 can be written

F(zZ(2) = z: (18.34)

Since 6 1, we have = , and thus by Corollary 18.17and (7.6) z = F( )=
F()andZ( z)= . Note that

(2 () ()

If < 1, then (18.39 yields Fq ) > 0 and (18.39 shows that Z (2)
FX) Y(z 2z)asz! 7. Moreover, F is dened in a sectorD . , and its

(18.35)
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image contains some similar sectoD ,. o (with 0 < %< ) such that Z(z)
extends analytically to D ,. o by (18.34, and it follows easily by (18.349 and
(18.32 thatin D ,. o, with some f1(z) analytic at z,

Z(z)=fi(x)+ai(z 2) +0jz 2z ; asz! z; (18.36)
where (1
a = am: (1837)
As noted above,Z (z) has no other singularities onjzj = , and singularity
analysis |0] applies and shows, using 18.33,
a 1 1, -
Zn ( )n b n W ( )n Wh . (1838)

However, we will show in greater generality in Theoreml9.34and Remark 19.35
(by a straightforward reduction to the case =1 using (4.3)) that ( 18.33 always
implies (18.38 when < 1, without any assumption like (18.32 on ( z).

If =1, weassume 1< < 2, since (18.32 with > 2implies % )< 1
and thus 2 < 1, so (18.30 and Theorem 18.11 would apply. We now have
FY )=0, and (18.32{( 18.39 yield, in some domainD , : o,

Z(2)= -— 1 — + (18.39)

Singularity analysis yields

1 ()% 1= o

o=y e T
However, we have already proved in Theorenl8.14(i) (assuming = 1, with-
out loss of generality) that (18.33 implies (18.40 in this case, without any

assumption like (18.39 on ( z).

(18.40)

Example 18.20. If > 2 is an integer, (18.32 does not exhibit a singularity.
Instead we considerw with, for some f analytic at

(z)=f(2)+a( z) log( 2z)+ O] zZj (18.41)

asz! in some sectorD . . This includes the casewy = (k + 1) 1 see
Flajolet and Sedgewick[40, Section VI1.8].
In the case < 1, we obtain as above

Z(z)=f1(2)+a(z 2) log(z 2)+0jz 7z ; (18.42)
asz! 7z in some sector, withf(z) analytic at ; and a; given by (18.37).
We again obtain by singularity analysis
Ty, -
Zn W ( )n Wn, (18.43)

which is another instance of (9.118.



190 S. Janson

In the case = 1, we consider only =2, since 2< 1 if > 2. Then
(18.4]) yields (we havea < 0 in this case)

2( ) 1=2 1=2

Z(z)= a 1 z=4 log(1 z=7) + 00 (18.44)

Singularity analysis [40, Theorems VI.2{3] gives another proof of (8.17 in the
special case 18.4]) (again assuming =1, as we may).

Example 18.21. Dene w by ( z) = wp+ P j1:0 2 472 for somewy > O; thus
supp(w) is the lacunary sequencd Og[f 2 g. Then =1, ( )= wg+4=3 and
A )=2;hence = ( )=2=(wp+4=3). The function ( z) is analytic in the
unit disc and has the unit circle as a natural boundary; it cannot be etended
analytically at any point. (See e.g.Rudin [101, Remark 16.4 and Theorem 16.6].)

Taking wp > 2=3, we have < 1; hence,F% ) > 0 by (18.39. Thus F maps
the unit circle onto a closed curve that goes vertically through F(1) = ,, and
sinceF cannot be continued analytically across the unit circle,Z (z) cannot be
continued analytically across the curve . In particular, Z(z) is not analytic in
any sectorD . o.

19. Largest degrees and boxes

decreasing order asy(;y > Y > :::. Thus, Yy is the largest number of balls
in any box, Yy is the second largest, and so on.

By Lemma 17.1, we may also consider the random tre@, by takingm = n 1;
then Y is the largest outdegree inT,, Y( is the second largest outdegree, and
S0 on.

As usual, we consider asymptotics a;m!1  andm=n! . (Thus =1
in the tree case.) We usually ignore the casesmi=n! 0O andm=n!1 ; these
are left to the reader as open problems. (See e.g. Kolchin, Sevastigov and
Chistyakov [77], Kolchin [76], Pavlov [96] and Kazimirov [70] for examples of
such results.)

The results in Sections7 and 11 suggest that Yy is small when <
but large (perhaps of ordern) when > | which is one aspect of the phase
transition at = . We will see that this roughly is correct, but that the full
story is somewhat more complicated.

We study the cases 6 and >  separately; we also consider separately
several subcases of the rst case where we can give more precissults.

We rst note that the case ! < 1 , when the box capacities (node degrees in
the tree case) are bounded is trivial: w.h.p. the maximum is attained in many
boxes.

Theorem 19.1. Letw = (wy)k>o be aweight sequence withyy > Oand! < 1 .
Suppose thatn 'l and m = m(n) with m=n! > 0. Then Y, = ! w.h.p.
for every xed j.
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Proof. Clearly, eachY; 6 ! ,s0Y(;) 6 Y1 6 !.

We assume tacitly, as always, thatB,., exists, i.e.Z(m;n) > 0, and thus
m®6 !'n,so 6 !.By Theorem 11.4if <! |, and Remark 11.10if =1,
Ni (Bm:n )=n 1P i > 0. In particular, Ny (Bm:n) ] , and thus P(Yjy =
yr 1. O

19.1. The case 6

In the case 6 , we show that, indeed, allY; are small. Theorems19.419.3
yield (w.h.p.) a bound o(n) when = , and a much stronger logarithmic bound
O(logn) when < . (In the tree case, we have =1, so these are the cases
=land > 1)
Example 19.27shows that in general, the boundo(n) when = s essentially
best possible; at least, for any giverf' > 0, we can haveY;y >n! " w.h.p. (We
do not know precisely how fastY(;y can grow, see Problenl9.31)

Theorem 19.2. Let w = (wy)k>o be a weight sequence withvg > 0 and
wg > 0 for some k > 1. Suppose thatn ' 1 and m = m(n) with m=n!
where06 < 1.If 6 ,then Yy = op(n).

Equivalently, Y, =n!" 0.

Proof. The case = Qistrivial, since Y;=n6 m=n! .Thecase =! isalso
trivial, since then ! < 1 and Y. 6 !. As above, >! is impossible. Hence
we may assume & <! and > > O, whichimplies > 0,where ( )= |,

cf. Theorem 11.4 We may then for convenience replacewy) by the equivalent

weight sequence (k) in (11.13; we may thus assume thatw is a probability

weight sequence with =1, and thus > =1, and then the corresponding
random variable haskE =

By (18.11) and symmetry, for any k > 0,

wZ(m  kin 1)
Z(m;n)
Furthermore, wy = ¢ = P( = k) 6 1 and, using Example11.2 Z(m;n) =
P(Sy = m) = €M™ by Lemma 14.3( > 1) or 14.4( = 1). We turn to

estimating Z(m k;n 1).

P(Y(l) = k) 6 n P(Yl = k) =n

(19.1)

Let0<"< ,anddene - by ( +)= ".Since ( )= , we have
0< < =1.

For eachn, choosek = k(n) 2 ['n;m]suchthatZ(m k;n 1)is maximal. We
have" 6 k=n6 m=n! ; choose a subsequence such th&tn converges, say

k=n with " 6 6 . Then, along the subsequencent k)=(n 1)!
By Theorem 18.1(and Remark 18.2, ignoring the trivialcase Z(m k;n 1) =
0),using - <1, > "and(11.16,

(v
t
(9 _

6 IOgos'st e log

6 Iogoeitr}sf " t(—t)
()

I=Cg

1 .
- . |
- logZ(m k;n 1)! Iogtm
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say, where Remark11.5 shows that, since - 6 1,
o<log (1) =1 " =0: (19.2)
We have shown that

Iimsup%logZ(m kin 1)6 c (29.3)
n'l

for k = k(n) and any subsequence such that=n converges; it follows that (19.3
holds for the full sequence. In other words,

logZ(m k;n 1)6 cn+ o(n) (19.4)

for our choice k = k(n) that maximises the left-hand side, and thus uniformly
for all k 2 ['n;m]. Using (19.4 and, as said above, Lemmal4.4in (19.1) we
obtain, recalling (19.2),

xn
P(Ya) > "n) = P(Yq) = k) 6 mne®"*oMen) = genroln) |
k="n
In other words, for any " > 0, Yy <"n w.h.p., which is equivalent to Y(;) =
op (). O

The following logarithmic bound when < is essentially due to Meir and
Moon [86] (who studied the tree case).

Theorem 19.3. Letw = (wg)k>o be a weight sequence witlvg > 0 and wy > 0
for somek > 1. Suppose thatn ' 1 and m = m(n) with m=n! . Assume
0< < ,anddene 2(0; )by ( )=

(i) Then < and

1 .
Y 6 m logn + o, (logn): (19.5)

(i) In particular, if =1, then Yy = op(logn).

(iii) If further w,i:k I 1= ask!1 ,then, for every xed | > 1,
Yi) p 1

logn ©  log(= ):

Recallthat1= =limsup Wi':k, see B.5), so the extra assumptionw&
1= ask!1l in (iii) holds unless the weight sequence is rather irregular. (The
proof shows that the assumption can be weakened t@( > k)11 = )

It is not di cult to show Theorem 19.3directly, but we prefer to postpone the
proof and use parts of the more re ned Theorem19.7 below, in order to avoid
some repetitions of arguments. Further results, under additiond assumptions,
are given in Sections19.319.4

We conjecture that Theorem 19.3holds also for = 0. Since then =0, this
means the following. (This seems almost obvious given the result forgsitive
in Theorem 19.3 where the constant =log(= )! Oas ! Oandthus ! O,
but there is no general monotonicity and we leave this as an open pitdem.)

(19.6)

:k|

Conjecture 19.4. If > Oandm=n! O, then Yy, = op(logn).
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19.2. The subcase < 1

In the case 2 :=Var < 1 (which includes the case < ), there is a much
more precise result, which says that, simply, the largest numbers/(;; Yy :::
asymptotically have the same distribution as the largest elements in e i.i.d.
sequence 1;:::; n. (Provided we choose the distribution of correctly, and
possibly depending om, see below for details.) In other words, the conditioning
in Example 11.2then has asymptotically no e ect on the largest elements of the
sequence. (When 2 = 1 this is no longer necessarily true, however, as we shall
see in Examplel9.27)

In order to state this precisely, we now assume that = 1 (see Theoreml9.1
otherwise) and 0< 6 ,anddeneasusual by ( )= ,andlet bea
random variable with the distribution in ( 11.13.

If m=n6 ,we furtherdene , by ( )= m=n,andlet (" be the random
variable with the distribution in ( 14.17). We will only use , and (™ in the

case < ,som=n! < and , really is de ned (at least for large n);
furthermore ,! < and ™M 1¢
We further let 1;:::; , and (when < ) g”);:::; (" be iid. sequences

of copies of and (", respectively, and we arrange them in decreasing order
as () > 1> (myand () > :::> (. Finally, we introduce the counting
variables, for any subsetA  Ng,

Na = jfi 6 n:Y; 2 Agj; (29.7)
Na =jfi6 n: ;2Agj; (19.8)
N = jfi6 n: ™2 Ag (19.9)

(Na and N 4 also depend om, but as usual, we for simplicity do not show this
in the notation.) Note that N, and Wﬁ\“) simply have binomial distributions
Na Bi(n;P( 2 A)and NV Bi(n;P( (™ 2 A)).

We have
Yi) 6k 0 Nygsay<j (19.10)
M) Thus itis elementary to obtain asymptotic results
(1)
for the maximum ;) of i.i.d. variables, and more generally for (;, and ((j”)), see
e.g. Leadbetter, Lindgren and Rootzn B2].

We introduce three di erent probability metrics to state the result s. For dis-
crete random variablesX and Y with values in Ng (the case we are interested
in here), we de ne the Kolmogorov distance

and similarly for (;y and

dk (X;Y):=sup jP(X 6 x) P(Y 6 x)j (219.11)
X2 No

and the total variation distance

drv (X:Y ) := sup jP(X 2 A)  P(Y 2 A)j: (19.12)
A No
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In order to treat also the case with variables tending to1 , we further de ne
the modi ed Kolmogorov distance

8.(X: Y )= sup LPX 68X P(Y 6 ).

19.13
x2 No 1+x ( )

For &, we also allow random variables inNy, i.e., we allow the valuel . (Fur-
thermore, the de nitions of dx and dry and the results for them in the lemma
below extend to random variables with values inZ. The de nitions extend fur-
ther to random variables with values in R for dx, and in any space fordyy , but
not all properties below hold in this generality.)

Note that these distances depend only on the distributionsL (X ) and L(Y),
sod(L(X);L(Y)) might be a better notation, but we nd it convenient to allow
both notations, as well as the mixedd(X; L(Y)).

It is obvious that the three distances above are metrics on the spae of prob-
ability measures onNg (or on Np).

We collect a few simple, and mostly well-known, facts for these threenetrics
in a lemma,; the proofs are left to the reader.

Lemma 19.5. (i) For any random variables X and Y with values in Ng,
G (X;Y) 6 de (X;Y) 6 drv (X;Y):

(i) For any X and X1;X2;::: with values in Np,

d

Xn!™ X0 drv (Xn; X) ! 0 dx (Xn;X) ! 0

0 &XnX)t o

(i) For any X and X1;Xo;::: with values in No,

d

Xnp 19 X 0 &XnX)! O

In particular,

Xn 119 & (Xn:l)! O

(iv) Forany X, and X ? with values inNp, & (X,;X%) ! 0 ( P(Xn 6
x) P(X26 x) ! 0forevery xed x > 0.

(v) For any X, and X2, dry (Xn; X9 ! 0 there exists a coupling
(Xn; X 9) with X, = X2 w.h.p. (We denote this also byX, ‘ X9)

(vi) The supremum in (19.12 is attained, and the absolute value sign is
redundant. In fact, if A ;= fi : P(X = 1) > P(Y = i)g, then drv (X;Y) =
P(X 2A) P(Y 2 A).

(vii) For any X and Y with values in N,

X X
drv (X;Y) = PX=x) P(Y=x), = % JP(X =x)  P(Y = x)j:
x2 No X2 No

O
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Remark 19.6. The three metrics are, by Lemma19.5(ii), equivalent in the
usual sense that they de ne the same topology, but they are notuniformly
equivalent. For example, if X, Po(n), X2 = 2bX,=2c (i.e., X, rounded
down to an even integer) andX %= X2+ 1, then dx (X; X% ! Oasn!l ,
but dTV (X,?,X,?g =1.

We de ne Po(1 ) as the distribution of a random variable that equals 1
identically.

After all these preliminaries, we state the result (together with sane sup-
plementary results). There are really two versions; it turns out that for general
sequencesn(n), we have to use the random variables ("), with E (") = m(n)=n
exactly tuned to m(n), but under a weak assumption we can replace (™ by
and obtain a somewhat simpler statement, which we choose as our rimaformu-
lation. (This goes back to Meir and Moon [B7], who proved (i) in the tree case,
assuming < ; see also Kolchin, Sevast'yanov and Chistyakov7, Theorem
1.6.1] and Kolchin [76, Theorem 1.5.2] forY(;y in the special case in Exam-
ple 12.1)

Theorem 19.7. Letw = (wy)k>o be a weight sequence withp > Oand! =1 .
Suppose thatn ' 1 and m = m(n) with m = n + o(' n) where0< 6 ,
and use the notation above. Suppose further that? := Var < 1 . (This is
redundant when < )

(i) If (possibly for n in a subsequenceh(n) are integers such that
nP( > h(n))! ,forsome 2 [0;1], then
Npnnyz ) = §fi 0 Yi > h(n)gj ¢ Po( ):

(i) If h(n) are integers such thatnP ( > h(n)) ! 0, then w.h.p. Y4y <h(n).
(iii) If h(n) are integers such thatnP( > h(n)) !'1 , then, for every xed j,
w.h.p. Y(j) > h(n).

(iv) For any sequencen(n), & Nnny:1 )iNpnmy:1) ! 0.

(v) Forevery xedj, dc Y(y: ¢y ! O.

(VI) drv Y(]_); @) I 0.

If < , the conditon m = n + o(p n) can be weakened tan=n = +
o(1=logn).

Moreover, if < , then the results hold for anym = m(n) with m=n!
provided s replaced by (™, N by N™™ and i) by ((j”)).
Remark 19.8. In the version with ("), we do not need at all. By considering
subsequences, it follows that it sucesthat 0 <¢c 6 m=n 6 C < . (Cf.
Theorem 11.6) Furthermore, this version extends to the case = andm=n6
, but we have ignored this case for simplicity.

Problem 19.9. Is Theorem 19.7 (in the (") version) true also for =0 < ?

The total variation approximation in (vi) is stronger than the Kolmogorov
distance approximation in (v), and our proof is considerably longer, but for
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many purposes(v) is enough. We conjecture that total variation approximation
holds for every Y(;y, and not just for Y ; presumably this can be shown by a
modi cation of the proof for Y(;) below, but we have not checked the details and
leave this as an open problem. Furthermore, we believe that the rest extends
to the joint distribution of nitely many Y. (The corresponding result in (v),
using a multivariate version of the Kolmogorov distance, is easily veried by the
methods below.)

Problem 19.10. Doesdrv Y(j); ) ! 0 hold for every xed j, under the
assumptions of Theorem19.7?

Proof of Theorem 19.7. As in the proof of Theorem 19.2 we may replace (vk)
by the equivalent weight sequence (k) in (11.13. We may thus assume that
w is a probability weight sequence with =1, and thus > =1, and the
corresponding random vgriable hasE = . We consider rst the version with
,assumingm = n + o( n), and discuss afterwards the modi cations for (",
We begin by looking again at (18.11):

wyZ(m  kin 1)
Z(m;n)

P(Y: = k) = (19.14)

Whenm = n + o(p n), we may apply Lemma 14.1and Remark 14.2and thus,
with d := span(w),
Z(m;n)= P(Sy = m) = 1‘3%: (19.15)
n
Moreover, by (14.9), for any k,

d+ o(1).
pi

Z(m kin 1)=P(S, 1=m k)6 = (19.16)
n
Consequently, (19.14 yields, uniformly for all k,
P(Y1=k)6 (1+ o1))wx =(1+ o(1)) P( = k): (19.17)
In particular, we may sum over k > K and obtain, for any K = K (n),
P(Y1:> K)6 (1+ 0o(1) P( > K): (19.18)

Since, by assumption,E ? < 1, er haveP( > K)= oK ?)asK !1
Hence, for every xed > 0,P( > " n)= o(n 1). It follows that there exists

a sequenc§n I 0 such that P( p> » n) = o(n 1). Consequently, de ning
B(n):= , n, wehaveB(n)= o n)and

P( >B(n)= on '); (19.19)
and thus, by (19.18 and symmetry,
P(Yiy > B(n)) 6 nP(Y1 > B(n))=n 1+0(1) P( > B(n))= o(l1): (19.20)
Hence, Yy <B (n) w.h.p.
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Similarly, P( ¢y > B(n)) 6 nP( 1> B(n)) = 0o(1), so (1y <B (n) w.h.p.

(i) : Write, for convenience, N := Nn(n):z(n), @and note that w.h.p. Yy, 6
B(n)andthen N = N (ny.1 ). (We assume for simplicityh(n) 6 B(n); otherwise
we let N := 0, leaving the triviabmodi cations in this case to the readﬁr.)

Moreover, fork 6 B(n)= o(' n), we havem k) (n 1) = o n), and
thus Remark 14.2 shows that, for any k = k(n) 6 B(n),

d+ o(1).

Zm kn 1)=PS, 1=m k)=
2 2n

(19.21)

Since we here may takek = k(n) that maximises or minimises this for k 6
B (n), it follows that ( 19.27) holds uniformly for all k 6 B(n). Consequently, by
(19.14, (19.19 and (19.22),

P(Y: = k)= (1+ o(l))wy = (1+ o(1)) P( = k); (19.22)
uniformly for all k 6 B(n). By the assumption and (19.19, this yields

B(n) B
EN=n P(Yp=K)=n 1+o0(1) P( =Kk)
k=h(n) k=h(n)
1+o0o(1) nP h(n)6 6 B(n)

1+0(1) n P( > h(n)) P(>B (n) !

Similarly, again using the symmetry as well as Lemmal4.1and Remark14.2

EN(N 1)=n(n 1)P Yi;Y2 2 [h(n);B(n)]

B(n)
= n(n 1) P(Yl = k; and Yy = kz)
ki;kz2=h(n)
) Wi, Wi, Z(m k1 ka;n 2)
=n(n 1) Zmn)
k1k2=h(n) '
R
=n(n 1) P( = ki) P( = kz2) 1+ 0o(1)
kl;k2=h(n)

1+0(1) n? P( > h(n) P(>B (n) >
[

Moreover, the same argument works for any factorial momeng(N)- and yields

E(N)- ! forevery’ > 1.1f < 1, we thus obtain N '* Po( ) by the
method of moments, and the result follows, sinceN = N{y(n).1 ) W.h.p.
If =1, this argument yields

E(N} nP( >h(n) !'1 (19.23)
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for every © > 1, and we make a thinning: Let A be a constant and letq :=
A= nP( > h(n)) ;theng! A= =0.We consider onlyn that are so large that
g < 1. We then randomly, and independently, mark each box with probalility
g. Let N %be the random number of marked boxes such that Y; 2 [h(n); B (n)].
Then, for every * > 1, using (19.23,

E(N9 =(n)q P Ys:::;Y-2[h(n);B(n)] =qEN)! A: (19.24)

Consequently, by the method of moments,N ° 1 Po(A). In particular, this
shows, for every xedx,

P(N<x)6 P(N°<x)! P(Po(A) <x);

which can be made arbitrarily small by taking A large. Hence,P(N <x)! 0
for every xed x, i.e., N A and thus Nh(ny:1 ) 1", as we claim in this
case.

(ii) - Part (i) applies with = 0, and yields Np(n):1 ) 1?0, which means
N[h(n);l y = 0 Whp Thus Y(j) <h (n) Whp by (1910

(iii) - Part (i) applies with = 1, and yields Nn(ny:1 ) 1" Thus, for
every xed j, by (19.10, P(Y(j) <h(n)) = P(N[h(n);l ) <j)! o.

(iv) : Suppose not. Then there exists a sequendgn) and an " > 0 such that,
for some subsequence,

G Ny )iNpmyy >™" (19.25)
We may select a subsubsequence such thatP( > h(n)) ! for some 2
[0;1 ]; then & Ny );Po( ) ! 0 by (i) and Lemma 19.5(iii). Moreover,

along the same subsubsequenceT[h(n);l) Bi n;P( > h(n) ¢ Po( ),
by the standard Poisson approximation for binomial distributions (and rather
trivially if = 1); hence &« W[h(n);l y;Po( ) ! 0. The triangle inequality
yields & Nn):1);Npnmy:1y) ! 0 along the subsubsequence, which contra-
dicts (19.25. This contradiction proves (iv).

(v): Suppose not. Then, by (9.1]), there is an" > 0 and a subsequence such
that for some h(n),

However, by (19.10, (19.13 and (iv),
= P(Nhinp1:1)6J 1) P(Npmp1:1)6j 1)

6 j& Npmys;1)iNpmeaiay !0
which contradicts (19.26. This contradiction proves (v).
(vi):Let A= A(n) := fi:P(Y;y =1i)> P( () = i)g; thus, see Lemmal9.5(vi),

drv (Ygy: () = P(Ygy 2A)  P( gy 2 A): (19.27)
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Let > 0. For eachn, we partition No into a nite family P = fJ,g; of
intervals as follows. First, eachi 2 No with P( (1) = i) > =2 is a singletonfig;
note that there are at most 2= suchi. The complement of the set of these
consists of at most 2 + 1 intervals Ji (of which one is in nite). We partition
each such intervalJ further into intervals J, with P( 1y 2 J;) 6 by repeatedly
chopping o the largest such subinterval starting at the left endpoint. Since only
points with P( 4y = i) < =2 remain, each such intervall, except the last in
eachJi satises P( (1) 2 J;) > = 2. Hence, our nal partition fJ;g contains at
most 2= + 1 intervals J; with P( (1) 2 J;) < = 2, while the number of intervals
Jy with P( 1y 2 J;) > =2 is clearly at most 2= . Consequently, L, the total
number of intervals, is at most 4= + 1.

We write J; =[a;h]. We say that an interval J; 2 P isfat if P( ) 2 J;) > ,
and thin otherwise. Note that by our construction, a fat interval is a singleton
fag.

Next, x a large number D. We say that an interval J; = [a;hb] 2 P is good
if nP( > a) 6 D, and bad otherwise.

For any interval J;,

P(Y(l) 2 J|) P( @) 2 J|) 6 ZdK (Y(]_); (1)) = O(l) (1928)
by (v). s
Let A; := A\ J;. Thus A is the disjoint union | A;. (A, J; and A; depend
onn.)

We note that if J; is fat, then J; is a singleton, and eitherA, = J, or A, = ;;
in both cases we have, using19.28,

P(Y(]_) 2 A|) P( (1) 2 A|) 6 2d|( (Y(]_); (1)) = 0(1): (1929)

We next turn to the good intervals. We claim that, uniformly for all go od
intervals J;, asn!1 ,

P(Yyy 2 A1) 6 e P( (1) 2 Al)+ of1): (19.30)

As usual, we suppose that this is not true and derive a contradiction Thus,
assume that there is an" > 0 and, for eachn in some subsequence, a good
interval J; =[a;h] (depending onn) such that

P(Ya) 2 A)>e® P( () 2 A)+ ™ (19.31)

If J; is fat, then (19.3]) contradicts (19.29 for large n, so we may assume that
Jy is thin, i.e.,, P( (1) 2 J1) 6
Let Af == JynAjand By :=[b +1;1). Let , = nP( 2 A), =
nP( 2Bj)and , := nP( 2 Af). The assumption that J; is good implies that
nt nt+t n=nP( > a)6 D.By selecting a subsubsequence we may assume
that , ! ,oon ! and , ! for some real ; ; with + + 6 D.

Then (i) shows that Ng, h Po( ); moreover, the proof extends easily (using
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joint factorial moments) to show that Na, 1 Po( ), Ng, 1

Na¢ 1 Po( ), jointly and with independent limits.
Similarly, by the method of moments or otherwise (this is a standard Pisson

approximation of a multinomial distribution), N, 1% Po( ), Ng, 19 Po( )

and WAIc 1 Po( ), jointly and with independent limits.
Note that

Po( ) and

Y(l) 2 A =) NA| > 1 and NB| =0:

Conversely,
NA| > 1 and NB| = NAIC =0 =) Y(l) 2 A

The corresponding results hold for ). Thus,
P(Yay) 2 A1) 6 P(Na, > 1, Ng, =0) ! PPo( )>1PPo()=0 (19.32)
and
P(@w 2 A1)>P(Na, > 1; Ng, = Nac = 0)
| PPo()>1PPo()=0 PPo()=0: (19.33)
SinceP Po( )=0 =e ,(19.32{(19.33 yield
P(Yay 2 A)) e P( @ 2 A1) 6 ofl): (19.34)
Moreover,Nj = N, + WA,C 19 Po( + ), and thus
P( @ 2J31)=P(Ny > 1, Ng, =0) > P(N, =1; Ng, =0)
' (+ e e : (19.35)

We are assuming thatJ, is thin, i.e., P( 1y 2 J;) 6 , and thus (19.39 yields
(+ )e e 6 and consequently

6 + 6 e** 6 eP:
Hence, (19.39 implies
P(Ya) 2 A) 6 €2 P( ) 2 A)) + o(1);

which contradicts (19.31). This contradiction shows that ( 19.30 holds uniformly
for all good intervals.

It remains to consider the bad intervals.

Let J- =[a;b] be the rightmost bad interval. If J- is fat we use (19.29 and
if J- is thin we use (19.28 which gives

P(Yay 2A)6 P(Yq) 2J)6 P( 1y 2J)+ 0(1) 6 + o(1):

In both cases,
P(Ygy 2A)6 P( @) 2A)+ + o(1): (19.36)
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Finally, let A be the union of the remaining bad intervals. Then A =
[0;a 1] and by (v),

P(Y(]_) 2A)= P(Y(]_) <a-)6 P( @ < a-)+ o(1): (19.37)
Furthermore, recallingnP( > a) > D sinceJ- is bad,

P(@<a)=PNp1)=0= 1 P( >a)"6e"(>2)geb:
(19.38)
We obtain by summing (19.30Q for all good intervals together with (19.36
and (19.37, recalling that the number of intervals is bounded (for a xed )
and using (19.39,

X
P(Y(]_) 2 A) = P(Y(]_) 2 A|)
|

X
6e”  P(g2A)+ol)+ +P(y<a)
|

6 e’ P(y 2A)+ol)+ +ePl:
Consequently,
drv (Yo : @)= P(Yoy 2A) P(@ 2A)
6 e® 1P(qy2A)+ +eP+o(l)

6 e’ 1+ +e D+ o)

and thus .
limsupdry (Yay; 1)) 6 € 1+ +eP: (19.39)
n'l
Letting rst ! OandthenD !'1 , we obtain drv (Y1); 1)) ! 0, which
proves (Vi) .

This completes the proof of the version with and the assumptionm =
n +o(n*7?). Now remove this assumption, but assume < andthus < .We
consider onlyn with0 <m=n< andthus 0< , < . Denote the distribution
(14.10 of (M by w( (this is a probability weight sequence equivalent tow)
and let S := M+ + "V Then, by Example 11.2 applied to w(" in
analogy with (19.14 (and equivalent to it by ( 11.9),

wMzZm kn Lw™) zZm kn 1Lwm)

P(YL = k)= Z(m;n;w(m) Z(m;n;w(m)

P( (M = k):
(19.40)

Furthermore, for any y > 0, using (14.13,
P(Yq) >y) 6 nP(Y: > y)=nP {M>y sM=m

6nP Msypgm=m * (19.41)
6 nP( (M >vy) O(n*?):
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Choose 2 (; ). Then, for s> 0 andn so large than , < , by (4.1,

€ n) (e )

p( (M > 6 e Syi( " g e S : 19.42
( y) ) ) ( )
Choosings > 0 with € < = |, we thus nd P( (M > y) = O(e %) and, by

(19.41),
P(Yg > y)= O n*2e ¥ ;

We now de ne B(n) :=2s !logn, and obtain
P(Yqy > B(n))= O n*2%e 8B(W =0on 2 1 0 (19.43)
Hence,Y(;) <B (n) w.h.p. Similarly, using (19.42 again,
P( ™M >B(n)= on % (19.44)

and thus P( ()} > B(n)) 6 nP( ™ > B(n))! 0,50 () <B (n) w.hp.

We have shown that (19.19 (with (™) and (19.20 hold. Moreover, Lemma
14.1 yields, see (4.13 again, Z(m;n;w()  d=2 2n)¥2, and for k 6
B(n) = O(logn), the same argument yields also, using Remarki4.2 Z(m
kin L;w™M) d=2 2n)*2 pbecausem k (n 1E M=m k (n
1)m=n=k+ m=n= o(n'7?). Consequently, (19.40 yields

P(Y1 = k)= 1+0(1) P( (™M =Kk); (19.45)

uniformly for k 6 B(n).

We can now argue exactly as above, using(™, ((j”)) and W&n), which proves
this version of the theorem.

Finally, if < and m=n = + o(1=logn), then , = m=n)= +
o(1=logn), because ! is dierentiable on (0; ). Since we are assuming = 1
and ( ) =1inthe proof, we thus have, uniformly for all k 6 B(n) = O(log n),

P( (M = k)= n We= 1+o0(1) we= 1+o0() P( =Kk): (19.46)

( n)
Since alsoP( (M > B(n)) = o(n 1) and P( > B(n)) = o(n 1), it follows that
nP( (M > h(n)) ! 0 nP( > h(n)) ! , and thus we may in (i) {(iii)

replace (") by again. Finally, (iv){(vi) follow as above in this case too. O

Proof of Theorem 19.3. Recall that < 0 < by Lemma 3.1 We have
> > 0,s0 > 0,and > 0. Thus1l< = 6 1.

(i): Fix a > 1=log(= ). Chooseb with e <b < = . Then 06 1= <
(b ) . Choosecwith 1= <c< (b) 1.
Since limsug,; Wy < =1= <c, we havew, © < c for large k, and then,
dening , and (M by (14.10{( 14.11,
3 (c n)k_

P( ™M =k)= —" w6

) ©) (19.47)
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Asn!l ,cp,! c <b ! Leth:= balognc. For large n, (19.47 applies for
k> h,andc, <b 1< 1, and then

(Cn)kGX ﬂZObh =Onalogb

R
P( (™M > h)6
k=h Vo

e ©

Sincealogb > 1, thus nP( (™ > h) | 0, and Theorem 19.7(ii) yields Y 6
h 6 alogn w.h.p.

@iiy: If =1 ,then (i) applies with = =1 and thus 1=log(= ) =0.

@iii) : If = 1, the result follows by (i), so we may assume 1 =< < 1.
Leta:=1=log(= )and0<"< 1. The upper boundY(), 6 Y4 6 (a+ ")logn
w.h.p. follows from (i), and it remains to nd a matching lower bound.

Let k:=d1 ")alogne Then, since ,! ,

logP( (M = k) =log wy + klog » log ( n)
k(log + o(1)) + k(log + o(1))+ O(1)
klog(= )+ ok)= (1 "+ o(1)logn

and thus
nP( M >k)y>nP(M=k=n"D11

By Theorem 19.7(iii) (and the last sentence in Theoreml9.7), this implies w.h.p.
Yi) > k> (1 ")alogn

This completes the proof, since we can také arbitrarily small. O

Specialising Theorem19.7 to the tree case W = n 1), we obtain the fol-
lowing. (Recall that 2 < 1 is automatic when > 1.)

Corollary 19.11. Let w = (wk)k>0 be a weight sequence witvg > 0 and
wg > 0 for somek > 2, and let have the distribution given by( ) in (7.1).
Suppose that > 1and 2 :=Var < 1. Then, asn!l |, for the largest

degreesYyy > Y > i in Ty, drv (Y, @) ! 0 and, for every xed j,
de (i) )+ 0.
Proof. The case! = 1 is a special case of Theorem9.7, with =1.

The case! < 1 istrivial: for every xed j, Yy ="! w.h.p. by Theorem19.1,
and, trivially, ) =" w.h.p. O

The comparison with ;) in Theorem 19.7 and Corollary 19.11is appealing
since (jy is the j:th largest of n i.i.d. random variables. For applications it is
often convenient to modify this a little by taking a Poisson number of variables
instead.

Consider an in nite i.i.d. sequence 1; »;:::, let as above (j) be the j:th
largest among the rst n elements of the sequence and de n€jjy as the j:th
largest among the rst N(n) elements 1;:::; n(n), whereN(n) Po(n) is a

random Poisson variable independent of 1; 2;:::.
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Lemma 19.12. W.h.p. ;) = () and thusdrv (Tj): ¢y) ! Oasn!l for
every xedj > 1.

Proof. Letn := bn n%73¢, and let 0 be thej:th largest of 1;:::; n . By
symmetry, the positions of thej largest among 1;:::; n are uniformly random

(we resolve any ties in the ordering at random); thus the probability that one
of them has index>n isatmostj(n n )=n= o(1). Hence, w.h.p. allj are
(4)°

Furthermore, w.h.p. n 6 N(n) 6 n., and a similar argument (using condi-
tioning on N (n)) shows that w.h.p. ;) = ;. Hence, w.h.p. gy = )= ).
Now use Lemmal9.5(v). O

We can thus replace (j) by ;) in Theorem 19.7and Corollary 19.11 (We can

similarly replace ((j”)) by "fj”)) de ned in the same way.) The advantage is that,

by standard properties of the Poisson distribution, the correspading counting
variables
K = jfi 6 N(n): = kgj

are independentlgoisson variables with Ny Po(nP( = k)). We similarly
dene M., := |1:k|@| PonP( > k) .

Remark 19.13. An equivalent way to express this is that the multiset , :=
f ;:16 N(n)gis a Poisson process oy with intensity measure , given by
nfkg=nP( = k).

We thus have (exactly), for anyj and k,
P(7)6 k)= P Nyi.1)<j =PPo(nP( >k)) <j ; (19.48)

in particular
P(7y 6 k)= e "PCK): (19.49)

This gives the following special case of Theorer9.7. (There is a similar version
with (M)

Corollary 19.14. Suppose thatwg > Q and ! = 1 . Suppose further that
n!'l andm=m(n) withm= n + o( n) whereO< 6 , and that either
< or 2:=Var < 1.Then, uniformlyinall k> 0,

P(Y;) 6 k)= P Po(nP( >k)) <j + o(1) (19.50)

for each xed j > 1; in particular
P(Ya) 6 k)= e "P7 )+ o(1): (19.51)
Proof. Immediate by Theorem 19.7(v), Lemma 19.12and (19.48{(19.49. O

Remark 19.15. SinceMjny1) > 0 i) > h(n), it follows easily from
Lemmas19.12and 19.5(iv) that for any sequenceh(n),

& W[h(n);l i mmyy !0 (19.52)
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Hence, Theorem19.7(iv) is equivalent to & Nny:1 ); )1 ) ! 0, andthus
& Ny )y;PonP( >h(n) ! 0 (19.53)

This is another, essentially equivalent, way to express the resultslzove.

19.3. The subcase <

When < |, we have < and the random variable has some nite ex-
ponential moment, cf. Section 8; hence the probabilities  decrease rapidly.
Theorem 19.7 and Corollary 19.14 show that Y3y (and eachY;y) has its dis-
tribution concentrated on k such that P( > k) is of the order 1=n. If the
decrease of ¢ is not too irregular, this implies strong concentration of Y(y),
with, rougly speaking, Y k when P( > k) 1=n. To make this precise,
we de ne three versions of a suitable such estimatd& = k(n). Let, as above,
k= P( =k)= Kwe=( )andlet

R
k= P( >k)= I (19.54)
I=k
De ne
ki(n) :=maxfk: > 1=ng; (19.55)
ka(n) :=maxfk: > 1=ng; (19.56)
k3(n) ;== maxfk: P kK k+1 > 1=ng: (19.57)

Note that ki(n) 6 kz(n) and ka(n) 16 ks(n) 6 ky(n).

We consider the typical case whemwy.; =wi convergesak ! 1 . We assume
implicitly that wy+1 =Wk is de ned for all large k; thus wx > O and! = 1 . If
Wi+ =W ! aask!l ,then (3.5 vyields =1=a hence =1 ifa=0 and
0< < 1 ifa>0.

Theorem 19.16. Suppose thatwg > 0 and that wyg+; =wi ! a< 1 61sk 1
Suppose further thatn ' 1 and m = m(n) with m = n + o( n) where
0< <

(i) Then, for eachj > 1,
Yy = ki(n) + Op(1) = ka(n) + Op(1) = ks(n) + Op(1):
(iiy If a=0, then, moreover, w.h.p.,
iYg) ku(n)j6 L jYg) ka(n)ji6 1; Y 2fks(n);ks(n)+1g:

Proof. (i): We have, as said above, = 1=a > 0. Furthermore, since < , we
have < andthus, ask!1l

k+1 _  Wk+1

k Wi

l a=-<1 (19.58)
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It follows from (19.58 and (19.59, using dominated convergence, that, as
ki1

1 .
1 a’

R
L S (a) = (19.59)
k

i=0 k i=0

If *ischosensuchthat(a) <1 a,then(19.59and (19.58 imply s = i !
(a)=(1 a)< lask!l ,andthus, for largek, + < < «; hence,
for large n, ki(n) 6 ka(n) 6 ki(n)+ . Thus, recalling that jka(n) ks(n)j 6 1,

ki(n) = kz(n) + O(1) = ksz(n) + O(1): (19.60)
Furthermore, (19.58 and (19.59 yield also

K1y a< 1 (19.61)

k
By (19.58, n y,(n) > 1 >N ,(n)+1 . This and (19.61 imply that if ( n) is
any sequence with (n)!'1 ,thenn ,n) (m!'1 andn )y n)! O
Consequently, recalling the de nition (19.59, by Theorem 19.7(ii){ (iii) (or by
Corollary 19.14 w.h.p. Yy > kz(n)  ( n) and Y{jy < kz(n)+ ( n). Since
(n)!1 s arbitrary, this yields Y, = ka(n) + Op(1). (See e.g. §2].) The
result follows by (19.60.

(ii): When a = 0, (19.59 yields ¢ k, (19.58 yields 1= ! O
and (19.6)) yields x+1= k! 0O ask!1l . It follows easily from (19.55{
(195-/) that n ki(n) 1 1 ,n k1(n)+2 I 0,n ko(n) 1 7 ,n ko (n)+2 10,
N ki) 'l N kw2 !0, and the results follow by Theorem 19.7(ii){
(iii) . O

Ifa=0,ie wks1 =W ! Oask!1l ,thusY(y isasymptotically concentrated
at one or two values. (This was shown, in the tree case, by Meir and don [8§],
after showing concentration to at most three values in 87]; see also Kolchin,
Sevast'yanov and Chistyakov [/ 7], Kolchin [76] and Carr, Goh and Schmutz P1]
for special cases.) Ifa > 0, we still have a strong concentration, but not to any
nite number of values as is seen by Theoreml9.19below.

We consider two important examples, where we apply this to random tees,
som=n 1land =1.(Recallthat Y then is the largest outdegree inT,.
The largest degree is w.h.pY(;) +1, since w.h.p. it is not attained at the root,
e.g. because the root degree i®,(1) by Theorem 7.1Q this should be kept in
mind when comparing with results in other papers.)

Example 19.17. For uniform random labelled ordered rooted trees, we have
by Example 10.1  Ge(1=2) with , =2 * TandthusP( > k) =2 X. Hence
Y1) has asymptotically the same distribution as the maximum ofn i.i.d. geomet-
rically distributed random variables, which is a simple and well-studied example,
see e.g. Leadbetter, Lindgren and Rootzn§2]. Explicitly, Corollary 19.14ap-
plies and (19.5]) yields, uniformly in k > 0,

P(Yey 6 k)= e " " "+ o(1): (19.62)

(This was, essentially, shown by Meir and Moon 87].)
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One way to express this is to introduce a random variabléV with the Gumbel
distribution .
PW®6 x)=¢e ¢ ; 1 <x< 1: (19.63)

Then (19.62 yields, uniformly for k 2 Z,

P(Ya 6 k)= PW < (k+1)log2 logn + o(1)
W +logn
og2 K+l +od) (19.64)
W +log n _
W 6 k + O(l)
In other words, extending dx to Z-valued random variables,
d< Yay;b(W +log n)=log2c ! O (19.65)

Thus, the maximum degreeY(;y can be approximated (in distribution) by b(W +
logn)=log 2c = bW=log 2+log, nc. HenceY(yy log, n is tight but no asymptotic
distribution exists; Y, log, n can be approximated bybW=log 2 + log, nc
log, n = bW=log2 + flog, ngc f log, ng (where we letfxg:= x b xc denote
the fractional part of x), which shows convergence in distribution for any sub-
sequence such thaf log, ng converges to some 2 [0; 1], but the limit depends
on . See furtherJanson|[60, in particular Lemma 4.1 and Example 4.3].

In the same way we see thatY(;, can be approximated in distribution by
bWj =log 2 + log, nc where W; has the distribution

b(leix

X

P(W; 6 x) = P(Po(e *) <j)= e® 1 <x< 1; (19.66)

i=0

with density function e e © “=(j 1) further W, d logV;, whereV; has
the Gamma distribution Gamma(j; 1). (Cf. Leadbetter, Lindgren and Rootzn
[82, Section 2.2] for the relation between the distributions of (j and (1) in the
i.i.d. case.)

Example 19.18. For uniform random labelled unordered rooted trees, we have
by Example 10.2 Po(1) with , = e '=kl. We have w41 =W ! 0, so
Theorem 19.14ii) applies and shows that Y(;y is concentrated on at most two
values, as proved byKolchin [76, Theorem 2.5.2]; see also Meir and Moor8g|
and Carr, Goh and Schmutz R1].

Explicitly, ( 19.57) yields (treating the rather trivial case n > k 12 k! sepa-
rately)

P(Y(l) < k) =g Ne L=k1(1+ O(1=k)) + 0(1) =g e =4 + 0(1) (1967)
which by Stirling's formula yields

p__
P(Y(l) <k)=exp glogn  (k+ 3)log k+k log(e 2) o(1) (19.68)
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uniformly in k > 1, cf. Carr, Goh and Schmutz P1]. It follows easily from
Stirling's formula, or from (19.68, that ki(n);ka(n);ks(n) logn=loglogn,
and more precise asymptotics can be found too; cf9p, 87, 21].

In fact, the simple Example 19.17is typical for the casewy.+; =wk ! a > 0 as
k11 ;then Yy always has asymptotically the same distribution as the max-
imum of i.i.d. geometric random variables, provided we adjust the numter of
these variables according tow. We state some versions of this in the next theo-
rem. For simplicity we consider only the maximumY(y , and leave the extensions
to Y(;) for general xed j to the reader.

Theorem 19.19. Suppose thatwg > 0 and that wy.; =w ! aask!1l | with
O<a< 1. Suppose further thatn!1 andm = m(n) with m= n + o( n)
where0< <

Letg:= a = = < 1 Let k(n) be any sequence such that,,) = (1 =n);
equivalently, k(n) = ki(n) + O(1), and let N = N (n) be integers such that

N kmd M _ nwyeya KM

N = : 19.69
g ()9 (1969
(i) Let q;:::; N be iid. random variables with a geometric distribution
Ge(1 q),ie,P(i=k=@ 0aqkX k> 0. Then
d
Y(]_) m%x i (1970)
(i) Let W have the Gumbel distribution(19.63. Then
Ya ‘b W=log(1=g) +log ;g Nc: (19.71)
(i) Let by := n (), thusby, = (1) . Then
d
Yoy k(n) W +log(b,=(1 q)) =log(1=q : (19.72)

Thus Yy  k(n) is tight, and converges for every subsequence such that
b, converges.

Hence Yy  k(n) converges for every subsequence such thdy converges,
but the limit depends on the subsequence s&(;y  k(n) does not have a limit
distribution. (For the distributions that appear as subsequence limits, seeJanson
[60, Examples 4.3 and 2.7].) Note that necessarilk(n) !'1  and thus N !'1
asn!l

We show rst a simple lemma, similar to Lemma 19.5

Lemma 19.20. Let X, and X? be integer-valued random variables and sup-
pose that there exists a sequence of integekgn) such that X, k(n) is tight.
(Equivalently: X, = k(n)+ Op(1).) Then the following are equivalent:

(i) P(Xn 6 k(n)+ ") P(X26 k(n)+ ")! 0foreach xed " 2 Z;
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(i) de(Xn; X911 0
(i) Xn ¢ X0, ie., drv (Xn:X0)! O.
Proof. By consideringX, k(n)and X2 k(n) we may assume thatk(n) = 0.

Let "> 0. SinceX,, is tight, there exists L such that P(jX,j>L) <" for every
n. Suppose that (i) holds. Then

+

%
dry (Xn;X0) = P(Xn=") PXJ=")
=1

>'<II

6 P(Xn=") P(XX7=")
=L

+ P(}Xnj>L) 6 o(1)+ "

+

This shows (iii). The implications (iii) = ) (ii) and (i) =) (i) are trivial. O

Proof of Theorem 19.19. By (19.58, 1=« ! qgask!1 , and it follows
from (19.59 that n () 2 [Liq 1+ o(1)]. It follows further that K(n) =

1 =n k(n) = ki(n) + O(1), as asserted, and then yyq M
kimd (M) thus we may replacek(n) by ki(n) in (19.69.
(): For each xed " 2 Z, by (19.59, (19.58 and (19.69,

nP( >k(n)+)=n +° n +=(1 n (1
( (n+") k(ny+° k(ny«=(1 ) k(n)d =( (2)19'73)
NgK™* "= NP( 1> k(n)+");
furthermore, this is (1). Hence, ( 19.5]) yields
P Yy <k(n)+  =e NP>k ) 4 1) = e NP2k ) 4 1)

1 P(1>km+ )"+ o)
P?g%x i<k®m+ " + o);

and (19.70 follows by Lemma19.2Q sinceY(;, ki(n) is tight by Theorem 19.16
(ii): As in (119.64, uniformly in k 2 Z,

Pmax <k = 1 " =eN"+o)
I
= P W <k log(1=g) logN + o(1) (19.74)
W +log N .
Togl=g < oM

Hence,dry maxign i;bW=log(1=q)+log 1=qN¢c ! 0, and (19.7) follows from
(19.70 and Lemma 19.20

(iii): By (19.69, log;—-qN = k(n) +log,4(h=1 ) + o(1), and (19.79
follows easily from (19.71), using Lemma19.20and the fact that W is absolutely
continuous. O
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Remark 19.21. For later use we note that Theorem 19.19 as other results,
extends to the casewy = 0 by the argument in Remark 11.8 we now have to
assume > :=minfk :wg > 0g. The extension of Theorem19.19i) is perhaps
more subtle that other applications of this argument sinceN will change by a
factor q , but (ii) and (iii) are straightforward, and then (i) follows by ( 19.74
and Lemma 19.2Q

If the weight sequence is very irregular,Y;;y can fail to be concentrated even
in the case <

Example 19.22. Let j := 2% and S := frig>1. Let wg =2 ¥if k 2§,
Pk = 0if k> 2andk 2 S, and choosewp := | ,g(k  L)wg gnld wy =1

2 s Kwi. Then (wy) is a probability weight sequence with = _, kwy = 1.
Furthermore, =2, ( )= 1 and, by Lemma3.1(iv), = ( )= 1 .Choose
m=n 1 (thetreecase);thus =1 < and =1so0( k)=(w).

Note that “j.1 = "2 1f n =27, thenP( > %) 21 =nt P >

Yi+1) 2% nlandP( > ;) 2 i n % hence it follows from

(19.5) that for the subsequencen = 27 with j 2 S, P(Yy) < “j+1) ! 1,

P(Ygy <7j)! elandP(Yy < 1) ! 0. Thus, along this subsequence,
Py = 5)! 1 elandP(Yy = 75 1)! el ie,PYqy =log,n !

1 elandP Yy =log;°n ! e

19.4. The subcase wg+1 =wx ! Oas k!l

We have seen in Theorenil9.16that when wg+1 =w ! O ask!1 , the maxi-
mum Y is asymptotically concentrated at one or two values. We shall see tht
for \most” (in a sense speci ed below) values ofn, Yy is concentrated at one
value, but there are also rather large transition regions whereY;, takes two
values with rather large probabilities.

We have, as said before Theoremd9.1§! = 1 and = 1 . Furthermore, by
Lemma3.1(v), =1.

We de ne

ng := bl= gc; (19.75)

noting that ny+1 =ng k=k+ '1 ask!1l ;in particular, ng+1 >ny (for
large k, at least). The results above then can be stated as follows.

Theorem 19.23. Suppose thatwy > 0 and that wg+1 =wk ! O ask!l
Suppose further thatn ' 1 and m = m(n) with m = n + o( n) where
0< < 1.

(i) Considern in a subsequence such that for somgn) and somex 2 (0;1 ),
N=ngny ! X. Then

P Yu
P Yu

k(n) 11! e?X
k(n) ' 1 e?*:
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S
(i) Let ¢!l ask!l .Ifn!l withn2 i:l[ klnk; kNk], then, for
k(n) such thatnygmy <n<n gy,

P Y(]_) = k(n) L

Proof. (i): Along the subsequence, using 19.59, (19.59 and (19.75,

nP(C >kM)=n gmny N xn X (19.76)

Ni(n)
Hence, (19.5]) yields P(Y;y 6 k(n) 1)! e *. Furthermore, by (19.76 and
(19.6), nP( >k (n)) ! OandnP( > k(n) 1)!1 ; hence (9.5]) yields
P(Yyy 6 k(n)) ! landP(Yy 6 k(n) 2)! 0.

(i): We may assume ¢ > 1. Then the assumptions imply )Ny <
n < k(}])ﬂ Ni(ny+1 » Wherek(n) 'l and thus ) !'1 asn!l . Hence,
similarly to (19.76,

nP > k(n) > k(n) L
Ni(n)
nP >k(n)+l — < 1 1 Qo
Nk(n)+1 k()1 ,
and the result follows by (19.51). O

Roughly speaking, the values ofn such that Y,y takes two values with sig-
ni cant probabilities thus form intervals around each ny, of the same length on
a logarithmic scale; between these intervalsy(, is concentrated at one value.

Example 19.24. Consider again uniform random labelled unordered rooted
trees, as in Example19.18 We have ny = bk!=ec. In this case, it is simpler to
rede ne nyg := k!; Theorem 19.23ii) is una ected but (i) is modi ed to

PYy =k(n) 11 e*e (19.77)
PYy =k(n) ! 1 e*®: (19.78)

Cf. Carr, Goh and Schmutz [21].

Remark 19.25. We have for simplicity considered only the maximum valueYy
in Theorem 19.23 It is easily seen, by minor modi cations in the proof, that for
any xed j, in (i) also Y(jy = k(n) w.h.p., while in (i) Yy 2 fk(n) 1;k(n)g
w.h.p., but the two probabilities have limits depending onj ; in fact, the number
ofj suchthatY(;y = k(n) converges in distribution to Po(x). We omit the details.

To make the statement about \most" n precise, recall that theupper and lower
densitiesofasetA Narede nedaslimsup,; a(n)=nandliminfy;; a(n)=n,
wherea(n) := jfi 6 n:i 2 Agj; if they coincide, i.e., if the limit lim ,;; a(n)=n
exists, it is qglled the density. Similarly, the the logarithmic density of A is
iMn1 o i6ni2a +» When this limit exists, with upper and lower logarith-
mic densities de ned using limsup and liminf. It is easily seen that if a set has
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a density, then it also has a logarithmic density, and the two densitiescoincide.
(The converse does not hold.) Furthermore, de ne

P, = m?x P(Yy = Kk):

It follows from Theorem 19.16that the second largest probability P(Y(1y = k) is
1 p, + 0(1). Thus, for n in a subsequenceY(y;y is asymptotically concentrated
atone value if and only ifp, ! 1, if p, stays away from 1,Y(;) takes two values
with large probabilities.

Theorem 19.26. Suppose thatwg > 0 and that wg+y =w ! 0O ﬁs k!l
Suppose further thatn ' 1 and m = m(n) with m = n + o( n) where
0< < 1.

@) If % <a< 1, then the setfn : p, <ag has upper density

log 12-=log 1~ > 0 and lower densityO0.
(i) There exists a subsequence af with upper density 1 and logarithmic den-

sity 1 such thatp, ! 1.

Note that the upper density in (i) can be made arbitrarily close to 1 by
taking a close to 1. This was observed by Carr, Goh and Schmut2f]] for the
case in Examplel19.24 (However, they failed to remark that the lower density
nevertheless is 0.)

Proof. (i): Let by := logaandh, := log(l a);thus0O<bj; <b,< 1.Then
max(e *;1 e *)<a | X 2 (b; ), and it follows from Theor@n 19.23
(and a uniformity in x implicit in the proof) that foragy "> 0,ifn2 | [(by+
"Ing; (b ")ng], then p, <a for largen, whileif n 2 | [(by  ")nk; (b + ")Nnk],
then p, > a for large n. Sincenk+5=nk I Oask!1l ,itis easily seen that for
any B;B) with 0 <b? <b% < 1, | [B)ny;Bni] has upper density ¢  B))=1
and lower density 0; it follows by taking kf =k " andleting "! O that the
setfn:p, <aghas upper density ¢ )=k and lower density O.

(ii): Let g be an increas§1g sequence with x % 1 so slowly that log ¢ =
o(log(nk=nk 1)). Let A := ] klnk; kNg]. By Theorem 19.23ii), p, ! 1
asn!l with n 2 A, so it suces to prove that A has lower density 0 and
logarithmic density 0.

It is easily seen that for the upper logarithmic density of A, it su ces to
considern 2 fb ¢ ngcg, which gives

P P . )
) J!(:l i:J J tn; 1= . 3 !(:1 2log it 0(1)
lim sup ) 6 limsup ——
ki1 log(" knk) ki1 (=1 log(nj=n; 1)

Hence the logarithmic density exists and is 0.
The lower density is at most, considering the subsequende nee,

1
.. a Nk
liminf y
k!l K nk

. k 1Nk 1 . k 1 k
6 liminf ———— = lim ———— =0;
k11 K Nk k11 Ng=Ng 1
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since x 16 < (ng=ng 1) for large k. (Alternatively, it is a general fact
that the lower density is at most the (lower) logarithmic density, for any set

A N) O
19.5. The subcase = and 2=1
We give two examples of the case = and 2 = 1 . (In both examples, we may

assume that =1and m=n 1, so the examples apply to simply generated
random trees.) The rst example shows that Theorem19.7does not always hold
if 2= 1 ;the second shows that it sometimes does.

Example 19.27. Letl< < 2 and let (wy) be a probability weight sequence
with wp > 0 and wy ck Lask!1l , for somec > 0. (This is as in
Example 12.10with = +1 2 (2;3). If (wg) is not a probability weight

sequenge, we may replace by c® := c=(1).) We have =1, and thus =

Q)= kwy < 1 . (We may obtain any desired > 0, for example =1, by

adjusting the rst few wy.)

We consider the casen = n + O(1); thus m=n! = . (This includes
the tree casem = n 1 in the case = 1. Actually, it suces to assume
m=n+on¥))Then =1= ,and = w.

The random variable thus satsesE = = .Notethat 2:=Var =1.
(This is the main reason for taking 1< < 2;if we take > 2,then 2< 1
and Theorem 19.7 applies.) Furthermore,

X
P( >k)= w c¢ 'k : (19.79)
I=k

As in the proof of Theorem 18.14 there exists by B9, Section XVII.5] a stable
random variable X (satisfying (19.93 and (19.113) such that

X (19.80)

moreover, by |6, x 50], the local limit law (18.22 holds uniformly for all integers
*. Note that the density function g is bounded and uniformly continuous onR,
and that g(0) > 0 by (18.29. (In fact, g(x) > 0 for all x. See also39, Section
XVII.6] for an explicit formula for g as a power seriesX s, after rescaling,
the extreme case =2 , in the notation there.)

By (19.14 and (18.22,

L WP(Sh 1=m k) g ken' )+ o(1)
PM=R= " =m "™ @+
_ (19.81)
_g( k=n® )+ o)
9(0) ’

uniformly in k > 0.
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For a non-negative functionf on [0;1 ), de ne

X-] o
XI= f(Y=n¥): (19.82)
i=1
In particular, if f is the indicator 1fa 6 x 6 bg of an interval [a;b], we write
X &P and have in the notation of (19.7)

X3P = jfi 6 n:an'™ 6 Yi 6 bn'™ gj= Niayi= ppi- | (19.83)

Suppose thatf is either the indicator of a compact interval [a;b  (0;1 ),
or a continuous function with compact support in (0;1 ) (or, more generally,
any Riemann integrable function with support in a compact interval in (0;1 )).
Then, using (19.8]) and dominated convergence,

3 1=
f(k:n1: )P(Y1=k)=n f(k:nlz )W 9( k=n' )+ o(1)

EXf=n
o 50)
1 1= ~—pl=
— r]l+l = f (bXn 1= C:nl: )ben - cg( b xn c=n )+ 0(1) dX
7 0 g(0)
! 9 x) 4
! f(x)ex ! X:
o (x) 9(0) (19.84)

In the special case wherf (x) = 1fa6 x 6 bgwith 0 <a<b< 1, we further
similarly obtain,

X
EXFPXF® 1)=n(n 1) f(k=n'")f(j=n"" )P(Y1=k; Y2 =)

k;j >0
X _ - P(Sh 2=m k|
_ _pnl= T n 2 J)
=n(n 1) y >Of (k=n"" )f (j=n"" )wicw PG, = m)
z,2, (x y)
12 foofyx  ty 10X Y ggy
0_ 0 9(0)
202 g x )
=c? X . 12~ T dxd
aa 7 9(0) g
and, more generally, for any™ > 1,
Zy, Z bY
E(X&0)- 1 ¢ 19X X) gk, dx:  (19.85
Cae L 50) : (9.8

For each such interval ; 1, this integral is bounded by CR for all * > 1, for
someC and R (depending ona and b), and it follows by the method of moments

that X0 19 X &b where X &b is determined by its factorial moments
Z, ¢ bY

aby, — ~ 19( X1 X‘) .
] N . . 19-86
E(XX?P) =c . . X; ® dx; dx ( )
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(It follows that X &P has a nite moment generating function, so the method of
moment applies.) Furthermore, joint convergence for several irgrvals holds by
the same argument. It follows also (by some modi cations or by appoximation

with step functions; we omit the details) that X 1 X1 for every continuous
f > 0 with compact support and someX ! .

Let , be the multiset fY;=n'= :Y; > 0g, regarded pa point process on
(0;1). (l.e., formally we let , be the discrete measure ;. ., vy =ni- . See

e.g. Kallenberg B8] or [69] for details on point processes, odanson[57, x 4] for

a brief summary.) The convergencex ¢ X1 for every continuousf > 0 with
compact support in (0;1 ) implies, see 8, Lemma 5.1] or B9, Lemma 16.15
and Theorem 16.16], that , converges in distribution, as a point process on
(0;1 ), to some point process on (0;1 ). The distribution of is determined
by (19.89, where X is the number of points of in [a;b. By (19.86 or
(19.849, the intensity measure is given by

E = cg0) x lg( x)dx: (19.87)

We can also @pnsider in nite intervals. Let a > 0. Then, using again (9.19
and noting that i: 1 P(Sh 1=m k)=1,

X X P(S, 1= m k)
EX&! =n P(Yp=a)=n wy —— L
’ k>an1= ( ' k>an1= ‘ P(Sn - m)
- = P(S 1=m k)
1= 1 k>an?! n
6 nCyi(an™™ ) PG, = m) (19.88)

1

6Ca " T T o)

6 Chba L

By Fatou's lemma, (19.89 implies EX&! 6 C,a 1< 1 .HenceX®! <1
a.s. for everya > 0, and we may order the points in in decreasing order as

f jgj]:l with 1> ,> 1 (19.89)

(Here J = X% 6 1 is the random number of points in . We shall see that
J=1 as)

The bound (19.88 is uniform in n, and tends to 0 asa!1 . It follows, see
[57, Lemma 4.1], that if we regard , and as point processes on [Q1 ], the

convergence p 1% on (0 ;1) implies the stronger result

1Y on[0:1]: (19.90)
The points in ,, ordered in decreasing order, aré((;y=n*= > Y3 =n’= > :::.
If we extend (19.89 by de ning ; :=0whenj>J , the convergence {9.90 of
point processes on [01 ] is by [57, Lemma 4.4] equivalent to joint convergence
of the ranked points, i.e.

Yi=nt™ 1% > 1 Gointly) : (19.91)
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We claim that each ; > 0 a.s., and thusJ = X! = 1 a.s. Suppose the op-
posite:P( j =0)= > 0forsomej. Then, for every"” > 0, liminf P(Y(,-)=n1= <
")> P(; <")> ,and it follows that there exists a sequence, ! 0 such that
P(Yj)=n*= <",)> =2forall n. We may assume that',n*= 11 .LetA> 0

and take (for largen) a, := ", and b, := ", ¢ A ¥ . Then an;b,! O.
For k 6 byn¥= = o(n¥ ), (18.22 implies P(S, 1 = m Kk)=P(S, = m)! 1,
and the argument in (19.84{( 19.89 yields, for each™ > 1,

0 1-
_ by~ Zy, e
E X2 @n wi A c x  ldx
. N (19.92)
= C 1 a, t% ‘ = A

Hence, X 3n ibn 1 Po(A); in particular,
=26 P(Y;)=n'" <",)6 P(X2 ™ <j)! P(Po(A)<j):

Taking A large enough, we can mak®(Po(A) <j ) < = 2, a contradiction which
proves our claim.

We have shown that (19.91 holds with ; > 0. Furthermore, since the in-
tensity (19.87) is absolutely continuous, each ; has an absolutely continuous
distribution. Hence Yy, and everyY/;), is of the ordern = , with a continuous

limit distribution ; (and thus no strict concentration at some constant times
1=

n ).
Note that if we consider i.i.d. variables 1;:::; , then f ;=n' : ; > Og

converges (as is easily veried) to a Poisson process on;[D] with intensity
cx  ldx. This intensity diers from the intensity of in ( 19.87, and, since
g( x)! Oasx ! 1 ,itis easy to see that ;)=n'" and Y =n'" have
di erent limit distributions. Thus, Theorem 19.7 does not hold in this case.
(However, Y(;) and ;) are of the same ordemn =) Note also that, as an easy
consequence of 19.86, the limiting point process in this example is not a
Poisson process.

Remark 19.28. The distribution of the limiting point process in Exam-
ple 19.27is in principle determined by (19.86 and its extension to joint conver-
gence for severaX 2P| This can be made more explicit as follows. (See Luczak
and Pittel [ 83] for similar calculations.)

It follows from Feller [39, Section XVIL.5], see e.g. §3] for detailed calcula-
tions, that X has the characteristic function

"(M)=exp c( ) it) ; t2 R: (19.93)

(Note that ( ) > 0and Re(it) < Ofort 6 0sincel< < 2)The
inversion formula gives

Z, _ 1 Z, _ _

e M (dt= o~ el U g (19.94)

600 = o 1

1
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and (19.86 yields
1 %o Zoy iy
c X et (t)ydtdxy  dx
29(0) a a j:1 ! 1 j=l 19 95
T (19.95)
= — c
29(0) 1 a
In particular, E(XP). = O(C) for someC < 1 (with C depending ona but
not on b). Hence, X & has probability generating function, convergent for all
complex z,

E(X{°) =

x e dx ' (t)dt:

X f;b

ab X ~
EZXY = E (z 1)

=0
Xz 1y .
T 290) 1 a
Zl Zb

exp (z 1c x e™®dx ' (t)dt
IO p ( ) ] (1)

We can here letb! 1 , so (19.96 holds for b= 1 too. In particular, taking
z =0, we obtain, using (19.9J), the limit distribution of Y, =n'~ as

P(16%) 3 P(X}* =0)
1 1

zZ, Z, \
x  é%dx ' (t)dt  (19.96)

=0

— 14itx '
= — exp ¢ X e dx ' (t)dt
2 g (0) le Zal
— 14tx i
= exp ¢ X e¥dx+c( ) it) dt
29(0) 1 a
z 1 z a 1
-t expc x te™ 1 tx dx a2 dt;
29(0) 0 1 '
(19.97)
where the last equality holds l%ecause
1
( Ju = x te"™ 1+ux du (19.98)

0
when Reu > 0 and 1< < 2.
Furthermore, by extending (19.86 to joint factorial moments for several (dis-
joint) inll_;ervals, it follows similarly, for step functions f , that the random variable
xf = j1:1 f( ;) satises

Zl Zl
Eefl = -~ exp ¢ e 1 x ™ dx ' (t)dt
2g(0)
z4 Al . g
= exp ¢ e 1 x e€¥dx+c( ) it) dt
2g(0)
zY 2, .
— X)+ tx H .
=230 . exp ¢ , X e 1 itx dx dt

(19.99)



218 S. Janson

By taking limits, ( 19.99 extends to, e.g., any bounded measurablé with com-

pact supportin (0;1 ]. SinceE eX1 = EeXI fors2 R, this formula determines
(in principle) the distribution of each X| and thus of .

Example 19.29. Let (wg) be as in Example19.27but with =2, i.e., wy
ck 2ask!1 , for somec > 0. (Example 12.g)with = 3.) We still have
(19.79; further, =1, andthus = (1) = kwg < 1. (We may again
obtain any desired > 0, for example =1, by adjusting the rst few w.)

As in Example 19.27. we consider the casen = n + O(1), including the tree
casem =n 1when =1.Thus, again, m=n! =, =1= |, = W,
and the random variable satisesE = = ,while ?:=Var =1.

As in the proof of Theorem 18.14 we have the central limit theorem (18.25,
and the local limit law (18.26 holds Hniformly for all integers .

ChooseB (n) := n**2loglogn = o( nlogn). Then, by (18.26,

Z(m:n)= P(S, = my= N+ o) (19.100)

nlogn

and, uniformly for all k 6 B(n),

Zm kn 1)= PGS, 1=m k= N+, (19.101)

nlogn

Hence, by (19.19, (19.22 holds. Furthermore, (18.29 yields also, sinceg(0) =
maxy2 r 9(X),

. _ _ g(0) + o(1) .
Zm kn 1)=PS, 1=m k)6 %W (19.102)

uniformly for all k > 0; hence (9.14 implies that (19.17%{( 19.18 hold.
For our B(n) we have by (19.79

P( > B(n))= O(B(n) )= o(n ); (19.103)

s0 (19.19 holds, and thus (19.20 holds.
The proof of Theorem 19.7 now holds without further modi cations; hence
the conclusions of Theorem19.7 holds for this example, although 2 = 1 .

Note that in Example 19.27 although the asymptotic distributions of Yy
and (1) are dierent, they are still of the same order of magnitude. We do rot
know whether this is true in general. This question can be formulatedmore
precisely as follows.

Problem 19.30. Inthe case = , do Theorem 19.7(ii) { (iii) hold also when
2=17

In any case, we can ask about the possible rates of growth o, , for example
as follows, where we for de niteness consider the tree case = n 1 (and thus
=1).
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Problem 19.31. For which sequenced (n) does there exist a weight sequence
with =1 such that, withm=n 1, Y > ! (n) w.h.p.?

As remarked earlier, the answer is positive for (n) = nt *, for any " > 0,
as shown by Examplel19.27with < 1=1 ").

19.6. The case >

We turn to the case > . Then, as briey discussed in Section1l, the
g,s¥mptotic formula for the numbers Ny in Theorem 11.4 accounts only for

k=0 K kN = n = n balls, so there arem n ( )n balls miss-
ing. A more careful treatment of the limits show that the explanation is that
Theorem 11.4 really implies g1at the \small" boxes (i.e., those with rather few
balls) have a total of about &:O k kn= n = n balls, while the remaining

( )n balls are in a few \large" boxes. One way to express this precisely is
the following simple result.

Lemma 19.32. Letw = (wg)k>o be a weight sequence withg > Oand! =1 .
Suppose thain!'1  and m = m(n) with m=n! where < < 1.

(i) For any sequenceK,!1

X X
kKN > n + op(n) and kNk 6 ( )n+ op(n):

k6 K k>K

(i) There exists a sequence , ! 1  such that for any sequenceK,, ! 1

with K, 6 ,, we have
X X
KNk = n + op(n) and KNk =( yn+ op(n):
k6 K n k>K o

Proof. The two statements in each part are equivalent, since

X
kKN = m= n + o(n): (19.104)
k=0
(i): For every xed °, Theorem 11.4implies

1 X 0 X
— KNy ! K k: (19.105)
n k6 " ké "

P P
Let "> 0. Since &:0 k k= < 1, thereexists’ suchthat 4 -k > \
and (19.105 implies that w.h.p.
X
PR
Nye
P
Since" is arbitrary, this ipplies K6 1Py kKNi > n + o,(n).
1

@i): For each xed °, 5.k k< ok k=, andthus (19.109 implies
P( - kNk> n)! 0. Hence, there exists an increasing sequence of integers
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P
n- such that if n > n-, thqg P s kNyk>n < 1=". Nowdene , ="
forn- 6 n<n-y.Then o kNx 6 n w.h.p, which together with (i)

yields (ii). O
Consider the \large" boxes. One obvious possibility is that there is a mgle
\giant" box with ( )n balls; more formally, ( )n + 0y(n) balls (a

\monopoly"). Applying Lemma 19.3%i) with K, = o(n), we see that for every
"> 0, w.h.p. there are then less than'n balls in all other boxes with more than

K, balls each; thus, eitherY 6 K, or Y <"n. Consequently, this case is
de ned by

Y =( )n+ 0p(n); (19.106)
Y(2) = op(n): (19107)
Equivalently, Yg)=n!” and Y =n!® 0. This thus describes condensa-

tion of the missing balls to a single box.

We will see in Theorem 19.34 that, indeed, this is the case for the impor-
tant example of weights with a power-law. Another, more extreme gample is
Example 10.8 wy = k!, where =0, see Example19.36

However, if (wy) is very irregular, (19.106{( 19.107 do not always hold. Ex-
amples 19.37and 19.38give examples where, at least for a subsequence, either
Yy =n'! P a> 0, so there are at least two giant boxes with ordem balls each

(an \oligopoly"), or Y()=n 1?0, so there is no giant box with ordern balls,
and the missing ( )n balls are distributed over a large number (necessarily
'1 asn!l ) of boxes, each with a large buto(n) number of balls.

Example 19.33. We consider Example12.1Q wy ck ask!1 .If 6 2,
then =1 ,see (2.46,andthus < and Theorems19.3and 19.7apply. We
are interested in the case > , so we assume > 2. In this case, Jonsson and
Stefinsson [67] showed (for the case of random trees) that when>  we have
the simple situation with condensation to a single giant box. We state his in the
next theorem, which also includes further, more precise, result§Note that the
case < is covered by Theoremsl9.3and 19.7, with Y(;, of order logn; the
case = s studied in Examples19.27and 19.29for 2< 6 3, and is covered
by Theorem 19.7when > 3;in both casesY(y is of ordern =C D = o(n).)

Theorem 19.34. Suppose thatwy ck ask!l for somec > 0 and

> 2. Then < 1. Suppose furtherm=n! > .Llet := 1> 1and
= c=(1) .
(i) The random allocation Bm:n = (Y1;:::;Yn) has largest components
Yy =( yn+ op(n); (19.108)
Y(z) = op(n): (19109)

(i) The partition function is asymptotically given by

Z(m;n) ¢ ) (@) "™ nt (19.110)
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(iif) Furthermore,

D4 1
d
Yy : Y@ i Yn) m i) (n o1 (19.111)

where ?1);:::; ?n y are then 1iid. random variables 1;:::; n 1,

with distribution ( ), ordered in decreasing order.
(V) Yoy =m n + Op(n*® ) and

1= d

n m n Yy ! X (19.112)

where X is an -stable random variable with Laplace transform

Ee X =exp ( )t ; Ret > O: (19.113)
(V) Y = Op(n'= ) and
N Yy ! W (19.114)
where W has the Fechet distribution
0

PW 6 x)=exp <x : x>0 (19.115)

(vi) More generally, for eachj > 2, Y;) = Op(n* ) and
n =yt ow; (19.116)

where W; has the density function

i 2

% 1L exp & x x> 0 (19.117)
G 2
andc® 1w, (j 11).
Note that ¢ = wyg=(1) and that ( ) > 0in (19.113.
Part (i) shows that Y ;:::;Y(,) asymptotically are as order statistics of

Remark 19.35. Jonsson and Stefnsson 7] considered only trees, and thus
m=n 1land =1, and then showed the tree versions of (i) and (ii). (They
further showed Theorem7.1 whenw, ck .) In the tree case (i) says that
the random tree T, has w.h.p. a node of largest degree (1 )n + o(n), while

all other nodes have degrees(n); further, by Theorem 15.5 (ii) becomes

Zn c ) @"*n @a ) @" tw: (19.118)

Proof of Theorem 19.34. We may assume thatwg > 0 by the argument in Re-
mark 11.8 Furthermore, using (11.9 for (ii), by dividing wg (and c) by (1),
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we may assume that (vy) is a probability weight sequence, and thus (1) = 1.
For > wehave = =1, and thus then | = w. )

(): ( t) hasradius of convergence =1, and since > 2, (1) = Wi < 1
and = q1)=(@1) <1.

tion ( k) =(wg) and mean =
Fix a small "> 0. We assume that" <

By the law of large numbers,S, 1=n! o= we may thus nd a sequence
n! OsuchthatjS, 1 n j6 n, w.h.p.
Sincem=n n! >" we havem n nn>"n for large n; we

consider only suchn.
We separate the eventS, = m into four disjoint cases (subevents):

E, : Exactlyone ; >"n,and that ; satsesj; (m n)j6 ,n.
E, : Exactly one ; >"n,andthat ; satisesj; (m n)j> pun.
E; : {>"n foratleasttwoi2f1;:::;ng.

E, :All {6 "n.

We shall show that E; is the dominating event. We de ne also the events

Ei :Sh=m,ji (M n)j6 n,nand ; 6 "'nforj 6 i.
Eli:Sn=m,ji (m n)j6 nn.
Ei :Sh=mji (Mm n)j>nn i>"n.
Dij Sy = m, i>"n,j>"n.
S
Then E; is the disjoint union in:l Eii, so by symmetry
P(E1) = nP(E): (19.119)

Furthermore, for any i,

[
BEi Ei Eal Dj;
jsi

and thus, again using symmetry,

P(E;;) > P(Ei1) > P(E;;) nP(D12): (19.120)
Using the fact that jk  (m n)j6 ,n implieswg ck c(n n) ,
together with jS, 1 n j6 ,n w.h.p., we obtain
X

jk (an)j6 nn
= P(1=KPS, 1=m k)
jk (an)j6 nn
= o( ) n 1+01) P(Sh 1=m k)
jk (m n)j6 nn
o( ) n PjSy 1 nj6 nn 1+0(1)
o( ) n 1+0():

(19.121)
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Similarly, allowing the constants C; here and below to depend or',

X
P(Ey;) = P(i=k;S,=m)

jk (m n)j> an;k>"n

6 Ci("n) P(S» 1= m k) (19.122)

jk (m n)j> nnjk>"n

6 C,n PjSy 1 nj> ,n =on
For any i and j, by symmetry,
P(Dij):F;én>"n; n 1>"N; Sy =m)
P(h=KPSy, 1=m k; n 1>"n)

e X (19.123)
6 C3("n) P(Sh 1=m ki n1>"n)
k>"n
6 Cs("n) P(n 1>"n)6 Cs("n)* 2 :
Hence, 19.120Q and (19.12) yield
P(E11) = ¢( ) n +on +0n??2 = ) n +on
and hence, by (9.119,
P(E1) = o )y nt +ont (19.124)
Furthermore, (19.129 yields
X
P(E) 6  P(E;)= nP(Ey;)=on' ; (19.125)
i=1
and (19.123 also yields
X
P(Es) 6 P(Dj) 6 n?P(Dyz)=0n®*? =ont (19.126)
i<j
It remains to egpmate P(E;). We de ne the truncated variables ; := ;1f ; 6
"ngand S, := _; i.Thus B f S, = mgand hence, for every reak,
n
P(E;)6 e S"EeS=¢e S Egot (19.127)
Let s:= alogn=n, for a constanta > 0 chosen later. Then,
EeSt =1+ sE ; + e 1 sk
k=1
s . (19.128)

3¢ X
6 1+s + Csg k s’k?+ Cs k ek
k=1 k=2 =s
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We have, treating the cases X < 3, =3and > 3separately, usings! 0,
%S
s?k? 6 Cgs’max 1;(2=s)® :log(2=s) = o(s):
k=1

Furthermore, for k > 2 =s,

k
k_& = 1+1 espex

S Ss=2 s _ s=2.
—(k+1) 0D K 6 e =e :

Hence, the nal sum in (19.129 is dominated by a geometric series

(b"n C) esb"n ce s(b'nc k)=2 6 Css 1n es"n = Css 1n ea" Iogn:
k6 b'nc

If we assumea" 6 2, the sum is thus6 Cgn® *2 6 Cgn ! = 0ofs).
Consequently, (19.129 yields

Ee'6 1+s +0(s)6 exps + 0os)

and thus (19.127% yields

P(E;) 6 exp sm+ns +o(ns) =exp ns( +0(1)) =n a o).
(19.129)
We choose rsta:= = )andthen" < ( 2)=a and see by (9.129 that

then P(E;)) = n *°@M = on! . Combining (19.129, (19.125, (19.12§ and
(19.129, we nd

P(Sh=m)= P(E))+ on' = ) nt +on' ;  (19.130)

and, in particular, P(E; j S, = m) ! 1. Consequently, by conditioning on
Sh = m we see that w.h.p.jY;y (m n)j6 ynandYy 6 "n. Since" can
be chosen arbitrarily small, this completes the proof of 19.108{( 19.109.

(ii): Z(m;n) = P(S, = m), so (19.11Q follows from (19.130, since we assume
1) =1.

(iii): Since By f S,

mgand P(E; jSp, = m)! 1,

d .
(Vi) = (15055 n)JSa=m (152 ) B (19.131)
When we consider the ordered variablesy(;y;:::; Yh), we may by symmetry
condition on Ej, instead of E;. Note that Ej, is the event (1;:::; n) 2 A,
where A is the set
n X 1 K 1 0
(Xg;:i5Xn)iX; 6 "nforj 6 n 1L,xy=m Xi; Xi n 6 ,n :
i=1 i=1
Since K1;:::;Xn) 2 A impliesjx, (m n)j 6 sn, we then have, similarly
to (19.121,

P(n=Xn) cx, c¢(m n) o( ) n
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P
Furthermore, Xi;:::;X, 1 determine x, by Txi = m. It follows that, uni-
formly for all (x1;:::;%n) 2 A,
P (10 n)=(X1i1115%n)
= 1+0(1) c( ) n P (1000 1)=(X100Xn 1)
= 1+0(1) c( ) n P (10 m Syo1)=(X1Xe)
Hence, since the factorc( ) n is a constant for eachn,
. d .
(1233 n) jEm (i n M Sy 1)j By (19.132)

(155 msm Sy 1)2A = ;6"forj6n 1, Sy 1 n 6 nn:

(19.133)
If €, holds, thenm S, 1> m n nn >"n (for large n), so the largest
variableamong 1;:::; 5 1;m Sy 1ism S, 1. Hence, ordering the variables,

Finally, observe that jS, ;1 nj6 ,n w.h.p.and
P j>"n forsomej6n 16nP(;>n)=0n*> 1 O

Hence,P(E,) ! 1, and thus

: d

(M S it 1) i m Sy o1 Qi oy o (19.135)
The result (19.11) follows from (19.134 and (19.135.

(iv): By (ii), m n Y ‘ i":ll i n ,and (19.119 follows by stan-

dard results on domains of attraction for stable distributions, seee.g. Feller [39,
Section XVIL5].

(v): By (iii), Yo ‘ ?1), and (19.1149 follows by standard results on the
maximum of i.i.d. random variables, as in e.g. Leadbetter, Lindgren andRootzn
[82: usingP( >x) ¢ x asx!1 ,we have

P(Yay 6 xn™™ )= P( Q) 6 xn*= )+ o(1) = P( 6 xn*™ )" *+ o(1)

=1 (c '+o@)xn¥) "1
1

+0o(1)

I exp ¢ X

(vi): Similar, cf. Leadbetter, Lindgren and Rootzn [ 82, Section 2.2]. O
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Example 19.36. If we take wy = k!, then = = 0. Consider the tree case
m = n 1. By Example 10.8 translating to balls-in-boxes, w.h.p. there areN;
boxes with 1 ball each and a single box with the remainingn 1 Nj balls,

while all other boxes are empty; furthermore, N 1 Po(1) soN; = Op(1).
Hence, Y = n+ Op(1) and Y 6 1 w.h.p.

If we take wy, = k! with0 < < 1,andstillm = n 1,then by Example10.9
and [64], Y3y = n+ Op(n' )= n+ 0y(n) and Yz 6 bl= cw.h.p.

If we take wy, = k! with > 1, and stil m=n 1, then by Example 10.9,
w.h.p. there is a single box containing alln 1 balls; thus Y33 = n 1 and
Y(z) =0 Whp

In particular, ( 19.106{( 19.107 hold, with =1 and = 0, for all three
cases. We guess that the same is true for any< 1 , but we have not checked
the details.

Example 19.37. We consider the tree casen = n 1. Let S:= fkp;ky;:::gbe

an in nite set with ko =0, ky =1, k> =2, and k; for j > 3 chosen recursively
as speci ed below. Letwy = (k+1) 4 for k 2 S, and wy = 0 otherwise; thus,

suppWw) = S. (S= Np gives Example10.7with =4.) Then =1 and

P
pico KW o K(k+1) 4 _
ﬁ:o Wi Wo

=)= 3) (4) < 0:2< 1; (19.136)
thus = =1.

To begin with, we require that k; > jk; 1 for j > 3. Taken = k;. A good
allocation of n 1 balls in n boxes has at mostk; 1 balls in any box, since
n 1<kj,so

Ya) 6 ki 16 kj=j = n=j: (19.137)
Hence, forn in the subsequencd k; g, the random allocation By 1, has Yy =
o(n
( Izlext suppose thatko;:::;kj 1 are given, and letw(ki 1) be w truncated
at kj 1 as in (13.4); for ea%ga of notation we denote the corresponding gener-
ating function by (t) := -0 wk,tk' and write (t) := t 0(t)— (t) and
Zj(m;n) := Z(m,n,w("J ). Note that (19.139 apphes to each ; too, and
thus
(1) < 02 (19.138)

Take n = 3k; (wherek; is not yet determined). A good allocation with n = 1
balls has at most 2 boxes withk; balls, and for the remaining boxes the weights
w and wi 1) coincide. We thus obtain

Z (3kj 1; 3kj ) = Zj (3kj 1; 3kj ) +3 kj Wy, Zj (2kj 1 3|(j 1)
3k
2

+ wg Zj(ki L3k 2): (19.139)
Let the three terms on the right-hand side beAg; A1; A2, where A; corresponds
to the case wheni boxes havek; balls. The generating function ; is a polyno-
mial, with radius of convergence ; = 1 and, by Lemma3.1, ; = ;(1)=
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twki )y =k ;> 2 Dene ; ®and ®by () =1, () =2=3,
i( 9=1=3.Since (1)< 1=3 by (19.139, we have 1< < 0< ;< 1.
Theorem 18.1 applies to each termA; in (19.139, with =1
tively; hence, ask; '1

logAo = 3kj log =1~ ‘( ) 4 o(k); (19.140)

logA; = 3k log ’ngoi + o(k; ); (19.141)
(%

logA; = 3k; log ’091 5+ olkj): (19.142)

By (11.1§ and > 1,

j j ( j() -
j ( 0) j ( 9 j ( jO() .
0)2 =3 092 =3 joglzs
Hence, the constant multiplying k; is larger in (19.143 than in (19.14Q and
(19.14), so by choosingk; large enough, we obtainA, > jA 1 and Az > jA o,
and thus

and

Az

P(Ba, 13 has 2 boxes withk; balls) = ———=——
0 1 2

> 1 Jg (19.143)

This constructs recursively the sequencek ) and thus Sand w, and (19.143
shows that for n in the subsequence (Bj)j, Bn 1,0 W.h.p. has 2 boxes withn=3
balls each.

By Lemma 17.1, it follows that, for this subsequence, T, w.h.p. has 2 nodes
with outdegreesn=3.

To summarise, we have found a weight sequence with ® < 1 such that,
with m=n 1, for one subsequence

Yy=n! 0 (19.144)

and for another subsequence w.h.p.

Y(]_) = Y(z) = n=3: (19145)
Hence, neither (19.106 nor (19.107 holds. (It is easy to modify the construction
such that for every © > 1, there is a subsequence withy(;y = = Yo =
n=C" +1).)

Example 19.38. Let S:= fOg[f 2 :i > 0g. We will construct a weight
sequencew recursively with support supp(w) = Sand =0. Let wy = 1.
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Leti > 0. If wo;:::;woi 1 are xed and we let wy !'1 , then for every m
with 2' 6 m < 2'*1 and everyn,

P(Bmn contains a box with 2 balls) ! 1: (19.146)

Hence, we can recursively choose, so large that, for everyi > 0, if 216 m<
2*1 and 2 6 n 6 2%, then, by (11.3,

P(Bmn contains a box with 2 balls) > 1 i *: (19.147)

We further take w, > (2')!;thus =0and =0. _ _
Consider thetreecasem=n 1.Thus =1.1f2'<n 6 '2'+l , then (19.147
applies and shows thatB, 1., w.h.p. contains a box with 2' balls, so w.h.p.

Y(l) — 2b|ng(n e — 2d|ng ne l: (19148)

Hence, Y(1y =n w.h.p. is a (non-random) value that oscillates between% and 1,
depending on the fractional partf log, ng of log, n. Consequently, (19.10§ holds
for subsequences such that & flog,ng! 0, but not in general.

Moreover, conditioned on the existence of a box with 2balls, the remainder
of the allocation is a random allocationB, ., ; of the remainingm 2' balls
inn 1 boxes. For example, in =2'*1  som =2'*"1 1, we havem 2' =2' 1,
and we can apply (19.147 again (with i 1) to see that w.h.p. Y, = Zi 1= n=4.
Continuing in the same way we see that fom in the subsequence (9, we have,
for each xed j, w.h.p.

Yiy=2 'n: (19.149)

Hence neither (L9.106 nor (19.107 holds in this case.

Similar results follow easily for other subsequences. For example,rfa in the
subseq‘uencelg(rzi Ci>1, where% <r< landr has the in nite binary expansion
r=2 '+2 2+, withl="1< ,<:::,wehavewhp.Y; =2 idn=re
for each xed j.

Example 19.39. Letagainm = n 1, so = 1. Taking wy = k! for k 2
supp(w) = fOg[f i!:i> Og, we obtain an example with =0 and thus =0
such that Y;y=n! 0 for some subsequences, for example far= i! (since then
Yo 6 (i 1.

Problem 19.40. Is Yy =n ! 0 possible when0 < <  ? Example 19.37
shows that this is possible for a subsequence, but we conjgetthat it is not

possible for the full sequence, and, a little stronger, thathere always is some
"> 0 and some subsequence along whidfy) > "n w.h.p.

Problem 19.41. Is Y =n 1’ 0 possible when > = 0? (Example 19.39
shows that this is possible for a subsequence.)

We expect that bad behaviour as in the examples above only can occdor
quite irregular weight sequences, but we have no general result gend Theo-
rem 19.34 We formulate two natural problems.
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Problem 19.42. Suppose thatwy, > wy.1 for all (large) k. Does this imply
that (19.109{(19.10% hold when > ?

Problem 19.43. Suppose thatwg+1 =W, !'1  ask!1 . (Hence, =0 and
=0.) Does this imply that (19.106§{(19.10% hold when > ?

19.7. Applications to random forests

We give some applications of the results above to the size of the largetree(s)
in di erent types of random forests witn n trees andm > n nodes. We consider

only the casem=n ! with 1 < < 1 ; for simplicity we further assume that
m = n + O(1), although this can be relaxed and, moreover, the general cas
m=n ! can be handled by using , := m=n and the corresponding , :=

( n) asin Theorem11.6 for details and for results in the caseam = n + o(n)
andm=n!1 | see Pavlov 94, 95, 96, 97], Kolchin [76], Luczak and Pittel [83],
Kazimirov and Pavlov [72] and Bernikovich and Pavlov [12].

The random forests considered here are described by balls-in-bes with
weight sequences withwg = 0 and w; > 0, see Sectionl2. As usual, we use
(without further comments) the argument in Remark 11.8to extend theorems
above to the casewy = 0. (See Remark19.21)

We rst consider random rooted forests as in Examplel2.6 We have

k< 1 3=2 4k
Wi = K p?k e’; ask!1l ; (19.150)

and thus wx+1 =W ! eask!1 . (Alternatively, we may use \& := e Kwy

(2 ) ¥k 372, see (12.30{( 12.3]) and Example 12.1Q) Since = 1 , see Ex-

amples12.6and 12.1Q < and Theorem19.19applies for any 2 (1;1).
We have a = e and thus, by (12.28,

q:= e= BN RE (0;1) (19.151)
and, consequently,
1 1
log(l=¢g = logg= log 1 - ->0 (19.152)

Ask!1l by (12.22, (12.279 and (19.150,

k 1=2 3=2 k.
<=5 Wi (2) gk ¥ (19.153)

It follows that ) = (1 =n) for

logn 2 loglogn

l0g(1=0 + O(1); (19.154)

k(n) =
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and then (19.69 yields

k(n) 3=2 p_|ogg_2(1:q)
n@ 9 2( 1@ o9
Consequently, Theorem19.14ii) yields the following theorem for the maximal
tree sizeY(y); this is due to Pavlov [94, 9] (in a slightly di erent formulation),
who also gives further results. We further use Theoreni9.1qi) to give a simple
estimate for the sizeY/;, of the j :th largest tree. (More precise limit results for
Y(j) are also easily obtained from {9.50.)

N npz_( nlog 32n: (19.155)

Theorem 19.44. For a random rooted forest, with m = n + O(1) where
1< < 1,
¢ logn 2loglogn +log b+ W

Ya) log(1=0) ; (19.156)
where W has the Gumbel distribution (19.63 and
3=2/9 —
b= pod (1=9 (19.157)
2( 1@ o9
with g given by (19.152{(19.153.
Furthermore, Yy = Y1) + Op(1) for each xed j. O

Next, let us, more generally, consider a random simply generated fest as in
Example 12.8 de ned by a weight sequencewv. Then the tree sizes in the random
forest are distributed as balls-in-boxes with the weight sequenceZy)i_, , where
Z\ is the partition function ( 2.5) for simply generated trees with weight sequence
w (and Zg = 0).

We assume that (w) > 1; thus there exists ; > 0 such that ( 1) =1, and
then w® := ( kwy=( 1))« is an equivalent probability weight sequence with
expectation 1, see Lemmat.2. ( ; is the same as in Theorem 7.1, but here we
need to consider several di erent 's so we modify the notation.) This probability
weight sequencev®de nes the same random forest, which thus can be realized as
a conditioned critical Galton{Watson forest. Recall from (4.10 and Theorem7.1
that the probability distribution w9 has variance 2 = | 9 1); we assume
that 2 is nite, which always holds if (w) > 1 and thus ; < (w). We
further assume, for simplicity, that w has span 1. We then have the following
generalization of Theorem19.44 see Pavlov §5, 96|, where also further results
are given.

Theorem 19.45. Consider a simply generated random forest de ned by a

weight sequenceav, and assume thatm = n + O(1) wherel< < 1 . Suppose

that (w) > landspanw)=1.Dene ;> 0by ( 1)=1, and assume that
2:= 1 9 1)< 1 (thisis automatic if (w) > 1). De ne further > 0 by

(2)=1 1= (19.158)
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and let
qi= —2 (), (19.159)
(2 1
Then0<q< 1and
¢ logn 2loglogn +log b+ W
Y log(1=0) (19.160)
where W has the Gumbel distribution (19.63 and
3=2/9—
b= _plog” (179 . (19.161)
2 2 %1 9
Furthermore, Yy = Y1) + Op(1) for each xed j.

Proof. Replacew by the equivalent probability weight sequencew = (&) with
Wk = Xwe=( ). This probability weight sequence has expectation ( ,) < 1
by (4.9), and using it we realize the random forest as a conditioned subcritial
Galton{Watson forest. The partition function 2y for w is by (4.3) and Theo-
rem 18.11
k 1 1 k 1 (
_ 2 n 2
o ( z)ka T2 2 ( ok X

) s
—k ¥ (19.162)

Moreover, by (2.6), () is the distribution of the size of a Galton{Watson pro-
cess with o spring distribution w. Since this o spring distribution is subcritical
with expectation ( ) < 1, the size distribution (Z¢) has nite mean

1
kB = ——— = 19.163
KB (19.163)

by our choice of ».

The sizes of the trees in the random forest are distributed as ballg-boxes
with the weight sequence &), see Example12.8 We apply Theorem 19.19
translating wy to Z. By (19.162,

Ba=B! a= 2 LD g0 (19.164)
(2 1
Note further that (with this weight sequence (Z¢)) in Theorem 19.19is chosen
such that the equivalent probability weight sequence *2,=2( ) has expec-
tation . We have already constructed &) such that it is a probability weight
sequence with this expectation, seel9.163; hence we have =1 and q = a,
which yields (19.159.
As in (19154, k(n) = Ek(n) = (1 :n) for

logn 2 loglogn
log(1=0)

k(n) = + O(1): (19.165)
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and then (19.69 vyields, by (19.163,

3=2 1 _
N p—k(n) 3=2 —Mnlog ¥2n: (19.166)

2(1 0 2 2 21 9
The result (19.16Q now follows from Theorem19.19ii). Finally, again, Theorem
19.1€i) gives the estimate for Y;,. O

Example 19.46. Consider a random ordered rooted forest. This is obtained
by the weight sequencewy = 1, see Example 12.8 and we have by (0.1){
(102 (t)=1=1 t)and (t)=t=(1 t). Hence, ;1 =1=2and 2 =2 (see
Example 10.1); furthermore, (19.159 is ,=(1 ) =1 1=, which has the
solution

Consequently, Theorem19.45 says that (19.16Q holds, with the parameters q
and b given by, see (9.159 and (19.161),

21 2)
1T 1)

4aC D, 1 (19.168)

B R R VI RV

q:

and
3

b= Z§;2_(71)1)|093=2(1:a): (19.169)
Example 19.47. The random rooted unlabelled forest in Example12.11 is
described by a weight sequence that also satis es, ¢k 32 Kask!1
and we thus again obtain (19.160Q, although the parameters g and b now are
implicitly de ned using the generating function of the number of unlabelled
rooted trees, see Paviovg7].

Example 19.48. For the random recursive forest in Example12.13 we have
wg = k 1 k> 1: (19.170)

Thus Theorem 19.19applies with a=1 and q= 2 (0; 1) given by

q
. - = 19.171
@ ailogd (19470
see (12.59. (Recall that = 1, so we can take any > 1 here.) In this case,
see (12.59, km) = k(n) gM=log(l qg)j= (1 =n) for
_ logn loglogn ]
k(n) = l0g(1=9 + O(1); (19.172)
cf. (19.159, and then (19.69 yields
N log(1=9 nlog !n: (19.173)

(1 qijlog(l a)j
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Consequently, Theorem19.19ii) yields
d logn loglogn+log b+ W

Ya) log(1=0) : (19.174)
where W has the Gumbel distribution (19.63 and, using (19.17),
log(1=0) log(1=0)
b:= : - = : 19.175
@ ailog® @ g (19-179)

We thus obtain a result similar to the cases above, but with a di erent coe cient
for loglogn in (19.174. See Pavlov and Losevad8] for further results.

If we consider the random unrooted forest in Examplel2.7, we nd di erent
results. In this case, the tree sizes are described by balls-in-bosavith the weight
sequencew, = k¥ 2=kl, k > 1 (and wy = 0). Alternatively, we can use the
probability weight sequence (2.40

p 2kk Ze k.

W = 2wke < = T (19.176)

which by Stirling's formula satis es (12.4])

2 -
&) p7k 5=2. ask!1l : (19.177)
Since we now have =2 < 1, see Examplesl2.7 and 12.1Q there is a
phase transition at = 2. We show in the theorem below that for < 2

we have a result similar to Theorems19.44and 19.45with maximal tree size
Y1) = Op(logn), but for > 2 there is a unique giant tree with size of order
n. At the phase transition, with m=n! 2, the result depends on the rate of
convergence ofm=n; if, for example, m = 2n exactly, the maximal size is of
order n?73; see further Luczak and Pittel [83], where precise results for general
m = m(n) are given. (By the proof below, (iii) in the following theorem holds
as soonasm=n! > 2, but (i) and (ii) are more sensitive.)

Theorem 19.49. Consider a random unrooted forest, and assume tham =
n + O(1) wherel< < 1.

@ If1l< < 2 let
q::2—1e2= 1 (19.178)
Then 0<qg< 1and

¢ logn 2loglogn +log b+ W

Ya) l0g(1=0) ; (19.179)
where W has the Gumbel distribution (19.63 and
2 [65=2(1 =
b= p_0d (=9 (19.180)

22( 1A 9
Furthermore, Y(jy = Y1) + Op(1) for each xed j.
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(i) If =2, then
Y= (19.181)
for eachj, where j > 0 are some random variables. The distribution of
1 is given by (19.97) with =3=2andc= (2= ).
@iy f 2< < 1 ,thenYy =(  2)n+ Op(n?=3). More precisely,

d

n*m 2n Yy !° X (19.182)

where X is a %—stable random variable with Laplace transform

5=2
Ee X =exp %ts:z : Ret > 0 (19.183)

For j > 2, Yj) = Op(n¥3), and n #3Yj;, 1 W; where W, has the
Fechet distribution

322
P(W, 6 X) = exp —p—x s=2 . x> 0 (19.184)

and, more generally, W; has the density function (19.113 with c® =
(2= )2 and =3=2
Note that the exponents 3, 1 and 3 in (19.150, (19.17Q and (19.177 appear
as coe cients of loglogn in (19.150, (19.179 and (19.179, respectively.

Proof. (i): This is very similar to the proofs of Theorems 19.44and 19.45 We
usewy = k¥ 2=kl. Then, as for rooted forests and 19.15Q above, Wi+ =w ! e
ask!1l . Further, isgiven by (12.38, and thus q:= e is given by (19.178.
It follows, cf. (19.159 and (19.177, that () = (1 =n) for

logn 2 loglogn

k(n) = o=g O (19.185)
and then (19.69 yields
NWy(nye ™ ~ § 5=2
N ()T o "P7 a9 k(m (19.186)
N _2|095=2(1=0) nlog 52n:

22( 11 9

Hence Theorem19.19ii) yields (19.179.

(ii): We use the equivalent probability weight sequence @) given by (19.176.
By (19.177, it satis es the assumptions in Example 19.27with = 3=2 and
¢ = (2= )¥?; thus (19.18) follows from (19.91), and (19.97 in Remark 19.28
applies.

(ii): We use again the probability weight sequence @) and apply Theo-
rem 19.34 We havec® = ¢ = (2= )1 =2 by (19.176, and thus °( 3=2) =
¢’ (1 =2)=252=Bandc= =2% 2—(3 7). O
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Example 19.50. The random unrooted unlabelled forest (with labelled trees)
in Example 12.11is described by another weight sequence that satis esvy

ck 52 Kask!1 ,and we thus obtain a result similar to Theorem19.49 al-
though the parameters di er (they can be obtained from the geneating function

of the number of unlabelled trees); in particular, the phase transiton appears
when is 2:0513, see Bernikovich and Pavlov1?] for details.

We do not know any corresponding results for random completely ukabelled
forests (n unlabelled trees consisting ofm unlabelled nodes); as said in Exam-
ple 12.11 they cannot be described by balls-in-boxes.

20. Large nodes in simply generated trees with < 1

In the tree case with < 1, the results in Section19.6 show condensation in the
form of one or, sometimes, several nodes with very large degregegether making
up the \missing mass" of about (1  )n. On the other hand, Theorem7.1 shows
concentration in a somewhat di erent form, with a limit tree having exactly
one node of in nite degree. This node corresponds to a node with vg large
degree inT, for n large but nite. How large is the degree? Why do we only see
one node with very large degree in TheorenY.1, but sometimes several nodes
with large degrees above (Exampled49.37and 19.38?

The latter question is easily answered: recall that the convergerein Theo-
rem 7.1 means convergence of the truncated trees (\left balls")TrEm], see Lemma
6.3, thus we only see a small part of the tree close to the root, and théwo pic-
tures above are reconciled: ifm is large but xed, then in the set V(T)\ VvIm!
of nodes, there is with probability close to 1 exactly one node with vey large
degree. (There may be several nodes with very large degree in thieee, but for
any xed m, w.h.p. at most one of them is in VI™) Of course, to make this
precise, we would have to de ne \very large”, for example as below sing a se-
quence , growing slowly to 1 as in Lemma19.32 but we are at the moment
satis ed with an intuitive description.

To see how large the \very large" degree is, let us rst look at the root.
Lemma 15.7 says that the distribution of the root degree is the size-biased
distribution of Y;. We can write (15.7) as

d X d X
P(d’{n (0= d)= — P(Y; = d) = — P(Y(j) = d); (20.1)
i=1 j=1

and then take Y1) with probability Yqs)=(n 1), Yo with probability Yy =(n
1), ....
In particular, if Y3y =(1 )n + 0p(n), then (20.1) implies
P(d$n (0=Yy)=1 + 0(1); (20.2)

and comparing with Theorem 7.10 we see that w.h.p. either the root degree is
small (more precisely,0, (1)), or it is the maximum outdegree Y(;) . However, we
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also see that ifY(y) isnot (1 )n+ o,(n), then this conclusion does not hold; for
example, in Example 19.38for n in the subsequence (9 where (19.149 holds
for each xedj, _ _
P(d’{n (0)=2 In)! 2 1: (20.3)

In the case = 0, we only have to consider the root, since the node with
in nite degree in P always is the root, but for 0< < 1, the node with in nite
degree inP may be somewhere else. We shall see that it corresponds to a node
in T, with a large degree having (asymptotically) the same distribution as he
root degree just considered, conditioned to be \large".

To make this precise, let , ! 1 be a xed sequence which increases so
slowly that Lemma 19.3Zii) holds. We say that an outdegreed” (v) is large if
it is greater than ; we then also say that the nodev is large. (Note that by
Lemma 19.37ii), w.h.p. at least one large node exists.) For eachn, let B, by
a random variable whose distribution is the size-biased distribution ofa large
outdegree, i.e. of Y1 j Y1 > )

kP(Yp=k) _ o KEN,  _ KENe
> IP(Yi=1) L TEN, (1 +o)n’

P(B,=k)= P (20.4)
for k> , and P(B, = k) = 0 otherwise. Equivalently, in view of Lemma 15.7,
B, has the distribution of the root degreed’{n (o) conditioned to be greater than

n. See also 20.1), and note that if Y4y = (1 )n + op(n), then B, ‘ Y1),
i.e., we may take B, = Y, w.h.p; in this case (but not otherwise) we thus
have B, = (1 )n + op(n).

Note thatif 2 is another such sequenge, similarly de ning a random variable
B9, then JAP(ye=1) (2 )n 0 I P(Y1 = I), and it follows that

> >

B, d B2; hence the choice of , will not matter below.

We claim that, w.h.p., the in nite outdegree in b corresponds to an outdegree
B, in T,. To formalise this, recall from Section6 that we may consider our trees
as subtrees of the in nite tree U; with node setV; , and that the convergence
of trees de ned there means convergence of eacf (v), see 6.6). Let P be the

random in nite tree de ned in Section 5; we are in case (2), and thus P has
a single nodev with outdegree d% (v) = 1. We assume thatB, and P are
independent, and de ne the modi ed degree sequence

dp () dyv) <1

@-L(V) = |§n; d%(v): 1

(20.5)

We thus change the single in nite value to the nite B, leaving all other values
unchanged. (Note that@fp(v) may depend onn, since8, does.) We then have
the following theorem.

Theorem 20.1. For any nite set of nodes vy;:::;v- 2 Vy

dr (va);:izidr (v) ‘ @fp(vl);:::;d?;(v«): (20.6)
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Proof. Let "> 0, and letv denote the unique node inP with dfp (v)=1.By

for somem, and that m is so large thatP(v 2 VIM™) > 1 ", We may then
nd K< 1 such that

P dy (v) 2 (K; 1) for somev 2 V™ <™

SinceT, ! ¢ b by Theorem 7.1, we may by the Skorohod coupling theorem 9,
Theorem 4.30] assume that the random trees are coupled such thd, ! bas.,
and thus dﬁ (V) ! dfp (v) a.s. for everyv. Then, for large n, with probability

>1 3, v 2VIM di(v)= dy(v) = & (v) 6 K forall v 2 vimlnfy g,
and dy (v ) ! dj‘; (v)=1.We may assume that , ! 1  so slowly that

furthermore P(d$n (v)6 )6 ". (Recall that we may change , without
a ecting the result ( 20.6).)

Let n be so large thatalso , >m and , >K . It follows from Lemma 15.9
that for each choice ofv®2 VI™ and numbersd(v) for v 2 VIMIny® andk > ,

P di (v)= d(v)for v2 VIMnfvqanddi (v)= k
= k+ O(1) C(fd(v)g;v®%n) P(Y: = k)
for some constantC(f d(v)g; v®% n) > 0 not depending onk; hence, by 0.4,
Pd; (v)=kjdy (v)=d(v)forv2ViMnfviganddr (v9> ,
kP(Y1 = k)
e , KP(Y1= k)
There is only a nite number of choices ofv®and (d(V)) 2y tm1nf vog, and it follows
that we may choose the coupling ofl,, and P above such that alsod’{n (v)= B,

w.h.p.; thus, with probability > 1 4"+ o(1), dr (v) = &, (v) for all v 2 \VAURR
The result follows since" > 0 is arbitrary. O

= 1+0Q1) R = 1+0() P(B, = k):

We give some variations of this result, where we replacé’fP (v) by the degree

sequences of some random trees obtained by modifyinJe. (Note that GB; (v) is
not the degree sequence of a tree.)

First, let P, be the random tree obtained by pruning the tree P at the
nodev with in nite outdegree, keeping only the rst B, children of v . Then
'bln is a locally nite tree, and, in fact, it is a.s. nite. The random tree 'bln
can be constructed asP in Section 5, starting with a spine, and then adding
independent Galton{Watson trees to it, but now the number of children of a
node in the spine is given by a nite random variable ,, with the distribution

P(n=k) = PP=k+Pb=1)PB, =k =k +(L )P, = k): (20.7)
The nodes not in the spine (the normal nodes) have o spring distritution ( )

as before. (This holds also for the following modi cations.)

The spine in b stops when we obtain®= 1 , but we may also de ne another
random tree B, by continuing the spine to in nity; this de nes a random in nite
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but locally nite tree having an in nite spine; each node in the spine has a
number of children with the distribution in ( 20.7), and the spine continues
with a uniformly randomly chosen child. Equivalently, 1, can be de ned by
a Galton{Watson process with normal and special nodes as in Sectin5, but
with the o spring distribution for special nodes changed from (5.2) to (20.7).
Finally, let *?’n by a random variable with the size-biased distribution of Y;:

KP(Y: = k) _ KEN

P == S e T 1

(20.8)

P
recalling that | kNy = n 1; cf. (20.1) and (20.4). (Thus 9, 4 d;n (o) by
Lemma 15.7 and (20.1).) De ne the in nite, locally nite random tree h, by
the same Galton{Watson process again, but now with o spring distribution 9,
for special nodes. (This does not involvéS,, or ,.) Thus 'bgn also has an in nite
spine.
We then have the following version of Theorem20.1, where we also use the

metric 1 on Ty de ned by

1(T1;T2) == 1=sup m > 1:dy (v) = df (v) for v2 VI™ (20.9)
Theorem 20.2. For j =1;2;3, and any nite set of nodesvy;:::;v- 2 Vi ,
+ + d
dr, (va);:in;dg (v) @%n (vl);:::;dé‘*jjn (v) : (20.10)

Equivalently, there is a coupling of T, and T}n such that 1(Tn;'b,n) I 0as
n'ti

Proof. If , >m we haveB, > m and then the branches ofP pruned to make
P, are all outside VI™!, and thus d© = &; de ned in (20.5 for all v 2 V™l

1in

Thus the result for bln follows from Theorem 20.1

Next, for any given m, and for any endpoint x of the spine of P, the prob-
ability that the continuation in 'bZn of the spine contains some node ivI™! is
less thanm= |, = o(1); thus, w.h.p. 'bln and 'bZn are equal on anyV[mI,

Finally, Lemma 20.3below implies that we can couple‘i‘jzn and -bgn such that
they w.h.p. agree on eachV(™): then ., and Py, are w.h.p. equal on each
vIml, |

Lemma 20.3. , ° ¥,
Proof. For each xed k, P( , = k) = k ¢ as soon as , >k, and P(*?n = k)!
k k by (20.8 and Theorem 11.7. Hence,
iP(n=k P® =kj! o (20.11)
By (20.7), (20.4) and (20.8), uniformly for k> ,,

kP(Y; = k)

T v ol k «+ 1+o0(1) P(%, = k);

Phn=k=k+@ )
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hence

X X
iP(n=k PP =kj6 k +01)P(P, = k) = k k+0o(1):

k> 4 k> 4 k> 4
(20.12)
Further, for any xed K,
Xn X X
P(n=k PP.=k),66 P(n=k)= k . (20.13)
k=K +1 k=K +1 k=K +1

Using Lemma 19.5(vii) together with (20.11) for k 6 K, (20.12 and (20.13 we
obtain

% %
dv(mi¥)= P(an=k PP =k ,6 k «+0(l): (20.14)
k=1 k=K +1

P
SinceK is arbitrary and i k « <1, itfollows that dry ( n;‘?n) I 0. O

21. Further results and problems
21.1. Level widths

Let, as in Remark 5.6, I (T) denote the number of nodes with distancek to the
root in a rooted tree T.

If > 1, then P is a locally nite tree so all level widths I, (P) are nite.
It follows easily from the characterisation of convergence in Lemmd.2 that, in
this case, the functional | is continuous at 'b, and thus Theorem 7.1 implies
(seeBillingsley [15, Corollary 1, p. 31])

h(T) ' (P <1 (21.1)

for eachk > 0.

On the other hand, if < 1, then P has a node with in nite outdegree; this
node has a random distance. 1 to the root, where L as in Section5 is the
length of the spine, and thusl_ ('b) =1.

Inthe case 0< < 1,wehave o< landP( > 1)=1 o> 0, so for
any j, there is a positive probability that the Galton{Watson tree T has height
at least j, and it follows that of the in nitely many copies of T that start in
generation L, a.s. in nitely many will survive at least until generation L + j.
Consequently, a.s.,lk('b) = 1 for all k > L, while Ik('b) <1 fork<L.lIt
follows easily from Lemma6.3, that in this case too, for eachk > 0, the mapping
I : T! Np is continuous atP. Consequently,

(Ta) 1Y 1(P)6 1 ; k=0;1;:::; (21.2)

with P(Ik(JP) <1)=PL>k)= X (Recallthat = in this case by (7.2).)
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When =0, however, (21.2 does not always hold. By Example5.1, Pisan
in nite star, with Il('b) =1 and Ik('b) = 0 for all k > 2. By Theorem 7.1Q,
1(Ta) = d% (0) 1% P2 13(P), s0 (21.2 holds for k = 1 (and trivially for k = 0)
in the case =0 too (with Il('b) = 1 ). However, by Example 10.8 if wy = kI,
then 1,(Ty) ¢ Po(1), sol,(T,) does not converge toIZ(JP) = 0. Similarly, by
Example 10.9 if j > 2 andwy = k! with0 < < 1= 1), then the number
of paths of length j attached to the root in T, tends to 1 (in probability), so
(T 1Y, while ;(P) =0,

Turning to moments, we have for the expectation, by 6.8), Elk('b) =1
ifO< < 1or 2= 1;inthis case £1.1{(21.2 and Fatou's lemma yield
El(Tn)! El(P)=1.

If >1and 2< 1,then (5.7 yields Elk('b) =1+ k ?2< 1 .In this case,
for each xed k, the random variables|y(T,), n > 1, are uniformly integrable,
and thus (21.1) implies El(T,) ! Elk('b), seeJanson[59, Section 10]. (In the
case > 1, this was shown already by Meir and Moon 85].) Consequently, for
any w with > 0 and any xed k,

El(Th)! El(P)6 1: (21.3)

(When =0, this is not always true, by the examples above.)

For higher moments, there remains a small gap. Let > 1. When 0< < 1,
(21.3 trivially implies Elx(Ty)" ! EIk(JP)r = 1, so suppose > 1. Then,
by (5.2, ED = E ™1 soifE ' = 1, then Ely(P)" = 1 ; moreover, each
Ik(b), k > 1, stochastically dominatesb(consider the o spring of the k:th node
on the spine), and thusEIk(JP)r = 1 for every k > 1. Consequently, again
immediately by Fatou's lemma and (21.2), El(T»)" ! El(P) = 1. The
only interesting case is thus whenE "** < 1 . If r > 1 is an integer, it was
shown in B9, Theorem 1.13] that E " < 1 implies that El(T,)", n > 1,
are uniformly bounded for eachk > 1. We conjecture that, moreover,|«(T,)",
n > 1, are uniformly integrable, which by (21.1) would yield the following:

Conjecture 21.1. For every integerr > 1 and everyk > 1, if > 0, then
El(Ta)" ! El(P) 6 1: (21.4)

We further conjecture that this holds also for non-integerr > 0.

One thus has to consider the cas& " < 1 only, and the result from [59]
implies that (21.4 holds if E "*2 < 1, since thenE I, (T,)? ¢! are uniformly
bounded.

21.2. Asymptotic normality

In Theorem 7.11, we proved that N4, the number of nodes of outdegred in the
random tree T,, satis es Ng=n 1P d.
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Inourcasel ( > 1or =1and 2 < 1), Kolchin [76, Theorem 2.3.1]
gives the much stronger result that the random variable Ny is asymptotically
normal, for every d > 0:

Rope1 NG 3 (21.5)
with 4 1
2= 41 ¢ % : (21.6)

(In fact, Kolchin [ 76] gives a local limit theorem which is a stronger version of
(21.9)

Under the assumption ° < 1 , Janson[55, Example 3.4] gave another proof
of (21.5), and showed further joint convergence for di erent d, with asymptotic
covariances, usingly := 1f = kg,

2 = Cov(l: 1)) Cov(Ik,V;rCov(h, )= y - (k 1)(I2 1) « L.
(21.7)

Moreover, Janson b5] showed that if Ej j* < 1 for everyr (which in partic-
ular holds when > 1 since then < and has some exponential moment),

then convergence of all moments and joint moments holds inA1.5); in particular
ENk=n +o(n) and Cov(Ng;Nj)=n 2 + o(n): (21.8)

In the case > 1, Minami [89] and Drmota [33, Section 3.2.1] have given
other proofs of the (joint) asymptotic normality using the saddle point method;
Drmota [33] shows further the stronger moment estimates

ENg=n g+ O@1) and VarNg=n 2+ O(1): (21.9)

Problem 21.2. Do these results hold in the case =1, 2< 1 without extra
moment conditions? Do they extend to the case =1, 2= 1 ? What happens
when06 < 1?

Problem 21.3. Extend this to the more general case of balls-in-boxes as in
Theorem 11.4. (We guess that the casd) < < is easy by the methods in
the references above, in particular $5] and [33, Section 3.2.1], but we have not
checked the details.)

Problem 21.4. Extend this to the subtree counts in Theorenv.12.

21.3. Height and width

We have studied the random treesT, without any scaling. Since our mode of
convergence really means that we consider only a nite number of geerations at
a time, we are really looking at the base of the tree, with the rst gererations.
The results in this paper thus do not say anything about, for exampe, the
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height and width of T,. (Recall that if T is a rooted tree, then the height
H(T) := maxfk : Ix(T) > 0Og, the maximum distance from the root, and the
width W(T) := maxflc(T)g, the largest size of a generation.) However, there
are other known results.

Inthe case > 1, 2< 1 (the case | in Section 8), it is well-known tBat
both the height H (T,) and the width W (T,) of T, typically are of order " n;
more precisely,

HT)= a1 2 1x: (21.10)
W(T)=n1? x: 21.11)

where X is some strictly positive random variable (in fact, X equals the max-
imum of a standard Brownian excursion and has what is known as a tha
distribution), see e.g. Kolchin [76], Aldous [4], Chassaing, Marckert and Yor
[25], Janson B9] and Drmota [33]. There ar% also results for a single I%vel giv-
ing an asymptotic distribution for Iy,)(Tn)="n when the levelk(n) a n for
somea > 0, seeKolchin [76, Theorem 2.4.5].

Since the variance 2 appears as a parameter in these results, we cannot
expect any simple extensions to the case? = 1, and even less to the case
06 < 1. Nevertheless, we conjecture that21.10 and (21.17) extend formally
atleasttothe case =land 2=1:

Conjecture 21.5. If =1and ?=1,thenH (Tn):pﬁ 1?0
Conjecture 21.6. If =1 and 2= 1, then W(Tn)=p nth
Problem 21.7. Does < 1imply that H(T,)= n!° 0?
Problem 21.8. Does < 1 imply that W(Tn):p ntl 2

Furthermore, still in the case > 1, 2 < 1, Addario-Berry, Devroye and
Janson [L] have shown sub-Gaussian tail estimates for the height and width

P(H (Ta) > x" ) 6 Ce °; (21.12)
POW(Ty) > x" 1) 6 Ce &7 (21.13)

uniformly in all x > 0 andn > 1 (with some positive constantsC and c de-
pending on and thus onw). In view of (21.11), we cannot expect £1.13 to
hold when 2 =1 (or when < 1), but we see no reason whyZ1.12 cannot
hold; (21.10 suggests thatH (T,) typically is smaller when 2 =1 .

Problem 21.9. Does (21.12 hold for any weight sequencev (with C and c
depending onw, but not on x or n)?

It follows from (21.10{( 21.1) and (21.12{( 21.13 that EH(Tp)ipﬁ and
W(T,)="n converge to positive numbers. (In fact, the limits are’ 2= and
=2 , see e.g. Jansong[l], where also joint moments are computed.)

Problem 21.10. What are the growth rates of EH(T,) and EW(T,) when
2=1 or < 1?



Simply generated trees and random allocations 243
21.4. Scaled trees

The results (21.10{( 21.11), as well as many other results on various asymptotics
of T, inthecase > 1, 2< 1 ,can be seen as consequences of the convergence
Bf the tree T,, after rescaling in a suitable sense in both height and width by

n, to the continuum random tree de ned by Aldous [3, 4, 5], see also Le Gall
[8Q]. (The continuum random tree is not an ordinary tree; it is a compact metric
space.) This has been extended to the case = 1 when is in the domain of
attraction of a stable distribution, see e.g. Duquesne 34] and Le Gall [80, 81];
the limit is now a di erent random metric space called a stable tree

Problem 21.11. Is there some kind of similar limiting object in the case < 1
(after suitable scaling)?

21.5. Random walks

Simple random walk on the in nite random tree P has been studied by many
authors in the critical case > 1, in particular when 2 < 1 , see e.g. Kesten
[74], Barlow and Kumagai [9], Durhuus, Jonsson and Wheater 35|, Fujii and
Kumagai [43], but also when 2 = 1 , see Croydon and Kumagai 30| (assuming
attraction to a stable law).

A di erent approach is to study simple random walk on T, and study asymp-
toticsosn!1l . For example, by rescaling the tree one can obtain convergence
to a process on the continuum random tree (when 2 < 1) or stable tree
(assuming attraction to a stable law), see Croydon 28, 29].

For < 1, the simple random walk on?P does not make sense, since the
tree has a node with in nite degree. Nevertheless, it might be intersting to
study simple random walk on T, and nd asymptotics of interesting quantities
asn!l

21.6. Multi-type conditioned Galton{Watson trees

It seems likely that there are results similar to the ones in Section7 for multi-

type Galton{Watson trees conditioned on the total size, or perhgs on the num-
ber of nodes of each type, and for corresponding generalizatiord simply gen-
erated random trees. We are not aware of any such results, hower, and leave
this as an open problem. (See Kurtz, Lyons, Pemantle and Pere§ § for related
results that presumably are useful.)

22. Dierent conditionings for Galton{Watson trees

One of the principal objects studied in this paper is the conditioned Galton{
Watson tree (T jjTj= n), i.e. a Galton{Watson tree T conditioned on its total
size beingn; we thenletn ! 1 . This is one way to consider very large Galton{
Watson trees, but there are also other similar conditionings. For canparison, we
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brie y consider two possibilities; see further Kennedy [r3] and Aldous and Pit-
man [6]. We denote the o spring distribution by  and its probability generating
function by ( t).

22.1. Conditioning on  jTj > n.

If E 6 1, i.e., in the subcritical and critical cases,jTj < 1 a.s. and thusT
conditioned onjT j > nis a mixture of (T jjTj= N)= Ty for N > n. It follows

immediately from Theorem 7.1that (T jjTj= N) 19 Pasnii

If E > 1,i.e., inthe supercritical case, on the other hand, the evenfT j = 1
has positive probability, and the events|Tj > n decrease tojTj = 1 . Conse-
quently,

(TJiTi>m 1% (TjiTj=1); (22.1)
a supercritical Galton{Watson tree conditioned on non-extinction.

Remark 22.1. When T is supercritical, the conditioned Galton{Watson tree

(T jjTj= 1)in(22.1) can be constructed by a 2-type Galton{Watson process,
somewhat similar to the construction of P in Section5: Let g=P(Tj<1)<1

be the extinction probability, which is given by ( q) = g. Consider a Galton{

Watson processT with individuals of two types, mortal and immortal, where
a mortal gets only mortal children while an immortal may get both mortal and

immortal children. The numbers © of mortal and % of immortal children are

described by the probability generating functions

Exy = m():= ()= ( ax=q (22.2)
for a mortal and

(gx+(1 qy) (9gx
1 ¢

for an immortal (with the children coming in random order). Note that the
subtree started by a mortal is subcritical (since (1) = %q) < 1, cf. (4.9)),
and thus a.s. nite, while every immortal has at least one immortal child (since
i(x;0) = 0) and thus the subtree started by an immortal is in nite. It is

easily veri ed that T conditioned on non-extinction equals this random treeT
started with an immortal, while T conditioned on extinction equalsT started
with a mortal. (See Athreya and Ney [8, Section 1.12], where this is stated in a
somewhat di erent form.)

One important di erence from P is that T does not have a single spine;
started with an immortal it has a.s. an uncountable number of in nite paths
from the root.

Note that P in the critical case can be seen as a limit case of this construction.
If we let g % 1, which requires that we really consider a sequence of di erent
distributions with generating functions (M (t) I ( t), then taking the limits in
(22.2{( 22.3 gives for the limiting critical distribution the o spring generating

Exy "= (x):=

(22.3)
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functions n(x)= ( x)and i(x;y)=y 9x), which indeed are the generating
functions for the o spring distributions in Section 5 in the critical case (with
mortal = normal and immortal = special), since Ex" ly=y U = i(xy)
by (5.4).

22.2. Conditioning on H(T)>n.

To condition on the height H(T) being at least n is the same as conditioning
on I,(T) > O, i.e., that the Galton{Watson process survives for at leastn
generations.

If E > 1, i.e., in the supercritical case, the eventd,(T) > 0 decrease to
jTj= 1 . Consequently,

(TiH(T) > )= (T jl(T)>0) 1% (TjjTj=1); (22.4)

exactly as when conditioning onjTj > n in (22.1). By Remark 22.1, the limit
equalsT, started with an immortal.

In the subcritical and critical cases, the following result, proved ly Kesten
[74] (at least for E = 1, see also Aldous and Pitman §]), shows convergence
to the size-biased Galton{Watson treeT in Remark 5.7.

Theorem 22.2. Suppose that = E 6 1. Then,asn!1l
(TJHT)>n)=(Tjl(T)>0) 1T (22.5)

Proof. Let r, := P(In(T) > 0), the probability of survival for at least n genera-
tions. Thenr, ! Oasn!1 .Fix "> OandatreeT with height . Conditioned
on TO) = T, the remainder of the tree consists of-(T) independent branches,
each distributed asT, and thus, forn> ",

PTO) = T H(T) > n)= P(TO) =T andH(T) > n)

P(H(T) > n)
_PTO=T)1 @ r, )M (22.6)
N P(H(T) > n)

Let TE‘) be the set of nite trees of height . Summing (22.6) over T 2 TE‘)
yields 1, and thus

X .
P(H(T)> n)= PTO=T)1 @ ry, )M (22.7)
T2T1()
Dividing by r, -, and noting that forany N > 1, 1 (1 )V =r % N as
r & 0, we nd by monotone convergence

P(H(T) > n) _
rn °

P(T(‘)=T)1 @ rp )M
rn N

VA \ (22.8)
! P(TO) = T)I(T) = EI(T) =
T21!)
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Hence, by 22.6) and (5.11),

P(TO = T)I(T)ry -
P(H(T) > n)

P(TO) = T)I(T) _

P(TO) = TjH(T) > n)

(22.9)

P(T O =T):

Thus, (T jH(T) > nO 1T ) and the result follows by (6.9). O

Note thatif E =1,then T = P, see Remarks.7, so the limits in Theorems
7.1and 22.2of T conditioned onjTj= n and H(T) > n have the same limit.
However, in the subcritical caseE < 1, T 6 P; moreover, T diers also
from the limit in Theorem 7.1, which is P for a conjugated distribution, and
the same is true in the supercritical case. Hence, as remarked bydfinedy [73],
conditioning on jTj = n and H(T) > n give similar results (in the sense that
the limitsasn!1 are the same) in the critical case, but quite di erent results
in the subcritical and supercritical cases. Similarly, conditioning onjT j > n and
H(T) > n give quite di erent results in the subcritical case. Aldous and Pit-
man [6] remarks that the two di erent limits as n!1 both can be intuitively
interpreted as \T conditioned on being in nite", which shows that one has to
be careful with such interpretations.
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