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1. Introduction

The main purpose of this survey paper is to study the asymptotic shape of
simply generated random trees in complete generality; this includes conditioned
Galton{Watson trees as a special case, but we will also go beyond that case.
De�nitions are given in Section 2; here we only recall that simply generated
trees are de�ned by a weight sequence (wk ), and that the case when the weight
sequence is a probability distribution yields conditioned Galton{Watson trees.

It is well-known that in the case of a critical conditioned Galton{Wats on tree,
i.e., when the de�ning o�spring distribution has expectation 1, the ra ndom tree
has a limit (as the size tends to in�nity); this limit is an in�nite random tre e,
the size-biased Galton{Watson tree de�ned by Kesten [74], see also Aldous [4],
Aldous and Pitman [6] and Lyons, Pemantle and Peres [84]. It is also well-known
that this case is less special than it might seem; there is a notion of equivalent
weight sequences de�ning the same simply generated random tree,see Section4,
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and a large class of weight sequences have an equivalent probability weight se-
quence de�ning a critical conditioned Galton{Watson tree. Many pr obabilists,
including myself, have often concentrated on this \standard" case of critical
conditioned Galton{Watson trees and dismissed the remaining casesas uninter-
esting exceptional cases. However, some researchers, in particular mathematical
physicists, have studied such cases too. Bialas and Burda [13] studied one case
(Example 10.7 below) and found a phase transition as we leave the standard
case; this can be interpreted as a condensation making the tree bushy with one
or a few nodes of very high degree. This interesting condensation was studied
further by Jonsson and Stef�ansson [67], who showed that (in the power-law
case), there is a limit tree of a di�erent type, having one node of in�nite degree.

We give in the present paper a uni�ed treatment of the limit as the sizetends
to in�nity for all simply generated trees, including both the well-know n result in
the standard case of critical Galton{Watson trees and the \exceptional" cases
(i.e., when no equivalent probability weight sequence exists, or when such a
sequence exists but not with mean 1). We will see that there is a well-de�ned
limit in the form of an in�nite random tree for any weight sequence. In the
non-standard cases, this in�nite random limit has exactly one node of in�nite
degree, so its form di�ers from the standard case of a critical Galton{Watson
tree where all nodes in the limit tree have �nite degrees, but nevertheless the
trees are similar; see Sections5 and 7 for details.

Some important notation, used throughout the paper, is introduced in Sec-
tion 3, while Sections 4 and 6 contain further preliminaries. The main limit
theorem for simply generated random trees is stated in Section7, together with
some other, related, limit theorems concerning node degrees and fringe subtrees.
The di�erences between di�erent types of weight sequences are discussed fur-
ther in Section 8, and this is continued in Section9 with a summary of the main
results from Section19 on the maximum outdegree in the random tree.

The proofs of the limit theorems for random trees use a well-known connec-
tion to a random allocation model that we call balls-in-boxes; this model exhibits
a similar behaviour, with condensation in the non-classical cases, see e.g. Bialas,
Burda and Johnston [14]. The model is de�ned in Section 11, and the relation
between the models is described in Section15. The balls-in-boxes model is in-
teresting in its own right, and it has been used for several other applications;
we give some examples from probability theory, combinatorics and statistical
physics in Section12. We therefore also develop the general theory for balls-in-
boxes with arbitrary weight sequences (in the range where the mean occupancy
is bounded). In particular, we give in Section11 theorems corresponding to (and
in some ways extending) our main theorems for random trees.

The limit theorems for balls-in-boxes are proved in Sections13{ 14, and then
these results are used to prove the limit theorems for random trees in Sections
15{ 17.

The remaining sections contain additional results. Section18 gives asymp-
totic results for the partition functions of the models. The very long Section19
gives results on the largest degrees in random trees, and the largest numbers of
balls in a box in the balls-in-boxes model; the section is long because there are
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several di�erent cases with di�erent types of behaviour. (See also the summary
in Section 9.) In particular, we study in Section 19.6 the case when there is
condensation, and investigate whether this appears as condensation to a single
box (or node), or whether the condensation is distributed over several boxes
(nodes); it turns out that both cases can occur. We give also, in Section 19.7,
applications to the size of the largest tree in random forests. In Section 20, the
condensation in random trees is discussed in further detail. Finally, some ad-
ditional comments, results and open problems are given in Sections21 and 22;
Section 21 mentions brie
y various other types of asymptotic results for simply
generated random trees, and Section22 discusses alternative ways to condition
Galton{Watson trees.

This paper contains many known results from many di�erent sources, to-
gether with some new results. (We believe, for example, that the theorems in
Section 7 are new in the present generality.) We have tried to give relevant ref-
erences, but the absence of references does not necessarily imply that a result
is new.

2. Simply generated trees

2.1. Ordered rooted trees

The trees that we consider are (with a few explicit exceptions)rooted and ordered
(such trees are also calledplane trees). Recall that a tree is rooted if one node
is distinguished as theroot o; this implies that we can arrange the nodes in a
sequence of generations (or levels), where generationx consists of all nodes of
distance x to the root. (Thus generation 0 is the root; generation 1 is the setof
neighbours of the root, and so on.) Ifv is a node with v 6= o, then the parent of
v is the neighbour ofv on the path from v to o; thus, every node except the root
has a unique parent, while the root has no parent. Conversely, forany node v,
the neighbours ofv that are further away from the root than v are the children
of v. The number of children of v is the outdegreed+ (v) > 0 of v. Note that if
v is in generation x, then its parent is in generation x � 1 and its children are
in generation x + 1.

Recall further that a rooted tree is ordered if the children of each node are
ordered in a sequencev1; : : : ; vd, where d = d+ (v) > 0 is the outdegree ofv.
See e.g. Drmota [33] for more information on these and other types of trees.
(The trees we consider are calledplanted plane treesin [33].) We identify trees
that are isomorphic in the obvious (order preserving) way. (Formally, we can
de�ne our trees as equivalence classes. Alternatively, we may select a speci�c
representative in each equivalence class as in Section6.)

Remark 2.1. Some authors prefer to add an extra (phantom) node as a parent
of the root; such trees are calledplanted. (An alternative version is to add only
a pendant edge at the root, with no second endpoint.) There is an obvious
one-to-one correspondence between trees with and without theextra node, so
the di�erence is just a matter of formulations, but when comparing results one
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should be careful whether, for example, the extra node is counted or not. The
extra node yields the technical advantage that also the root has indegree 1 and
thus total degree = 1 + d+ (v); it further gives each embedding in the plane
a unique ordering of the children of every node (in clockwise order from the
parent, say). Nevertheless, we �nd this device less natural and we will not use
it in the present paper. (We use outdegrees instead of degrees and assume that
an ordering of the children as above is given; then there are no problems.)

We are primarily interested in (large) �nite trees, but we will also consider
in�nite trees, for example as limit objects in our main theorem (Theorem 7.1).
The in�nite trees may have nodes with in�nite outdegree d+ (v) = 1 ; in this
case we assume that the children are orderedv1; v2; : : : (i.e., the order type of
the set of children isN).

We let Tn be the set of all ordered rooted trees withn nodes (including the
root) and let T f :=

S 1
n =1 Tn be the set of all �nite ordered rooted trees; see

further Section 6.

Remark 2.2. Note that Tn is a �nite set. In fact, it is well-known that its size
jTn j is the (n � 1):th Catalan number

Cn � 1 =
1
n

�
2n � 2
n � 1

�
=

(2n � 2)!
n! (n � 1)!

; (2.1)

see e.g. [33, Section 1.2.2 and Theorem 3.2], [40, Section I.2.3] or [103, Exercise
6.19(e)], but we do not need this.

For any tree T, we let jT j denote the number of nodes; we calljT j the size of
T . As is well known, for any �nite tree T,

X

v2 T

d+ (v) = jT j � 1; (2.2)

since every node except the root is the child of exactly one node.

2.2. Galton{Watson trees

An important class of examples of random ordered rooted trees is given by the
Galton{Watson trees. These are de�ned as the family trees of Galton{Watson
processes: Given a probability distribution (� k )1

k=0 on Z> 0, or, equivalently, a
random variable � with distribution ( � k )1

k=0 , we build the tree T recursively,
starting with the root and giving each node a number of children that is an
independent copy of � . (We call (� k )1

k=0 the o�spring distribution of T ; we
sometimes also abuse the language and call� the o�spring distribution.) In
other words, the outdegreesd+ (v) are i.i.d. with the distribution ( � k )1

k=0 .
Recall that the Galton{Watson process is calledsubcritical, critical or super-

critical as the expected number of childrenE � =
P 1

k=0 k� k satis�es E � < 1,
E � = 1 or E � > 1. It is a standard basic fact of branching process theory thatT
is �nite a.s. if E � 6 1 (i.e., in the subcritical and critical cases), but T is in�nite
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with positive probability if E � > 1 (the supercritical case), see e.g. Athreya and
Ney [8].

The Galton{Watson trees have random sizes. We are mainly interested in
random trees with a given size; we thus de�neTn as T conditioned on jT j = n.
These random treesTn are calledconditioned Galton{Watson trees. By de�ni-
tion, Tn has sizejTn j = n.

It is well-known that several important classes of random trees can be seen
as conditioned Galton{Watson tree, see e.g. Aldous [4], Devroye [32], Drmota
[33] and Section10.

2.3. Simply generated trees

The random trees that we will study are a generalization of the Galton{Watson
trees. We suppose in this paper that we are given a �xedweight sequencew =
(wk )k> 0 of non-negative real numbers. We then de�ne theweight of a �nite tree
T 2 T f by

w(T) :=
Y

v2 T

wd+ (v) ; (2.3)

taking the product over all nodes v in T . Trees with such weights are called
simply generated treesand were introduced by Meir and Moon [85]. To avoid
trivialities, we assume that w0 > 0 and that there exists somek > 2 with
wk > 0.

We let Tn be the random tree obtained by picking an element ofTn at random
with probability proportional to its weight, i.e.,

P(Tn = T) =
w(T)
Zn

; T 2 Tn ; (2.4)

where the normalizing factor Zn is given by

Zn = Zn (w) :=
X

T 2 T n

w(T); (2.5)

Zn is known as the partition function . This de�nition makes sense only when
Zn > 0; we tacitly consider only suchn when we discussTn . Our assumptions
w0 > 0 and wk > 0 for somek > 2 imply that Zn > 0 for in�nitely many n,
see Corollary15.6 for a more precise result. (In most applications,w1 > 0, and
then Zn > 0 for every n > 1, so there is no problem at all. The archetypical
example with a parity restriction is given by the random (full) binary tr ee, see
Example 10.3, for which Zn > 0 if and only if n is odd.)

One particularly important case is when
P 1

k=0 wk = 1, so the weight se-
quence (wk ) is a probability distribution on Z> 0. (We then say that (wk ) is a
probability weight sequence.) In this case we let � be a random variable with
the corresponding distribution: P(� = k) = wk ; we further let T be the random
Galton{Watson tree generated by � . It follows directly from the de�nitions that
for every �nite tree T 2 T f , P(T = T) = w(T). Hence

Zn = P(jT j = n) (2.6)
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and the simply generated random treeTn is the same as the random Galton{
Watson tree T conditioned on jT j = n, i.e., it equals the conditioned Galton{
Watson tree Tn de�ned above.

It is well-known, see Section4 for details, that in many cases it is possible
to change the weight sequence (wk ) to a probability weight sequence without
changing the distribution of the random trees Tn ; in this case Tn can thus be
seen as a conditioned Galton{Watson tree. Moreover, in many cases this can
be done such that the resulting probability distribution has mean 1. In such
cases it thus su�ces to consider the case of a probability weight sequence with
mean E � = 1; then Tn is a conditional critical Galton{Watson tree. It turns
out that this is a nice and natural setting, with many known results proved by
many di�erent authors. (In many papers it is further assumed that � has �nite
variance, or even a �nite exponential moment. This is not needed for the main
results presented here, but may be necessary for other results. See also Sections
8, 19 and 21.)

3. Notation

We consider a �xed weight sequencew = ( wk )k> 0. The support supp(w) of the
weight sequencew = ( wk ) is f k : wk > 0g. We de�ne

! = ! (w) := sup supp(w) = sup f k : wk > 0g 6 1 ; (3.1)

(When considering Tn , we assume, as said above,w0 > 0 and wk > 0 for some
k > 2; this can be written 0 2 supp(w) and ! > 2.)

We further de�ne (assuming that the support contains at least two points)

span(w) := max f d > 1 : d j (i � j ) wheneverwi ; wj > 0g: (3.2)

Since we assumew0 > 0, i.e., 02 supp(w), we can simplify this to

span(w) = max f d > 1 : d j i wheneverwi > 0g; (3.3)

the greatest common divisor of supp(w).
We let

�( z) :=
1X

k=0

wk zk (3.4)

be the generating function of the given weight sequence, and let� 2 [0; 1 ] be
its radius of convergence. Thus

� = 1 =lim sup
k !1

w1=k
k : (3.5)

�( � ) is always de�ned, with 0 < �( � ) 6 1 . Note that (assuming ! > 0)
�( 1 ) = 1 ; in particular, if � = 1 , then �( � ) = 1 . On the other hand,
if � < 1 , then both �( � ) = 1 and �( � ) < 1 are possible. If � > 0, then
�( t) % �( � ) as t % � by monotone convergence.
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We further de�ne, for t such that �( t) < 1 ,

	( t) :=
t� 0(t)
�( t)

=

P 1
k=0 kwk tk

P 1
k=0 wk tk ; (3.6)

	( t) is thus de�ned and �nite at least for 0 6 t < � , and if �( � ) < 1 , then
	( � ) is still de�ned by ( 3.6), with 	( � ) 6 1 (note that the numerator in ( 3.6)
may diverge in this case, but not for 06 t < � ). Moreover, if �( � ) = 1 , we
de�ne 	( � ) := lim t % � 	( t) 6 1 . (The limit exists by Lemma 3.1(i) below, but
may be in�nite.)

Alternatively, ( 3.6) may be written

	( ex ) = ex � 0(ex )
�( ex )

=
d
dx

log �( ex ): (3.7)

The function 	 will play a central role in the sequel. This is mainly becaus e
of Lemma 4.2 below, which gives a probabilistic interpretation of 	( t). Its basic
properties are given by the following lemma, which is proved in Section13.

Lemma 3.1. Let w = ( wk )1
k=0 be a given weight sequence withw0 > 0 and

wk > 0 for some k > 1 (i.e., ! (w) > 0).

(i) If 0 < � 6 1 , then the function

	( t) :=
t� 0(t)
�( t)

=

P 1
k=0 kwk tk

P 1
k=0 wk tk

(3.8)

is �nite, continuous and (strictly) increasing on [0; � ), with 	(0) = 0 .
(ii) If 0 < � 6 1 , then 	( t) ! 	( � ) 6 1 as t % � .
(iii) For any � , 	 is continuous [0; � ] ! [0; 1 ].
(iv) If � < 1 and �( � ) = 1 , then 	( � ) := lim t ! � 	( t) = 1 .
(v) If � = 1 , then 	( � ) := lim t ! � 	( t) = ! 6 1 .

Consequently, if � > 0, then

	( � ) = lim
t % �

	( t) = sup
06 t<�

	( t) 2 (0; 1 ]: (3.9)

We de�ne
� := 	( � ): (3.10)

In particular, if �( � ) < 1 , then

� =
� � 0(� )
�( � )

6 1 : (3.11)

It follows from Lemma 3.1 that � = 0 () � = 0, and that if � > 0, then

� := 	( � ) = lim
t % �

	( t) = sup
06 t<�

	( t) 2 (0; 1 ]: (3.12)

It follows from ( 3.8) that � 6 ! .
Note that all these parameters depend on the weight sequencew = ( wk ); we

may occasionally write e.g.! (w) and � (w), but usually we for simplicity do not
show w explicitly in the notation.
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Remark 3.2. Let Z (z) denote the generating function Z (z) :=
P 1

n =1 Zn zn .
Then

Z (z) = z�( Z (z)) ; (3.13)

as shown already by Otter [93]. This equation is the basis of much work on
simply generated trees using algebraic and analytic methods, see e.g. Drmota
[33], but the present paper uses di�erent methods and we will use (3.13) only
in a few minor remarks.

3.1. More notation

We de�ne N0 = Z> 0 := f 0; 1; 2; : : : g, N1 = Z> 0 := f 1; 2; : : : g, N0 := N0 [ f1g
and N1 := N1 [ f1g .

All unspeci�ed limits are as n ! 1 . Thus, an � bn means an =bn ! 1 as

n ! 1 . We use
p

�! and d�! for convergence in probability and distribution,

respectively, of random variables, andd= for equality in distribution. We use op

and Op in the standard senses:op (an ) is an unspeci�ed random variable X n

such that X n =an
p

�! 0 as n ! 1 , and Op (an ) is a random variable X n such
that X n =an is stochastically bounded (usually calledtight ). We say that some
event holdsw.h.p. (with high probability) if its probability tends to 1 as n ! 1 .
(See further e.g. [62].)

A coupling of two random variables X and Y is formally a pair of random

variables X 0 and Y 0 de�ned on a common probability space such thatX d= X 0

and Y d= Y 0; with a slight abuse of notation we may continue to write X
and Y , thus replacing the original variables with new ones having the same
distributions.

We write X n
d
� X 0

n for two sequences of random variables or vectorsX n

and X 0
n if there exists a coupling of X n and X 0

n with X n = X 0
n w.h.p.; this

is equivalent to dTV (X n ; X 0
n ) ! 0 as n ! 1 , where dTV denotes the total

variation distance.
We use C1; C2; : : : to denote unimportant constants, possibly di�erent at

di�erent occurrences.
Recall that d+ (v) = d+

T (v) always denotes theoutdegreeof a nodev in a tree
T. (We use the notation d+ (v) rather than d(v) to emphasise this.) We will not
use the total degreed(v) = 1 + d+ (v) (when v 6= o), but care should be taken
when comparing with other papers.

4. Equivalent weights

If a; b > 0 and we changewk to

ewk := abk wk ; (4.1)

then, for every tree T 2 Tn , w(T) is changed to, using (2.2),

ew(T) = an b
P

v d+ (v) w(T) = an bn � 1w(T): (4.2)
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Consequently,Zn is changed to

eZn := an bn � 1Zn ; (4.3)

and the probabilities in (2.4) are not changed. In other words, the new weight
sequence (ewk ) de�nes the same simply generated random treesTn as (wk ).
(This is essentially due to Kennedy [73], who did not consider trees but showed
the corresponding result for Galton{Watson processes. See alsoAldous [4].)
We say that weight sequence (wk ) and ( ewk ) related by (4.1) (for some a; b >
0) are equivalent. (This is clearly an equivalence relation on the set of weight
sequences.)

Let us see how replacing (wk ) by the equivalent weight sequence (ewk ) a�ects
the parameters de�ned above. The support, span and! are not a�ected at all.

The generating function �( t) is replaced by

e�( t) :=
1X

k=0

ewk tk =
1X

k=0

abk tk = a�( bt); (4.4)

with radius of convergencee� = �=b. Further, 	( t) is replaced by

e	( t) :=
t e� 0(t)
e�( t)

=
tab� 0(bt)
a�( bt)

= 	( bt): (4.5)

Hence, if � > 0, � is replaced by, using (3.12),

e� := sup
06 t< e�

e	( t) = sup
06 t<�=b

	( bt) = sup
06 s<�

	( s) = � ;

if � = 0 then e� = e� = 0 = � is trivial. In other words, � is invariant and depends
only on the equivalence class of the weight sequence.

Lemma 4.1. There exists a probability weight sequence equivalent to(wk ) if
and only if and only if � > 0. In this case, the probability weight sequences
equivalent to (wk ) are given by

pk =
tk wk

�( t)
; (4.6)

for any t > 0 such that �( t) < 1 .

Proof. The equivalent weight sequence (ewk ) given by (4.1) is a probability dis-
tribution if and only if

1 =
1X

k=0

ewk = a
1X

k=0

wk bk = a�( b);

i.e., if and only if �( b) < 1 and a = �( b)� 1. Thus, there exists a probability
weight sequence equivalent to (wk ) if and only if there exists b > 0 with �( b) <
1 , i.e., if and only if � > 0; in this case we can choose any suchb and take
a := �( b)� 1, which yields (4.6) (with t = b).
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We easily �nd the probability generating function and thus moments of the
probability weight sequence in (4.6); we state this in a form including the trivial
caset = 0.

Lemma 4.2. If t > 0 and �( t) < 1 , then

pk :=
tk wk

�( t)
; k > 0; (4.7)

de�nes a probability weight sequence(pk ). This probability distribution has prob-
ability generating function

� t (z) :=
1X

k=0

pk zk =
�( tz)
�( t)

; (4.8)

and a random variable� with this distribution has expectation

E � = � 0
t (1) =

t� 0(t)
�( t)

= 	( t) (4.9)

and variance
Var � = t	 0(t); (4.10)

furthermore, for any s > 0 and x > 0,

P(� > x) 6 e� sx �( es t)
�( t)

6 e� sx �( es t)
�(0)

: (4.11)

If t < � , then E � and Var � are �nite. If t = � , however, E � and Var � may
be in�nite (we de�ne Var � = 1 when E � = 1 , but Var � may be in�nite also
when E � is �nite); ( 4.9){( 4.10) still hold, with 	 0(� ) 6 1 de�ned as the limit
lim s% � 	 0(s). The tail estimate ( 4.11) is interesting only when t < � , when we
may choose anys < log(�=t ) and obtain the estimate O(e� sx ).

Proof. Direct summations yield
1X

k=0

pk =

P 1
k=0 tk wk

�( t)
= 1 (4.12)

and, more generally,
1X

k=0

pk zk =
P 1

k=0 wk tk zk

�( t)
=

�( tz)
�( t)

; (4.13)

showing that (pk ) is a probability distribution with the probability generating
function � t given in (4.8).

The expectation E � = � 0
t (1) is evaluated by di�erentiating ( 4.8) (for z < 1

and then taking the limit as z ! 1 to avoid convergence problems ift = � ), or
directly from ( 4.7) as

E � =
1X

k=0

kpk =
P 1

k=0 kwk tk

�( t)
= 	( t):
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Similarly, the variance is given by, using (4.8) and (4.9),

Var � = � 00
t (1) + � 0

t (1) � (� 0
t (1))2 =

t2� 00(t)
�( t)

+
t� 0(t)
�( t)

�
�

t � 0(t)
�( t)

� 2

= t	 0(t):

Alternatively,

t	 0(t) = t
d
dt

P 1
k=0 ktk wk

�( t)
=

P 1
k=0 k2tk wk

�( t)
�

� P 1
k=0 ktk wk

�( t)

� 2

=
1X

k=0

k2pk �
� 1X

k=0

kpk

� 2

= E � 2 � (E � )2 = Var �:

(In the case t = � and Var � = 1 , we use this calculation for t0 < t and let
t0 ! t.)

Finally, by ( 4.8),

P(� > x) 6 e� sx E es� = e� sx � t (es) = e� sx �( es t)
�( t)

:

In particular, taking t = 1, we recover the standard facts that if (wk ) is a
probability distribution, so �(1) = 1, then it has expectation � 0(1) = 	(1) and
variance 	 0(1).

Remark 4.3. We see from Lemma4.1 that the probability weight sequences
equivalent to (wk ) are given by (4.6), where t 2 (0; � ] when 	( � ) < 1 and
t 2 (0; � ) when 	( � ) = 1 . By Lemma 3.1, t 7! E � = 	( t) is an increasing
bijection (0; � ] ! (0; � ] and (0; � ) ! (0; � ). Hence, any equivalent probability
weight sequence is uniquely determined by its expectation, and the possible
expectations are (0; � ] (when 	( � ) < 1 ) or (0; � ) (when 	( � ) = 1 ).

Remark 4.4. Note that we will frequently use (4.6) to de�ne a new probability
weight sequence also if we start with a probability weight sequence (wk ). Proba-
bility distributions related in this way are called conjugated or tilted. Conjugate
distributions were introduced by Cram�er [ 27] as an important tool in large de-
viation theory, see e.g. [31]. The reason is essentially the same as in the present
paper: by conjugating the distribution we can change its mean in a way that
enables us to keep control over sumsSn .

5. A modi�ed Galton{Watson tree

Let ( � k )k> 0 be a probability distribution on N0 and let � be a random variable
on N0 with distribution ( � k )1

k=0 :

P(� = k) = � k ; k = 0 ; 1; 2; : : : (5.1)

We assume that the expectation� := E � =
P

k k� k 6 1 (the subcritical or
critical case).
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In this case, we de�ne (based on Kesten [74] and Jonsson and Stef�ansson [67])
a modi�ed Galton{Watson tree bT as follows: There are two types of nodes:nor-
mal and special, with the root being special. Normal nodes have o�spring (out-
degree) according to independent copies of� , while special nodes have o�spring
according to independent copies ofb� , where

P(b� = k) :=

(
k� k ; k = 0 ; 1; 2; : : : ;
1 � �; k = 1 :

(5.2)

(Note that this is a probability distribution on N1.) Moreover, all children of a
normal node are normal; when a special node gets an in�nite numberof children,
all are normal; when a special node gets a �nite number of children, one of its
children is selected uniformly at random and is special, while all other children
are normal.

Thus, for a special node, and any integersj; k with 1 6 j 6 k < 1 , the
probability that the node has exactly k children and that the j :th of them is
special isk� k =k = � k .

Since each special node has at most one special child, the special nodes form
a path from the root; we call this path the spine of bT . We distinguish two
di�erent cases:

(T1) If � = 1 (the critical case), then b� < 1 a.s. so each special node has a
special child and the spine is an in�nite path. Each outdegreed+ (v) in bT
is �nite, so the tree is in�nite but locally �nite.
In this case, the distribution of b� in (5.2) is the size-biaseddistribution of
� , and bT is the size-biased Galton{Watson tree de�ned by Kesten [74], see
also Aldous [4], Aldous and Pitman [6], Lyons, Pemantle and Peres [84]
and Remark5.7below. The underlying size-biased Galton{Watson process
is the same as theQ-processstudied in Athreya and Ney [8, Section I.14],
which is an instance of Doob'sh-transform. (See Lyons, Pemantle and
Peres [84] for further related constructions in other contexts and Geiger
and Kau�mann [ 45] for a generalization.)
An alternative construction of the random tree bT is to start with the spine
(an in�nite path from the root) and then at each node in the spine at tach
further branches; the number of branches at each node in the spine is a
copy of b� � 1 and each branch is a copy of the Galton{Watson treeT with
o�spring distributed as � ; furthermore, at a node wherek new branches are
attached, the number of them attached to the left of the spine is uniformly
distributed on f 0; : : : ; kg. (All random choices are independent.) Since the
critical Galton{Watson tree T is a.s. �nite, it follows that bT a.s. has
exactly one in�nite path from the root, viz. the spine.

(T2) If � < 1 (the subcritical case), then a special node has with probability
1 � � no special child. Hence, the spine is a.s. �nite and the numberL of
nodes in the spine has a (shifted) geometric distribution Ge(1� � ),

P(L = `) = (1 � � )� ` � 1; ` = 1 ; 2; : : : : (5.3)
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The tree bT has a.s. exactly one node with in�nite outdegree, viz. the top
of the spine. bT has a.s. no in�nite path.
In this case, an alternative construction of bT is to start with a spine of
random length L , whereL has the geometric distribution (5.3). We attach
as in (T1) further branches that are independent copies of the Galton{
Watson tree T ; at the top of the spine we attach an in�nite number of
branches and at all other nodes in the spine the number we attach isa

copy of � � � 1 where � � d= ( b� j b� < 1 ) has the size-biased distribution
P(� � = k) = k� k =� . The spine thus ends with an explosion producing
an in�nite number of branches, and this is the only node with an in�nite
degree. This is the construction by Jonsson and Stef�ansson [67].

Example 5.1. In the extreme case� = 0, or equivalently � = 0 a.s., i.e., � 0 = 1
and � k = 0 for k > 1, (5.2) shows that b� = 1 a.s. Hence, every normal node has
no child and is thus a leaf, while every special node has an in�nite number of
children, all normal. Consequently, the root is the only special node, the spine
consists of the root only (i.e., its length L = 1), and the tree bT consists of
the root with an in�nite number of leaves attached to it, i.e., bT is an in�nite
star. (This is also given directly by the alternative construction in ( T2) above.)
In contrast, T consists of the root only, sojT j = 1. In this case there is no
randomness inT or bT .

Remark 5.2. In case (T1), if we remove the spine, we obtain a random forest
that can be regarded as coming from a Galton{Watson process withimmi-
gration, where the immigration is described by an i.i.d. sequence of random
variables with the distribution of b� � 1, see Lyons, Pemantle and Peres [84]. (In
the Poisson case, Grimmett [47] gave a slightly di�erent description of bT using
a Galton{Watson process with immigration.)

In case (T2), we can do the same, but now the immigration is di�erent: at a
random (geometric) time, there is an in�nite immigration, and after t hat there
is no more immigration at all.

Remark 5.3. Some related modi�cations of Galton{Watson trees having a
�nite spine have been considered previously. Sagitov and Serra [102] construct
(as a limit for a certain two-type branching process) a random treesimilar
to the one in (T2) above (with a subcritical � ), with a �nite spine having a
length with the geometric distribution ( 5.3); the di�erence is that at the top of
the spine, only a �nite number of Galton{Watson trees T are attached. (This
number may be a copy of� � � 1 as at the other points of the spine, or it may
have a di�erent distribution, see [102].) Thus there is no explosion, and the
tree is �nite. Another modi�ed Galton{Watson tree is used by Addar io-Berry,
Devroye and Janson [1]; the proofs use a truncated version of (T1) above (with
a critical � ), where the spine has a �xed lengthk; at the top of the spine the
special node becomes normal and reproduces normally with� children. Geiger
[44] studied T conditioned on its height being at least n, see Section22, and
gave a construction of it using a spine of lengthn, but with more complicated
rules for the branches. See also the modi�ed treesbT1n , bT2n , bT3n in Section 20.
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The invariant random sin-tree constructed by Aldous [2] in a more general
situation, is for a critical Galton{Watson process another related tree; it has an
in�nite spine as bT , but di�ers from bT in that the root has � + 1 children (and
thus � normal children) instead of b� . In this case, it may be better to reverse the
orientation of the spine and consider the spine as an in�nite path� � � v� 2v� 1v0

starting at �1 (there is thus no root); we attach further branches (copies of
T ) as above, with all vi , i < 0, special (the number of children is a copy ofb� ),
but the top node v0 normal (the number of children is a copy of� , and all are
normal).

Kurtz, Lyons, Pemantle and Peres [78] and Chassaing and Durhuus [23] have
constructed related trees with in�nite spines using multi-type Galto n{Watson
processs.

Remark 5.4. If � has the probability generating function ' (x) := E x � =
P 1

k=0 � k xk , then b� has by (5.2) the probability generating function

E x
b� =

1X

k=0

k� k xk = x' 0(x); (5.4)

at least for 0 6 x < 1. (Also for � < 1 when b� may take the value 1 .)

Remark 5.5. In case (T1), the random variable b� is a.s. �nite and has mean

E b� =
1X

k=0

k P(b� = k) =
1X

k=0

k2� k = E � 2 = � 2 + 1 ; (5.5)

where � 2 := Var � 6 1 . In case (T2), we haveP(b� = 1 ) > 0 and thus E b� = 1 .
This suggests that in results that are known in the critical case (T1), and where
� 2 appears as a parameter (see e.g. Section21), the correct generalization of
� 2 to the subcritical case (T2) is not Var � but E b� � 1 = 1 . (See Remark5.6
below for a simple example.) We thus de�ne, for any distribution (� k )1

k=0 with
expectation � 6 1,

�̂ 2 := E b� � 1 =

(
� 2; � = 1 ;

1 ; � < 1:
(5.6)

Remark 5.6. Let lk (T ) denote the number of nodes with distancek to the
root in a rooted tree T. (This is thus the size of the k:th generation.) Trivially,
l0(T ) = 1, while l1(T ) = d+

T (o), the root degree.
It follows by the construction of bT and induction that in case (T1), using

(5.5),
E lk ( bT ) = 1 + k(E b� � 1) = k� 2 + 1 ; k > 0: (5.7)

In case (T2), we have if � > 0 and k > 1 a positive probability that L = k and
then lk ( bT ) = 1 . Thus E lk ( bT ) = 1 . Consequently, using (5.6), if 0 < � 6 1,
then

E lk ( bT ) = k�̂ 2 + 1 ; k > 1: (5.8)
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However, this fails if � = 0; in that case, l1( bT ) = 1 but lk ( bT ) = 0 for k > 2,
see Example5.1.

Remark 5.7. As said above, in the case� = 1, the tree bT is the size-biased
Galton{Watson tree, see [74, 6] and [84]. For comparison, we give the de�nition
of the latter, for an arbitrary distribution ( � k )k> 0 with �nite mean � > 0: Let,
as above,� have the distribution ( � k ), see (5.1), and let � � have the size-biased
distribution de�ned by

P(� � = k) =
k� k

�
; k = 0 ; 1; 2; : : : (5.9)

(Note that this is a probability distribution on N1.) Construct T � as bT above,
with normal and special nodes, with the only di�erence that the number of
children of a special node has the distribution of� � in (5.9).

In the critical case � = 1, we have � � = b� and thus T � = bT , but in the
subcritical case� < 1, T � and bT are clearly di�erent. (Note that T � always is
locally �nite, but bT is not when � < 1.) When � > 1, bT is not even de�ned,
but T � is. (As remarked by Aldous and Pitman [6], in the supercritical caseT �

has a.s. an uncountable number of in�nite paths from the root, in contrast to
the case� 6 1 when the spine a.s. is the only one.)

T � can also be constructed by the alternative construction in (T1) above
starting with an in�nite spine, again with the di�erence that b� � 1 is replaced
by � � � 1. T � can also be seen as a Galton{Watson process with immigration
in the same way as in Remark5.2.

By (5.9), the probability that a given special node in T � has k > 1 children,
with a given one of them special, is

1
k

P(� � = k) =
k� k

k�
=

� k

�
: (5.10)

Let T be a �xed tree of height `, and let u be a node in the`:th (and last)
generation in T . Let T � ( ` ) denote T � truncated at height `. It follows from
(5.10) and independence that the probability that T � ( ` ) = T and that u is
special (i.e., u is the unique element of the spine at distancè from the root)
equals� � ` P(T ( ` ) = T). Hence, summing over thel ` (T ) possibleu,

P(T � ( ` ) = T) = � � ` l ` (T ) P(T ( ` ) = T); (5.11)

which explains the name size-biased Galton{Watson tree. (As an alternative,
one can thus de�ne T � directly by ( 5.11), noting that this gives consistent
distributions for m = 1 ; 2; : : : , see Kesten [74].) See further Section22.2.

6. The Ulam{Harris tree and convergence

It is convenient, especially when discussing convergence, to regard our trees as
subtrees of the in�nite Ulam{Harris tree de�ned as follows. (See e.g. Otter [ 93],
Harris [51, xVI.2], Neveu [91] and Kesten [74].)
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De�nition 6.1. The Ulam{Harris tree U1 is the in�nite rooted tree with node
set V1 :=

S 1
k=0 Nk

1 , the set of all �nite strings i 1 � � � i k of positive integers,
including the empty string ; which we take as the root o, and with an edge
joining i 1 � � � i k and i 1 � � � i k+1 for any k > 0 and i 1; : : : ; i k+1 2 N1.

Thus every nodev = i 1 � � � i k has outdegreed+ (v) = 1 ; the children of v are
the strings v1, v2, v3, . . . , and we let them have this order soU1 becomes an
in�nite ordered rooted tree. The parent of i 1 � � � i k (k > 0) is i 1 � � � i k � 1.

The family T of ordered rooted trees can be identi�ed with the set of all
rooted subtreesT of U1 that have the property

i 1 � � � i k i 2 V (T) =) i 1 � � � i k j 2 V (T) for all j 6 i: (6.1)

Equivalently, by identifying T and its node setV (T), we can regardT as the
family of all subsets V of V1 that satisfy

; 2 V; (6.2)

i 1 � � � i k+1 2 V =) i 1 � � � i k 2 V; (6.3)

i 1 � � � i k i 2 V =) i 1 � � � i k j 2 V for all j 6 i: (6.4)

We let T f := f T 2 T : jT j < 1g be the set of all �nite ordered rooted trees
and Tn := f T 2 T : jT j = ng the set of all ordered rooted trees of sizen.

If T 2 T, we let as aboved+ (v) = d+
T (v) denote the outdegree ofv for every

v 2 V (T), For convenience, we also de�ned+ (v) = 0 for v =2 V (T); thus d+ (v)
is de�ned for every v 2 V1 , and the tree T 2 T is uniquely determined by the
(out)degree sequence (d+

T (v)) v2 V1 . It is easily seen that this gives a bijection

betweenT and the set of sequences (dv ) 2 N
V1

0 with the property

di 1 ��� i k i = 0 when i > d i 1 ��� i k : (6.5)

The family T lf of locally �nite trees corresponds to the subset of all such
sequences with alldv < 1 , and the family T f of �nite trees correspond to the
subset of all such sequences (dv ) with all dv < 1 and only �nitely many dv 6= 0.

In this way we have T f � T lf � T � N
V1

0 ; note that T lf = T \ NV1
0 , so

T f � T lf � NV1
0 .

We give N0 the usual compact topology as the one-point compacti�cation of
the discrete spaceN0. Thus N0 is a compact metric space. (One metric, among
many equivalent ones, is given by the homomorphismn 7! 1=(n + 1) onto

f 1=ng1
n =1 [ f 0g � R.) We give N

V1

0 the product topology and its subspacesT f ,

T lf and T the induced topologies. ThusN
V1

0 is a compact metric space, and
its subspacesT f , T lf and T are metric spaces. (The precise choice of metric on
these spaces is irrelevant; we will not use any explicit metric except brie
y in
Section 20.) Moreover, the condition (6.5) de�nes T as a closed subset ofN

V1

0 ;
thus T is a compact metric space. (T f and T lf are not compact. In fact, it is
easily seen that they are dense proper subsets ofT. T f is a countable discrete
space.)



120 S. Janson

In other words, if Tn and T are trees in T, then Tn ! T if and only if the
outdegrees converge pointwise:

d+
Tn

(v) ! d+
T (v) for each v 2 V1 : (6.6)

It is easily seen that it su�ces to consider v 2 V (T), i.e., (6.6) is equivalent to

d+
Tn

(v) ! d+
T (v) for each v 2 V (T); (6.7)

since (6.7) implies that if v =2 V (T), then v =2 V (Tn ) for su�ciently large n, and
thus d+

Tn
(v) = 0. (Consider the last node w in V (T) on the path from the root

to v and used+
Tn

(w) ! d+
T (w).)

Alternatively, we may as above consider the node setV (T) as a subset of
V1 and regardT as the family of all subsets ofV1 that satisfy ( 6.2){( 6.4). We
identify the family of all subsets of V1 with f 0; 1gV1 , and give this family the
product topology, making it into a compact metric space. (Thus, convergence
means convergence of the indicator1f v 2 �g for each v 2 V1 .) This induces a
topology on T, where Tn ! T means that, for eachv 2 V1 , if v 2 V(T), then
v 2 V (Tn ) for all large n, and, conversely, ifv =2 V (T), then v =2 V (Tn ) for all
large n.

If v = i 1 : : : i k with k > 0, then v 2 V (T) if and only of i k 6 d+
T (i 1 : : : i k � 1).

It follows immediately that V (Tn ) ! V (T) in the sense just described, if and
only if ( 6.6) holds. The two de�nitions of Tn ! T above are thus equivalent (for
T, and thus also for its subsetsT f and T lf ).

Furthermore, we see, e.g. from (6.6), that the convergence of trees can be
described recursively: LetT( j ) denote the j :th subtree of T , i.e., the subtree
rooted at the j :th child of T , for j = 1 ; : : : ; d+

T (o). (We consider only �nite j ,
even whend+

T (o) = 1 .) Then, Tn ! T if and only if

(i) the root degrees converge:d+
Tn

(o) ! d+
T (o), and further,

(ii) for each j = 1 ; : : : ; d+
T (o), Tn; ( j ) ! T( j ) .

(Note that Tn; ( j ) is de�ned for large n, at least, by (i).)
It is important to realize that the notion of convergence used hereis a local

(pointwise) one, so we consider only a singlev at a time, or, equivalently, a �nite
set of v; there is no uniformity in v required.

If T is a locally �nite tree, T 2 T lf , then d+
T (v) < 1 for each v, and thus

(6.6) means that for eachv, d+
Tn

(v) = d+ (v) for all su�ciently large n.
Let T (m ) denote the tree T truncated at height m, i.e., the subtree of T

consisting of all nodes in generations 0; : : : ; m. If T is locally �nite, then each
T (m ) is a �nite tree, and it is easily seen from (6.7) that convergence toT can
be characterised as follows:

Lemma 6.2. If T is locally �nite, then, for any trees Tn 2 T,

Tn ! T () T (m )
n ! T (m ) for each m

() T (m )
n = T (m ) for each m and all large n:

(The last condition means for n larger than somen(m) depending onm.)
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This notion of convergence for locally �nite trees is widely used; see e.g. Otter
[93] and Aldous and Pitman [6].

In general, if T is not locally �nite, this characterization fails. (For example,
if Sn , 1 6 n 6 1 , is a star where the root has outdegreen and its children
all have outdegree 0, thenSn ! S1 , but S(m )

n 6= S(m )
1 for all n and m > 1.)

Instead, we have to localise also horizontally: LetV [m ] :=
S m

k=0 f 1; : : : ; mgk , the
subset ofV1 consisting of strings of length at mostm with all elements at most
m. For a tree T 2 T, let T [m ] be the subtree with node setV (T) \ V [m ], i.e., the
tree T truncated at height m and pruned so that all outdegrees are at mostm.
It is then easy to see from (6.6) that the following analogue and generalization
of Lemma 6.2 holds:

Lemma 6.3. For any trees T; Tn 2 T,

Tn ! T () T [m ]
n ! T [m ] for each m

() T [m ]
n = T [m ] for each m and all large n:

(The last condition means for n larger than somen(m) depending onm.)

Our notion of convergence for general treesT 2 T was introduced in this
form by Jonsson and Stef�ansson [67] (where the truncation T [m ] is called aleft
ball).

Remark 6.4. It is straightforward to obtain versions of Lemmas 6.2{ 6.3 for
random treesT, Tn and convergence in probability or distribution. For example:
For any random treesT; Tn 2 T,

Tn
d�! T () T [m ]

n
d�! T [m ] for eachm: (6.8)

If T 2 T lf , a.s., then we also have

Tn
d�! T () T (m )

n
d�! T (m ) for eachm; (6.9)

see e.g. Aldous and Pitman [6]. The proofs are standard using the methods in
e.g. Billingsley [15].

7. Main result for simply generated random trees

Our main result for trees is the following, proved in Section16. The case when
� > 1 and � 2 < 1 was shown implicitly by Kennedy [73] (who considered
Galton{Watson processes and not trees), and explicitly by Aldous and Pitman
[6], see also Grimmett [47], Kolchin [76], Kesten [74] and Aldous [4]. Special
cases with 0< � < 1 and � = 0 are given by Jonsson and Stef�ansson [67] and
Janson, Jonsson and Stef�ansson [64], respectively.

Theorem 7.1. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 2.
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(i) If � > 1, let � be the unique number in[0; � ] such that 	( � ) = 1 .
(ii) If � < 1, let � := � .

In both cases,0 6 � < 1 and 0 < �( � ) < 1 . Let

� k :=
� k wk

�( � )
; k > 0; (7.1)

then (� k )k> 0 is a probability distribution, with expectation

� = 	( � ) = min( �; 1) 6 1 (7.2)

and variance � 2 = � 	 0(� ) 6 1 . Let bT be the in�nite modi�ed Galton{Watson

tree constructed in Section 5 for the distribution (� k )k> 0. Then Tn
d�! bT as

n ! 1 , in the topology de�ned in Section 6.
Furthermore, in case (i) , � = 1 (the critical case) and bT is locally �nite with

an in�nite spine; in case (ii) � = � < 1 (the subcritical case) and bT has a �nite
spine ending with an explosion.

Remark 7.2. Note that we can combine the two cases� > 1 and � < 1 and
de�ne, using Lemma 3.1 and with 	( � ) = � ,

� := max
n

t 6 � : 	( t) 6 1
o

: (7.3)

Remark 7.3. In case (ii) , there is no � > 0 with 	( � ) = 1, see Lemma 3.1.
Hence the de�nition of � can also be expressed as follows, recalling 	(t) :=
t� 0(t)=�( t) from (3.6): � is the unique number in [0; � ] such that

� � 0(� ) = �( � ); (7.4)

if there exists any such� ; otherwise � := � . (Equation ( 7.4) is used in many
papers to de�ne � , in the case� > 1.)

Remark 7.4. If 0 < t < � , then

d
dt

�
�( t)

t

�
=

t� 0(t) � �( t)
t2 =

�( t)
t2

�
	( t) � 1

�
:

Since 	( t) is increasing by Lemma3.1, it follows that �( t)=t decreases on [0; � ]
and increases on [�; � ], so � can, alternatively, be characterised as the (unique)
minimum point in [0 ; � ] of the convex function �( t)=t, cf. e.g. Minami [89] and
Jonsson and Stef�ansson [67]. Consequently,

�( � )
�

= inf
06 t 6 �

�( t)
t

= inf
06 t< 1

�( t)
t

: (7.5)

(This holds also when� = 0, trivially, since then �( t)=t = 1 for every t > 0.)
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Remark 7.5. By Remark 7.4, � is, equivalently, the (unique) maximum point in
[0; � ] of t=�( t), which by (3.13) is the inverse function of the generating function
Z (z). It follows easily that

� = Z (� Z ); (7.6)

where � Z = �=�( � ) is the radius of convergence ofZ ; see also Corollary18.17.
Note that 0 6 � Z < 1 and that � Z = 0 () � = 0 () � = 0. Otter [ 93]
uses (7.6) as the de�nition of � (by him denoted a); see also Minami [89].

Remark 7.6. When � = 0 (which is equivalent to � = 0), the limit bT is the
non-random in�nite star in Example 5.1, so Theorem7.1 givesTn

p
�! bT .

Remark 7.7. We consider brie
y the cases excluded from Theorem7.1. The
case whenw0 = 0 is completely trivial, since then w(T) = 0 for every �nite tree,
so Tn is unde�ned. The same holds (forn > 2) when w0 > 0 but wk = 0 for all
k > 1, i.e., when! = 0.

The case whenw0 > 0 and w1 > 0 but wk = 0 for k > 2, so ! = 1, is
also trivial. Then w(T) = 0 unless T is a rooted path Pn for some n. Thus
Zn = w(Pn ) = w0wn � 1

1 , and (a.s.) Tn = Pn , which converges asn ! 1 to
the in�nite path P1 . We have � = 1 = ! , but, in contrast to Theorem 7.1,
� = 1 , with � de�ned e.g. by (7.3). Further, interpreting ( 7.1) as a limit, we
have � k = � k1, so (� k ) is the distribution concentrated at 1; thus ( 5.2) yields
b� = 1 a.s., so bT consists of an in�nite spine only, i.e. bT = P1 . Consequently,

Tn
d�! bT holds in this case too.

Remark 7.8. If we replace (wk ) by the equivalent weight sequence (ewk ) given
by (4.1), then (7.3) and (4.5) show that � is replaced by

e� := max f t 6 e� : e	( t) 6 1g = max f t 6 �=b : 	( bt) 6 1g = �=b: (7.7)

The corresponding probability weight sequence given by (7.1) thus is, using
(4.4),

e� k :=
e� k ewk

e�( e� )
=

(�=b)k abk wk

a�( � )
=

� k wk

�( � )
= � k ; (7.8)

so the distribution ( � k ) is invariant and depends only on the equivalence class
of (wk ).

Remark 7.9. If � > 0, then � > 0 and the distribution ( � k ) is a probabil-
ity weight sequence equivalent to (wk ). There are other equivalent probability
weight sequences, see Lemma4.1, but Theorem 7.1 and the theorems below
show that (� k ) has a special role and therefore is a canonical choice of a weight
sequence in its equivalence class. Remark4.3 shows that (� k ) is the unique
probability distribution with mean 1 that is equivalent to ( wk ), if any such
distribution exists. If no such distribution exists but � > 0, then (� k ) is the
probability distribution equivalent to ( wk ) that has the maximal mean.

A heuristic motivation for this choice of probability weight sequence is that
when we construct Tn as a Galton{Watson tree T conditioned on jT j = n, it
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is better to condition on an event of not too small probability; in the critical
case this probability decreases asn� 3=2 provided � 2 < 1 , see [93] (� > 1) and
[76, Theorem 2.3.1] (� > 1, � 2 < 1 ), and always subexponentially, but in the
subcritical and supercritical cases it typically decreases exponentially fast, see
Theorems18.7 and 18.11.

As a special case of Theorem7.1 we have the following result for the root
degreed+

Tn
(o), proved in Section 15.

Theorem 7.10. Let (wk )k> 0 and (� k )k> 0 be as in Theorem 7.1. Then, as
n ! 1 ,

P(d+
Tn

(o) = d) ! d� d; d > 0: (7.9)

Consequently, regardingd+
Tn

(o) as a random number inN0,

d+
Tn

(o) d�! b�; (7.10)

where b� is a random variable in N0 with the distribution given in (5.2).

Note that the sum
P 1

0 d� d = � of the limiting probabilities in ( 7.9) may be
less than 1; in that case we do not have convergence to a proper �nite random
variable, which is why we regardd+

Tn
(o) as a random number inN0.

Theorem 7.10 describes the degree of the root. If we instead take a random
node, we obtain a di�erent limit distribution, viz. ( � k ). We state two versions
of this; the two results are of the types calledannealed and quenchedin sta-
tistical physics. In the �rst (annealed) version, we take a random tree Tn and,
simultaneously, a random nodev in it. In the second (quenched) version we �x
a random tree Tn and study the distribution of outdegrees in it. (This yields
a random probability distribution. Equivalently, we study the outdeg ree of a
random node conditioned on the treeTn .)

Theorem 7.11. Let (wk )k> 0 and (� k )k> 0 be as in Theorem7.1.

(i) Let v be a uniformly random node inTn . Then, as n ! 1 ,

P(d+
Tn

(v) = d) ! � d; d > 0: (7.11)

(ii) Let Nd be the number of nodes inTn of outdegreed. Then

Nd

n
p

�! � d; d > 0: (7.12)

The proof is given in Section17. (When � > 1, this was proved by Otter [93],
see also Minami [89].) See Section21.2 for further results.

Instead of considering just the outdegree of a random node, i.e., its number of
children, we may obtain a stronger result by considering the subtree containing
its children, grandchildren and so on. (This random subtree is called afringe
subtreeby Aldous [2].) We have an analogous result, also proved in Section17.
Cf. [2], which in particular contains (i) below in the case� > 1 and � 2 < 1 ;
this was extended by Bennies and Kersting [11] to the general case� > 1. (Note
that the limit distribution, i.e. the distribution of T , is a fringe distribution in
the sense of [2] only if � = 1, i.e., if and only if � > 1.)
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Theorem 7.12. Let (wk )k> 0 and (� k )k> 0 be as in Theorem7.1, and let T be
the Galton{Watson tree with o�spring distribution (� k ). Further, if v is a node
in Tn , let Tn ;v be the subtree rooted atv.

(i) Let v be a uniformly random node in Tn . Then, Tn ;v
d�! T , i.e., for any

�xed tree T,
P(Tn ;v = T) ! P(T = T): (7.13)

(ii) Let T be an ordered rooted tree and letNT := jf v : Tn ;v = Tgj be the
number of nodes inTn such that the subtree rooted there equalsT . Then

NT

n
p

�! P(T = T): (7.14)

Remark 7.13. Aldous [2] considers also the tree obtained by a random re-
rooting of Tn , i.e., the tree obtained by declaring a uniformly random nodev
to be the root. Note that this re-rooted tree contains Tn ;v as a subtree, and
that, provided v 6= o, there is exactly one branch from the new root not in this
subtree, viz. the branch starting with the original parent of v. Aldous [2] shows,
at least when � > 1 and � 2 < 1 , convergence of this randomly re-rooted tree
to the random sin-tree in Remark 5.3. The limit of the re-rooted tree is thus
very similar to the limit of Tn in Theorem 7.1, but not identical to it.

8. Three di�erent types of weights

Although Theorem 7.1 has only two cases, it makes sense to treat the case� = 0
separately. We thus have the following three (mutually exclusive) cases for the
weight sequence (wk ):

I. � > 1. Then 0 < � < 1 and � 6 � 6 1 . The weight sequence (wk )
is equivalent to (� k ), which is a probability distribution with mean � =
	( � ) = 1 and probability generating function

P 1
k=0 � k zk with radius of

convergence�=� > 1.
II. 0 < � < 1. Then 0 < � = � < 1 . The weight sequence (wk ) is equivalent

to ( � k ), which is a probability distribution with mean � = 	( � ) = � < 1
and probability generating function

P 1
k=0 � k zk with radius of convergence

�=� = 1.
III. � = 0. Then � = � = 0, and (wk ) is not equivalent to any probability

distribution.

If we consider the modi�ed Galton{Watson tree in Theorem 7.1, then III is
the case discussed in Example5.1; excluding this case, I and II are the same as
(T1) and (T2) in Section 5.

We can reformulate the partition into three cases in more probabilistic terms.
If � is a non-negative integer valued random variable with distribution given by
pk = P(� = k), k > 0, then the exponential momentsof � areE R� =

P 1
k=0 pk Rk

for R > 1. (Equivalently, E er� for r := log R > 0.) We say that � , or the
distribution ( pk ), has some �nite exponential moment if E R� < 1 for some
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R > 1; this is equivalent to the probability generating function
P 1

k=0 pk zk

having radius of convergence strictly larger than 1.
Consider again a probability distribution ( ewk ) equivalent to (wk ), with ewk =

tk wk =�( t) for some t 6 � . By Section 4, the radius of convergence of the prob-
ability generating function e�( z) of this distribution is �=t , cf. (4.4). Hence, the
distribution ( ewk ) has some �nite exponential moment if and only if 0 < t < � .
The cases I{III can thus be described as follows:

I. � > 1. Then (wk ) is equivalent to a probability distribution with mean
� = 1 (with or without some exponential moment). Moreover, ( � k ) in
(7.1) is the unique such distribution.

II. 0 < � < 1. Then (wk ) is equivalent to a probability distribution with mean
� < 1 and no �nite exponential moment. Moreover, (� k ) in ( 7.1) is the
unique such distribution.

III. � = 0. Then ( wk ) is not equivalent to any probability distribution.

Case I may be further subdivided. From an analytic point of view, it is natural
to split I into two subcases:

Ia. � > 1; equivalently, 0 < � < � 6 1 . The weight sequence (wk ) is equiva-
lent to ( � k ), which is a probability distribution with mean � = 1 and prob-
ability generating function

P 1
k=0 � k zk with radius of convergence�=� > 1.

In other words, (wk ) is equivalent to a probability distribution with mean
� = 1 and some �nite exponential moment. (Then ( � k ) is the unique such
distribution.) By ( 7.6), the condition can also be written analytically as
Z (� Z ) < � , a version used e.g. in [35]. (This case is calledgeneric in [35]
and [67].)

Ib. � = 1; then 0 < � = � < 1 . The weight sequence (wk ) is equivalent to
(� k ), which is a probability distribution with mean 1 and probability gen-
erating function

P 1
k=0 � k zk with radius of convergence�=� = 1. In other

words, (wk ) is equivalent to a probability distribution with mean � = 1 and
no �nite exponential moment. (Then ( � k ) is the unique such distribution.)

Case Ia is convenient when using analytic methods, since it says thatthe
point � is strictly inside the domain of convergence of �, which is convenient for
methods involving contour integrations in the complex plane. (See e.g. Drmota
[33] for several such results of di�erent types.) For that reason, many papers
using such methods consider only case Ia. However, it has repeatedly turned
out, for many di�erent problems, that results proved by such methods often
hold, by other proofs, assuming only that we are in case I with �nite variance of
(� k ). (In fact, as shown in [59], it is at least sometimes possible to use complex
analytic methods also in the case when� = � and (� k ) has a �nite second
moment.) Consequently, it is often more important to partition case I into the
following two cases:

I� . � > 1 and (� k ) has variance� 2 < 1 . In other words, (wk ) is equivalent
to a probability distribution ( � k ) with mean � = 1 and �nite second
moment � 2.
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I � . � = 1 and ( � k ) has variance� 2 = 1 . In other words, (wk ) is equivalent
to a probability distribution with mean � = 1 and in�nite variance.

Note that Ia is a subcase of I� , since a �nite exponential moment implies
that the second moment is �nite.

When � > 1, the quantity � 2 is another natural parameter of the weight
sequence (wk ), which frequently occurs in asymptotic results, see e.g. Section21.
(When � < 1, the natural analogue is1 , see Remark5.5.) By Theorem 7.1 (or
(4.10)), � 2 = � 	 0(� ), so (assuming� > 1), we have case I� when 	 0(� ) < 1
and I� when 	 0(� ) = 1 . Moreover, when� > 1, then (� k ) has mean� = 1, and
it follows from ( 4.8) that the variance � 2 of (� k ) also is given by the formula [4]

� 2 = � 00
� (1) + � � � 2 = � 00

� (1) =
� 2� 00(� )

�( � )
: (8.1)

Hence I� is the case� > 1 and � 00(� ) < 1 ; equivalently, either � > 1 or � = 1
and � 00(� ) < 1 .

Remark 8.1. We have seen that except in case III, we may without loss of
generality assume that the weight (wk ) is a probability weight sequence. If this
distribution is critical, i.e. has mean 1, we are in case I with� k = wk , so we do
not have to change the weights.

If the distribution ( wk ) is supercritical, then � > 1 and we are in case Ia; we
can change to an equivalent critical probability weight. Hence we never have to
consider supercritical weights. (Recall that by Remark4.3, � is the supremum
of the means of the equivalent probability weight sequences.)

If the distribution ( wk ) is subcritical, we can only say that we are in case I
or II. We can often change to an equivalent critical probability weight, but not
always.

9. The maximum degree

Theorem 7.1 studies convergence of the random treeTn in the topology de�ned
in Section6, which really means local convergence close to the root; we have seen
that the limit is of somewhat di�erent types depending on the weight sequence,
with condensation in the form of a node of in�nite degree in the limit tre e bT in
cases II and III but not in case I.

An alternative way to study the condensation (or absence of it) is to study
the largest degree in the tree. This is discussed in detail in Section19 (in the
more general setting of random allocations). We give here a short summary of
the main results, showing a similar picture: the maximum degree is typically
rather small (logarithmic) in case I but larger (of order n) in cases II and III,
which can be interpreted as a condensation; however, there are exceptions in the
latter cases, and we do not have general theorems covering all possible weight
sequences.

The relation between the two ways of looking at condensation is discussed in
Section 20.
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We denote, as in Section19, the maximum outdegree in the treeTn by Y(1) ;
we use further the notation in Theorem 7.1 and Section8.

Case Ia: � > 1

In this case 0< � < � 6 1 , and we have a logarithmic bound due to Meir and
Moon [86] (Theorem 19.3):

Y(1) 6
1

log(�=� )
logn + op (log n); (9.1)

if further w1=k
k ! 1=� as k ! 1 , then

Y(1)

logn
p

�!
1

log(�=� )
: (9.2)

In particular, if � = 1 , then Y(1) = op (log n).
Moreover, if wk+1 =wk ! a > 0 ask ! 1 , then Y(1) = k(n) + Op (1) for some

deterministic sequencek(n), so Y(1) is essentially concentrated in an interval of
length O(1) (Theorem 19.16). The distribution of Y(1) is asymptotically given by
a discretised Gumbel distribution (Theorem 19.19), but di�erent subsequences
may have di�erent limits and no limit distribution exists.

Similarly, if wk+1 =wk ! 0, then Y(1) 2 f k(n); k(n)+1 g soY(1) is concentrated
on at most two values, and often (but not always) on a single value (Theorems
19.16and 19.23).

Case I� : � > 1 and � 2 < 1

The maximum outdegree Y(1) is asymptotically distributed as the maximum
� (1) of n i.i.d. copies of � ; this holds in the strong sense that the total variation
distance

dTV
�
Y(1) ; � (1)

�
! 0 (9.3)

(Theorem 19.7 and Corollary 19.11). Since E � 2 < 1 , this implies in particular

Y(1) = op (n1=2): (9.4)

Case I� : � > 1 and � 2 = 1

We have
Y(1) = op (n) (9.5)

(Theorem 19.2), and this is (more or less) best possible (Example19.27). How-
ever, (9.3) does not always hold in this case (Example19.27).
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Case II: 0 < � < 1

In this case, if further (wk ) satis�es an asymptotic power-law wk � ck� � as
k ! 1 , then Jonsson and Stef�ansson [67] showed that

Y(1) = (1 � � )n + op (n); (9.6)

while the second largest node degreeY(2) = op (n) (Theorem 19.34 and Re-
mark 19.35). However, if the weight sequence is more irregular, this is no longer
always true; it is possible (at least along a subsequence) thatY(1) = op (n),
which can be seen as incomplete condensation; it is also possible (at least along
a subsequence) thatY(2) too is of ordern, meaning condensation to two or more
giant nodes (Example19.37).

Case III: � = � = 0

This is similar to case II. In some regular cases we have (9.6), which now says
Y(1) = n + op (n), and then necessarilyY(2) = op (n) (Example 19.36), but there
are exceptions in other cases with an irregular weight sequence (Examples19.38
and 19.39).

10. Examples of simply generated random trees

One of the reasons for the interest in simply generated trees is that many kinds
of random trees occuring in various applications can be seen as simplygenerated
random trees and conditioned Galton{Watson trees. We give some important
examples here, see further Aldous [3, 4], Devroye [32] and Drmota [33].

We see from Theorem7.1 and Section8 that any simply generated random
tree de�ned by a weight sequence with� > 0 can be de�ned by an equivalent
probability weight sequence, and then the tree is the corresponding conditioned
Galton{Watson tree. Moreover, the probability weight sequence (� k ) de�ned
in (7.1) is the canonical choice of o�spring distribution. Recall that ( � k ) is
characterised by having mean 1, whenever this is possible (i.e., in caseI), i.e.,
we prefer to have critical Galton{Watson trees.

Example 10.1 (ordered trees). The simplest example is to takewk = 1 for
every k > 0. Thus every tree has weight 1, andTn is a uniformly random
ordered rooted tree with n nodes. Further, Zn is the number of such trees; thus
Zn is the Catalan number Cn � 1, see Remark2.2 and (2.1). (For this reason,
these random trees are sometimes calledCatalan trees.)

We have

�( t) =
1X

k=0

tk =
1

1 � t
(10.1)

and

	( t) =
t� 0(t)
�( t)

=
t

1 � t
: (10.2)
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Thus � = 1 and � = 1 (cf. Lemma 3.1(iv)), and 	( � ) = 1 yields � = 1 =2.
Hence (7.1) yields the canonical probability weight sequence

� k = 2 � k � 1; k > 0: (10.3)

In other words, the uniformly random ordered rooted tree is the conditioned
Galton{Watson tree with geometric o�spring distribution � � Ge(1=2). (This is
the geometric distribution with mean 1. Any other geometric distribu tion yields
an equivalent weight sequence, and thus the same conditioned Galton{Watson
tree.)

The size-biased random variableb� in (5.2) has the distribution

P(b� = k) = k� k = k2� k � 1; k > 1; (10.4)

thus b� � 1 has a negative binomial distribution NBin(2; 1=2). It follows that
in the in�nite tree bT , if v is a node on the spine (for example the root) and
dL (v); dR (v) are the numbers of children of it to the left and right of the spine,
respectively, then

P
�
dL (v) = j and dR (v) = k

�
=

1
j + k + 1

P(b� = j + k + 1) = 2 � j � k � 2

= 2 � j � 1 � 2� k � 1; j; k > 0;
(10.5)

thus dL (v) and dR (v) are independent and both have the same distribution
Ge(1=2) as � .

We have � 2 := Var � = � 	 0(� ) = 2, see Theorem7.1 and (8.1), and E b� =
� 2 + 1 = 3, see (5.5).

Example 10.2 (unordered trees). We have assumed that our trees are ordered,
but it is possible to consider unordered labelled rooted trees too by imposing
a random order on the set of children of each node. Note �rst thatfor ordered
trees, the ordering of the children implicitly yields a labelling of all nodesas
in Section 6. Hence, any ordered tree withn nodes can be explicitly labeled by
1; : : : ; n in exactly n! ways, and a uniformly random labelled ordered rooted tree
is the same as a uniformly random unlabelled ordered rooted tree witha random
labelling. (For unordered trees, a uniformly random labelled tree is di�erent
from a uniformly random unlabelled tree. We consider only labelled unordered
trees here. In fact, unlabelled unordered trees are not simply generated trees;
more formally, there is no weight sequence such that the corresponding simply
generated random tree, with the orderings of the children of eachnode ignored,
is a uniformly random unlabelled unordered tree.)

An unordered labelled rooted tree with outdegreesdi corresponds to
Q

i di !
di�erent ordered labelled rooted trees. If we take wk = 1 =k!, we give each of
these ordered trees weight

Q
i di !� 1, so their total weight is 1. Hence, the simply

generated random tree with the weight sequence (1=k!) yields, by ignoring the
orderings of the children of each node, a uniformly random unordered labelled
rooted tree.
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In this sense, a uniformly random unordered labelled rooted tree is equivalent
to a simply generated random tree with wk = 1 =k!, and with a minor abuse of
notation, we may say that a uniformly random unordered labelled rooted tree
is simply generated (with wk = 1 =k!).

The number of unordered labelledunrooted trees with n nodes isnn � 2, see
e.g. [103, Section 5.3], a result given by Cayley [22] and known as Cayley's
formula. (Although attributed by Cayley to Borchardt [ 17] and even earlier
found by Sylvester [104], see e.g. [103, p. 66].) Equivalently, the number of
unordered labelled rooted trees withn nodes isnn � 1. Hence random such trees
are sometimes calledCayley trees. However, this name is also used for regular
in�nite trees.

We have, with wk = 1 =k!,

�( t) =
1X

k=0

tk

k!
= et (10.6)

and

	( t) =
t� 0(t)
�( t)

= t: (10.7)

Thus � = 1 and 	( � ) = 1 yields � = 1. Hence (7.1) yields the canonical
probability weight sequence

� k =
e� 1

k!
; k > 0: (10.8)

In other words, the uniformly random labelled unordered rooted tree is (equiva-
lent to) the conditioned Galton{Watson tree with Poisson o�spring d istribution
� � Po(1). (Any other Poisson distribution yields an equivalent weight sequence,
and thus the same conditioned Galton{Watson tree.)

The size-biased random variableb� in (5.2) has the distribution

P(b� = k) = k� k =
e� 1

(k � 1)!
; k > 1; (10.9)

thus b� � 1 has also the Poisson distribution Po(1), i.e.,b� � 1 d= � . (It is only for

a Poisson distribution that b� � 1 d= � .)
We have � 2 := Var � = � 	 0(� ) = 1 and E b� = � 2 + 1 = 2, cf. ( 8.1) and (5.5).
The partition function is given by

Zn (� ) = P(jT j = n) =
nn � 1e� n

n!
: (10.10)

This is a special case of theBorel distribution in (12.29) below; Borel [18] proved
a result equivalent to (10.10) for a queueing problem, see also Otter [93], Tanner
[107], Dwass [36], Tak�acs [106], Pitman [99], Example 12.6 and Theorem 15.5
below. Equivalently, using (4.3),

Zn (w) = en Zn (� ) =
nn � 1

n!
: (10.11)
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Recall that Zn is de�ned by the sum (2.5) over unlabelled ordered rooted trees;
if we sum over labelled ordered rooted trees, we obtainn! Zn , which by the
argument above corresponds to weight 1 on each labelled unordered rooted tree;
i.e., the number of labelled unordered rooted trees isn! Zn (w) = nn � 1. Thus
(10.11) is equivalent to Cayley's formula for the number of unordered trees given
above.

By (10.11), the generating function Z (z) is
P 1

n =1 nn � 1zn =n!, known as the
the tree function; see (12.22){( 12.25) in Example 12.6.

Example 10.3 (binary trees I) . The namebinary tree is used in (at least) two
di�erent, but related, meanings. The �rst version (Drmota [ 33, Section 1.2.1]),
sometimes calledfull binary tree or strict binary tree , is an ordered rooted tree
where every node has outdegree 0 or 2. We obtain a uniformly random full
binary tree by taking the weight sequence withw0 = w2 = 1, and wk = 0 for
k 6= 0 ; 2. Note that this weight sequence has span 2; this is the standard example
of a weight sequence with span> 1. As a consequence, a full binary tree of size
n exists only if n is odd. (This is easily seen directly; see Corollary15.6 for a
general result.)

We have
�( t) = 1 + t2 (10.12)

and

	( t) =
t� 0(t)
�( t)

=
2t2

1 + t2 : (10.13)

Thus � = 1 , � = 2 (cf. Lemma 3.1(v)), and 	( � ) = 1 yields � = 1. Hence (7.1)
yields the canonical probability weight sequence

� k = 1
2 ; k = 0 ; 2: (10.14)

In other words, the random full binary tree is the conditioned Galton{Watson
tree with o�spring distribution � = 2 X where X � Be(1=2). (In the Galton{
Watson tree T , thus each node gets either twins or no children, each outcome
with probability 1 =2.)

The size-biased random variableb� has P(b� = 2) = 1 by ( 10.14) and (5.2), so
b� = 2 and b� � 1 = 1 a.s.

We have � 2 := Var � = 1 and E b� = � 2 + 1 = 2, cf. ( 8.1) and (5.5).

Example 10.4 (binary trees II) . The second version of abinary tree (Drmota
[33, Example 1.3]) is a rooted tree where every node has at most oneleft child
and at most oneright child. Thus, each outdegree is 0, 1 or 2; if there are two
children they are ordered, and, moreover, if there is only one child,it is marked
as either left or right. (There is a one-to-one correspondence between binary
trees of this type with n nodes and the full binary trees in Example10.3 with
2n + 1 nodes, mapping a binary tree T to a full binary tree T 0, where T 0 is
obtained from T by adding 2� d external nodesat every node with outdegreed;
conversely, we obtainT by deleting all leaves inT 0 and keeping only the nodes
that have outdegree 2 inT 0 (the internal nodes).)
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There are thus two types of nodes with outdegree 1, but only one type each
of nodes with outdegrees 0 or 2. If we ignore the type of child at each node
with only one child, we obtain an ordered tree with all outdegrees6 2, and
each such tree withn1 nodes of degree 1 corresponds to 2n 1 binary trees. This
number equals the weight given by the weight sequencew0 = 1, w1 = 2, w2 = 1,
and wk = 0 for k > 3, i.e., wk =

� 2
k

�
. Hence, a simply generated random tree

with this weight sequence has the same distribution as the ordered tree obtained
from a uniformly distributed random binary tree; conversely, we may obtain a
uniformly distributed random binary tree by taking a simply generated random
tree with wk =

� 2
k

�
and randomly labelling each single child as left or right.

In this sense, we may say that a uniformly distributed random binary tree is
(equivalent to) a simply generated random tree with wk =

� 2
k

�
.

The choicewk =
� 2

k

�
yields

�( t) = 1 + 2 t + t2 = (1 + t)2 (10.15)

and

	( t) =
t� 0(t)
�( t)

=
2t

1 + t
: (10.16)

Thus � = 1 , � = 2, and 	( � ) = 1 yields � = 1. Hence (7.1) yields the canonical
probability weight sequence

� k =
1
4

�
2
k

�
; k > 0: (10.17)

In other words, a uniformly random binary tree of this type is (equivalent to)
the conditioned Galton{Watson tree with binomial o�spring distribut ion � �
Bi(2; 1=2). (Any other distribution Bi(2 ; p), 0 < p < 1, is equivalent and yields
the same conditioned Galton{Watson tree.)

The size-biased random variableb� has by (5.2) P(b� = 1) = P(b� = 2) = 1
2 ;

thus b� � 1 � Bi(1; 1=2).
We have � 2 := Var � = 1 =2 and E b� = � 2 + 1 = 3 =2, cf. (8.1) and (5.5).

Example 10.5 (Motzkin trees) . A Motzkin tree is a ordered rooted tree with
each outdegree6 2. The di�erence from Example 10.4 is that there is only one
type of a single child. Thus we count such trees and obtain uniformly random
Motzkin trees by taking w0 = w1 = w2 = 1 and wk = 0, k > 3. (We thus have
the same set of trees as in Example10.4, but di�erent probability distributions
on it.)

We have
�( t) = 1 + t + t2 (10.18)

and
	( t) =

1 + 2t
1 + t + t2 : (10.19)

Thus � = 1 , � = 2, and 	( � ) = 1 yields � = 1. Hence (7.1) yields the canonical
probability weight sequence

� k = 1
3 ; k = 0 ; 1; 2: (10.20)
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In other words, a uniformly random Motzkin tree is the conditioned Galton{
Watson tree with o�spring distribution � uniform on f 0; 1; 2g.

The size-biased random variableb� has, by (5.2) and (10.20), the distribution
P(b� = 1) = 1

3 , P(b� = 2) = 2
3 ; thus b� � 1 � Bi(1; 2=3).

We have � 2 := Var � = 2 =3 and E b� = � 2 + 1 = 5 =3, cf. (8.1) and (5.5).

Example 10.6 (d-ary trees). In a d-ary tree, each node hasd positions where a
child may be attached, and there is at most one child per position. (Trees with
children attached at di�erent positions are regarded as di�erent t rees.) This
generalises the binary trees in Example10.4, which is the special cased = 2.

Sincek children may be attached in
� d

k

�
ways (with a given order), the argu-

ment in Example 10.4 shows that a uniformly random d-ary tree is equivalent
to a simply generated random tree withwk =

� d
k

�
. We have

�( t) = (1 + t)d (10.21)

and

	( t) =
t� 0(t)
�( t)

=
dt

1 + t
: (10.22)

Thus � = 1 , � = ! = d, and 	( � ) = 1 yields � = 1 =(d � 1). Hence (7.1) yields
the canonical probability weight sequence

� k =
�

d
k

�
(d � 1)d� k d� d =

�
d
k

� � 1
d

� k � d � 1
d

� d� k
; k > 0: (10.23)

In other words, a uniformly random d-ary tree is (equivalent to) the condi-
tioned Galton{Watson tree with binomial o�spring distribution � � Bi( d;1=d).
(Any other distribution Bi( d; p), 0 < p < 1, is equivalent and yields the same
conditioned Galton{Watson tree.)

The size-biased random variableb� has the distribution

P(b� = k) = k� k =
�

d � 1
k � 1

� � 1
d

� k � 1� d � 1
d

� d� k
; k > 1; (10.24)

thus b� � 1 has the Binomial distribution Bi( d � 1; 1=d).
We have � 2 := Var � = 1 � 1=d and E b� = � 2 + 1 = 2 � 1=d, cf. (8.1) and

(5.5).

Example 10.7. Let � be a real constant and letwk = ( k + 1) � � . (The case
� = 0 is Example 10.1.) Then � = 1.

If �1 < � 6 1, then �( � ) = 1 , so � = 1 by (3.10) and Lemma 3.1(iv).
If � > 1, then �( � ) = � (� ) < 1 and

� = 	(1) =
P

k kwk

�(1)
=

� (� � 1) � � (� )
� (� )

; � > 2; (10.25)

while � = 	(1) = 1 if � 6 2. Hence, see also Bialas and Burda [13],

� = 1 () � (� � 1) = 2 � (� ) () � = � 0 = 2 :47875: : : (10.26)
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and � > 1 () �1 < � < � 0. (It can be shown that � is a decreasing function
of � for � > 2.) In the case� = � 0, when thus � = 1, we further have � 2 = 1
by (8.1), since � 00(1) = 1 when � 6 3. This is thus case I� , in the notation of
Section 8.

In the case� > � 0 we thus have 0< � < 1, andTn converges to a random tree
bT with one node of in�nite degree, see Theorem7.1 and Section 5. If � 6 � 0,
then � > 1 and the limit tree bT is locally �nite. We thus see a phase transition
at � = � 0 when we vary � in this example.

Note, however, that there is nothing special with the rate of decreasek � � 0 ;
the value of � 0 depends on the exact form of our choice of the weightswk in
this example, and re
ects the values for smallk rather than the asymptotic
behaviour. For example, as remarked by Bialas and Burda [13], just changing
w0 would change� 0 to any desired value in (2; 1 ). With a di�erent w0, �(1) =
� (� ) � 1 + w0, and a modi�cation of ( 10.25) shows that the critical value � 0

yielding � = 1 is given by, see [13],

2� (� 0) � � (� 0 � 1) = 1 � w0: (10.27)

In particular, � 0 > 3 for w0 < 1 + � (2) � 2� (3) = 0 :24082: : : ; in this case, for
the critical � = � 0, we then have� = 1 and � 2 < 1 , see (8.1).

See [13] for some further analytic properties. For example, if � 0 < 3 (for
example whenw0 = 1), then, as � % � 0, we have 1� � � c(� 0 � � )1=( � 0 � 2) ,
where c > 0 and the exponent can take any value> 1.

Example 10.8. Take wk = k!. The generating function �( t) =
P 1

k=0 k! tk has
radius of convergence� = 0 so we are in case III, and there exists no equivalent
conditioned Galton{Watson tree.

Theorem 7.1 shows that Tn converges to an in�nite star, see Remark7.6 and
Example 5.1. This means that the root degree converges in probability to1 ,
and that the outdegree of any �xed child converges to 0 in probability, i.e.,
equals 0 w.h.p. Note, however, that we cannot draw the conclusion that the
outdegrees ofall children of the root are 0 w.h.p.; Theorem7.1 and symmetry
imply that the proportion of children of the root with outdegree > 0 tends to
0, but the number of such children may still be large. (Theorem7.11(ii) yields
the same conclusion.)

In fact, for this particular example wk = k!, it is shown by Janson, Jonsson
and Stef�ansson [64], using direct calculations, that w.h.p. all subtrees attached
to the root have size 1 or 2, and that the number of such subtreesof size 2 has
an asymptotic Poisson distribution Po(1). (This number thus w.h.p. equals N1,
and l2(Tn ), and also the number of children of the root with at least one child.)

Example 10.9. If we instead take wk = k!� with 0 < � < 1, then as in
Example 10.8, � = 0 and Tn converges to the in�nite star in Example 5.1. In this
case, if (for simplicity) 1=� =2 N1, then N i (Tn )=n1� i� p

�! i !� for 1 6 i 6 b1=� c,
while N i = 0 w.h.p. for each �xed i > b1=� c; furthermore, among the subtrees
attached to the root, w.h.p. there are subtrees of all sizes6 b1=� c + 1, and all
possible shapes of these trees, with the number of each type tending to 1 in



136 S. Janson

probability, but no larger subtrees. See Janson, Jonsson and Stef�ansson [64] for
details.

If we take wk = k!� with � > 1, then w.h.p. Tn is a star with n � 1 leaves, so
Nd = 0 for 1 6 d < n � 1.

See also the examples in Section12.

11. Balls-in-boxes

The balls-in-boxesmodel is a model for random allocation ofm (unlabelled)
balls in n (labelled) boxes; herem > 0 and n > 1 are given integers. The set of
possible allocations is thus

Bm;n :=
n

(y1; : : : ; yn ) 2 Nn
0 :

nX

i =1

yi = m
o

; (11.1)

where yi counts the number of balls in boxi .
We suppose again thatw = ( wk )1

k=0 is a �xed weight sequence, and we de�ne
the weight of an allocation y = ( y1; : : : ; yn ) as

w(y) :=
nY

i =1

wy i : (11.2)

Given m and n, we choose a random allocationBm;n with probability pro-
portional to its weight, i.e.,

P(Bm;n = y) =
w(y)

Z (m; n)
; y 2 Bm;n ; (11.3)

where the normalizing factor Z (m; n), again called the partition function , is
given by

Z (m; n) = Z (m; n; w) :=
X

y 2B m;n

w(y): (11.4)

We consider only m and n such that Z (m; n) > 0; otherwise Bm;n is unde-
�ned. See further Lemma 13.3. We write Bm;n = ( Y (m;n )

1 ; : : : ; Y (m;n )
n ), which

we usually simplify to (Y1; : : : ; Yn ), omitting the superscripts.

Remark 11.1. The names balls-in-boxes and balls-in-bins are used in the liter-
ature for several di�erent allocation models. We use balls-in-boxesfor the model
de�ned here, following e.g. Bialas, Burda and Johnston [14].

Example 11.2 (probability weights) . In the special case when (wk ) is a prob-
ability weight sequence, let � 1; � 2; : : : be i.i.d. random variables with the distri-
bution ( wk ). Then w(y) = P

�
(� 1; : : : ; � n ) = y

�
for any y = ( y1; : : : ; yn ). Hence

Z (m; n) = P
�
(� 1; : : : ; � n ) 2 Bm;n

�
= P(Sn = m); (11.5)
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where we de�ne

Sn :=
nX

i =1

� i : (11.6)

Moreover,Bm;n has the same distribution as (� 1; : : : ; � n ) conditioned on Sn = m:

(Y (m;n )
1 ; : : : ; Y (m;n )

n ) d=
�
(� 1; : : : ; � n ) j Sn = m

�
: (11.7)

We will use this setting (and notation) several times below. (This construction
of a random allocationBm;n is used by Kolchin [76] and there called thegeneral
scheme of allocation.)

We can replace the weight sequence by an equivalent weight sequence for the
balls-in-boxes model just as we did for the random trees in Section4.

Lemma 11.3. Suppose that we replace the weights(wk ) by equivalent weights
( ewk ) where ewk := abk wk with a; b > 0 as in (4.1). Then the weight of an
allocation y = ( y1; : : : ; yn ) 2 Bm;n is changed to

ew(y) = an bm w(y); (11.8)

and the partition function Z (m; n) = Z (m; n; w) is changed to

eZ (m; n) := Z (m; n; ew) = an bm Z (m; n); (11.9)

while the distribution of Bm;n is invariant. Thus Bm;n depends only on the
equivalence class of the weight sequence.

Proof. We have, by the de�nition ( 11.2),

ew(y) =
nY

i =1

ewy i =
nY

i =1

aby i wy i = an b
P n

i =1 y i

nY

i =1

wy i = an bm w(y); (11.10)

which shows (11.8), and (11.9) follows by (11.4). Consequently, for everyy 2
Bm;n , we have ew(y)=eZ (m; n) = w(y)=Z(m; n) so the probability P(Bm;n = y)
in (11.3) is unchanged, which completes the proof.

Our aim is to describe the asymptotic distribution of the random allocation
Bm;n as m; n ! 1 ; we consider the case whenm=n ! � for some real� , and
assume for simplicity that 0 6 � < ! = ! (w). (Cases with m=n ! 1 are
interesting too in some applications, for example in Section19.7, but will not
be considered here. See e.g. Kolchin, Sevast'yanov and Chistyakov[77], Kolchin
[76] and Pavlov [96] for such results in special cases.) The �rst step is to note
that the distribution of Bm;n = ( Y1; : : : ; Yn ) is exchangeable, i.e., invariant under
any permutation of Y1; : : : ; Yn . Hence, the distribution is completely described
by the (joint) distribution of the numbers of boxes with a certain nu mber of
balls, so it su�ces to study these numbers.

For any allocation of balls y = ( y1; : : : ; yn ) 2 Nn
0 , and k > 0, let

Nk (y ) := jf i : yi = kgj; (11.11)
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the number of boxes with exactly k balls. Thus, if y 2 Bm;n , then

1X

k=0

Nk (y ) = n and
1X

k=0

kN k (y ) = m: (11.12)

We thus want to �nd the asymptotic distribution of the random varia bles
Nk (Bm;n ), k = 0 ; 1; : : : . Our main result is the following, which will be proved
in Section 14 together with the other theorems in this section.

Theorem 11.4. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
with 0 6 � < ! .

(i) If � 6 � , let � be the unique number in[0; � ] such that 	( � ) = � .
(ii) If � > � , let � := � .

In both cases,0 6 � < 1 and 0 < �( � ) < 1 . Let

� k :=
wk � k

�( � )
; k > 0: (11.13)

Then (� k )k> 0 is a probability distribution, with expectation

� = 	( � ) = min( �; � ) (11.14)

and variance � 2 = � 	 0(� ) 6 1 . Moreover, for every k > 0,

Nk (Bm;n )=n
p

�! � k : (11.15)

If we regard the weight sequencew as �xed and vary � (i.e., vary m(n)), we
see that if 0 < � < 1 , there is a phase transition at � = � .

Note that � and � k in Theorem 7.1 are the same as in Theorem11.4 with
� = 1. Indeed, we will later see that the random trees correspond tom = n � 1
and thus � = 1.

Remark 11.5. The argument in Remark 7.4 extends and shows that� is the
(unique) minimum point in [0 ; � ] of �( t)=t� ; i.e.,

�( � )
� � = inf

06 t 6 �

�( t)
t � = inf

06 t< 1

�( t)
t � : (11.16)

By (11.15), there are roughly n� k boxes with k balls. Summing this ap-
proximation over all k we would get n boxes (as we should) with a total of
n

P 1
k=0 k� k = n� balls. However, the total number of balls is m � n� , so in

the case� > � , (11.14) shows that about n(� � � ) = n(� � � ) balls are missing.
Where are they?

The explanation is that the sums
P 1

k=0 kN k (Bm;n )=n = m are not uniformly
summable, and we cannot take the limit inside the summation sign. The \miss-
ing balls" appear in one or several boxes with very many balls, but these \giant"
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boxes are not seen in the limit (11.15) for �xed k. In physical terminology, this
can be regarded as condensation of part of the mass (= balls). We study this
further in Section 19.6. The simplest case is that there is a single giant box with
� (� � � )n balls. We shall see that this happens in an important case (Theo-
rem 19.34; see alsoBialas, Burda and Johnston [14, Fig. 1] for some numerical
examples), but that there are also other possibilities (Examples19.37{ 19.39).

Recall that for simply generated random trees, which as said abovecorre-
spond to balls-in-boxes with � = 1, Theorem 7.1 too shows that there is a
condensation when� < � = 1 (since then � < 1 by (7.2)); in this case the
condensation appears as a node of in�nite degree in the random limit tree bT of
type (T2), see Section5. We shall in Section20 study the relation between the
forms of the condensation shown in Theorems7.1 and 11.4.

We further have the following, essentially equivalent, version of Theorem11.4,
where we assume only thatm=n is bounded, but not necessarily convergent.

Theorem 11.6. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n 6 C for
someC < ! .

De�ne the function � : [0; 1 ) ! [0; 1 ] by � (x) := sup f t 6 � : 	( t) 6 xg.
Then � (x) is the unique number in [0; � ] such that 	( � (x)) = x when x 6 � ,
and � (x) = � when x > � ; furthermore, the function x 7! � (x) is continuous.
We have0 6 � (m=n) < 1 and 0 < �( � (m=n)) < 1 , and for every k > 0,

Nk (Bm;n )
n

�
wk (� (m=n)) k

�( � (m=n))
p

�! 0: (11.17)

Furthermore, for any C < ! , this holds uniformly as n ! 1 for all m = m(n)
with m=n 6 C.

Returning to the random variables Y1; : : : ; Yn , we have the following result,
which is shown by a physicists' proof by Bialas, Burda and Johnston [14].

Theorem 11.7. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
where0 6 � < ! , and let (� k )k> 0 be as in Theorem11.4. Then, for every ` > 1
and y1; : : : ; y` > 0,

P(Y (m;n )
1 = y1; : : : ; Y (m;n )

` = y` ) !
Ỳ

i =1

� y i : (11.18)

In other words, for every �xed `, the random variablesY1; : : : ; Y` converge jointly
to independent random variables with the distribution(� k )k> 0.

A more fancy way of describing the same result is that the sequenceY1; : : : ; Yn ,
arbitrarily extended to in�nite length, converges in distribution, as an element
of N1

0 , to a sequence of i.i.d. random variables with the distribution (� k )k> 0.
(See e.g. [15, Problem 3.7].)
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Remark 11.8. We have assumedw0 > 0 in the results above for convenience,
and because this condition is necessary when discussing simply generated trees,
which is our main topic. The balls-in-boxes model makes sense also when w0 = 0,
but this case is easily reduced to the casew0 > 0: Let � := min f k : wk > 0g. If
� > 0, then this means that each box has to have at least� balls. (In particular,
we needm > �n .) There is an obvious correspondence between such allocations
in Bm;n and allocations in Bm � �n;n obtained by removing � balls from each
box. Formally, if y = ( y1; : : : ; yn ) 2 Bm;n let ey = ( ey1; : : : ; eyn ) with eyi := yi � � ,
and note that if we shift the weight sequence toewk := wk+ � , then ew(ey) = w(y);
thus Bm;n has the same distribution asBm � �n;n for ew , with � extra balls added
in each box. It follows easily that the results above hold also in the case w0 = 0.
(We interpret wk � k =�( � ) for � = 0 as the appropriate limit value. Note also
that it is essential to use (3.2) and not (3.3) when w0 = 0.)

Remark 11.9. Similarly, we can always reduce to the case span(w) = 1: If
span(w) = d, then the number of balls in each box has to be a multiple ofd,
so we may instead consider an allocation ofm=d \superballs", each consisting
of d balls. This means replacing eachYi by Yi =d and using the weight sequence
(wdk ). We prefer, however, to allow a general span in our theorems, for ease of
our applications to simply generated trees where the corresponding reduction is
more complicated. (For trees, we may replace each branch by ad-fold branch.
In the probability weight sequence case with Galton{Watson trees,this replaces

the random variable � by (� 1 + � � � + � d)=d, with � i
d= � i.i.d., but the roots

gets a di�erent o�spring distribution �=d; more generally, for a general weight
sequencew, we replace �( t) by �( t1=d)d, except at the root where we use dif-
ferent weights with the generating function �( t1=d). We will not use this and
leave the details to the reader.)

Remark 11.10. We have assumedm=n ! � < ! in Theorems 11.4 and 11.7,
and similarly m=n 6 C < ! in Theorem 11.6; hence, for n large at least,
m=n < ! . In fact, m=n 6 ! is trivially necessary, see Lemma13.3. When ! < 1 ,
the only remaining case (assumingm=n converges) is thusm=n ! ! with
m=n 6 ! ; in this case, it is easy to see that (11.15) and (11.18) hold with � ! = 1
and � k = 0, k 6= ! . (This can be seen as a limiting case of (11.13) with � = 1 .)

In fact, if ! < 1 , so the boxes have a �nite maximum capacity! , then the
complementation yi 7! ! � yi yields a bijection of Bm;n onto B!n � m;n , which
preserves weights if (wk ) simultaneously is re
ected to ew := ( w! � k ). Hence,
Bm;n corresponds toB !n � m;n (for ew), and results for m=n ! ! < 1 follow
from results for m=n ! 0.

As said above, we do not consider the case! = 1 and m=n ! 1 , when the
average occupancy tends to in�nity.

12. Examples of balls-in-boxes

Apart from the connection with simply generated trees, see Section 15, the
balls-in-boxes model is interesting in its own right.
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We begin with three classic examples of balls-in-boxes, see e.g.Feller [38, II.5]
and Kolchin [76], followed by further examples from probability theory, combi-
natorics and statistical physics, including several examples of random forests.
(We return to these examples of random forests in Section19.7, where we study
the size of the largest tree in them.)

Example 12.1 (Maxwell{Boltzmann statistics; multinomial distribution) . Con-
sider a uniform random allocation of m labelled balls in n boxes. This is the
same as throwing m balls into n boxes at random, independently and with
each ball uniformly distributed. (In statistical mechanics, this is known as the
Maxwell{Boltzmann statistics.) It is elementary that the resulting random allo-
cation (Y1; : : : ; Yn ) has a multinomial distribution

P
�
(Y1; : : : ; Yn ) = ( y1; : : : ; yn )

�
= n� m

�
m

y1; : : : ; yn

�
= m! n� m

nY

i =1

1
yi !

: (12.1)

If we take wk = 1 =k!, we see that the probabilities in (12.1) and (11.3) are
proportional, and thus must be identical, so the weight sequence (1=k!) yields
the uniform random allocation of labelled balls. We see also that then

Z (m; n) = nm =m!: (12.2)

Alternatively, we may take a Poisson distribution Po(a): wk = ak e� a=k!;
this is an equivalent weight sequence for anya > 0. We see directly that then
Sn � Po(na) so (11.5) yields

Z (m; n) = ( na)m e� na =m!; (12.3)

hence we see again that (11.3) and (12.1) agree.
Comparing with Example 10.2, and using Lemma17.1below, we see that the

multiset of degrees in a random unordered labelled tree of sizen has exactly the
distribution obtained when throwing n � 1 balls into n boxes at random.

With wk = 1 =k! we have, as in Example10.2, (10.6){( 10.7) and � = ! =
� = 1 . Hence, if m=n ! � , we have � = � and thus � k = � k e� � =k!, so (� k )
is the Po(� ) distribution, which thus is the canonical choice of weights. (In the
asymptotic case; for givenm and n one might choose Po(m=n), cf. (11.17).)

Theorem 11.7 (or (11.15)) shows that if m=n ! � < 1 , then the asymptotic
distribution of the numbers of balls in a given urn is Po(� ).

The idea to study the multinomial distribution as a vector of i.i.d. Poisson
variables conditioned on the sum is an old one that has been used repeatedly,
see e.g. Kolchin, Sevast'yanov and Chistyakov [77], Holst [52, 53], Kolchin [76],
Janson [55].

Example 12.2 (Bose{Einstein statistics). The weight sequencewk = 1 yields
a uniform distribution over all allocations of m identical and indistinguishable
balls in n boxes; thus each allocation (Y1; : : : ; Yn ) 2 Bm;n has the same proba-
bility 1 =jBm;n j = 1 =

� n + m � 1
m

�
.
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This is known as Bose{Einstein statistics in statistical quantum mechanics;
it is the distribution followed by bosons. (In the simple case with no forces acting
on them.)

Comparing with Example 10.1, and using Lemma17.1below, we see that the
multiset of degrees in a random ordered tree of sizen has exactly the distribution
obtained by a uniform random allocation of n � 1 balls into n boxes.

As in Example 10.1 we have (10.1){( 10.2) and � = 1, � = 1 . If m=n ! � <
1 , then the equation 	( � ) = � is, by (10.2), �=(1 � � ) = � , and thus

� =
�

1 + �
: (12.4)

Any geometric distribution Ge( p) with 0 < p < 1 is a weight sequence equiv-
alent to (wk ), and (12.4) shows that the canonical choice (7.1) is, using (10.1),

� k = (1 � � )� k =
� k

(� + 1) k+1 ; (12.5)

which is the distribution Ge(1 � � ) = Ge(1 =(� + 1)). By Theorem 11.7, this is
also the asymptotic distribution of balls in a given urn.

See also Holst [52, 53] and Kolchin [76].

Example 12.3 (Fermi{Dirac statistics) . The other type of particles in statisti-
cal quantum mechanics isfermions; they exclude each other (thePauli exclusion
principle ) so all allocations of them have to satisfyYi 6 1, i.e., Yi 2 f 0; 1g. A
random allocation uniform among all such possibilities is known asFermi{Dirac
statistics; this is thus equivalent to a uniform random choice of one of the

� n
m

�

subsets ofm boxes.
We obtain this distribution by the choice w0 = w1 = 1 and wk = 0 for k > 2;

thus
�( t) = 1 + t (12.6)

and
	( t) =

t
1 + t

: (12.7)

We have � = 1 and � = ! = 1. (Formally, ( 12.6) is the cased = 1 of ( 10.21),
but note that we assumed > 2 in Example 10.6.)

If m=n ! � < 1, we thus have a rather trivial example of the general theory
with �=(1 + � ) = � and thus

� =
�

1 � �
; (12.8)

and (� k ) = (1 � �; �; 0; 0; : : : ), i.e., the Bernoulli distribution Be( � ). (Any
Bernoulli distribution Be( p) with 0 < p < 1 is equivalent.)

Since ! = 1, the corresponding conditioned Galton{Watson tree is trivially
the deterministic path Pn , a case which we have excluded above.

Example 12.4 (P�olya urn [ 53]). Consider a multicolour P�olya urn containing
balls of n di�erent colours, see Eggenberger and P�olya [37]. Initially, the urn
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contains a > 0 balls of each colour. Balls are drawn at random, one at a time.
After each drawing, the drawn ball is replaced together with b > 0 additional
balls of the same colour. (It is natural to take a and b to be integers, but the
model is easily interpreted also for arbitrary reala; b > 0, see e.g. [58].)

Make m draws, and let Yi be the number of times that a ball of colour i is
drawn; then (Y1; : : : ; Yn ) is a random allocation in Bm;n .

A straightforward calculation, see [37, 66, 53], shows that

P
�
(Y1; : : : ; Yn ) = ( y1; : : : ; yn )

�

=
�

m
y1; : : : ; yn

� Q n
i =1 a(a + b) � � � (a + ( yi � 1)b)

na(na + b) � � � (na + ( m � 1)b)

=

Q n
i =1

� a=b+ y i � 1
y i

�

� na=b + m � 1
m

� :

(12.9)

Hence, as noted by Holst [53], this equals the random allocation given by the
weights

wk =
�

a=b+ k � 1
k

�
= ( � 1)k

�
� a=b

k

�
; k = 0 ; 1; : : : : (12.10)

Note that the case a = b yields wk = 1 and the uniform random allocation in
Example 12.2 (Bose{Einstein statistics). We have

�( t) =
1X

k=0

�
a=b+ k � 1

k

�
tk = (1 � t)� a=b; (12.11)

with radius of convergence� = 1, and thus

	( t) =
a
b

�
t

1 � t
: (12.12)

Hence,� = 	(1) = 1 , and for any � 2 [0; 1 ),

� =
b�

a + b�
: (12.13)

The equivalent probability weight sequences are, by Lemma4.1, given by

tk wk

�( t)
=

�
a=b+ k � 1

k

�
tk (1 � t)a=b; 0 < t < 1; (12.14)

which is the negative binomial distribution NBin( a=b;1� t) (where the parameter
a=bis not necessarily an integer). The canonical choice, which by Theorems11.4
and 11.7 is the asymptotic distribution of the number of balls of a given colour,
is NBin(a=b;1� � ) = NBin( a=b; a=(a+ b� )). See also Holst [53] and Kolchin [76].

Note that the caseb = 0 (excluded above) means drawing with replacement;
this is Example 12.1, which thus can be seen as a limit case. (This corresponds

to the Poisson limit NBin( a=b; a=(a + b� )) d�! Po(� ) as b ! 0.)
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Example 12.5 (drawing without replacement). Consider again an urn with
balls of n colours, with initially a balls of each colour. (This time, a > 1 is an
integer.) Draw m balls without replacement, and let as aboveYi be the number
of drawn balls of colour i . (The casea = 1 yields the Fermi{Dirac statistics in
Example 12.3.)

Formally, this is the caseb = � 1 of Example 12.4, and a similar calculation
shows that

P
�
(Y1; : : : ; Yn ) = ( y1; : : : ; yn )

�
=

Q n
i =1

� a
y i

�

� na
m

� ; (12.15)

hence this is the random allocation given by the weights

wk =
�

a
k

�
; k = 0 ; 1; : : : (12.16)

We have thus �( t) = (1 + t)a , exactly as in Example 10.6, with d = a.
The equivalent probability weight sequences are the binomial distributions

Bi( a; p), 0 < p < 1, and the canonical choice is, for 0< � < a , (� k ) = Bi( a; �=a ),
i.e.

� k =
�

a
k

� �
�
a

� k �
a � �

a

� a� k

=
�

a
k

�
� k (a � � )a� k

aa : (12.17)

See also Holst [53] and Kolchin [76].
Note that taking the limit as a ! 1 , we obtain drawing with replacement,

which is Example 12.1; this corresponds to the Poisson limit Bi(a; �=a ) d�!
Po(� ) as a ! 1 .

Example 12.6 (random rooted forests [76]). Consider labelled rooted forests
consisting of n unordered rooted trees with togetherm nodes, all of which are
labelled. (Thus m > n.) We may assume that then roots are labelled 1; : : : ; n;
let Ti be the tree with root i and let t i := jTi j. Then the node setsV(Ti ) form a
partition of f 1; : : : ; mg, so

P n
i =1 t i = m and (t1; : : : ; tn ) is an allocation in Bm;n ,

with each t i > 1. Furthermore, given (t1; : : : ; tn ) 2 Bm;n with all t i > 1, the
node setsV (Ti ) can be chosen in

� m � n
t 1 � 1;:::;t n � 1

�
ways, and givenV (Ti ), the tree

Ti can by Cayley's formula be chosen int t i � 2
i ways. (The trees are rooted but

the roots are given.) Hence, the number of forests with the allocation (t1; : : : ; tn )
is

�
m � n

t1 � 1; : : : ; tn � 1

� nY

i =1

t t i � 2
i = ( m � n)!

nY

i =1

t t i � 2
i

(t i � 1)!
= ( m � n)!

nY

i =1

t t i � 1
i

t i !
:

(12.18)
Hence, a uniformly random labelled rooted forest corresponds to arandom al-
location Bm;n with the weight sequence

wk =
kk � 1

k!
; k > 1; and w0 = 0 : (12.19)

Note that here w0 = 0 unlike almost everywhere else in the present paper; in
the notation of Remark 11.8, we have� = 1. (As discussed in Remark11.8, we
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can reduce to the casew0 > 0 by considering (t1 � 1; : : : ; tn � 1), which is an
allocation in Bm � n;n ; this means that we count only non-root nodes. We prefer,
however, to keep the setting above withw0 = 0, noting that the results above
still hold by Remark 11.8.)

If F r
m;n denotes the number of labelled rooted forests withm labelled nodes

of which n are given as roots, then (12.18) implies

F r
m;n = ( m � n)! Z (m; n): (12.20)

It is well-known that F r
m;n = nmm � n � 1, a formula also given by Cayley [22],

see e.g. [103, Proposition 5.3.2] or [99]; thus

Z (m; n) =
nmm � n � 1

(m � n)!
: (12.21)

We have

�( t) :=
1X

k=1

kk � 1

k!
tk = T(t); (12.22)

the well-known tree function (known by this name since it is the exponential
generating function for rooted unordered labelled trees, cf. Example 10.2). Note
that T(z) satis�es the functional equation

T(z) = zeT (z) ; (12.23)

see e.g. [40, Section II.5]. Equivalently,

z = T(z)e� T (z) ; (12.24)

which by di�erentiation leads to

T 0(z) =
T(z)

z(1 � T (z))
: (12.25)

Hence,

	( t) :=
t� 0(t)
�( t)

=
1

1 � T(t)
: (12.26)

By (12.22) and Stirling's formula, �( t) has radius of convergence� = e� 1.
Furthermore, (12.24) implies that �( � ) = T(e� 1) = 1. Hence, (12.26) yields
� = 	( � ) = 1 , and if 1 6 � < 1 , then � = 	( � ) is solved by

T(� ) = 1 �
1
�

=
� � 1

�
(12.27)

and thus, using (12.24),

� =
� � 1

�
e� ( � � 1)=� : (12.28)
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The probability weight sequences equivalent to (wk ) are by Lemma 4.1 given
by, substituting x = T(t), and thus t = xe� x by (12.24),

pk =
tk

T(t)
wk =

kk � 1tk

T(t)k!
=

(kx)k � 1e� kx

k!
; k > 1; (12.29)

where 06 t 6 e� 1 and thus 0 6 x 6 1. This is known as aBorel distribution ;
it appears for example as the distribution of the sizejT j of the Galton{Watson
tree with o�spring distribution Po( x). (This was �rst proved by Borel [ 18]. It
follows by Theorem15.5below, with the probability weight sequence Po(x); see
also Otter [93], Tanner [107], Dwass [36], Tak�acs [106], Pitman [99].) It follows
that the random rooted forest considered here has the same distribution as
the forest de�ned by a Galton{Watson process with starting with n individuals
(the roots) and Po(x) o�spring distribution, conditioned to have total size m;
cf. Example 12.8 below. See further Kolchin [76] and Pavlov [96].

In particular, the choice x = 1 ( t = e� 1) in ( 12.29) yields the equivalent
probability weight sequence

ewk = e� k wk =
kk � 1e� k

k!
; k > 1; (12.30)

which by Stirling's formula satis�es the asymptotic power-law

ewk �
1

p
2�

k � 3=2; as k ! 1 : (12.31)

Moreover, the canonical distribution for a given � > 1 is, using (12.28),

� k =
kk � 1� k

T(� )k!
=

kk � 1

k!

�
� � 1

�

� k � 1

e� k ( � � 1)=� : (12.32)

By Theorems11.4and 11.7, and Remark11.8, this is the asymptotic distribution
of the size of a given (or random) tree in the forest, sayT1. The asymptotic
distribution of jT1j is thus the distribution of the size jT j of a Galton{Watson
tree with o�spring distribution Po(1 � 1=� ). Moreover, T1 is, given its sizejT1j,
uniformly distributed over all trees on jT1j nodes, and the same is true for the

Poisson Galton{Watson tree T by Example 10.2. Consequently, T1
d�! T as

n ! 1 with m=n ! � . (We may regard T1 as an ordered tree, ordering the
children of a node e.g. by their labels.)

The same random allocationBm;n also describes the block lengths in hashing
with linear probing; see Janson [56]. Indeed, there is a one-to-one correspondence
between hash tables and rooted forests, see e.g. Knuth [75, Exercise 6.4-31] and
Chassaing and Louchard [24].

Example 12.7 (random unrooted forests). Consider labelled unrooted forests
consisting of n trees with together m nodes, all of which are labelled. (Thus
m > n.) We may assume that then trees are labelledT1; : : : ; Tn ; let t i := jTi j.
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As in Example 12.6, the node setsV(Ti ) form a partition of f 1; : : : ; mg, soP n
i =1 t i = m and (t1; : : : ; tn ) is an allocation in Bm;n , with each t i > 1. In the

unrooted case, given (t1; : : : ; tn ) 2 Bm;n with all t i > 1, the node setsV (Ti )
can be chosen in

� m
t 1 ;:::;t n

�
ways, and givenV(Ti ), the tree Ti can by Cayley's

formula be chosen int t i � 2
i ways. Hence, the number of unrooted forests with

the allocation (t1; : : : ; tn ) is

�
m

t1; : : : ; tn

� nY

i =1

t t i � 2
i = m!

nY

i =1

t t i � 2
i

t i !
: (12.33)

Hence, a uniformly random labelled unrooted forest corresponds to a random
allocation Bm;n with the weight sequence

wk =
kk � 2

k!
; k > 1; and w0 = 0 : (12.34)

As in Example 12.6, we havew0 = 0, but this is no problem by Remark 11.8.
If F u

m;n denotes the number of labelled unrooted forests withm labelled nodes
and n labelled trees, then (12.33) implies

F u
m;n = m! Z (m; n): (12.35)

There is no simple general formula forF u
m;n , as there is for the rooted forests in

Example 12.6, and hence no simple formula forZ (m; n). Asymptotics are given
by Britikov [ 20]. (See Example18.16for one case. The asymptotic formula when
m=n ! � > 2 follows similary from Theorem 19.34(ii), and when m=n ! � < 2
with m = �n + o(

p
n) from Theorem 18.12.)

We have

�( t) :=
1X

k=1

kk � 2

k!
tk = T(t) � 1

2 T(t)2; (12.36)

whereT(t) is the tree function in (12.22). (The latter equality is well-known, see
e.g. [40, II.5.3]; it can be shown e.g. by showing that both sides have the same
derivative T(t)=t; there are also combinatorial proofs.) Hence, using (12.25),

	( t) :=
t� 0(t)
�( t)

=
T(t)
�( t)

=
1

1 � T(t)=2
; (12.37)

cf. the similar (12.26) in the rooted case.
As for (12.22), � has the radius of convergence� = e� 1, but now, by (12.37),

� = 	( � ) = 2 is �nite, so there is a phase transition at � = 2. The parameter
� is by the de�nition in Theorem 7.1 and (12.37) given by T(� ) = 2 � 2=� =
2(� � 1)=� for � 6 2; thus, using (12.24),

� =

(
2 � � 1

� e� 2( � � 1)=� ; � 6 2:

e� 1; � > 2:
(12.38)
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The probability weight sequences equivalent to (wk ) are by Lemma 4.1 given
by, again substituting t = xe� x or x = T(t),

pk =
kk � 2tk

T(t)(1 � T (t)=2)k!
=

x(kx)k � 2e� kx

(1 � x=2)k!
; k > 1; (12.39)

where 06 t 6 e� 1 and thus 0 6 x 6 1. In particular, taking x = 1 ( t = e� 1),
we obtain the equivalent probability weight sequence

ewk = 2 wk e� k =
2kk � 2e� k

k!
; k > 1; (12.40)

which by Stirling's formula satis�es the asymptotic power-law

ewk �
2

p
2�

k � 5=2; as k ! 1 : (12.41)

Moreover, the canonical distribution for a given � > 1 is, by (12.38) and (12.39),
for k > 1,

� k =
kk � 2� k

T(� )(1 � T (� )=2)k!
=

8
<

:

k k � 2

k ! �
�

2 � � 1
�

� k � 1
e� 2k ( � � 1)=� ; � 6 2;

2k k � 2 e� k

k ! ; � > 2:
(12.42)

By Theorems11.4and 11.7, and Remark11.8, this is the asymptotic distribution
of the size of a given (or random) tree in the forest, sayT1.

We shall see in Theorem19.49 that the phase transition at � = 2 is seen
clearly in the size of the largest tree in the forest: ifm=n ! � < 2, then the
largest tree is of sizeOp (log n), while if m=n ! � > 2, then there is a unique
giant tree of size (� � 2)n + op (n); for details see Theorems19.34 and 19.49,
and, more generally,  Luczak and Pittel [83]. This is thus an example of the
condensation discussed after Theorem11.4 (and similar to the condensation in
Theorem 7.1 when � < 1).

Example 12.8 (simply generated forests and Galton{Watson forests). A simply
generated forestis a sequence (T1; : : : ; Tn ) of rooted trees, with weight

w(T1; : : : ; Tn ) :=
nY

i =1

w(Ti ); (12.43)

where w(Ti ) is given by (2.3), for some �xed weight sequencew. A simply
generated random forestwith n trees and m nodes, wheren and m are given
with m > n, is such a forest chosen at random, with probability proportional
to its weight. Note that in the special casen = 1, this is the same as a simply
generated random tree de�ned in Section2. More generally, for anyn, a simply
generated random forest (T1; : : : ; Tn ) is, conditioned on the sizesjT1j; : : : ; jTn j,
a sequence of independent simply generated random trees with thegiven sizes
(all de�ned by the same weight sequencew). Moreover, the sizes (jT1j; : : : ; jTn j)
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form an allocation in Bm;n , and it is easily seen that this is a random allocation
Bm;n de�ned by the weight sequence (Zk )1

k=0 , whereZk is the partition function
(2.5) for simply generated trees with weight sequencew (and Z0 = 0).

A simply generated random forest can thus be obtained by a two-stage pro-
cess, combining the constructions in Sections2 and 11. Note that equivalent
weight sequencesw yield equivalent weight sequences (Zk ) by (4.3), and thus
the same simply generated random forest.

In the special case whenw is a probability weight sequence, we also de�ne
a Galton{Watson forest with n trees, for a givenn, as a sequence (T1; : : : ; Tn )
of n i.i.d. Galton{Watson trees; it describes the evolution of a Galton{Wat son
process started withn particles. (It can also be seen as a single Galton{Watson
tree T with the root chopped o�, conditioned on the root degree beingn, pro-
vided that this root degree is possible.) Note that the probability distribution of
the forest is given by the weights in (12.43). Hence, in the probability weight se-
quence case, the simply generated random forest equals theconditioned Galton{
Watson forest with n trees and m nodes, de�ned as a Galton{Watson forest
with n trees conditioned on the total size beingm; in other words, it describes
a Galton{Watson process started with n particles conditioned on the total size
being m.

Random forests of this type are studied by Pavlov [96], see also Flajolet and
Sedgewick [40, Example III.21].

For example, taking wk = 1 =k!, we have by (10.11) Zk = kk � 1=k!, k >
1; this is the weight sequence used in Example12.6, so we obtain the same
random allocation of tree sizes as there; moreover, given the treesizes, the
trees are uniformly random labelled unordered rooted trees by Example 10.2.
Consequently, for this weight sequence, the simply generated random forest is
the random labelled forest with unordered rooted trees in Example12.6. The
same random forest is obtained by the equivalent probability weight sequence
wk = xk e� x =k!, with 0 < x 6 1, so it equals also the conditioned Galton{Watson
forest with o�spring distribution Po( x), cf. Example 12.6.

Another example is obtained by takingwk = 1 for all k > 0. Then every forest
has weight 1, so the this simply generated random forest is a uniformly random
forest of ordered rooted trees. (Anordered rooted forest.) By Example 10.1,
the weight sequence (Zk ) is then given by the Catalan numbers in (2.1): Zk =
Ck � 1 = (2 k � 2)!=(k! (k � 1)!), k > 1.

Further examples are given by starting with the other examples of random
trees in Section10.

We shall see in Theorem18.11that if the weight sequencew is as in Theo-
rem 7.1, and further span(w) = 1, � > 1 and � 2 < 1 , then

Zk �
�

p
2�� 2

�
�( � )

�

� k

k � 3=2: (12.44)

Recalling Z (�= �( � )) = � by (7.6), we may replaceZk by the equivalent proba-
bility weight sequence
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eZk :=
Zk

Z (�= �( � ))

�
�

�( � )

� k

=
Zk

�

�
�

�( � )

� k

�
1

p
2�� 2

k � 3=2; (12.45)

so we have the asymptotic behavioureZk � ck� 3=2 for every such weight sequence
w, where only the constant c = 1 =

p
2�� 2 depends onw. This explains why

random forests of this type have similar asymptotic behaviour, in contrast to
the unrooted forests in Example 12.7 which are given by random allocations
de�ned by a weight sequence� ck� 5=2, see (12.41); see further Example12.10.

Example 12.9. Let, as in Example10.7, wk = ( k +1) � � for some real constant
� . Then � = 1. As shown in Example 10.7, � = 1 if � 6 2, and � < 1 if � > 2;
in the latter case, � is given by (10.25). This example is studied further in e.g.
Bialas, Burda and Johnston [14].

Example 12.10 (power-law). More generally, suppose thatwk � ck� � as
k ! 1 , for some real constant� and c > 0, i.e., that wk asymptotically satis-
�es a power-law. Qualitatively, we have the same behaviour as in Examples10.7
and 12.9, but numerical values such as the critical� in (10.26) will in general
be di�erent.

We repeat some easy facts: �rst,� = 1, ! = 1 and span(w) = 1.
If �1 < � 6 1, then �( � ) = �(1) = 1 ; hence� = 1 by Lemma 3.1(iv).
If 1 < � 6 2, then �( � ) < 1 but � 0(� ) =

P 1
k=0 kwk = 1 ; hence again

� = 	( � ) = 1 by (3.11).
On the other hand, if � > 2, then �(1) < 1 and � 0(1) < 1 , and thus � < 1

by (3.11). Summarising:
� < 1 () � > 2: (12.46)

In the case� > 2, there is thus a phase transition when we vary� .
Suppose� > 2, so � < 1 . If � > � , then � = � = 1, and the canonical

distribution ( � k ) is by (11.13) given simply by � k = wk =�(1). This distribution
then has mean� = � < 1 by (11.14); since � k � k � � as k ! 1 , the variance
� 2 = 1 if 2 < � 6 3, while � 2 < 1 when � > 3.

Note that Examples 12.6 and 12.7 with random forests are of this type,
provided we replacewk by the equivalent ewk := e� k wk ; Stirling's formula shows
that ewk � ck� � where � = 3 =2 for rooted forests and� = 5 =2 for unrooted
forests, see (12.31) and (12.41) (with a di�erent choice of constant factor in the
latter). The di�erent values of � explains the di�erent asymptotical behaviours
of these two types of random forests: by the results above, thetail behaviour
of wk implies that � = 1 for rooted forests but � < 1 for unrooted forests, as
we have shown by explicit calculations in Examples12.6 and 12.7. Recall that
this means that there is a phase transition and condensation for high m=n in
the unrooted case but not in the rooted case.

More generally, (12.45) shows that simply generated random forests under
weak assumptions have the same power-law behaviour of the weightsequence
with � = 3 =2 as the special case of (unordered) rooted forests in Example12.6.
Thus � = 1 and there is no phase transition. (At least not in the rangem =
O(n) that we consider. Pavlov [96] show a phase transition atm = �( n2).)
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Example 12.11 (unlabelled forests). Consider, as Pavlov [97], rooted forests
consisting of n rooted unlabelled unordered trees, assuming that the trees, or
equivalently the roots, are labelled 1; : : : ; n, but otherwise the nodes are unla-
belled. A uniformly random forest of this type with m nodes can be seen as
balls-in-boxes with the weight sequence (tk ), where tk is the number of un-
labelled unordered rooted trees withk nodes. In this case there is no simple
formula for the generating function �( z), but there is a functional equation,
from which it can be shown that tk � c1k � 3=2� � k , where � � 0:3382 as usual is
the radius of convergence of �(z) and c1 � 0:4399, see Otter [92] or, e.g., Dr-
mota [33, Section 3.1.5]. Furthermore, �( � ) = 1; thus ( tk � k ) gives an equivalent
probability weight sequence with tk � k � c1k � 3=2 ask ! 1 . The asymptotic be-
haviour of the weight sequence is thus the same as for labelled rooted forests in
Example 12.6, and more generally for Galton{Watson forests (under weak con-
ditions) in Example 12.8, and we expect the same type of asymptotic behaviour
in spite of the fact that the unlabelled forest is not simply generated; this is seen
in detail in Pavlov [ 96] for the size of the largest tree. In particular, we have
� = 1 by Example 12.10and (12.46), and thus there is no phase transition at
�nite � .

Similarly, Bernikovich and Pavlov [12] consideredunrooted forests consist-
ing of n unordered trees labelled 1; : : : ; n with a total of m unlabelled nodes.
These are described by the weight sequence (�tk ) where �tk is the number of un-
rooted unlabelled unordered trees withk nodes. Again, there is no no simple
formula for the generating function ��( z) :=

P
k

�tk zk , but there is the relation
��( z) = �( z) � 1

2 �( z)2 + 1
2 �( z2) found by Otter [ 92], which leads to the asymp-

totic formula �tk � c2k � 5=2� � k , where � is as above andc2 � 0:5347, see also
Drmota [33, Section 3.1.5]. In this case, (�tk � k =��( � )) gives an equivalent proba-
bility weight sequence which is� (c2=��( � ))k � 5=2 as k ! 1 , which is the same
type of asymptotic behaviour as for the weight sequence for labelled unrooted
forests in Example12.7; we thus expect the same type of asymptotic behaviour
as for those forests. In particular,� < 1 by Example 12.10; a numerical calcu-
lation gives � := � �� 0(� )=��( � ) � 2:0513, see Bernikovich and Pavlov [12].

Note that both types of \unlabelled" forests considered here have the n trees
labelled 1; : : : ; n (but the individual nodes are not labelled). Completely unla-
belled forests cannot be described by balls-in-boxes (as far as we know), since
the number of (non-isomorphic) ways to label the trees depends on the forest.

Example 12.12 (the backgammon model). The model with wk = 1 =k! for
k > 1 as in Example12.1, but w0 > 0 arbitrary, was considered by Ritort [100]
and Franz and Ritort [ 41, 42], who called it the backgammon model. We have

�( t) = w0 +
1X

k=1

tk

k!
= et + w0 � 1 (12.47)

and

	( t) =
tet

�( t)
=

t
1 + ( w0 � 1)e� t : (12.48)
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Thus � = � = 1 . The equation 	( � ) = � can be written

(� � � )e� = ( w0 � 1)�; (12.49)

and the solution can be written

� = � + W
�
(w0 � 1)�e � � �

= � � T
�
(1 � w0)�e � � �

; (12.50)

where W (z) is the Lambert W function [26] de�ned by W (z)eW (z) = z and
T(z) is the tree function in (12.22) (analytically extended to all real z < e � 1);
note that W (z) = � T(� z) by (12.24), see [26].

The canonical probability weight sequence (11.13) is, using (12.48) and
	( � ) = � ,

� k =
� k

�( � )k!
=

�� k � 1e� �

k!
=

�
�

�
� k e� �

k!
; k > 1; (12.51)

and � 0 = �� � 1e� � w0.

Example 12.13 (random permutations and recursive forests). Consider per-
mutations of f 1; : : : ; mg with exactly n cycles. We want to list the cycle lengths
in some order; for convenience, we consider all possible orders andde�ne a cycle-
labelled permutation to be a permutation with the cycles labelled 1; : : : ; n, in
arbitrary order. Given a cycle-labelled permutation with exactly n cycles, letyi

be the length of the i :th cycle. Then (y1; : : : ; yn ) is an allocation in Bm;n with
eachyi > 1, and for each such (y1; : : : ; yn ) 2 Bm;n , the number of cycle-labelled
permutations with yi elements in cyclei is

�
m

y1; : : : ; yn

� nY

i =1

(yi � 1)! = m!
nY

i =1

1
yi

; (12.52)

since there are (y � 1)! cycles with y given elements. Consequently, a uniformly
random permutation of f 1; : : : ; mg with exactly n cycles (listed in random order,
say) corresponds to a random allocationBm;n de�ned by the weight sequence

wk =
1
k

; k > 1; and w0 = 0 : (12.53)

Note that here, as in Example 12.6, w0 = 0, and Remark 11.8 applies with
� = 1.

The number of permutations with n (unlabelled) cycles is by (12.52)

m! Z (m; n)=n!; (12.54)

where we divide byn! in order to ignore the labelling above.
The same balls-in-boxes model withwk = 1 =k, k > 1, also describesrandom

recursive forests, see Pavlov and Loseva [98].
We have

�( t) =
1X

k=1

tk

k
= � log(1 � t) (12.55)
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with radius of convergence� = 1 and

	( t) :=
t� 0(t)
�( t)

=
t

� (1 � t) log(1 � t)
; (12.56)

so � = 	(1) = 1 , cf. Example 12.10(� = 1).
The equivalent probability weight sequences are by Lemma4.1 given by

pk =
xk

kj ln(1 � x)j
; 0 < x < 1; (12.57)

with probability generating function �( xz)=�( x) = log(1 � xz)=log(1 � x).
This distribution is called the logarithmic distribution . See further Kolchin, Sev-
ast'yanov and Chistyakov [77] and Kolchin [76].

By Remark 11.8, we obtain results on random permutations with m cycles
as m=n ! � 2 [1; 1 ), see for example Kazimirov [71]. However, it is of greater
interest to consider random permutations without constraining the number of
cycles. This can be done using methods similar to the ones used here,but
is outside the scope of the present paper; see e.g. Kolchin, Sevast'yanov and
Chistyakov [77], Kolchin [76] and Arratia, Barbour and Tavar�e [ 7]. Note that
even if we condition on the number of cycles, a typical random permutation of
f 1; : : : ; mg has about logm cycles, so we are interested in the casen � logm
and thus m=n ! 1 , which we do not considered here.

Other random objects that can be decomposed into components can be stud-
ied similarly, for example random mappings [76]; our results apply only to ran-
dom objects with a given number of components (in some cases), but similar
methods are useful for the general case; see Kolchin [76] and Arratia, Barbour
and Tavar�e [ 7].

13. Preliminaries

Proof of Lemma 3.1. (i) : Since � 0(t) =
P 1

k=0 kwk tk � 1 has the same radius of
convergence� as 	, and �( t) > w0 > 0 for t > 0, it is immediate that 	 is
well-de�ned, �nite and continuous for t 2 [0; � ). Furthermore, if 0 < t < � , then
t	 0(t) is by (4.10) the variance of a non-degenerate random variable, and thus
t	 0(t) > 0. Hence 	( t) is increasing, completing the proof of(i) .

(ii) : If �( � ) = 1 , the claim is just the de�nition of 	( � ) in Section 2. (Note
that the existence of the limit follows from (i) .) We may thus assume �( � ) < 1 ;
then t % � implies �( t) ! �( � ) < 1 and � 0(t) ! � 0(� ) 6 1 by monotone
convergence, and thus

	( t) :=
t� 0(t)
�( t)

!
� � 0(� )
�( � )

= 	( � ):

(iii) : The case� = 0 is trivial, and the case � > 0 follows from (i) and (ii) .
(iv) : For any ` > 0,

	( t) � ` =

P 1
k=0 (k � `)wk tk
P 1

k=0 wk tk
>

P ` � 1
k=0 (k � `)wk tk
P 1

k=0 wk tk
: (13.1)
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If � < 1 and �( � ) = 1 , we thus have,

	( t) � ` >
O(1)
�( t)

! 0 ast % �;

so 	( � ) � ` > 0. Since` is arbitrary, this shows 	( � ) = 1 , proving (iv) .
(v) : If � = 1 , choose` with w` > 0. Then (13.1) implies

	( t) � ` >
� `

P ` � 1
k=0 wk tk

w` t ` ! 0 ast ! 1 ,

so 	( 1 ) � ` > 0. Hence, 	( 1 ) > supf ` : w` > 0g = ! .
Conversely,

	( t) =
P !

k=0 kwk tk
P !

k=0 wk tk
6 ! for all t 2 [0; � ),

so 	( � ) 6 ! , completing the proof of (v) .
Finally, ( 3.9) follows from (i) and (ii) .

Remark 13.1. Alternatively, the fact that 	( t) is increasing can also be seen
as follows: Let 0 < a < b < � and let Y be a random variable with dis-
tribution P(Y = k) = wk ak =�( a) (cf. Lemma 4.2). Then 	( a) = E Y and
	( b) = E

�
Y (b=a)Y

�
=E(b=a)Y , so 	( a) 6 	( b) is equivalent to the correlation

inequality E
�
Y (b=a)Y

�
> E Y E(b=a)Y , which says that the two random vari-

ables f (Y ) := Y and g(Y) := ( b=a)Y are positively correlated; it is well-known
that this holds (as long as the expectations are �nite) for any two increasing
functions f and g and any Y , see [50, Theorem 236] where the result is at-
tributed to Chebyshev, and it is easy to see that, in fact, strict inequality holds
in the present case. (The latter inequality is an analogue of Harris' correlation
inequality [51] for variables Y with values in a discrete cubef 0; 1gN ; in fact, the
inequalities have a common extension to variables with values inRN . Cf. also
the related FKG inequality, which extends Harris' inequality; see for example
[48] where also its history is described.)

For a third proof that 	( t) is increasing, note that (3.7) shows that 	 is
(strictly) increasing if and only if log �( ex ) is (strictly) convex, which is an easy
consequence of H•older's inequality, (See e.g. [31, Lemma 2.2.5(a)] and note that
�( ex ) =

P 1
k=0 ekx wk is the moment generating function of (wk ) in the case that

(wk ) is a probability weight sequence.)

Lemma 3.1 shows that 	 is a bijection [0 ; � ] ! [0; 	( � )] = [0 ; � ], so it has
a well-de�ned inverse 	 � 1 : [0; � ] ! [0; � ]. We extend this inverse to [0; 1 ) as
follows.

Lemma 13.2. For x > 0 de�ne � = � (x) 2 [0; 1 ] by

� (x) := sup f t 6 � : 	( t) 6 xg: (13.2)
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Then � (x) is the unique number in [0; � ] such that 	( � (x)) = x when x 6 � ,
and � (x) = � when x > � . Furthermore, the function x 7! � (x) is continuous,
and, for any x > 0,

	( � (x)) = min( x; � ): (13.3)

If x < ! , then 0 6 � (x) < 1 and 0 < �( � (x)) < 1 . On the other hand, if
x > ! , then � (x) = �( � (x)) = 1 .

Proof. By Lemma 3.1 and the de�nition ( 3.10), 	 is an increasing continuous
bijection [0; � ] ! [0; 	( � )] = [0 ; � ]; thus if 0 6 x 6 � , there exists a unique
	 � 1(x) 2 [0; � ] with 	(	 � 1(x)) = x, and (13.2) yields � (x) = 	 � 1(x). Since 	
is a continuous bijection of one compact space onto another, its inverse 	 � 1 :
[0; � ] ! [0; � ] is continuous too; thusx 7! � (x) = 	 � 1(x) is continuous on [0; � ].
Furthermore, (13.3) holds for x 6 � .

If x > � = 	( � ), then (13.2) yields � (x) = � , and thus 	( � (x)) = 	( � ) = � ,
so (13.3) holds in this case too.

Combining the two cases we see thatx 7! � (x) is continuous on [0; 1 ), and
that ( 13.3) holds.

Now suppose thatx < ! and � (x) = 1 . Since� (x) 6 � we then have� = 1 ,
and Lemma 3.1(v) yields 	( � (x)) = 	( � ) = ! > x , contradicting ( 13.3). Thus
� (x) < 1 when x < ! . Furthermore, if �( � (x)) = 1 , then � (x) = � , since
�( t) < 1 for t < � , and thus �( � ) = 1 . If further x < ! , and thus � = � (x) <
1 as just shown, then Lemma3.1(iv) would give 	( � (x)) = 	( � ) = 1 , again
contradicting ( 13.3) since x < 1 . Thus �( � (x)) < 1 when x < ! .

Conversely, if x > ! , then ! < 1 , so �( t) is a polynomial and � = 1 .
Lemma 3.1(v) shows that 	( � ) = ! 6 x, so (13.2) yields � (x) = � = 1 , whence
also �( � (x)) = �( 1 ) = 1 .

Next, we investigate whenZ (m; n) > 0. We say than an allocation (y1; : : : ; yn )
of m balls in n boxes isgood if it has positive weight, i.e., if yi 2 supp(w) for
every i . Thus, Z (m; n) > 0 if and only if there is a good allocation inBm;n ; in
this case, the random allocationBm;n is de�ned and is always good.

Provided m is not too small or too large, the m and n for which good allo-
cations exist are easily characterised; the following lemma shows that a simple
necessary condition also is su�cient. (The exact behaviour for very small m is
complicated. The largestm such that Z (m; n) = 0 for all n is called the Frobe-
nius number of the set supp(w); it is a well-known, and in general di�cult,
problem to compute this, see e.g. [10]. The case whenm is close to !n (with
�nite ! ) is essentially the same by the symmetry in Remark11.10.)

Lemma 13.3. Suppose thatw0 > 0.

(i) If Z (m; n) > 0, then span(w) j m and 0 6 m 6 !n .
(ii) If ! < 1 , then there exists a constantC (depending onw) such that if

span(w) j m and C 6 m 6 !n � C, then Z (m; n) > 0.
(iii) If ! = 1 , then for each C0 < 1 , there exists a constantC (depending on

w and C0) such that if span(w) j m and C 6 m 6 C0n, then Z (m; n) > 0.
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Proof. (i): Z (m; n) > 0 if and only if m =
P n

i =1 yi for someyi with wy i > 0,
i.e., yi 2 supp(w). This implies 0 6 yi 6 ! and span(w) j yi for each i , and the
necessary conditions in (i) follow immediately.

(ii): We may for convenience assume that span(w) = 1, see Remark 11.9;
then, by (3.3), supp(w) n f 0g is a �nite set of integers with greatest common
divisor 1. Thus, by a well-known theorem by Schur, see e.g. [109, 3.15.2] or [40,
Proposition IV.2], there is a constant C1 such that every integerm > C1 can be
written as a �nite sum m =

P
i yi with yi 2 supp(w) (repetitions are allowed);

i.e. we have a good allocation ofm balls in some number`(m) boxes. Choose
one such allocation for eachm 2 [C1; C1 + ! ), and let C2 be the maximum
number of boxes in any of them.

If C1 6 m 6 !n � C2! , let a := b(m � C1)=! c. Then m � a! 2 [C1; C1 + ! ),
and has thus a good allocation in at mostC2 boxes. We adda boxes with !
balls each, and have obtained a good allocation ofm balls using at most

C2 + a = C2 + b(m � C1)=! c 6 C2 + b(!n � C2! � C1)=! c 6 n

boxes. Hence we may add empty boxes and obtain a good allocation inBm;n .
(Recall that 0 2 supp(w).) Thus Z (m; n) > 0 when C1 6 m 6 !n � C2! .

(iii): We may again assume span(w) = 1. Let K be a large integer and
consider the truncated weight sequencew (K ) = ( w(K )

k ) de�ned by

w(K )
k :=

(
wk ; k 6 K;

0; k > K ;
(13.4)

we assume thatK 2 supp(w) and that K is so large that K > C0 + 1 and
span(w (K ) ) = span(w) = 1. Then ! (w (K ) ) = K , and (ii) shows that for some
C3, if C3 6 m 6 Kn � C3, then Z (m; n; w) > Z (m; n; w (K ) ) > 0. Hence, if
C3 6 m 6 C0n and Z (m; n) = 0, then Kn � C3 < m 6 C0n 6 (K � 1)n,
and thus n < C 3, whencem < C 0C3. Consequently, if C0C3 6 m 6 C0n, then
Z (m; n) > 0.

Remark 13.4. In the case! = 1 , it is not always true that there is a constant
C such that Z (m; n) > 0 wheneverm > C. For example, suppose thatwk = 1
when k = 0 or k = j ! for somej > 0, and wk = 0 otherwise. Then Z (m; n) = 0
when m = ( n + 1)! � 1 and n > 2.

Remark 13.5. Lemma 13.3 is easily modi�ed for the casew0 = 0; if � :=
minf k : wk > 0g as in Remark 11.8, then the necessary condition (i) is�n 6
m 6 !n and span(w) j (m � �n ), and again this is su�cient if m stays away
from the boundaries.

14. Proofs of Theorems 11.4{ 11.7

We now prove the theorems in Section11, which we for the reader's convenience
repeat �rst.
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Theorem 11.4. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
with 0 6 � < ! .

(i) If � 6 � , let � be the unique number in[0; � ] such that 	( � ) = � .
(ii) If � > � , let � := � .

In both cases,0 6 � < 1 and 0 < �( � ) < 1 . Let

� k :=
wk � k

�( � )
; k > 0: (11.13)

Then (� k )k> 0 is a probability distribution, with expectation

� = 	( � ) = min( �; � ) (11.14)

and variance � 2 = � 	 0(� ) 6 1 . Moreover, for every k > 0,

Nk (Bm;n )=n
p

�! � k : (11.15)

Theorem 11.6. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n 6 C for
someC < ! .

De�ne the function � : [0; 1 ) ! [0; 1 ] by � (x) := sup f t 6 � : 	( t) 6 xg.
Then � (x) is the unique number in [0; � ] such that 	( � (x)) = x when x 6 � ,
and � (x) = � when x > � ; furthermore, the function x 7! � (x) is continuous.
We have0 6 � (m=n) < 1 and 0 < �( � (m=n)) < 1 , and for every k > 0,

Nk (Bm;n )
n

�
wk (� (m=n)) k

�( � (m=n))
p

�! 0: (11.17)

Furthermore, for any C < ! , this holds uniformly as n ! 1 for all m = m(n)
with m=n 6 C.

Theorem 11.7. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
where0 6 � < ! , and let (� k )k> 0 be as in Theorem11.4. Then, for every ` > 1
and y1; : : : ; y` > 0,

P(Y (m;n )
1 = y1; : : : ; Y (m;n )

` = y` ) !
Ỳ

i =1

� y i : (11.18)

In other words, for every �xed `, the random variablesY1; : : : ; Y` converge jointly
to independent random variables with the distribution(� k )k> 0.

We begin with some lemmas. First we state and prove a version of the local
central limit theorem (for integer-valued variables) that is convenient for our
application below. We will need it for a triangular array, where the variables we
sum depend onn.

We de�ne the span of an integer-valued random variable to be the span of
its distribution, de�ned as in ( 3.2).
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Lemma 14.1. Let � and � (1) ; � (2) ; : : : be integer-valued random variables with

� (n ) d�! � as n ! 1 , and let S(n )
n :=

P n
i =1 � (n )

i , where � (n )
i are independent

copies of � (n ) . Suppose further that� is non-degenerate, with spand and �nite
variance � 2 > 0, and that supn E j� (n ) j3 < 1 . If d > 1, we assume for simplicity
that d j � and d j � (n ) for each n.

Let m = m(n) be a sequence of integers that are multiples ofd, and assume
that E � (n ) = m(n)=n. Then, as n ! 1 ,

P(S(n )
n = m) =

d + o(1)
p

2�� 2n
: (14.1)

Proof. The proof uses standard arguments, see e.g.Kolchin [76, Theorem 1.4.2];
we only have to check uniformity in � (n ) of our estimates.

If the span d > 1, we may divide � , � (n ) and m by d, and reduce to the case
d = 1. Hence we assume in the proof that span(� ) = 1.

Let ' (t) := E ei t� and ' n (t) := E ei t� ( n )
be the characteristic functions of �

and � (n ) . Further, let e' n (t) := e� i tm=n ' n (t) be the characteristic function of
the centred random variable � (n ) � E � (n ) = � (n ) � m=n.

Then S(n )
n has characteristic function ' n (t)n , and thus, by the inversion for-

mula and a change of variables,

P(S(n )
n = m) =

1
2�

Z �

� �
e� imt ' n (t)n dt =

1
2�

Z �

� �
e' n (t)n dt

=
1

2�
p

n

Z �
p

n

� �
p

n
e' n (x=

p
n)n dx

=
1

2�
p

n

Z 1

�1
e' n (x=

p
n)n 1

�
jxj < �

p
n

	
dx:

(14.2)

Let � 2
n be the variance of� (n ) . Since E j� (n ) j3 are uniformly bounded, � 2

n <
1 ; moreover, the random variables� (n ) are uniformly square integrable and

it follows from � (n ) d�! � that � 2
n ! � 2. (See e.g.Gut [49, Theorems 5.4.2

and 5.4.9] for this standard argument.) In particular, � 2=2 6 � 2
n 6 2� 2 for all

su�ciently large n; we consider in the remainder of the proof only suchn.
Since e' n (t) is the characteristic function of � (n ) � E � (n ) which has mean 0

and, by assumption, an absolute third moment that is uniformly bounded, we
have by a standard expansion (see e.g. [49, Theorems 4.4.1])

e' n (t) = 1 � 1
2 � 2

n t2 + O(E j� (n ) j3 jt j3) = 1 � 1
2 � 2

n t2 + O(jt j3); (14.3)

uniformly in all n and t. In particular, for any �xed real x,

e' n (x=
p

n) = 1 �
� 2

n x2

2n
+ O(n� 3=2) = 1 �

� 2x2 + o(1)
2n

; (14.4)

and thus
e' n (x=

p
n)n ! e� � 2 x 2 =2: (14.5)
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We are aiming at estimating the integral in (14.2) by dominated convergence,
so we also need a suitable bound that is uniform inn.

We write (14.3) as
�
�
� e' n (t) � (1 � 1

2 � 2
n t2)

�
�
� 6 C1 jt j3: (14.6)

Let � := min f � � 1; � 2=8C1g > 0. Then, if jt j 6 � , recalling our assumption
� 2=2 6 � 2

n 6 2� 2, we have 1� 1
2 � 2

n t2 > 1 � � 2t2 > 0 and, by (14.6),

j e' n (t)j 6 1 � 1
2 � 2

n t2 + C1 jt j3 6 1 � 1
4 � 2t2 + C1�t 2 6 1 � 1

8 � 2t2: (14.7)

For � 6 jt j 6 � we claim that there exists n0 and � > 0 such that if n > n0

and � 6 jt j 6 � , then
j e' n (t)j 6 1 � �: (14.8)

In fact, if this were not true, then there would exist sequencesnk > k and
tk 2 [�; � ] (by symmetry, it su�ces to consider t > 0) such that j' n k (tk )j =
j e' n k (tk )j > 1 � 1=k. By considering a subsequence, we may assume thattk !

t1 as k ! 1 for some t1 2 [�; � ]. Since � n
d�! � , ' n k (t) ! ' (t) uniformly

for jt j 6 � , and thus ' n k (tk ) ! ' (t1 ). It follows that j' (t1 )j = 1 for some
t1 2 [�; � ], but this is impossible when span(� ) = 1, as is well-known (and
easily seen fromE ei t 1 ( � � � 0) = j' (t1 )j2 = 1, where � 0 is an independent copy of
� ). This contradiction shows that ( 14.8) holds.

We can combine (14.7) and (14.8); we let c1 := min f � 2=8; �=� 2g and obtain,
for n > n0,

j e' n (t)j 6 1 � c1t2 6 exp(� c1t2); jt j 6 �;

and thus
j e' n (x=

p
n)jn 6 exp(� c1x2); jxj 6 �

p
n:

This justi�es the use of dominated convergence in (14.2), and we obtain by
(14.5)

2�
p

n P(S(n )
n = m) =

Z 1

�1
e' n (x=

p
n)n 1

�
jxj < �

p
n

	
dx

!
Z 1

�1
e� � 2 x 2 =2 dx =

p
2�=� 2;

which yields (14.1). (Recall that we have assumedd = 1.)

Remark 14.2. A simple modi�cation of the proof shows that the result still
holds if the condition E � (n ) = m(n)=n is relaxed to m(n) = n E � (n ) + o(

p
n).

Furthermore, for any m = m(n), P(S(n )
n = m) 6 1

2�

R�
� � j e' n (t)jn dt, and it

follows by the proof above that

P(S(n )
n = m) 6

d + o(1)
p

2�� 2n
; (14.9)

uniformly in all m 2 Z.
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Moreover, both Lemma 14.1 and the remarks above hold, with only minor
modi�cations in the proof, also if the condition supn E j� (n ) j3 < 1 is relaxed to
uniform square integrability of � (n ) . In particular, if � (n ) = � , this assumption
is not needed at all; then the assumption� 2 < 1 is the only moment condition
that we need. (This is the classical local central limit theorem for discrete distri-
butions, see e.g.Gnedenko and Kolmogorov[46, x 49] or Kolchin [76, Theorem
1.4.2].)

We use Lemma14.1to obtain lower bounds of the (rather weak) type exp(o(n))
for P(Sn = m) in the case of a probability weight sequence, for suitablem. We
treat the cases� > 1 and � = 1 separately.

Lemma 14.3. Let w be a probability weight sequence with0 < w 0 < 1 and
� > 1. Let � 1; � 2; : : : be i.i.d. random variables with distribution w and let Sn :=P n

i =1 � i .
Assume that m = m(n) are integers that are multiples ofd := span(w), and

that m(n)=n ! E � 1. Then

P(Sn = m) = Z (m; n) = eo(n ) :

Proof. Let � := � 1 and � := E � = � 0(1) = 	(1). Since � > 1, we have� >
	(1) = � . Thus, by assumption, m=n ! � < � , so m=n < � for all large n; we
consider in the sequel only suchn. By Lemma 3.1 we may then de�ne � n 2 [0; � )
by 	( � n ) = m=n. Since 	 � 1 is continuous on [0; � ), and 	(1) = E � = � , we
have

� n = 	 � 1(m=n) ! 	 � 1(� ) = 1 as n ! 1 : (14.10)

Let � (n ) have the conjugate distribution

P(� (n ) = k) =
� k

n

�( � n )
wk ; k > 0; (14.11)

by Lemma 4.2 this is a probability distribution with expectation

E � (n ) = 	( � n ) = m=n: (14.12)

The conditions of Lemma 14.1 are easily veri�ed: Since � n ! 1 by (14.10), we

have P(� (n ) = k) ! wk = P(� = k) and thus � (n ) d�! � . Furthermore, taking
any � � 2 (1; � ) and considering onlyn that are so large that � n < � � ,

E j� (n ) j3 =
1X

k=0

k3 � k
n

�( � n )
wk 6

1
�(0)

1X

k=0

k3� k
� wk < 1 :

Furthermore, if d = span(� ), then wk > 0 =) d j k by (3.3); thus d j � and
d j � (n ) (a.s.). Lemma 14.1 thus applies, and if w (n ) denotes the distribution of
� (n ) in (14.11), then by (11.5) and (14.1),

Z (m; n; w (n ) ) = P
� nX

i =1

� (n )
i = m

�
�

d
p

2�� 2n
; (14.13)
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where� 2 := Var � . By (11.9), we haveZ (m; n; w (n ) ) = �( � n )� n � m
n Z (m; n), and

thus, recalling that � n ! 1 < � and hence �( � n ) ! �(1) = 1,

P(Sn = m) = Z (m; n) = � � m
n �( � n )n Z (m; n; w (n ) )

= exp
�
� m log� n + n log �( � n ) + log Z (m; n; w (n ) )

�

= exp
�
o(n)

�
:

Lemma 14.4. Let w be a probability weight sequence with0 < w 0 < 1 and
� = 1 . Let � 1; � 2; : : : be i.i.d. random variables with distribution w and let Sn :=P n

i =1 � i .
Assume that m = m(n) are integers that are multiples ofd := span(w), and

that m(n)=n ! � < 1 with � > E � 1. Then

P(Sn = m) = eo(n ) :

Proof. Let K be a large integer and consider the truncated weight sequence
w (K ) = ( w(K )

k ) de�ned by, as in (13.4),

w(K )
k :=

(
wk ; k 6 K;

0; k > K;
(14.14)

having generating function � K (t) =
P K

k=0 wk tk , and the corresponding 	 K (t) :=
t� 0

K (t)=� K (t). We assume that K is so large that span(w (K ) ) = span(w), and
that K > k for some k > � with wk > 0. (Such k > � exists since� < 1 .)
Thus the weight sequencew (K ) has, by Lemma 3.1(v), � (w (K ) ) = 	 K (1 ) =
! (w (K ) ) > � . Hence, by Lemma3.1 again, there exists� K 2 [0; 1 ) such that
	 K (� K ) = � . Thus the probability distribution � (K ) = ( � (K )

k ) de�ned by

� (K )
k :=

� k
K

� K (� K )
w(K )

k (14.15)

has expectation � . Since this distribution has �nite support it has radius of
convergence� K = 1 ; furthermore, m=n ! � by assumption. Hence Lemma14.3
applies to � (K ) and yields

Z (m; n; � (K ) ) = eo(n ) : (14.16)

By (11.9) and (14.15),

Z (m; n; � (K ) ) = � K (� K )� n � m
K Z (m; n; w (K ) ): (14.17)

Moreover, Z (m; n; w) > Z (m; n; w (K ) ) since wk > w(K )
k for each k. Hence, by

(14.16) and (14.17),

Z (m; n; w) > Z (m; n; w (K ) ) = � � m
K � K (� K )n Z (m; n; � (K ) )

= � � m
K � K (� K )n eo(n ) :

(14.18)
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This holds for every large �xed K .
If 0 < t < � = 1, then � K (t) ! �( t) and � 0

K (t) ! � 0(t) as K ! 1 , so
	 K (t) ! 	( t) < 	(1) = E � 1 6 � . Hence, for largeK , 	 K (t) < � = 	 K (� K ),
so � K > t . Consequently, lim infK !1 � K > 1.

On the other hand, if t > � = 1, let ` := d� e + 1 > � , and assumeK > `.
Then

	 K (t) =
P K

k=0 kwk tk

P K
k=0 wk tk

>
P K

k= ` `wk tk

P K
k=0 wk tk

= ` �
P ` � 1

k=0 `wk tk

� K (t)
! ` > �; (14.19)

asK ! 1 , since � K (t) ! �( t) = 1 . Hence, for largeK , 	 K (t) > � = 	 K (� K ),
and thus � K < t . Consequently, lim supK !1 � K 6 1.

Combining these upper and lower bounds, we have

� K ! 1; as K ! 1 :

If we take t < 1, we thus have for largeK , � K > t and hence � K (� K ) > � K (t).
Thus, lim inf K !1 � K (� K ) > lim K !1 � K (t) = �( t) for every t < 1, so

lim inf
K !1

� K (� K ) > �(1) = 1 :

Given any " > 0, we may thus takeK so large that � K < e " and � K (� K ) >
e� " . Then (14.18) yields

Z (m; n; w) > e� "m � "n + o(n ) > e� "m � 2"n

for large n. Since " is arbitrary and m = O(n), this shows Z (m; n; w) > eo(n ) ,
and the result follows sinceZ (m; n) 6 1 for any probability weight sequence by
(11.5).

We next prove Theorems11.4 and 11.6. Theorem 11.6 follows easily from
Theorem 11.4, so it may seem natural to prove Theorem11.4 �rst. However,
our proof of Theorem 11.4 uses in one case Theorem11.6 (for another case).
We will therefore �rst show that Theorem 11.6 follows from Theorem 11.4, and
then show Theorem11.4.

Proof of Theorem 11.6 from Theorem 11.4. We prove that Theorem 11.4 for
some weight sequence (wk ) implies Theorem 11.6 for the same weights. The
assertions about� follow from Lemma 13.2, so we turn to (11.17).

Consider a subsequence of (m(n); n). It su�ces to show that every such sub-
sequence has a subsubsequence such that (11.17) holds. (See e.g. [49, Section
5.7], [65, p. 12] or [15, Theorem 2.3] for this standard argument.)

Since m=n 6 C by assumption, we can select a subsubsequence such that
m=n ! � for some� 6 C < ! . Then Theorem 11.4applies and thus (along the
subsubsequence),

Nk (Bm;n )
n

�
wk (� (� )) k

�( � (� ))
=

Nk (Bm;n )
n

� � k
p

�! 0: (14.20)
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Furthermore, since m=n ! � and x 7! � (x) is continuous, � (m=n) ! � (� )
(along the subsubsequence); hence

wk (� (m=n)) k

�( � (m=n))
�

wk (� (� )) k

�( � (� ))
! 0: (14.21)

Combining (14.20) and (14.21), we see that (11.17) holds along the subsubse-
quence, which as said above completes the proof of (11.17).

That ( 11.17) holds uniformly is, in fact, automatic since we have shown it for
an arbitrary m(n) (although we stated it for emphasis): Let X m;n denote the
left-hand side of (11.17), and let " > 0. Choosem(n) as the integer m 2 [0; Cn]
that maximises P(jX m;n j > " ). Since (11.17) says that P(jX m (n ) ;n j > " ) ! 0,
we have supm 6 Cn P(jX m;n j > " ) ! 0.

Proof of Theorem 11.4. First, Lemma 13.2 shows that � de�ned by (i) and (ii)
is well-de�ned and equals � (� ) de�ned in Lemma 13.2; since � < ! we have
� < 1 and �( � ) < 1 . Further, ( 13.3) yields

	( � ) = min( �; � ): (14.22)

Since � < 1 and �( � ) < 1 , � k is well-de�ned by (11.13); furthermore,
by Lemma 4.2 and (14.22), ( � k ) is a probability distribution with mean and
variance as asserted.

We now turn to proving ( 11.15), the main assertion. We study three cases
separately.

Case (a): � > 0. Then � = ( � k ) is a probability weight sequence equivalent to
w = ( wk ), so we may replace (wk ) by ( � k ) without changing Bm;n . Note that
this changes� and � to � (� ) = � (w)=� and � (� ) = � (w)=� = 1 by ( 4.4) and
(4.5). We may thus assume that (wk ) equals the probability weight sequence
(� k ), and that � > � = 1. By ( 14.22), then 	(1) = min( �; � ).

We employ the notation of Example 11.2. Note that by ( 11.14),

E � 1 = 	(1) = min( �; � ) 6 �: (14.23)

Moreover, if � > 1, then � = 	( � ) > 	(1) by Lemma 3.1, so (14.22) shows that
in this case,

E � 1 = 	(1) = �: (14.24)

The allocation (� 1; : : : ; � n ) (with a random sum Sn ) consists ofn i.i.d. com-
ponents, so

Nk (� 1; : : : ; � n ) =
nX

i =1

1f � i = kg � Bi( n; � k ) (14.25)

has a binomial distribution. For every k and " > 0, we have by Cherno�'s
inequality, see e.g. [65, Theorem 2.1 or Remark 2.5],

P
�
jNk (� 1; : : : ; � n ) � n� k j > "n

�
6 exp(� c" n); (14.26)

for some constantc" > 0 depending on" .
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We condition on Sn = m, recalling that

Bm;n
d=

�
(� 1; : : : ; � n ) j Sn = m

�
: (14.27)

When � > 1 we apply Lemma 14.3, using m=n ! � and (14.24), and when
� = 1 we apply Lemma 14.4, using (14.23). In both cases we obtainP(Sn =
m) = exp( o(n)) and thus by (14.27),

P
�
jNk (Bm;n ) � n� k j > "n

�
= P

�
jNk (� 1; : : : ; � n ) � n� k j > "n j Sn = m

�

6
P

�
jNk (� 1; : : : ; � n ) � n� k j > "n

�

P(Sn = m)
6 exp

�
� c" n + o(n)

�
! 0:

Since" is arbitrary, this shows that

Nk (Bm;n )
n

� � k
p

�! 0

as asserted, which completes the proof when� > 0.

Case (b): � = 0 and � > 0. We write Nk for Nk (Bm;n ). By ( 11.13) we have
� 0 = 1 and � k = 0 for k > 0; hence, (11.15) says that N0=n

p
�! 1 and Nk =n

p
�!

0 for k > 0.
Since � < � , we are in case(i) , so � = 	( � ) = 	(0) = 0. In other words,

m=n ! 0. The result is trivial (and deterministic) in this case. We have

1
n

1X

k=1

Nk 6
1
n

1X

k=1

kN k =
m
n

! � = 0 : (14.28)

HenceNk =n ! 0 = � k for every k > 1. Moreover, (14.28) also implies

N0

n
=

n �
P 1

k=1 Nk

n
! 1 = � 0; (14.29)

which completes the proof when� = 0 < � .

Case (c): � = 0 . We write again Nk for Nk (Bm;n ), recalling that this is a
random variable. In this case� = 0 and � = � = 0 for every � > 0. By (11.13)
we thus have � 0 = 1 and � k = 0 for k > 0; hence, as in case (b), we have
to show that N0=n

p
�! 1 and Nk =n

p
�! 0 for k > 0. By assumption, m=n

converges, so the sequencem=n is bounded; let C be a large constant such
that m=n 6 C. Further, let K be a large integer; we assumeK > 2C and (for
simplicity) wK > 0. (Note that such K exist since! = 1 when � = 0.)

We say that a box is small if it contains at most K balls, and large otherwise.
Let N 0 :=

P K
0 Nk be the number of small boxes andM 0 :=

P K
0 kN k the number

of balls in them. Note �rst that by our assumptions, m=n 6 C < K= 2. Hence,

m > m � M 0 =
1X

K +1

kN k > K
1X

K +1

Nk = K (n � N 0) >
2m
n

(n � N 0): (14.30)
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Thus, n � N 0 6 n=2 and N 0 > n=2; in particular N 0 ! 1 . Moreover,

0 6
M 0

N 0 6
m

n=2
6 2C < K: (14.31)

The weight w(y) in ( 11.2) factorizes as the product over the small boxes
times the product over the large boxes. Thus, if we condition onM 0 and N 0,
and moreover on the set of theN 0 boxes that are small, then the allocations of
the small boxes and the large boxes are independent; moreover, the allocations
to the small boxes form a random allocation of the typeBM 0;N 0 for the truncated
weight sequencew (K ) given by (13.4) above. By assumption,wK > 0, and thus
the truncated sequence has! (K ) := ! (w (K ) ) = K .

The truncated weight sequencew (K ) has a polynomial generating function
� (K ) (t) =

P K
0 wk tk with an in�nite radius of convergence � (K ) = 1 . We have

already proved Theorem11.4 in this case, and thus Theorem11.6 also holds in
this case, by the proof above. Applying Theorem11.6 to the truncated weight
sequence and the allocations of small boxes we see that there exists a continuous
function � K : [0; K ) ! [0; 1 ) such that, conditioned on (M 0; N 0),

Nk

N 0 �
wk (� K (M 0=N0)) k

� (K )
�
� K (M 0=N0)

� p
�! 0; k 6 K: (14.32)

Moreover, (14.32) holds uniformly in all ( M 0; N 0) by Theorem 11.6and (14.31).
Hence, denoting the left-hand side of (14.32) by X , we have for every" > 0
P(jX j > " j M 0; N 0) 6 � (n), for some function � (n) ! 0. Taking the expecta-
tion, it follows that also P(jX j > " ) 6 � (n) ! 0, and thus (14.32) holds also
unconditionally. Thus,

Nk

N 0 =
wk (� K (M 0=N0)) k

� (K )
�
� K (M 0=N0)

� + op (1); k 6 K: (14.33)

By (14.31), M 0=N0 6 2C, and thus, using Lemma 13.2 and 2C < K =
! (w (K ) ), � K (M 0=N0) 6 � K (2C) < 1 . Hence, with C1 := � K (2C),

w0 6 � (K ) (� k (M 0=N0)) 6 � (K ) (C1) = C2;

say. Taking k = 0 in ( 14.33) we now �nd

N0

N 0 =
w0

� (K )
�
� K (M 0=N0)

� + op (1) >
w0

C2
+ op (1): (14.34)

SinceN 0 > n=2 this shows that there existsc1 > 0 (for examplec1 := w0=(3C2))
such that w.h.p.

N0

n
> c1: (14.35)

It follows further from ( 14.34) that we can invert ( 14.33) for k = 0 (since
x 7! x � 1 is continuous for x > 0); thus

N 0

N0
=

� (K )
�
� K (M 0=N0)

�

w0
+ op (1): (14.36)
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Multiplying ( 14.33) and (14.36) we �nd the simpler relation

Nk

N0
=

wk

w0
(� K (M 0=N0)) k + op (1); k 6 K: (14.37)

Let ` := min f k > 0 : wk > 0g be the smallest non-zero index with positive
weight, and de�ne a random variable by

� � :=
�

w0N `

w` N0

� 1=`

: (14.38)

It follows from ( 14.37), with k = `, that � � = � K (M 0=N0)+ op(1). Consequently,
(14.37) yields

Nk

N0
=

wk

w0
� k

� + op (1); k 6 K: (14.39)

We have so far worked with a �xed, largeK . However, the de�nition ( 14.38)
does not depend on the choice ofK , and sinceK may be chosen arbitrarily large,
we see that, in fact, (14.39) holds for every k > 0, with the same (random) � � .

Fix again K > 0, and sum (14.39) for k 6 K . This yields

n
N0

>
KX

0

Nk

N0
=

KX

0

wk

w0
� k

� + op (1) =
� (K ) (� � )

w0
+ op (1): (14.40)

Recall that N0=n > c1 w.h.p. by (14.35). We thus have from (14.40)

� (K ) (� � ) 6 w0
n

N0
+ op (1) 6 w0=c1 + 1 (14.41)

w.h.p. By assumption, � = 0, so �( t) = 1 for every t > 0. Hence, for every
" > 0 we have � (K ) (" ) ! �( " ) = 1 as K ! 1 , so we may chooseK with
� (K ) (" ) > w 0=c1 + 1. Then ( 14.41) shows that � � < " whp; since " > 0 is
arbitrary, this says that

� �
p

�! 0:

We substitute this in ( 14.39), and obtain Nk =N0
p

�! 0 for every k > 1; hence
also

Nk =n
p

�! 0; k > 1: (14.42)

Finally, we return to ( 14.30), and see that

K (n � N 0) 6 m 6 Cn: (14.43)

Let " > 0 and chooseK > C=" ; then (14.43) yields n � N 0 < "n and thus
N 0 > (1 � " )n. Further, by ( 14.42),

N0 = N 0 �
KX

1

Nk = N 0+ op (n) > (1 � " )n + op (n);

so w.h.p. N0 > (1 � 2" )n. This shows that N0=n
p

�! 1, which together with
(14.42) completes the proof in the case� = 0.
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This completes the proof of Theorem11.4, and thus also of Theorem11.6.

Proof of Theorem 11.7. Conditioned on the numbers Nk = Nk (Bm;n ), k =
0; 1; : : : , the numbers Y1; : : : ; Yn are obtain by placing N0 0's, N1 1's, . . . , in
(uniformly) random order; thus the conditional probability is

P(Y1 = y1; : : : ; Y` = y` j N0; N1; : : : ) =
Ỳ

i =1

Ny i � ci

n � i + 1
=

Ỳ

i =1

Ny i + O(1)
n + O(1)

;

(14.44)
whereci := jf j < i : yj = yi gj. By Theorem 11.4, this product converges in prob-
ability to

Q `
i =1 � y i as n ! 1 , and the result follows by taking the expectation

(using dominated convergence).

15. Trees and balls-in-boxes

The proofs of the results for random trees are based on a connection with the
balls-in-boxes model. This connection is well-known, see e.g. Otter [93], Dwass
[36], Kolchin [76], Pitman [99], but for completeness we give full proofs.

We consider a �xed weight sequencew = ( wk ) and the corresponding random
treesTn and random allocationsBm;n ; we write as aboveBm;n = ( Y1; : : : ; Yn ) =
(Y (m;n )

1 ; : : : ; Y (m;n )
n ).

We begin with some deterministic considerations. The idea is to regardthe
outdegrees of the nodes of a treeT as an allocation; we regard the nodes as both
balls and boxes, and ifv is a node, we put the children ofv as balls in box v.
There are two complications, which will be dealt with in detail below: we have
to specify an ordering of the nodes and we will not obtain all allocations.

Let T be a �nite tree, with jT j = n. Take the nodes in some prescribed order
v1; : : : ; vn , for de�niteness we use the depth-�rst order (this is the lexicographic
order on V1 ), and list the outdegrees asd1 = d+ (v1); : : : ; dn = d+ (vn ). We
call this the degree sequenceof T and denote it by �( T ) := ( d1; : : : ; dn ). Note
that the tree T can be reconstructed from (d1; : : : ; dn ), so T is determined by
�( T ) = ( d1; : : : ; dn ).

By (2.2), d1 + � � � + dn = n � 1, so (d1; : : : ; dn ) can be seen as an allocation
of n � 1 balls in n boxes: �( T ) = ( d1; : : : ; dn ) 2 Bn � 1;n . Consequently, � is an
injective map Tn ! B n � 1;n . Note also that � preserves the weight:

w(T) = w(�( T )) (15.1)

by the de�nitions ( 2.3) and (11.2). However, not every allocation corresponds
to a tree, so � is not onto. We begin by characterizing the image �( Tn ). We use
a simple and well-known extension of (2.2).

Lemma 15.1. Let T be a tree andT 0 a subtree with the same root. Let@T0 :=
f v 2 V (T) nV(T 0) : v � w for some w 2 T 0g be the set of nodes outsideT 0 with
a parent inside it. Then,

X

v2 T 0

d+
T (v) = jT 0j + j@T0j � 1: (15.2)
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Proof. The set of children of the nodes inT 0 consists of
�
V (T 0) n f og

�
[ @T0.

Lemma 15.2. A sequence(d1; : : : ; dn ) 2 Nn
0 is the degree sequence of a tree

T 2 Tn if and only if

kX

i =1

di > k; 1 6 k < n; (15.3)

nX

i =1

di = n � 1: (15.4)

Of course, (15.4) is just the requirement that ( d1; : : : ; dn ) 2 Bn � 1;n .

Proof. For any k 6 n, the nodesv1; : : : ; vk form a subtreeTk of T , and Lemma15.1
yields

kX

i =1

d+
T (vi ) = j@Tk j + k � 1; (15.5)

which yields (15.3) since j@Tk j > 1 when k < n .
Conversely, if (d1; : : : ; dn ) satis�es (15.3){( 15.4), a tree with degree sequence

(d1; : : : ; dn ) is easily constructed. (We construct the tree by assigning degrees
in depth-�rst order. First, v1 is the root and gets d1 children. Next, v2 is the
�rst child of the root and gets d2 children. If d2 > 0, then v3 is the �rst child
of v2, but if d2 = 0, we backtrack and let v3 be the second child ofv1; in any
case,v3 gets d3 children, and so on. The point is that (15.3) assures that the
construction will not stop before we haven nodes.)

The amazing fact is that for any allocation in Bn � 1;n , exactly one of its
cyclic shifts satis�es (15.3). (In particular, exactly 1 =n of all allocations satisfy
(15.3).) To see this, it is simplest to consider the sequence (di � 1)n

i =1 ; we state
a more general result that we will use later, see e.g. Tak�acs [105], Wendel [108],
Pitman [99].

Lemma 15.3. Let x1; : : : ; xn 2 f� 1; 0; 1; : : : g with x1 + � � � + xn = � r 6 0. For
j 2 Z, let x( j )

1 ; : : : ; x( j )
n be the cyclic shift de�ned byx( j )

i := x i + j with the index
taken modulon, and consider the corresponding partial sumsS( j )

k :=
P k

i =1 x( j )
i ,

k = 0 ; : : : ; n. Then there are exactlyr values ofj 2 f 1; : : : ; ng such that

S( j )
k > � r; 0 6 k < n: (15.6)

Note that S( j )
0 = 0 and S( j )

n = � r for every i . The condition (15.6) thus says
that the walk S( j )

0 ; : : : ; S( j )
n �rst reaches � r at time n. The caser = 0 is trivial:

sinceS( j )
0 = 0, ( 15.6) then is never satis�ed for k = 0.

Proof. We extend the de�nition of x j for all j 2 Z by taking the index modulo n;
thus x j + n = x j . We further de�ne Sk for all k 2 Z by S0 = 0 and Sk � Sk � 1 = xk ,
k 2 Z; thus Sk =

P k
i =1 x i when k > 0 and Sk = �

P 0
i = k+1 x i when k < 0. Then

Sk+ n = Sk � r for all k 2 Z, and S( j )
k = Sk+ j � Sj .
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Let further
M k := min

�1 <i 6 k
Si = min

k � n<i 6 k
Si ;

note that M k is �nite and M k+ n = M k � r . Moreover, M k+1 6 M k and M k+1 �
M k is 0 or � 1, sinceSk+1 = Sk + xk+1 > Sk � 1. We have

S( j )
k > � r; for 0 6 k < n () Sk+ j � Sj > � r; for 0 6 k < n

() Sk+ j + r > S j ; for 0 6 k < n

() Sk+ j � n > S j ; for 0 6 k < n

() Si > S j ; for j � n 6 i < j

() M j � 1 > S j

() M j � 1 > M j :

In each interval of n integers,M decreases byr in steps of 1, so there are exactly
r steps down, which completes the proof.

Corollary 15.4. If (d1; : : : ; dn ) 2 Bn � 1;n , then exactly one of then cyclic shifts
of (d1; : : : ; dn ) is the degree sequence�( T ) of a tree T 2 Tn .

Proof. Let x i := di � 1. Then
P k

i =1 x i =
P k

i =1 di � k, so (15.3) is equivalent
to

P k
i =1 x i > 0 for k < n , which for the shifted sequence is (15.6) with r = 1;

further,
P n

i =1 x i = n � 1 � n = � 1. Hence the result follows by Lemma15.3
with r = 1.

We now use our �xed weight sequence (wk ). We begin with the partition
function for simply generated trees. This was proved (in the probability weight
sequence case, which is no real loss of generality) by Otter [93], see also Dwass
[36]; an algebraic proof uses the Lagrange inversion formula [79], see e.g. Boyd
[19] and Drmota [33, Theorem 2.11]; Kolchin [76] gives a di�erent proof by
induction. See also Pitman [99] where the relation between di�erent approaches
is discussed.

Theorem 15.5.
Zn =

1
n

Z (n � 1; n):

Proof. By Corollary 15.4, the mapping (T; j ) 7! �( T )( j ) , where ( j ) denotes
a cyclic shift as in Lemma 15.3, is a bijection of Tn � f 1; : : : ; ng ! B n � 1;n .
Consequently, by (11.4), (15.1) and (2.5), since the weightw(y) is not changed
by cyclic shifts,

Z (n � 1; n) =
X

T 2 T n

nX

j =1

w
�
�( T )( j ) � =

X

T 2 T n

nw(�( T )) =
X

T 2 T n

nw(T) = nZ n :

Corollary 15.6. Suppose thatw0 > 0 and ! (w) > 2, with d := span(w) > 1.
If Zn > 0, then n � 1 (mod d). Conversely, for somen0 (depending onw), if
n � 1 (mod d) and n > n0, then Zn > 0.
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Proof. By Theorem 15.5, Zn > 0 () Z (n � 1; n) > 0. The result follows from
Lemma 13.3.

In the same way we can compute various probabilities for the randomtree
Tn . We begin with the root degreed+ (o); note that for any tree T, v1 is the root
o, so d+ (o) = d+ (v1) = d1.

Lemma 15.7. For any d > 0 and n > 2,

P(d+
Tn

(o) = d) =
n

n � 1
dP(Y (n � 1;n )

1 = d): (15.7)

Thus, the distribution of the root degreed+
Tn

(o) of Tn is the size-biased distribu-

tion of Y (n � 1;n )
1 .

Lemma 15.7 is a special case of Lemma15.9 below, but we prefer to study
this simpler case �rst because it shows the main ideas in the proof without the
complications (notational and others) in the more general version.

Proof. Consider an allocation (d1; : : : ; dn ) 2 Bn � 1;n ; if d1 = d, then d2; : : : ; dn

is an allocation in Bn � 1� d;n � 1. Furthermore, by Lemma 15.2, an allocation
(d2; : : : ; dn ) 2 Bn � 1� d;n � 1 is obtained by dropping the �rst term from the degree
sequence of a treeT 2 Tn with d1 = d if and only if

d +
kX

i =2

di > k; 1 6 k < n; (15.8)

or, equivalently,

kX

i =1

di +1 > k + 1 � d; 0 6 k < n � 1:

We use Lemma15.3 again, now with x i = di +1 � 1 and r = d and see that
for any (d2; : : : ; dn ) 2 Bn � 1� d;n � 1, exactly r = d of the n � 1 cyclic shifts of
d2; : : : ; dn satisfy (15.8). Thus, by considering all treesT with d1 = d and the
n � 1 cyclic shifts of d2; : : : ; dn , we obtain each allocation (d1; : : : ; dn ) 2 Bn � 1;n

with d1 = d exactly r = d times. (It is possible that some shifts of (d2; : : : ; dn )
coincide, but this does not matter.) Consequently, using (2.4) and (11.3), and
recalling d+ (o) = d1,

(n � 1)Zn P(d+
Tn

(o) = d) = ( n � 1)
X

T 2 T n : d1 (T )= d

w(T)

= d
X

(d1 ;:::;d n )2B n � 1 ;n : d1 = d

w
�
(d1; : : : ; dn )

�

= d Z(n � 1; n) P(Y1 = d):

This yields the result by Theorem 15.5.
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Remark 15.8. More explicitly we have

Z (n � 1; n) P(Y (n � 1;n )
1 = d) =

X

(d1 ;:::;d n )2B n � 1 ;n : d1 = d

w
�
(d1; : : : ; dn )

�

=
X

(d2 ;:::;d n )2B n � 1 � d;n � 1

wdw
�
(d2; : : : ; dn )

�

= wdZ (n � 1 � d; n � 1);

and thus

P(d+
Tn

(o) = d) = dwd
n

n � 1
�

Z (n � 1 � d; n � 1)
Z (n � 1; n)

: (15.9)

Proof of Theorem 7.10. We haveP(Y (n � 1;n )
1 = d) ! � d by Theorem 11.7 (with

m = n � 1 and � = 1), and ( 7.9) follows from Lemma 15.7.
The spaceN0 is compact, so every sequence of random variables in it is tight,

and therefore has a subsequence converging in distribution, see [15, Section 6].

It follows from ( 7.9) that if d+
Tn

(o) d�! X along a subsequence, thenP(X =
k) = k� k for every k 2 N0, and thus P(X = 1 ) = 1 �

P 1
k=0 k� k = 1 � � .

Consequently,X d= b� so d+
Tn

(o) d�! b� for every convergent subsequence, which

means that the entire sequence converges tob� , see [15, Theorem 2.3].

This proves the part of Theorem7.1 that describes the root degree. It remains
to consider all other nodes. This will be done by similar arguments. Webegin
with a generalization of Lemma15.7.

Lemma 15.9. Let T 0 2 T f be a �xed �nite subtree of the Ulam{Harris tree U1 ,
let ` := jT 0j be its size and letv1; : : : ; v` be its nodes in depth-�rst order, and let
d0

1; : : : ; d0
` be its degree sequence. (I.e.,d0

i = d+
T 0(vi ).) Suppose thatd1; : : : ; d` 2

N0 and that di > d0
i for every i . Then, for every n > ` ,

P
�
d+

Tn
(vi ) = di for i = 1 ; : : : ; `

�

=
� X̀

i =1

di � ` + 1
�

n
n � `

P
�

Y (n � 1;n )
i = di for i = 1 ; : : : `

�
: (15.10)

Note that d+
T (vi ) > d0

i for i = 1 ; : : : ; ` implies that T � T 0.

Proof. We have earlier used the depth-�rst order of the nodes to de�ne the
degree sequence, but many other orders could be used. In this proof, we consider
only treesT that contain the given T 0 as a subtree, and then we choose the order
which �rst takes the nodes of T 0 in depth-�rst order (this is v1; : : : ; v` ), and then
the remaining nodes ofT in depth-�rst order; let � 0(T ) be the degree sequence
in this order.

Let A n be the set of treesT 2 Tn with d+
T (vi ) = di for all i (which implies

T � T 0). If T 2 A n , then the degree sequence �0(T ) thus begins with the given
d1; : : : ; d` ; furthermore, it sati�es ( 15.3){( 15.4). Conversely, every sequence be-
ginning with the given d1; : : : ; d` that sati�es ( 15.3){( 15.4) is the degree sequence
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� 0(T ) of a unique tree in A n . Note also that (15.3) is automatically satis�ed for
k < ` , since then di > d0

i for i 6 k and
P k

i =1 d0
i > k by Lemma 15.2 applied

to T 0.
Let D := d1 + � � � + d` . Consider a sequence (d1; : : : ; dn ) 2 Bn � 1;n beginning

with the given d1; : : : ; d` , and let x i := d` + i � 1, for i = 1 ; : : : ; n � `. Then
(d1; : : : ; dn ) satis�es (15.3) if and only if

D +
kX

i =1

(x i + 1) > ` + k

for k = 0 ; : : : ; n � ` � 1, which is equivalent to

kX

i =1

x i > � (D � `); 0 6 k < n � `:

Furthermore,

n � `X

i =1

x i =
nX

` +1

di � (n � `) = ( n � 1 � D ) � (n � `) = � (D � ` + 1) :

Lemma 15.3with r = D � ` +1 thus shows that of the n � ` cyclic permutations
of d` +1 ; : : : ; dn , exactly D � ` +1 yield a degree sequence �0(T ) of a tree T 2 A n .
In other words, if we take the degree sequences �0(T ) for all trees T 2 A n and
make thesen � ` permutations of each of them, then we obtain every allocation
y = ( y1; : : : ; yn ) 2 Bn � 1;n with yi = di , i = 1 ; : : : ; `, exactly D � ` + 1 times
each. Consequently,

(n � `)Zn P(Tn 2 A n ) = ( n � `)
X

T 2A n

w(T) =
X

T 2A n

(n � `)w(� 0(T ))

=
X

y 2B n � 1 ;n : y i = di for i 6 `

(D � ` + 1) w(y)

= ( D � ` + 1) Z (n � 1; n) P(Yi = di for i 6 `):

The result follows by Theorem 15.5.

Remark 15.10. Arguing as in Remark 15.8, we obtain from Lemma 15.9 the
explicit formula, generalizing (15.9), with D :=

P `
i =1 di and other notations as

above,

P
�
d+

Tn
(vi ) = di for i = 1 ; : : : ; `

�

=
n

n � `
(D � ` + 1)

wd1 � � � wd` Z (n � D � 1; n � `)
Z (n � 1; n)

: (15.11)

Remark 15.11. Note that Lemma 15.9(or (15.11)) shows that the probability
remains exactly the same if we permuted1; : : : ; d` , provided that the permuted
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sequence (d� ( i ) ) still is allowed, i.e., d� ( i ) > d0
i for all i 6 `. However, if the latter

condition fails for somei , then the probability typically becomes 0. (This is an
interesting case of a symmetry that is not complete.)

For example, considering only the rooto and its �rst child 1, we have

P(d+
Tn

(o) = d and d+
Tn

(1) = d0) = P(d+
Tn

(o) = d0 and d+
Tn

(1) = d)

wheneverd; d0 > 1; however, if, say,d > 1 and d0 = 0, then the right-hand side
is 0 while the left-hand side in general is not.

Remark 15.12. Lemma 15.9 extends with minor modi�cations (mainly nota-
tional) to arbitrary �nite rooted subtrees T 0 of U1 (not necessarily satisfying
(6.1)). We omit the details.

16. Proof of Theorem 7.1

For convenience, we �rst repeat the theorem.

Theorem 7.1. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 2.

(i) If � > 1, let � be the unique number in[0; � ] such that 	( � ) = 1 .
(ii) If � < 1, let � := � .

In both cases,0 6 � < 1 and 0 < �( � ) < 1 . Let

� k :=
� k wk

�( � )
; k > 0; (7.1)

then (� k )k> 0 is a probability distribution, with expectation

� = 	( � ) = min( �; 1) 6 1 (7.2)

and variance � 2 = � 	 0(� ) 6 1 . Let bT be the in�nite modi�ed Galton{Watson

tree constructed in Section 5 for the distribution (� k )k> 0. Then Tn
d�! bT as

n ! 1 , in the topology de�ned in Section 6.
Furthermore, in case (i) , � = 1 (the critical case) and bT is locally �nite with

an in�nite spine; in case (ii) � = � < 1 (the subcritical case) and bT has a �nite
spine ending with an explosion.

Proof. First, as in the proof of Theorem 11.4, Lemma 13.2shows that � de�ned
by (i) and (ii) is well-de�ned and equals� (1) de�ned in Lemma 13.2; since 1<
2 6 ! we have� < 1 and �( � ) < 1 . Further, ( 13.3) yields 	( � ) = min(1 ; � ).
Hence, by Lemma4.2, (� k ) is a probability distribution with mean and variance
as asserted. (This is a special case of the corresponding claims in Theorem11.4,
with � = 1. We have � = 1 here since we relate the random trees to allocations
with m = n � 1, and thus m=n ! 1.)

The claims in the �nal paragraph are obvious from (7.2) and the construction
in Section 5.
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We turn to the main assertion, Tn
d�! bT . Since T is a compact metric

space, any sequence of random trees inT is tight, and has thus a convergent
subsequence. (See e.g. [15, Section 6].) In particular, this holds for Tn .

Consider a limiting random tree T in T such that Tn
d�! T along some

subsequence. We will show that thenT d= bT , regardless of the subsequence; this

implies Tn
d�! bT for the full sequence, which then completes the proof.

We have de�ned T in Section 6 such that T � N
V1

0 using the embedding

T 7! (d+
T (v)) v2 V1 . In order to show T d= bT , it thus su�ces to show that the

distributions agree on cylinder sets, i.e., that
�
d+ (v1); : : : ; d+ (v` )

�
2 N

`
0 has the

same distribution for T and bT , for any �nite set V = f v1; : : : ; v` g � V1 . Since

N
`
0 is a countable set, this is equivalent to

P
�
d+

T
(v1) = d1; : : : ; d+

T
(v` ) = d`

�
= P

�
d+

bT
(v1) = d1; : : : ; d+

bT
(v` ) = d`

�
; (16.1)

for any �nite set V = f v1; : : : ; v` g � V1 and any d1; : : : ; d` 2 N0.
It thus su�ces to show ( 16.1). Furthermore, given any �nite set V � V1 , we

may enlarge it to a �nite set V satisfying (6.2){( 6.4), i.e., a set that is the node
set of some �nite tree in T f . It thus su�ces to show ( 16.1) for V = V (T 0) with
T 0 2 T f .

We make one more reduction. Suppose thatV = V (T 0) with T 0 2 T f and
that ( 16.1) contains a condition d+ (vi ) = di with di < d +

T 0(vi ). Let v := vi and
let u be the last child of v in T 0; thus (recalling the notation in Section 6) u = vj
for some integer j = d+

T 0(v) > d i . By (6.5), any tree T 2 T with d+
T (v) = di

has d+
T (u) = 0, and further (e.g. by ( 6.5) and induction) d+

T (s) = 0 for every
descendants of u. Thus, letting T 0

u denote the subtree ofT 0 rooted at u, for any
s 2 T 0

u , the event f d+
bT

(v) = di and d+
bT

(s) > 0g is impossible and has probability

0; furthermore, the same holds forT , i.e., P
�
d+

T
(v) = di and d+

T
(s) > 0

�
= 0.

Consequently, if (16.1) contains a condition d+ (vj ) = dj with vj 2 T 0
u and

dj > 0, then both sides are trivially 0. On the other hand, if dj = 0 for all
vj 2 T 0

u , then the conditions d+ (vj ) = dj are redundant in (16.1) and may be
deleted, so we may replaceT 0 by the smaller tree with T 0

u removed. Repeating
this pruning, if necessary, we see that it su�ces to show (16.1) for V = V (T 0)
when T 0 2 T f is a �nite tree and di > d+

T 0(vi ) for every i .
Recall that di in (16.1) may be in�nite. We study three di�erent cases sepa-

rately.

Case (a): Every di < 1 . This is the case treated in Lemma15.9; we take the
limit as n ! 1 in (15.10) and obtain by Theorem 11.7 (with m = n � 1 and
� = 1 < ! (w)), letting again D :=

P `
i =1 di ,

P
�
d+

Tn
(vi ) = di for i = 1 ; : : : ; `

�
! (D � ` + 1)

Ỳ

i =1

� di :
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Since we have assumedTn
d�! T along a subsequence, this yields

P
�
d+

T
(vi ) = di for i = 1 ; : : : ; `

�
= ( D � ` + 1)

Ỳ

i =1

� di : (16.2)

Now consider the modi�ed Galton{Watson tree bT . (Recall its construction
in Section 5.) If the tree bT has d+

bT
(vi ) = di < 1 for all vi 2 T 0, then the spine

has to extend outsideT 0. The �rst point on the spine outside T 0 is a node in
@T0 (regarding T 0 as a subtree of bT ). The condition d+

bT
(vi ) = di for vi 2 T 0

determines the boundary @T0 of T 0 in bT , which thus not depend on bT , and
Lemma 15.1 shows that j@T0j = D � ` + 1.

Fix a node u 2 @T0, and consider the eventEu that the spine of bT passes
through u and that d+

bT
(vi ) = di for i = 1 ; : : : ; `. The event Eu thus speci�es

the nodes inT 0 that are special in the construction of bT (viz. the nodes on the
path from o to u), and for each special node it speci�es which of its children
will be special; furthermore it speci�es the number of children for each node in
T 0, special or not. Recall that the probability that a special node hasd < 1
children, with a given one of them being special, is� d, just as the probability
that a normal node hasd children. Thus, by independence, for everyu 2 @T0,
P(Eu ) =

Q `
i =1 � di . This probability thus does not depend onu, so summing over

the D � ` + 1 nodes u 2 @T0 we obtain

P
�
d+

bT
(vi ) = di for i = 1 ; : : : ; `

�
=

X

u2 @T0

P(Eu ) = ( D � ` + 1)
Ỳ

i =1

� di ;

which together with ( 16.2) shows (16.1) in this case. (Cf. Remark 5.7 for a
similar argument.)

Case (b): Exactly onedi = 1 . Suppose that dj = 1 and di < 1 for i 6= j .
De�ne, for 0 6 k 6 1 ,

A k := f T 2 T : d+
T (vi ) = di for i 6= j and d+

T (vj ) = kg:

We thus want to show P(T 2 A 1 ) = P( bT 2 A 1 ). We de�ne further

A > K :=
[

K 6 k6 1

A k ;

and note that since Tn
d�! T (along a subsequence), we have (along the subse-

quence), for any �nite K ,

P(Tn 2 A > K ) ! P(T 2 A > K ): (16.3)

We de�ne also (for �nite k) the analogous

Bk := f (y1; : : : ; yn ) 2 Bn � 1;n : yj = k and yi = di for i 6 ` with i 6= j g:
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Then Lemma 15.9 can be written, with D 0 :=
P

i 6= j di , for k < 1 ,

P(Tn 2 A k ) = ( k + D 0 � ` + 1)
n

n � `
P(Bn � 1;n 2 B k ): (16.4)

Consider, for simplicity, k > k 0 := max i 6= j di . Then (14.44) shows that, with
N i = N i (Bn � 1;n ),

P(Bn � 1;n 2 B k ) = E P(Bn � 1;n 2 B k j N0; N1; : : : ) = E
�

Nk

n

Y

i 6= j

Ndi + O(1)
n + O(1)

�

= E
�

Nk

n

Y

i 6= j

Ndi

n
+ O

� Nk

n2

� �
:

(The implicit constants in the O's in this proof may depend on` and d1; : : : ; d` ,
but not on n or k.) Consequently, by (16.4),

P(Tn 2 A k ) =
�
k + O(1)

��
(1 + O(n� 1)

�
E

�
Nk

n

Y

i 6= j

Ndi

n
+ O

� Nk

n2

� �

=
�
1 + O(k � 1)

�
E

�
kN k

n

Y

i 6= j

Ndi

n

�
+ O

�
E

� kN k

n2

� �
:

Summing overk > K , we obtain for any K > k 0, using
P 1

k=0 kN k = n � 1 for
any allocation Bn � 1;n ,

P(Tn 2 A > K ) =
1X

k= K

P(Tn 2 A k )

=
�
1 + O(K � 1)

�
E

� P
k> K kN k

n

Y

i 6= j

Ndi

n

�
+ O

�
E

� P
k> K kN k

n2

��

=
�
1 + O(K � 1)

�
E

�
n � 1 �

P
k<K kN k

n

Y

i 6= j

Ndi

n

�
+ O(n� 1):

(16.5)

By Theorem 11.4, for any �xed K , as n ! 1 ,

n � 1 �
P

k<K kN k

n

Y

i 6= j

Ndi

n
p

�!
�
1 �

X

k<K

k� k
� Y

i 6= j

� di :

By dominated convergence, the expectation converges to the same limit, and
thus (16.3) and (16.5) yield, for K > k 0,

P(T 2 A > K ) =
�
1 + O(K � 1)

� �
1 �

X

k<K

k� k

� Y

i 6= j

� di : (16.6)
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Finally, let K ! 1 to obtain

P(T 2 A 1 ) =
�

1 �
X

k< 1

k� k

� Y

i 6= j

� di = (1 � � )
Y

i 6= j

� di : (16.7)

Now consider bT . If d+
bT

(vj ) = dj = 1 , then the spine ends with an explosion

at vj . This �xes the spine, and the event that d+
bT

(vi ) = di for i 6= j then means,
just as in case (a) when we considered a speci�cEu , that we have speci�ed the
number of children to be di for these nodes, and for the special nodes (except
vj ) we have also speci�ed which child is special. The probability of this is� di for
eachi 6= j , and the probability that the special node vj has an in�nite number
of children is, by (5.2), 1 � � . Hence, by independence,

P( bT 2 A 1 ) = (1 � � )
Y

i 6= j

� di ; (16.8)

which together with ( 16.7) showsP(T 2 A 1 ) = P( bT 2 A 1 ), which is (16.1) in
this case.

Case (c): More than one di = 1 . By the de�nition of the modi�ed Galton{
Watson tree bT , there is at most one node with in�nite degree, so in this case,

P
�
d+

bT
(vi ) = di for i = 1 ; : : : ; `

�
= 0 :

This means that the sum of these probabilities for all sequences (d1; : : : ; dn )
with at most one in�nite value is 1. But we have shown that for such sequences,
the probability is the same for T as for bT , so the probabilities for T for these
sequences also sum up to 1. Consequently, if more than onedi = 1 , then

P
�
d+

T
(vi ) = di for i = 1 ; : : : ; `

�
= 0

too, which shows (16.1) in this case.
This shows that (16.1) holds for any v1; : : : ; vm such that f v1; : : : ; vm g =

V(T 0) where T 0 2 T f is a �nite tree and ( d1; : : : ; dn ) is any sequence inN
m
0 with

di > d+
T 0(vi ) for every i . As discussed above, this implies (16.1) in full generality

and thus T
d
= bT , which shows that Tn

d
�! bT .

17. Proofs of Theorems 7.11 and 7.12

We begin by stating another version of the correspondence between simply gen-
erated trees and the balls-in-boxes model.

Lemma 17.1. We may coupleTn and Bn � 1;n such that the degree sequence
�( Tn ) is a cyclic shift of Bn � 1;n , and, conversely,Bn � 1;n is a uniformly random
cyclic shift of �( Tn ).
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Proof. Let Bn � 1;n = ( Y1; : : : ; Yn ) and let (Y� (1) ; : : : ; Y� (n ) ) be the unique cyclic
shift of (Y1; : : : ; Yn ) that is the degree sequence of a tree inTn , see Corollary15.4.

Then (Y� (1) ; : : : ; Y� (n ) )
d= �( Tn ), as a consequence of Corollary15.4 and the

invariance of the weight w(Y1; : : : ; Yn ) under cyclic shifts. Consequently, we
may coupleBn � 1;n and Tn such that (Y� (1) ; : : : ; Y� (n ) ) = �( Tn ), and the result
follows.

Proof of Theorem 7.11. We use the coupling in Lemma17.1. Then Nd in Theo-
rem 7.11equalsNd(Bn � 1;n ) in Theorem 11.4, and thus (7.12) follows by (11.15).

We obtain (7.11) as a simple consequence of (7.12), using P(d+
Tn

(v) = d j
Nd) = Nd=n and thus P(d+

Tn
(v) = d) = E Nd=n, cf. the proof of Theorem11.7.

Alternatively, we can arrange so that d+
Tn

(v) = Y1, and the result then follows
by Theorem 11.7.

Proof of Theorem 7.12. We use again the coupling in Lemma17.1. Let T be a
�xed tree of size ` and let its degree sequence be (�d1; : : : ; �d` ). Recall that we
have de�ned the degree sequence using depth-�rst search. It follows that if a
tree has degree sequence (d1; : : : ; dn ) and a nodev is visited as nodevj in the
depth-�rst search, then the subtree rooted at v has degree sequence (dj ; : : : ; dk ),
where we stop when this is a degree sequence of a tree, i.e., when it satis�es the
condition in Lemma 15.2. In particular, the subtree rooted at v equalsT if and
only if ( dj ; : : : ; dj + ` � 1) = ( �d1; : : : ; �d` ). (Clearly, this is impossible if j > n � ` +1,
since then a tree would be completed with less size thaǹ.)

Consequently,NT equals the number of substrings (�d1; : : : ; �d` ) in ( Y1; : : : ; Yn ),
regarded as a cyclic sequence. In other words, if we letI j be the indicator of
the event (Yj ; : : : ; Yj + ` � 1) = ( �d1; : : : ; �d` ), where we de�ne Yi := Yi � n for i > n ,
then

NT =
nX

j =1

I j : (17.1)

In particular, taking the expectation and using the rotational sym metry,

P(Tn ;v = T) =
1
n

E NT = E I 1 = P
�
(Y1; : : : ; Y` ) = ( �d1; : : : ; �d` )

�
;

and thus Theorem 11.7 yields

P(Tn ;v = T) !
Ỳ

i =1

� �di
= P(T = T);

which proves (7.13).
In order to show the stronger result (7.14), we condition as in the proof of

Theorem 11.7 on N0; N1 : : : and obtain, see (14.44),

E(I j j N0; N1; : : : ) = P
�
(Y1; : : : ; Y` ) = ( �d1; : : : ; �d` ) j N0; N1; : : :

�

=
Ỳ

i =1

N �di
� ci

n � i + 1
=

Ỳ

i =1

N �di

n
+ O

�
1
n

�
;

(17.2)



Simply generated trees and random allocations 179

where ci := jf j < i : �dj = �di gj. If jj � kj > ` and jj � k � nj > ` (i.e., j and k
have distance at least̀ , regarded as point on a circle of lengthn), then similarly,
with c0

i := jf j 6 ` : �dj = �di gj,

E(I j I k j N0; N1; : : : ) =
Ỳ

i =1

N �di
� ci

n � i + 1

Ỳ

i =1

N �di
� ci � c0

i

n � ` � i + 1
;

and it follows that

Cov(I j ; I k j N0; N1; : : : ) = O(1=n): (17.3)

For j and k of distance less than`, we use the trivial

j Cov(I j ; I k j N0; N1; : : : )j 6 1: (17.4)

There are less thann2 pairs (j; k ) of the �rst type and O(n) pairs of the second
type, and thus by (17.1) and (17.3){( 17.4),

Var(NT j N0; N1; : : : ) =
nX

j =1

nX

k=1

Cov(I j ; I k j N0; N1; : : : ) = O(n):

Consequently,NT =n � E(NT =n j N0; N1; : : : )
p

�! 0, and thus by (17.1), (17.2)
and Theorem 11.4,

NT

n
= E

� NT

n

�
�
� N0; N1; : : :

�
+ op (1) =

Ỳ

i =1

N �di

n
+ op (1)

p
�!

Ỳ

i =1

� �di
= P(T = T):

18. Asymptotics of the partition functions

We have a simple asymptotic result for the partition function Z (m; n) (to the
�rst order in the exponent, at least if � > 0):

Theorem 18.1. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and wk > 0
for some k > 1. Suppose thatn ! 1 and m = m(n) with span(w) j m, m ! 1
and m=n ! � where 0 6 � < ! , and let � be as in Theorem11.4.

(i) If � > 0, then

1
n

logZ (m; n) ! log �( � ) � � log � 2 (�1 ; 1 ): (18.1)

(ii) If � = 0 and � > 0, then

1
n

logZ (m; n) ! 1 : (18.2)
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In both cases, the result can be written

1
n

logZ (m; n) ! log inf
06 t 6 �

�( t)
t � = log inf

06 t< 1

�( t)
t � 6 1 : (18.3)

If 0 6 � 6 � and � > 0, the limit can also be written log �( � ) � 	( � ) log � .
The formula (18.1) is shown by a physicists' proof by Bialas, Burda and

Johnston [14].

Remark 18.2. If � = 0, then � = 0, and we interpret the right-hand side of
(18.1) as log �(0) = log w0; this is in accordance with (18.3).

It is easily seen that the result holds, with this limit, also in the rather t rivial
case whenm is bounded, providedZ (m; n) > 0.

Remark 18.3. If ! < 1 , then the result holds also when� = ! , provided
Z (m; n) > 0, if we let � = 1 as in Remark 11.10and interpret the right-hand
side of (18.1) as the limit value log w! , which again is in accordance with (18.3).
This follows from Remark 18.2 by the symmetry argument in Remark 11.10.

Remark 18.4. Using the function � (x) de�ned in Theorem 11.6, the result
(18.1) can also be written, using the continuity of � (x) and an extra argument
(which we omit) when � = 0,

logZ (m; n) = n log �( � (x)) � m log� (x) + o(n) (18.4)

or, equivalently,
Z (m; n) = �( � (x))n � (x)� m eo(n ) : (18.5)

As in Theorem 11.6, it su�ces here that m=n 6 C < ! (and m ! 1 ).

Proof of Theorem 18.1. Note that the assumptions imply that Z (m; n) > 0 (at
least for n, and thus m, large) by Lemma 13.3. The equivalence between (18.1){
(18.2) and (18.3) follows from (11.16).

(i): Assume �rst � > 0. Since� > 0 and � > 0, we then have� > 0. Thus
w = ( wk ) is equivalent to � = ( � k ), and Lemma 11.3 yields

Z (m; n) = Z (m; n; w) = �( � )n � � m Z (m; n; � ):

We saw in the proof of Theorem11.4, case (a), that Lemmas14.3and 14.4yield
Z (m; n; � ) = exp( o(n)), and thus

Z (m; n) = exp
�
n log �( � ) � m log � + o(n)

�
;

which yields (18.1).
It remains to consider the case� = 0. Then m=n ! 0, and we may assume

m < n= 2. In any allocation of m balls, there are at most m non-empty boxes.
Let us mark 2m boxes, including all non-empty boxes. For each choice of the
marked boxes, we have in them an allocation inBm; 2m , and only empty boxes
outside; since there are

� n
2m

�
choices of marked boxes,

Z (m; n) 6
�

n
2m

�
wn � 2m

0 Z (m; 2m): (18.6)
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On the other hand, any allocation of m balls in 2m boxes can be extended to
an allocation in Bm;n with the last n � 2m boxes empty; thus

Z (m; n) > wn � 2m
0 Z (m; 2m): (18.7)

We have, by Stirling's formula, using m=n ! � = 0,

1
n

log
�

n
2m

�
6

1
n

log
� en

2m

� 2m
=

2m
n

log
e
2

�
2m
n

log
m
n

! 0: (18.8)

Moreover, by the case� > 0 just proved, we have from (18.1) log Z (m; 2m) =
O(m) = o(n). Consequently, (18.6){( 18.8) yield

logZ (m; n) = ( n � 2m) log w0 + o(n) = n logw0 + o(n);

showing (18.1) in the case� = 0.
(ii): As in the proof of Lemma 14.4, we use the truncated weight sequence

w (K ) de�ned in ( 14.14), where K is so large that span(w (K ) ) = span(w) and
! (w (K ) ) > � , and we let again � K and 	 K be the corresponding functions for
w (K ) and de�ne � K by 	 K (� K ) = � .

For any t > 0, � K (t) ! �( t) = 1 as K ! 1 , and thus (14.19) holds,
showing that for large K , 	 K (t) > � and thus � K < t . Sincet is arbitrary, this
shows that � K ! 0 asK ! 1 . Applying (i) to w (K ) and its partition function
ZK we obtain, for every largeK ,

lim inf
n !1

1
n

logZ (m; n) > lim
n !1

1
n

logZK (m; n) = log � K (� K ) � � log � K

> logw0 � � log � K :

As K ! 1 , � K ! 0 so the right-hand side tends to1 , which completes the
proof.

Remark 18.5. The case� = 0 and � = 0 is excluded from Theorem18.1; in this
case, almost anything can happen. To see this, note �rst that by (18.6){( 18.8),
if m=n ! � = 0, then

1
n

logZ (m; n) = log w0 +
1
n

logZ (m; 2m) + o(1): (18.9)

Furthermore, by Theorem 18.1(ii), 1
m logZ (m; 2m) ! 1 asm ! 1 , and hence

m= logZ (m; 2m) ! 0. We can choosem = m(n) ! 1 with m=n ! 0 so
rapidly that m=n � m= logZ (m; 2m); then 1

n logZ (m; 2m) ! 0 and (18.9)
yields 1

n logZ (m; n) ! logw0 = log �(0).
We can also choosem with m=n ! 0 so slowly that m=n � m=logZ (m; 2m);

then 1
n logZ (m; 2m) ! 1 and (18.9) yields 1

n logZ (m; n) ! 1 .
Moreover, we can choosem(n) oscillating between these two cases, and then

lim inf 1
n logZ (m; n) = log �(0) and lim sup 1

n logZ (m; n) = 1 , and we can ar-
range so that every number in [log �(0) ; 1 ) is a limit point of some subsequence.
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For many weight sequences with� = 0, one can choosem(n) such that
1
n logZ (m; n) ! a for any given a 2 [log �(0) ; 1 ]. For example for wk = k! as in
Example 10.8, we have by [64] and Theorem15.5Z (n� 1; n) � en! and it follows,
arguing similarly to ( 18.6) and (18.7), that 1

m logZ (m; 2m) = log m + O(1), so
taking m � an=logn, we obtain 1

n logZ (m; n) ! a by (18.9).
However, if wk increases very rapidly, it may be impossible to obtain con-

vergence of the full sequence to a limit di�erent from log �(0) or 1 , so we
can only achieve convergence of subsequences. For example, ifw0 = 1 and
wk+1 > Z (k; 2k)2, then Z (k + 1 ; 2(k + 1)) > wk+1 > Z (k; 2k)2, and it follows
easily from (18.9) that lim sup 1

n logZ (m; n) > 2 lim inf 1
n logZ (m; n).

We apply Theorem 18.1 to simply generated trees.

Theorem 18.6. Let w = ( wk )k> 0 be any weight sequence withw0 > 0 and
wk > 0 for some k > 2. Suppose thatn ! 1 with n � 1 (mod span(w)) , and
let � be as in Theorem7.1. Then

1
n

logZn ! log �( � ) � log � = log inf
06 t< 1

�( t)
t

2 (�1 ; 1 ]:

The limit is �nite if � > 0, and + 1 if � = 0 .

Proof. An immediate consequence of Theorems15.5 and 18.1.

For probability weight sequences, Theorem18.6 can be expressed as follows,
cf. Remark 7.9.

Theorem 18.7. Let T be a Galton{Watson tree with o�spring distribution � ,
and assume thatP(� = 0) > 0 and P(� > 1) > 0. Suppose thatn ! 1 with
n � 1 (mod span(� )) , and let � be as in Theorem7.1. Then

1
n

logP(jT j = n) ! log �( � ) � log � = log inf
06 t< 1

�( t)
t

2 (�1 ; 0]:

If E � = 1 , or if E � < 1 and � = 1 , then the limit is 0; otherwise it is strictly
negative. In other words,P(jT j = n) decays exponentially fast in the supercritial
case (then� < 1) and in the subcritical case with � > 1 (then � > 1), but only
subexponentially in the critical case and in the subcritical case with � = 1 (then
� = 1 ).

Proof. We have P(jT j = n) = Zn , see Section2, and we apply Theorem18.6.
Since now (wk ) is a probability weight sequence, we have� > 1; furthermore,
inf 06 t< 1 �( t)=t 6 �(1) =1 = 1, with equality if and only if � = 1, see Re-
mark 7.4. The �nal claims follow using the de�nition of � in Theorem 7.1.

When � > 0 and � > 0 (which are equivalent to � > 0), we can also prove
stronger \local" versions of Theorems18.1and 18.6, showing that the partition
function behaves smoothly for small changes inm or n.

Theorem 18.8. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
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where 0 < � < ! , and let � be as in Theorem11.4. If � > 0, then, for every
�xed k 2 Z such that span(w) j k,

Z (m + k; n)
Z (m; n)

! � � k : (18.10)

Proof. For any k > 0, by (11.2){( 11.4),

P(Y1 = k) =
wk Z (m � k; n � 1)

Z (m; n)
; (18.11)

and thus
P(Y1 = k)
P(Y1 = 0)

=
wk Z (m � k; n � 1)

w0Z (m; n � 1)
:

Since Theorem11.7 yields

P(Y1 = k)
P(Y1 = 0)

!
� k

� 0
= � k wk

w0
;

we see (replacingn by n + 1) that ( 18.10) holds when � k 2 supp(w). Further-
more, the set ofk 2 Z such that (18.10) holds for any allowed sequencem(n) is
easily seen to be a subgroup ofZ (since we may replacem by m� k0 for any �xed
k0). Consequently, by (3.3), this set contains every multiple of span(w).

Theorem 18.9. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
where 0 6 � < ! , and let � be as in Theorem11.4. Then,

Z (m; n + 1)
Z (m; n)

! �( � ): (18.12)

Proof. By (18.11) with k = 0 and Theorem 11.7,

w0Z (m; n � 1)
Z (m; n)

= P(Y1 = 0) ! � 0 =
w0

�( � )
;

and the result follows sincew0 6= 0.

For trees we have a corresponding result:

Theorem 18.10. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and
wk > 0 for some k > 2. If � > 0 and span(w) = 1 , then

Zn +1

Zn
!

�( � )
�

:

Proof. By Theorems 15.5 and 18.8{ 18.9,

Zn +1

Zn
=

nZ (n; n + 1)
(n � 1)Z (n � 1; n)

=
n

n � 1
�

Z (n; n + 1)
Z (n; n)

�
Z (n; n)

Z (n � 1; n)
! �( � )� � 1:
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We assumed here span 1 for convenience only; if span(w) = d, we instead
obtain, by a similar argument, Zn + d=Zn ! (�( � )=� )d .

In the case� > 1 and � 2 = � 	 0(� ) < 1 (which is automatic if � > 1), i.e.
our case I� , Theorem 18.6 can be sharpened substantially as follows, see Otter
[93], Meir and Moon [85], Kolchin [76], Drmota [33].

Theorem 18.11. Let w = ( wk ), � and � 2 be as in Theorem 7.1, and let
d := span(w). If � > 1 and � 2 < 1 , then, for n � 1 (mod d),

Zn �
d

p
2�� 2

�
�( � )n � 1� n

n3=2
= d

s
�( � )

2� � 00(� )

�
�( � )

�

� n

n� 3=2: (18.13)

Proof. Replacing (wk ) by ( � k ) and using (4.3), we see that it su�ces to consider
the case of a probability weight sequence with� = �( � ) = 1. By Theorem 15.5,
(11.5) and (8.1), in this case the result is equivalent to

P(Sn = n � 1) �
d

p
2�� 2n

;

which is the local central limit theorem in this case, see e.g.Kolchin [76, Theorem
1.4.2] or use Lemma14.1 and Remark 14.2.

There is a corresponding improvement of Theorem18.1.

Theorem 18.12. Let w = ( wk ), m = m(n), � amd � 2 be as in Theorem11.4,
and let d := span(w). If 0 < � < � , or � = � and � 2 < 1 , then, for m =
�n + o(

p
n) with m � 0 (mod d),

Z (m; n) �
d

p
2�� 2n

�( � )n � � m : (18.14)

Proof. Again it su�ces to consider the case of a probability weight sequence
with � = �( � ) = 1; this time using ( 11.9). In this case the result is by (11.5)
equivalent to

P(Sn = m) �
d

p
2�� 2n

;

which again is the local central limit theorem and follows e.g. by Lemma14.1
and Remark 14.2.

Remark 18.13. The asymptotic formula (18.14) holds for arbitrary m = m(n)
with 0 < c 6 m=n 6 C < ! and m � 0 (mod d), and either C < � or
C = � and � 00(� ) < 1 (which means that 	 0(� ) < 1 and thus the distribution
(11.13) has �nite variance for � = � ), provided � is replaced by� (m=n) given by
	( � (m=n)) = m=n. (Cf. Theorem 11.6.) The proof is essentially the same (as in
the proof of Theorem 11.6, it su�ces to consider subsequences wherem(n)=n
converges); we omit the details.
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In the case� = � (� = 1 in the tree case) and � 2 = 1 , we have no general
results but we can obtain similar more precise versions of Theorems18.6and 18.1
in the important case of a power-law weight sequence, Example12.10. (We need
1 < � 6 2 here; if � 6 1, then � = 1 > � , and if � > 2, then � 2 < 1 so
Theorems 18.11 and 18.12 apply, see Example12.10 with � = � + 1. Note
also that span(w) = 1.) The case � > � is treated in Theorem 19.34 and
Remark 19.35.

Theorem 18.14. Suppose for somec > 0 and � with 1 < � 6 2,

wk � ck� � � 1 as k ! 1 : (18.15)

(i) If � = 1 , then,

Zn �
�(1) 1=�

c1=� �( � � )1=� j�( � 1=� )j
�(1) n n� 1� 1=� ; when 1 < � < 2;

(18.16)

and

Zn �
� �(1)

�c

� 1=2
�(1) n n� 3=2(log n)� 1=2; when � = 2 : (18.17)

(ii) If m = �n + o(n1=� ), then

Z (m; n) �
�(1) 1=�

c1=� �( � � )1=� j�( � 1=� )j
�(1) n n� 1=� ; when 1 < � < 2;

(18.18)

and

Z (m; n) �
� �(1)

�c

� 1=2 �(1) n

p
n logn

; when � = 2 : (18.19)

Proof. This time, we did not assumew0 > 0, but we may do so without loss
of generality in the proof. In fact, if w0 = 0, then � > 1, so in (i) we always
have w0 > 0, and in (ii) we can reduce to the casew0 > 0 by the method in
Remark 11.8.

(i) follows from Theorem 15.5and (ii) , taking m = n � 1; hence it su�ces to
prove (18.18){( 18.19).

We have � = 1, and in the usual notation � = � and thus � = � = 1. We
reduce to the probability weight sequence case by dividing eachwk by �(1)
(which changesc to c=�(1)). Let � be a random variable with the distribution
(� k ) = ( wk ). Then E � = � . Furthermore, (18.15) yields

P(� > k) =
1X

l = k

wl � c� � 1k � � : (18.20)
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Hence� is in the domain of attraction of an � -stable distribution, seeFeller [39,
Section XVII.5]. More precisely, if we �rst consider the case 1< � < 2, then
there exists an� -stable random variableX � such that

Sn � n�
n1=�

d�! X � : (18.21)

(The distribution of X � is given by (19.93) and (19.113) below.) Moreover, a lo-
cal limit law holds, see e.g.Gnedenko and Kolmogorov[46, x 50], Ibragimov and
Linnik [ 54, Theorem 4.2.1] orBingham, Goldie and Teugels[16, Corollary 8.4.3],
which says

P(Sn = `) = n� 1=�
�

g
� ` � n�

n1=�

�
+ o(1)

�
; (18.22)

uniformly for all integers `, whereg is the density function of X � . In particular,

Z (m; n) = P(Sn = m) � n� 1=� g(0): (18.23)

The results in [39, Sections XVII.5{6] show, if we keep track of the constants
(see e.g. [63] for calculations), that

g(0) = ( c�( � � )) � 1=� j�( � 1=� )j � 1; (18.24)

and (18.18) follows.
In the case� = 2, [ 39, Section XVII.5] similarly yields

Snp
n logn

d�! N (0; c=2); (18.25)

again a local limit theorem holds by [54, Theorem 4.2.1] or [16, Corollary 8.4.3],
and thus

P(Sn = `) =
1

p
n logn

�
g
� ` � n�

p
n logn

�
+ o(1)

�
; (18.26)

uniformly in ` 2 Z, where now g(x) is the density function ( �c )� 1=2e� x 2 =c of
N (0; c=2). In particular,

Z (m; n) = P(Sn = m) �
1

p
n logn

g(0) =
1

p
n logn

�
1

p
�c

; (18.27)

which proves (18.19).

Remark 18.15. The proof shows that (18.15) can be relaxed to (18.20) together
with span(w) = 1.

Example 18.16. Let F u
m;n be the number of labelled unrooted forests with

m labelled nodes andn labelled trees, see Example12.7. Using the weights
wk = kk � 2=k! and ewk = e� k wk � (2� )� 1=2k � 5=2, we have by (12.35) and (11.9)

F u
m;n = m! Z (m; n; w) = m! em Z (m; n; ew): (18.28)
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At the phase transition m = 2 n, Theorem 18.14applies to ew with � = 3 =2. We
have c = (2 � )� 1=2 and, by (12.36), �(1) = �( � ) = 1 =2. Hence (18.18) yields,
after simpli�cations,

F u
2n;n

2n!
= Z (2n; n; w) = e2n Z (2n; n; ew) �

2� 2=33� 1=3

�(1 =3)
e2n 2� n n� 2=3: (18.29)

(The constant can also be written 2� 5=331=6� � 1�(2 =3).) A more general result
is proved by the same method by Britikov [20]. Flajolet and Sedgewick [40,
Proposition VIII.11], show (18.29) by a di�erent method (although there is a
computational error in the constant given in the result there).

We end this section by considering the behaviour of the generating function
Z (z) :=

P 1
n =1 Zn zn . The following immediate corollary of Theorem 18.6 was

shown by Otter [93], see Minami [89] and, for � > 1, Flajolet and Sedgewick
[40, Proposition IV.5]. See also also Remark7.5.

Corollary 18.17. Let (wk )k> 0 and � be as in Theorem 7.1, and let � Z be
the radius of convergence of the generating functionZ (z) :=

P 1
n =1 Zn zn . Then

� Z = �=�( � ).

Moreover, by (7.6), Z (� Z ) = � < 1 . Since the generating functionZ (z) has
non-negative coe�cients, it follows that Z (z) is continuous on the closed disc
jzj 6 � Z , and jZ (z)j 6 � there. If we, for simplicity, assume that span(w) = 1,
then jZ (z)j < jZ (� Z )j = � for jzj 6 � Z , z 6= � Z . Since jZ j < � implies

j�( Z ) � Z � 0(Z )j =

�
�
�
�w0 �

1X

k=1

(k � 1)wk Z k

�
�
�
� > w0 �

1X

k=1

(k � 1)wk jZ jk

> w 0 �
1X

k=1

(k � 1)wk � k = �( � ) � � � 0(� ) = 0 ;

it follows that �( Z ) � Z � 0(Z ) 6= 0 if Z = Z (z) with jzj = � Z , z 6= � Z ; hence
the implicit function theorem and ( 3.13) show that Z (z) has an analytic con-
tinuation to some neighbourhood ofz. Consequently,Z then can be extended
acrossjzj = � Z everywhere except atz = � Z . (If span(w) = d, the same holds
except at z = � Z e2� i j=d , j 2 Z.)

In our case Ia (� > 1, or equivalently � < � ), much more is known: Z has
a square root singularity at � Z with a local expansion of Z (z) as an analytic
function of

p
1 � z=� Z :

Z (z) = � � b
p

1 � z=� Z + : : : ; (18.30)

where, with � 2 := Var � given by (8.1),

b :=

s
2�( � )
� 00(� )

=
p

2
�
�

; (18.31)
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see Meir and Moon [85], Flajolet and Sedgewick[40, Theorem VI.6] and Drmota
[33, Section 3.1.4 and Theorem 2.19]; in particular,Z then extends analytically
to a neighbourhood of� cut at the ray [ �; 1 ). In fact, this extends (in a weaker
form) to the case� > 1 and � 2 < 1 (case I� ): (18.30) holds in a suitable region,
with an error term o(

p
1 � z=� Z ), see Janson [59].

Remark 18.18. In the case � > 1, (18.30) and (18.31) yield another proof
of (18.13) by standard singularity analysis, see e.g.Drmota [33, Theorem 3.6]
and Flajolet and Sedgewick[40, Theorem VI.6 and VII.2]; this argument can
be extended to the case� > 1 and � 2 < 1 , seeDrmota [33, Remark 3.7] and
Janson [59, Appendix]. When � > 1, an expansion with further terms can also
be obtained, see Minami [89] and Flajolet and Sedgewick[40, Theorem VI.6].

In the other cases (� 2 = 1 or � < 1), the asymptotic behaviour of Z at the
singularity � Z depends on the behaviour of �(z) at its singularity � . It seems
di�cult to say anything detailed in general, so we study only a few examples.
We assume� 6 1 and ! > 1; thus Lemma 3.1 implies that � < 1 , �( � ) < 1
and � 0(� ) < 1 . We assume also� > 0 and span(w) = 1.

Example 18.19. Suppose that 0 < � < 1 and that �( z) has an analytic
extension to a sectorD �;� := f z : j arg(� � z)j < �= 2 + � and jz � � j < � g for
some� > 0, and that in this sector D �;� , for somea 6= 0 and non-integer � > 1,
and somef (z) analytic at � (which can be taken as a polynomial of degree< � ),

�( z) = f (z) + a(� � z)� + o
�
j� � zj �

�
; as z ! �: (18.32)

(We have to have � > 1 since � 0(� ) < 1 . For � > 2 integer, see instead
Example 18.20.) If we assume that � has no further singularities on jzj = � , this
implies by singularity analysis, seeFlajolet and Sedgewick[40, Section VI.3],

wk �
a

�( � � )
k � � � 1� � � k ; as k ! 1 : (18.33)

The converse does not hold in general, but can be expected if the weight sequence
is very regular. For example, (18.32) holds (in the plane cut at [�; 1 )) if wk =
(k +1) � � , k > 1, as in Example10.7, with � = � +1 > 2, � = 1 and a = �( � � ),
see e.g. [40, Section VI.8].

Let F (Z ) := Z=�( Z ), so (3.13) can be written

F (Z (z)) = z: (18.34)

Since� 6 1, we have� = � , and thus by Corollary 18.17and (7.6) � Z = F (� ) =
F (� ) and Z (� Z ) = � . Note that

F 0(� ) =
�( � ) � � � 0(� )

�( � )2 =
1 � 	( � )

�( � )
=

1 � �
�( � )

: (18.35)

If � < 1, then (18.35) yields F 0(� ) > 0 and (18.34) shows that � � Z (z) �
F 0(� )� 1(� Z � z) as z ! � Z . Moreover, F is de�ned in a sector D �;� , and its
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image contains some similar sectorD � Z ;� 0 (with 0 < � 0 < � ) such that Z (z)
extends analytically to D � Z ;� 0 by (18.34), and it follows easily by (18.34) and
(18.32) that in D � Z ;� 0, with some f 1(z) analytic at � Z ,

Z (z) = f 1(z) + a1(� Z � z)� + o
�
j� Z � zj �

�
; as z ! � Z ; (18.36)

where

a1 = a
� �( � )� � 1

(1 � � )� +1 : (18.37)

As noted above,Z (z) has no other singularities onjzj = � , and singularity
analysis [40] applies and shows, using (18.33),

Zn �
a1

�( � � )
n� � � 1� � � n

Z �
�

(1 � � )� +1 �( � )n � 1wn : (18.38)

However, we will show in greater generality in Theorem19.34and Remark19.35
(by a straightforward reduction to the case� = 1 using (4.3)) that ( 18.33) always
implies (18.38) when � < 1, without any assumption like (18.32) on �( z).

If � = 1, we assume 1< � < 2, since (18.32) with � > 2 implies � 00(� ) < 1
and thus � 2 < 1 , so (18.30) and Theorem 18.11 would apply. We now have
F 0(� ) = 0, and ( 18.32){( 18.34) yield, in some domainD � Z ;� 0,

Z (z) = � �
�

�( � )
a

� 1=� �
1 �

z
� Z

� 1=�
+ : : : : (18.39)

Singularity analysis yields

Zn �
1

j�( � 1=� )j

�
�( � )

a

� 1=�

n� 1� 1=� � Z
� n : (18.40)

However, we have already proved in Theorem18.14(i) (assuming � = 1, with-
out loss of generality) that (18.33) implies (18.40) in this case, without any
assumption like (18.32) on �( z).

Example 18.20. If � > 2 is an integer, (18.32) does not exhibit a singularity.
Instead we considerw with, for some f analytic at � ,

�( z) = f (z) + a(� � z)� log(� � z) + O
�
j� � zj �

�
; (18.41)

as z ! � in some sectorD �;� . This includes the casewk = ( k + 1) � � � 1, see
Flajolet and Sedgewick[40, Section VI.8].

In the case� < 1, we obtain as above

Z (z) = f 1(z) + a1(� Z � z)� log(� Z � z) + O
�
j� Z � zj �

�
; (18.42)

as z ! � Z in some sector, with f 1(z) analytic at � Z and a1 given by (18.37).
We again obtain by singularity analysis

Zn �
�

(1 � � )� +1 �( � )n � 1wn ; (18.43)

which is another instance of (19.118).
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In the case � = 1, we consider only � = 2, since � 2 < 1 if � > 2. Then
(18.41) yields (we havea < 0 in this case)

Z (z) = � �
�

2�( � )
� a

� 1=2 �
1 � z=� Z

� 1=2�
� log (1 � z=� Z )

� � 1=2
+ : : : : (18.44)

Singularity analysis [40, Theorems VI.2{3] gives another proof of (18.17) in the
special case (18.41) (again assuming� = 1, as we may).

Example 18.21. De�ne w by �( z) = w0+
P 1

j =0 2� 2j z2j
, for somew0 > 0; thus

supp(w) is the lacunary sequencef 0g [ f 2j g. Then � = 1, �( � ) = w0 + 4 =3 and
� 0(� ) = 2; hence � = 	( � ) = 2 =(w0 + 4 =3). The function �( z) is analytic in the
unit disc and has the unit circle as a natural boundary; it cannot be extended
analytically at any point. (See e.g.Rudin [101, Remark 16.4 and Theorem 16.6].)

Taking w0 > 2=3, we have� < 1; hence,F 0(� ) > 0 by (18.35). Thus F maps
the unit circle onto a closed curve � that goes vertically through F (1) = � z , and
sinceF cannot be continued analytically across the unit circle,Z (z) cannot be
continued analytically across the curve �. In particular, Z (z) is not analytic in
any sectorD � Z ;� 0.

19. Largest degrees and boxes

Consider a random allocationBm;n = ( Y1; : : : ; Yn ) and arrange Y1; : : : ; Yn in
decreasing order asY(1) > Y(2) > : : : . Thus, Y(1) is the largest number of balls
in any box, Y(2) is the second largest, and so on.

By Lemma 17.1, we may also consider the random treeTn by taking m = n� 1;
then Y(1) is the largest outdegree inTn , Y(2) is the second largest outdegree, and
so on.

As usual, we consider asymptotics asn ! 1 and m=n ! � . (Thus � = 1
in the tree case.) We usually ignore the casesm=n ! 0 and m=n ! 1 ; these
are left to the reader as open problems. (See e.g. Kolchin, Sevast'yanov and
Chistyakov [77], Kolchin [76], Pavlov [96] and Kazimirov [70] for examples of
such results.)

The results in Sections 7 and 11 suggest that Y(1) is small when � < � ,
but large (perhaps of order n) when � > � , which is one aspect of the phase
transition at � = � . We will see that this roughly is correct, but that the full
story is somewhat more complicated.

We study the cases� 6 � and � > � separately; we also consider separately
several subcases of the �rst case where we can give more preciseresults.

We �rst note that the case ! < 1 , when the box capacities (node degrees in
the tree case) are bounded is trivial: w.h.p. the maximum is attained in many
boxes.

Theorem 19.1. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and ! < 1 .
Suppose thatn ! 1 and m = m(n) with m=n ! � > 0. Then Y( j ) = ! w.h.p.
for every �xed j .
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Proof. Clearly, eachYi 6 ! , so Y( j ) 6 Y(1) 6 ! .
We assume tacitly, as always, thatBm;n exists, i.e. Z (m; n) > 0, and thus

m 6 !n , so � 6 ! . By Theorem 11.4 if � < ! , and Remark 11.10 if � = ! ,
N ! (Bm;n )=n

p
�! � ! > 0. In particular, N ! (Bm;n )

p
�! 1 , and thus P(Y( j ) =

! ) ! 1.

19.1. The case � 6 �

In the case� 6 � , we show that, indeed, all Yi are small. Theorems19.2{ 19.3
yield (w.h.p.) a bound o(n) when � = � , and a much stronger logarithmic bound
O(log n) when � < � . (In the tree case, we have� = 1, so these are the cases
� = 1 and � > 1.)

Example 19.27shows that in general, the boundo(n) when � = � is essentially
best possible; at least, for any given" > 0, we can haveY(1) > n 1� " w.h.p. (We
do not know precisely how fastY(1) can grow; see Problem19.31.)

Theorem 19.2. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and
wk > 0 for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! �
where 0 6 � < 1 . If � 6 � , then Y(1) = op (n).

Equivalently, Y(1) =n
p

�! 0.

Proof. The case� = 0 is trivial, since Y(1) =n 6 m=n ! � . The case� = ! is also
trivial, since then ! < 1 and Y(1) 6 ! . As above, � > ! is impossible. Hence
we may assume 0< � < ! and � > � > 0, which implies � > 0, where 	( � ) = � ,
cf. Theorem 11.4. We may then for convenience replace (wk ) by the equivalent
weight sequence (� k ) in ( 11.13); we may thus assume thatw is a probability
weight sequence with� = 1, and thus � > � = 1, and then the corresponding
random variable � has E � = � .

By (18.11) and symmetry, for any k > 0,

P(Y(1) = k) 6 n P(Y1 = k) = n
wk Z (m � k; n � 1)

Z (m; n)
: (19.1)

Furthermore, wk = � k = P(� = k) 6 1 and, using Example11.2, Z (m; n) =
P(Sn = m) = eo(n ) by Lemma 14.3 (� > 1) or 14.4 (� = 1). We turn to
estimating Z (m � k; n � 1).

Let 0 < " < � , and de�ne � " by 	( � " ) = � � " . Since 	( � ) = � , we have
0 < � " < � = 1.

For eachn, choosek = k(n) 2 ["n; m ] such that Z (m� k; n� 1) is maximal. We
have " 6 k=n 6 m=n ! � ; choose a subsequence such thatk=n converges, say
k=n ! 
 with " 6 
 6 � . Then, along the subsequence, (m � k)=(n � 1) ! � � 
 .

By Theorem 18.1(and Remark 18.2, ignoring the trivial case Z (m� k; n� 1) =
0), using � " < 1, 
 > " and (11.16),

1
n

logZ (m � k; n � 1) ! log inf
t > 0

�( t)
t � � 
 6 log inf

06 t 6 � "

�( t)
t � � 


6 log inf
06 t 6 � "

�( t)
t � � " = log

�( � " )

� � � "
"

=: c" ;
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say, where Remark11.5 shows that, since� " 6= 1,

c" < log
�
�(1) =1� � " �

= 0 : (19.2)

We have shown that

lim sup
n !1

1
n

logZ (m � k; n � 1) 6 c" (19.3)

for k = k(n) and any subsequence such thatk=n converges; it follows that (19.3)
holds for the full sequence. In other words,

logZ (m � k; n � 1) 6 c" n + o(n) (19.4)

for our choice k = k(n) that maximises the left-hand side, and thus uniformly
for all k 2 ["n; m ]. Using (19.4) and, as said above, Lemma14.4 in (19.1) we
obtain, recalling (19.2),

P(Y(1) > "n ) =
mX

k= "n

P(Y(1) = k) 6 mnec" n + o(n ) eo(n ) = ec" n + o(n ) ! 0:

In other words, for any " > 0, Y(1) < "n w.h.p., which is equivalent to Y(1) =
op (n).

The following logarithmic bound when � < � is essentially due to Meir and
Moon [86] (who studied the tree case).

Theorem 19.3. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and wk > 0
for some k > 1. Suppose thatn ! 1 and m = m(n) with m=n ! � . Assume
0 < � < � , and de�ne � 2 (0; � ) by 	( � ) = � .

(i) Then � < � and

Y(1) 6
1

log(�=� )
logn + op (log n): (19.5)

(ii) In particular, if � = 1 , then Y(1) = op (log n).

(iii) If further w1=k
k ! 1=� as k ! 1 , then, for every �xed j > 1,

Y( j )

logn
p

�!
1

log(�=� )
: (19.6)

Recall that 1=� = lim sup k !1 w1=k
k , see (3.5), so the extra assumptionw1=k

k !
1=� as k ! 1 in (iii) holds unless the weight sequence is rather irregular. (The
proof shows that the assumption can be weakened toP(� > k)1=k ! �=� .)

It is not di�cult to show Theorem 19.3directly, but we prefer to postpone the
proof and use parts of the more re�ned Theorem19.7 below, in order to avoid
some repetitions of arguments. Further results, under additional assumptions,
are given in Sections19.3{ 19.4.

We conjecture that Theorem 19.3holds also for� = 0. Since then � = 0, this
means the following. (This seems almost obvious given the result for positive �
in Theorem 19.3, where the constant 1=log(�=� ) ! 0 as� ! 0 and thus � ! 0,
but there is no general monotonicity and we leave this as an open problem.)

Conjecture 19.4. If � > 0 and m=n ! 0, then Y(1) = op (log n).
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19.2. The subcase � 2 < 1

In the case� 2 := Var � < 1 (which includes the case� < � ), there is a much
more precise result, which says that, simply, the largest numbersY(1) ; Y(2) : : :
asymptotically have the same distribution as the largest elements in the i.i.d.
sequence� 1; : : : ; � n . (Provided we choose the distribution of � correctly, and
possibly depending onn, see below for details.) In other words, the conditioning
in Example 11.2then has asymptotically no e�ect on the largest elements of the
sequence. (When� 2 = 1 this is no longer necessarily true, however, as we shall
see in Example19.27.)

In order to state this precisely, we now assume that! = 1 (see Theorem19.1
otherwise) and 0< � 6 � , and de�ne as usual � by 	( � ) = � , and let � be a
random variable with the distribution in ( 11.13).

If m=n 6 � , we further de�ne � n by 	( � n ) = m=n, and let � (n ) be the random
variable with the distribution in ( 14.11). We will only use � n and � (n ) in the
case� < � , so m=n ! � < � and � n really is de�ned (at least for large n);

furthermore � n ! � < � and � (n ) d�! � .
We further let � 1; : : : ; � n and (when � < � ) � (n )

1 ; : : : ; � (n )
n be i.i.d. sequences

of copies of� and � (n ) , respectively, and we arrange them in decreasing order
as � (1) > : : : > � (n ) and � (n )

(1) > : : : > � (n )
(n ) . Finally, we introduce the counting

variables, for any subsetA � N0,

NA := jf i 6 n : Yi 2 Agj; (19.7)

N A := jf i 6 n : � i 2 Agj; (19.8)

N
(n )
A := jf i 6 n : � (n )

i 2 Agj: (19.9)

(NA and N A also depend onn, but as usual, we for simplicity do not show this

in the notation.) Note that N A and N
(n )
A simply have binomial distributions

N A � Bi( n; P(� 2 A)) and N
(n )
A � Bi( n; P(� (n ) 2 A)).

We have
Y( j ) 6 k () N [k+1 ;1 ) < j; (19.10)

and similarly for � ( j ) and � (n )
( j ) . Thus it is elementary to obtain asymptotic results

for the maximum � (1) of i.i.d. variables, and more generally for� ( j ) and � (n )
( j ) , see

e.g. Leadbetter, Lindgren and Rootz�en [82].
We introduce three di�erent probability metrics to state the result s. For dis-

crete random variablesX and Y with values in N0 (the case we are interested
in here), we de�ne the Kolmogorov distance

dK (X; Y ) := sup
x 2 N0

j P(X 6 x) � P(Y 6 x)j (19.11)

and the total variation distance

dTV (X; Y ) := sup
A � N0

j P(X 2 A) � P(Y 2 A)j: (19.12)
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In order to treat also the case with variables tending to 1 , we further de�ne
the modi�ed Kolmogorov distance

edK (X; Y ) := sup
x 2 N0

j P(X 6 x) � P(Y 6 x)j
1 + x

: (19.13)

For edK , we also allow random variables inN0, i.e., we allow the value1 . (Fur-
thermore, the de�nitions of dK and dTV and the results for them in the lemma
below extend to random variables with values inZ. The de�nitions extend fur-
ther to random variables with values in R for dK , and in any space fordTV , but
not all properties below hold in this generality.)

Note that these distances depend only on the distributionsL (X ) and L(Y ),
sod(L (X ); L (Y )) might be a better notation, but we �nd it convenient to allow
both notations, as well as the mixedd(X; L (Y )).

It is obvious that the three distances above are metrics on the space of prob-
ability measures onN0 (or on N0).

We collect a few simple, and mostly well-known, facts for these threemetrics
in a lemma; the proofs are left to the reader.

Lemma 19.5. (i) For any random variables X and Y with values in N0,

edK (X; Y ) 6 dK (X; Y ) 6 dTV (X; Y ):

(ii) For any X and X 1; X 2; : : : with values in N0,

X n
d�! X () dTV (X n ; X ) ! 0 () dK (X n ; X ) ! 0

() edK (X n ; X ) ! 0:

(iii) For any X and X 1; X 2; : : : with values in N0,

X n
d�! X () edK (X n ; X ) ! 0:

In particular,
X n

p
�! 1 () edK (X n ; 1 ) ! 0:

(iv) For any X n and X 0
n with values in N0, edK (X n ; X 0

n ) ! 0 ()
�
�P(X n 6

x) � P(X 0
n 6 x)

�
� ! 0 for every �xed x > 0.

(v) For any X n and X 0
n , dTV (X n ; X 0

n ) ! 0 () there exists a coupling

(X n ; X 0
n ) with X n = X 0

n w.h.p. (We denote this also byX n
d
� X 0

n .)
(vi) The supremum in (19.12) is attained, and the absolute value sign is

redundant. In fact, if A := f i : P(X = i ) > P(Y = i )g, then dTV (X; Y ) =
P(X 2 A) � P(Y 2 A).

(vii) For any X and Y with values in N0,

dTV (X; Y ) =
X

x 2 N0

�
P(X = x) � P(Y = x)

�
+ = 1

2

X

x 2 N0

j P(X = x) � P(Y = x)j:
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Remark 19.6. The three metrics are, by Lemma 19.5(ii), equivalent in the
usual sense that they de�ne the same topology, but they are notuniformly
equivalent. For example, if X n � Po(n), X 0

n := 2 bX n =2c (i.e., X n rounded
down to an even integer) andX 00

n := X 0
n + 1, then dK (X 0

n ; X 00
n ) ! 0 asn ! 1 ,

but dTV (X 0
n ; X 00

n ) = 1.

We de�ne Po(1 ) as the distribution of a random variable that equals 1
identically.

After all these preliminaries, we state the result (together with some sup-
plementary results). There are really two versions; it turns out that for general
sequencesm(n), we have to use the random variables� (n ) , with E � (n ) = m(n)=n
exactly tuned to m(n), but under a weak assumption we can replace� (n ) by �
and obtain a somewhat simpler statement, which we choose as our main formu-
lation. (This goes back to Meir and Moon [87], who proved (i) in the tree case,
assuming� < � ; see also Kolchin, Sevast'yanov and Chistyakov [77, Theorem
1.6.1] and Kolchin [76, Theorem 1.5.2] for Y(1) in the special case in Exam-
ple 12.1.)

Theorem 19.7. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and ! = 1 .
Suppose thatn ! 1 and m = m(n) with m = �n + o(

p
n) where 0 < � 6 � ,

and use the notation above. Suppose further that� 2 := Var � < 1 . (This is
redundant when� < � .)

(i) If (possibly for n in a subsequence)h(n) are integers such that
nP (� > h(n)) ! � , for some � 2 [0; 1 ], then

N [h (n ) ;1 ) := jf i : Yi > h(n)gj d�! Po(� ):

(ii) If h(n) are integers such thatnP (� > h(n)) ! 0, then w.h.p. Y(1) < h (n).
(iii) If h(n) are integers such thatnP (� > h(n)) ! 1 , then, for every �xed j ,

w.h.p. Y( j ) > h(n).
(iv) For any sequenceh(n), edK

�
N [h (n ) ;1 ) ; N [h (n ) ;1 )

�
! 0.

(v) For every �xed j , dK
�
Y( j ) ; � ( j )

�
! 0.

(vi) dTV
�
Y(1) ; � (1)

�
! 0.

If � < � , the condition m = �n + o(
p

n) can be weakened tom=n = � +
o(1=logn).

Moreover, if � < � , then the results hold for anym = m(n) with m=n ! � ,

provided � is replaced by� (n ) , N by N
(n )

and � ( j ) by � (n )
( j ) .

Remark 19.8. In the version with � (n ) , we do not need� at all. By considering
subsequences, it follows that it su�ces that 0 < c 6 m=n 6 C < � . (Cf.
Theorem 11.6.) Furthermore, this version extends to the case� = � and m=n 6
� , but we have ignored this case for simplicity.

Problem 19.9. Is Theorem 19.7 (in the � (n ) version) true also for � = 0 < � ?

The total variation approximation in (vi) is stronger than the Kolmogorov
distance approximation in (v) , and our proof is considerably longer, but for
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many purposes(v) is enough. We conjecture that total variation approximation
holds for every Y( j ) , and not just for Y(1) ; presumably this can be shown by a
modi�cation of the proof for Y(1) below, but we have not checked the details and
leave this as an open problem. Furthermore, we believe that the result extends
to the joint distribution of �nitely many Y( j ) . (The corresponding result in (v) ,
using a multivariate version of the Kolmogorov distance, is easily veri�ed by the
methods below.)

Problem 19.10. Does dTV
�
Y( j ) ; � ( j )

�
! 0 hold for every �xed j , under the

assumptions of Theorem19.7?

Proof of Theorem 19.7. As in the proof of Theorem 19.2, we may replace (wk )
by the equivalent weight sequence (� k ) in ( 11.13). We may thus assume that
w is a probability weight sequence with � = 1, and thus � > � = 1, and the
corresponding random variable� hasE � = � . We consider �rst the version with
� , assumingm = �n + o(

p
n), and discuss afterwards the modi�cations for � (n ) .

We begin by looking again at (18.11):

P(Y1 = k) =
wk Z (m � k; n � 1)

Z (m; n)
: (19.14)

When m = �n + o(
p

n), we may apply Lemma 14.1and Remark 14.2and thus,
with d := span(w),

Z (m; n) = P(Sn = m) =
d + o(1)
p

2�� 2n
: (19.15)

Moreover, by (14.9), for any k,

Z (m � k; n � 1) = P(Sn � 1 = m � k) 6
d + o(1)
p

2�� 2n
: (19.16)

Consequently, (19.14) yields, uniformly for all k,

P(Y1 = k) 6 (1 + o(1))wk = (1 + o(1)) P(� = k): (19.17)

In particular, we may sum over k > K and obtain, for any K = K (n),

P(Y1 > K ) 6 (1 + o(1)) P(� > K ): (19.18)

Since, by assumption,E � 2 < 1 , we haveP(� > K ) = o(K � 2) as K ! 1 .
Hence, for every �xed � > 0, P(� > �

p
n) = o(n� 1). It follows that there exists

a sequence� n ! 0 such that P(� > � n
p

n) = o(n� 1). Consequently, de�ning
B (n) := � n

p
n, we haveB (n) = o(

p
n) and

P(� > B (n)) = o(n� 1); (19.19)

and thus, by (19.18) and symmetry,

P(Y(1) > B (n)) 6 n P(Y1 > B (n)) = n
�
1 + o(1)

�
P(� > B (n)) = o(1): (19.20)

Hence,Y(1) < B (n) w.h.p.
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Similarly, P(� (1) > B (n)) 6 n P(� 1 > B (n)) = o(1), so � (1) < B (n) w.h.p.
(i) : Write, for convenience, N := N [h (n ) ;B (n )] , and note that w.h.p. Y(1) 6

B (n) and then N = N [h (n ) ;1 ) . (We assume for simplicityh(n) 6 B (n); otherwise
we let N := 0, leaving the trivial modi�cations in this case to the reader.)

Moreover, for k 6 B (n) = o(
p

n), we have (m � k) � (n � 1)� = o(
p

n), and
thus Remark 14.2 shows that, for any k = k(n) 6 B (n),

Z (m � k; n � 1) = P(Sn � 1 = m � k) =
d + o(1)
p

2�� 2n
: (19.21)

Since we here may takek = k(n) that maximises or minimises this for k 6
B (n), it follows that ( 19.21) holds uniformly for all k 6 B (n). Consequently, by
(19.14), (19.15) and (19.21),

P(Y1 = k) = (1 + o(1))wk = (1 + o(1)) P(� = k); (19.22)

uniformly for all k 6 B (n). By the assumption and (19.19), this yields

E N = n
B (n )X

k= h(n )

P(Y1 = k) = n
B (n )X

k= h(n )

�
1 + o(1)

�
P(� = k)

=
�
1 + o(1)

�
n P

�
h(n) 6 � 6 B (n)

�

=
�
1 + o(1)

�
n

�
P(� > h(n)) � P(� > B (n))

�
! �:

Similarly, again using the symmetry as well as Lemma14.1and Remark14.2,

E N (N � 1) = n(n � 1) P
�
Y1; Y2 2 [h(n); B (n)]

�

= n(n � 1)
B (n )X

k1 ;k 2 = h(n )

P(Y1 = k1 and Y2 = k2)

= n(n � 1)
B (n )X

k1 ;k 2 = h(n )

wk1 wk2 Z (m � k1 � k2; n � 2)
Z (m; n)

= n(n � 1)
B (n )X

k1 ;k 2 = h(n )

P(� = k1) P(� = k2)
�
1 + o(1)

�

=
�
1 + o(1)

�
n2�

P(� > h(n)) � P(� > B (n))
� 2

! � 2:

Moreover, the same argument works for any factorial momentE(N )` and yields

E(N )` ! � ` for every ` > 1. If � < 1 , we thus obtain N d�! Po(� ) by the
method of moments, and the result follows, sinceN = N [h (n ) ;1 ) w.h.p.

If � = 1 , this argument yields

E(N )` �
�
n P(� > h(n))

� `
! 1 (19.23)
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for every ` > 1, and we make a thinning: Let A be a constant and let q :=
A=

�
n P(� > h(n))

�
; then q ! A=� = 0. We consider only n that are so large that

q < 1. We then randomly, and independently, mark each box with probability
q. Let N 0 be the random number of marked boxesi such that Yi 2 [h(n); B (n)].
Then, for every ` > 1, using (19.23),

E(N 0)` = ( n)` q` P
�
Y1; : : : ; Y` 2 [h(n); B (n)]

�
= q` E(N )` ! A ` : (19.24)

Consequently, by the method of moments,N 0 d�! Po(A). In particular, this
shows, for every �xed x,

P(N < x ) 6 P(N 0 < x ) ! P(Po(A) < x );

which can be made arbitrarily small by taking A large. Hence,P(N < x ) ! 0
for every �xed x, i.e., N

p
�! 1 and thus N [h (n ) ;1 )

p
�! 1 , as we claim in this

case.
(ii) : Part (i) applies with � = 0, and yields N [h (n ) ;1 )

p
�! 0, which means

N [h (n ) ;1 ) = 0 w.h.p. Thus Y( j ) < h (n) w.h.p. by (19.10).

(iii) : Part (i) applies with � = 1 , and yields N [h (n ) ;1 )
p

�! 1 . Thus, for
every �xed j , by (19.10), P(Y( j ) < h (n)) = P(N [h (n ) ;1 ) < j ) ! 0.

(iv) : Suppose not. Then there exists a sequenceh(n) and an " > 0 such that,
for some subsequence,

edK
�
N [h (n ) ;1 ) ; N [h (n ) ;1 )

�
> ": (19.25)

We may select a subsubsequence such thatn P(� > h(n)) ! � for some � 2
[0; 1 ]; then edK

�
N [h (n ) ;1 ) ; Po(� )

�
! 0 by (i) and Lemma 19.5(iii) . Moreover,

along the same subsubsequence,N [h (n ) ;1 ) � Bi
�
n; P(� > h(n)

� d�! Po(� ),
by the standard Poisson approximation for binomial distributions (and rather
trivially if � = 1 ); hence edK

�
N [h (n ) ;1 ) ; Po(� )

�
! 0. The triangle inequality

yields edK
�
N [h (n ) ;1 ) ; N [h (n ) ;1 )

�
! 0 along the subsubsequence, which contra-

dicts (19.25). This contradiction proves (iv) .
(v) : Suppose not. Then, by (19.11), there is an " > 0 and a subsequence such

that for some h(n),
�
�P(Y( j ) 6 h(n)) � P(� ( j ) 6 h(n))

�
� > ": (19.26)

However, by (19.10), (19.13) and (iv) ,
�
�P(Y( j ) 6 h(n)) � P(� ( j ) 6 h(n))

�
�

=
�
�P(N [h (n )+1 ;1 ) 6 j � 1) � P(N [h (n )+1 ;1 ) 6 j � 1)

�
�

6 j edK
�
N [h (n )+1 ;1 ) ; N [h (n )+1 ;1 )

�
! 0;

which contradicts (19.26). This contradiction proves (v) .
(vi) : Let A = A(n) := f i : P(Y( j ) = i ) > P(� ( j ) = i )g; thus, see Lemma19.5(vi),

dTV (Y( j ) ; � ( j ) ) = P(Y( j ) 2 A) � P(� ( j ) 2 A): (19.27)
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Let � > 0. For each n, we partition N0 into a �nite family P = f J l gL
l =1 of

intervals as follows. First, eachi 2 N0 with P(� (1) = i ) > �=2 is a singletonf ig;
note that there are at most 2=� such i . The complement of the set of thesei
consists of at most 2=� + 1 intervals ~Jk (of which one is in�nite). We partition
each such interval ~Jk further into intervals J l with P(� (1) 2 J l ) 6 � by repeatedly
chopping o� the largest such subinterval starting at the left endpoint. Since only
points with P(� (1) = i ) < �= 2 remain, each such intervalJ l except the last in
each ~Jk satis�es P(� (1) 2 J l ) > �= 2. Hence, our �nal partition f J l g contains at
most 2=� + 1 intervals J l with P(� (1) 2 J l ) < �= 2, while the number of intervals
J l with P(� (1) 2 J l ) > �=2 is clearly at most 2=� . Consequently, L , the total
number of intervals, is at most 4=� + 1.

We write J l = [ al ; bl ]. We say that an interval J l 2 P is fat if P(� (1) 2 J l ) > � ,
and thin otherwise. Note that by our construction, a fat interval is a singleton
f al g.

Next, �x a large number D . We say that an interval J l = [ al ; bl ] 2 P is good
if n P(� > al ) 6 D , and bad otherwise.

For any interval J l ,
�
�P(Y(1) 2 J l ) � P(� (1) 2 J l )

�
� 6 2dK (Y(1) ; � (1) ) = o(1) (19.28)

by (v) .
Let A l := A \ J l . Thus A is the disjoint union

S
l A l . (A, J l and A l depend

on n.)
We note that if J l is fat, then J l is a singleton, and eitherA l = J l or A l = ; ;

in both cases we have, using (19.28),

P(Y(1) 2 A l ) � P(� (1) 2 A l ) 6 2dK (Y(1) ; � (1) ) = o(1): (19.29)

We next turn to the good intervals. We claim that, uniformly for all go od
intervals J l , as n ! 1 ,

P(Y(1) 2 A l ) 6 e�e D

P(� (1) 2 A l ) + o(1): (19.30)

As usual, we suppose that this is not true and derive a contradiction. Thus,
assume that there is an" > 0 and, for eachn in some subsequence, a good
interval J l = [ al ; bl ] (depending onn) such that

P(Y(1) 2 A l ) > e �e D
P(� (1) 2 A l ) + ": (19.31)

If J l is fat, then (19.31) contradicts (19.29) for large n, so we may assume that
J l is thin, i.e., P(� (1) 2 J l ) 6 � .

Let Ac
l := J l n A l and B l := [ bl + 1 ; 1 ). Let � n := n P(� 2 A l ), � n :=

n P(� 2 B l ) and 
 n := n P(� 2 Ac
l ). The assumption that J l is good implies that

� n + � n + 
 n = n P(� > al ) 6 D . By selecting a subsubsequence we may assume
that � n ! � , � n ! � and 
 n ! 
 for some real�; �; 
 with � + � + 
 6 D .

Then (i) shows that NB l

d�! Po(� ); moreover, the proof extends easily (using
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joint factorial moments) to show that NA l

d�! Po(� ), NB l

d�! Po(� ) and

NA c
l

d�! Po(
 ), jointly and with independent limits.
Similarly, by the method of moments or otherwise (this is a standard Poisson

approximation of a multinomial distribution), N A l

d�! Po(� ), N B l

d�! Po(� )

and N A c
l

d�! Po(
 ), jointly and with independent limits.
Note that

Y(1) 2 A l =) NA l > 1 and NB l = 0 :

Conversely,
NA l > 1 and NB l = NA c

l
= 0 = ) Y(1) 2 A l :

The corresponding results hold for� (1) . Thus,

P(Y(1) 2 A l ) 6 P(NA l > 1; NB l = 0) ! P
�
Po(� ) > 1

�
P

�
Po(� ) = 0

�
(19.32)

and

P(� (1) 2 A l ) > P(N A l > 1; N B l = N A c
l

= 0)

! P
�
Po(� ) > 1

�
P

�
Po(� ) = 0

�
P

�
Po(
 ) = 0

�
: (19.33)

SinceP
�
Po(
 ) = 0

�
= e� 
 , (19.32){( 19.33) yield

P(Y(1) 2 A l ) � e
 P(� (1) 2 A l ) 6 o(1): (19.34)

Moreover, N J l = N A l + N A c
l

d�! Po(� + 
 ), and thus

P(� (1) 2 J l ) = P(N J l > 1; N B l = 0) > P(N J l = 1 ; N B l = 0)

! (� + 
 )e� � � 
 e� � : (19.35)

We are assuming thatJ l is thin, i.e., P(� (1) 2 J l ) 6 � , and thus (19.35) yields
(� + 
 )e� � � 
 e� � 6 � and consequently


 6 � + 
 6 �e � + � + 
 6 �eD :

Hence, (19.34) implies

P(Y(1) 2 A l ) 6 e�e D
P(� (1) 2 A l ) + o(1);

which contradicts (19.31). This contradiction shows that ( 19.30) holds uniformly
for all good intervals.

It remains to consider the bad intervals.
Let J` = [ a` ; b̀ ] be the rightmost bad interval. If J` is fat we use (19.29) and

if J` is thin we use (19.28) which gives

P(Y(1) 2 A ` ) 6 P(Y(1) 2 J` ) 6 P(� (1) 2 J` ) + o(1) 6 � + o(1):

In both cases,
P(Y(1) 2 A ` ) 6 P(� (1) 2 A ` ) + � + o(1): (19.36)
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Finally, let A � be the union of the remaining bad intervals. Then A � =
[0; a` � 1] and by (v) ,

P(Y(1) 2 A � ) = P(Y(1) < a ` ) 6 P(� (1) < a ` ) + o(1): (19.37)

Furthermore, recalling n P(� > a` ) > D sinceJ` is bad,

P(� (1) < a ` ) = P(N [a` ;1 ) = 0) =
�
1 � P(� > a` )

� n
6 e� n P( � > a` ) 6 e� D :

(19.38)
We obtain by summing (19.30) for all good intervals together with ( 19.36)

and (19.37), recalling that the number of intervals is bounded (for a �xed � )
and using (19.38),

P(Y(1) 2 A) =
X

l

P(Y(1) 2 A l )

6 e�e D X

l

P(� (1) 2 A l ) + o(1) + � + P(� (1) < a ` )

6 e�e D

P(� (1) 2 A) + o(1) + � + e� D :

Consequently,

dTV (Y(1) ; � (1) ) = P(Y(1) 2 A) � P(� (1) 2 A)

6
�
e�e D

� 1
�

P(� (1) 2 A) + � + e� D + o(1)

6
�
e�e D

� 1
�

+ � + e� D + o(1);

and thus
lim sup

n !1
dTV (Y(1) ; � (1) ) 6

�
e�e D

� 1
�

+ � + e� D : (19.39)

Letting �rst � ! 0 and then D ! 1 , we obtain dTV (Y(1) ; � (1) ) ! 0, which
proves(vi) .

This completes the proof of the version with � and the assumption m =
�n + o(n1=2). Now remove this assumption, but assume� < � and thus � < � . We
consider onlyn with 0 < m=n < � and thus 0 < � n < � . Denote the distribution
(14.11) of � (n ) by w (n ) (this is a probability weight sequence equivalent tow)
and let S(n )

n := � (n )
1 + � � � + � (n )

n . Then, by Example 11.2 applied to w (n ) , in
analogy with (19.14) (and equivalent to it by ( 11.9)),

P(Y1 = k) =
w(n )

k Z (m � k; n � 1;w (n ) )
Z (m; n; w (n ) )

=
Z (m � k; n � 1;w (n ) )

Z (m; n; w (n ) )
P(� (n ) = k):

(19.40)
Furthermore, for any y > 0, using (14.13),

P(Y(1) > y) 6 n P(Y1 > y) = n P
�
� (n )

1 > y
�
� S(n )

n = m
�

6 n P
�
� (n )

1 > y
�

P
�
S(n )

n = m
� � 1

6 n P(� (n ) > y) � O(n1=2):

(19.41)
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Choose� � 2 (�; � ). Then, for s > 0 and n so large than� n < � � , by (4.11),

P(� (n ) > y) 6 e� sy �( es � n )
�( � n )

6 e� sy �( es� � )
�(0)

: (19.42)

Choosing s > 0 with es < �=� � , we thus �nd P(� (n ) > y) = O(e� sy ) and, by
(19.41),

P(Y(1) > y) = O
�
n3=2e� sy �

:

We now de�ne B (n) := 2 s� 1 logn, and obtain

P(Y(1) > B (n)) = O
�
n3=2e� sB (n ) � = O

�
n� 1=2�

! 0: (19.43)

Hence,Y(1) < B (n) w.h.p. Similarly, using (19.42) again,

P(� (n ) > B (n)) = o(n� 1) (19.44)

and thus P(� (n )
(1) > B (n)) 6 n P(� (n ) > B (n)) ! 0, so � (1) < B (n) w.h.p.

We have shown that (19.19) (with � (n ) ) and (19.20) hold. Moreover, Lemma
14.1 yields, see (14.13) again, Z (m; n; w (n ) ) � d=(2�� 2n)1=2, and for k 6
B (n) = O(log n), the same argument yields also, using Remark14.2, Z (m �
k; n � 1;w (n ) ) � d=(2�� 2n)1=2, becausem � k � (n � 1) E � (n ) = m � k � (n �
1)m=n = � k + m=n = o(n1=2). Consequently, (19.40) yields

P(Y1 = k) =
�
1 + o(1)

�
P(� (n ) = k); (19.45)

uniformly for k 6 B (n).

We can now argue exactly as above, using� (n ) , � (n )
( j ) and N

(n )
A , which proves

this version of the theorem.
Finally, if � < � and m=n = � + o(1=logn), then � n := 	 � 1(m=n) = � +

o(1=logn), because 	 � 1 is di�erentiable on (0 ; � ). Since we are assuming� = 1
and �( � ) = 1 in the proof, we thus have, uniformly for all k 6 B (n) = O(log n),

P(� (n ) = k) =
� k

n

�( � n )
wk =

�
1 + o(1)

�
wk =

�
1 + o(1)

�
P(� = k): (19.46)

Since alsoP(� (n ) > B (n)) = o(n� 1) and P(� > B (n)) = o(n� 1), it follows that
n P(� (n ) > h(n)) ! � () n P(� > h(n)) ! � , and thus we may in (i) { (iii)
replace� (n ) by � again. Finally, (iv) { (vi) follow as above in this case too.

Proof of Theorem 19.3. Recall that � < � () � < � by Lemma 3.1. We have
� > � > 0, so� > 0, and � > 0. Thus 1 < �=� 6 1 .

(i) : Fix a > 1=log(�=� ). Chooseb with e1=a < b < �=� . Then 0 6 1=� <
(b� )� 1. Choosec with 1=� < c < (b� )� 1.

Since lim supk !1 w1=k
k = 1 =� < c , we havew1=k

k < c for large k, and then,
de�ning � n and � (n ) by (14.10){( 14.11),

P(� (n ) = k) =
� k

n

�( � n )
wk 6

(c�n )k

�(0)
: (19.47)
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As n ! 1 , c�n ! c� < b � 1. Let h := ba lognc. For large n, (19.47) applies for
k > h, and c�n < b � 1 < 1, and then

P(� (n ) > h) 6
1X

k= h

(c�n )k

�(0)
6

1X

k= h

b� k

w0
= O

�
b� h �

= O
�
n� a log b�

Since a logb > 1, thus n P(� (n ) > h) ! 0, and Theorem 19.7(ii) yields Y(1) 6
h 6 a logn w.h.p.

(ii) : If � = 1 , then (i) applies with �=� = 1 and thus 1=log(�=� ) = 0.
(iii) : If � = 1 , the result follows by (ii) , so we may assume 1 =� < � < 1 .

Let a := 1 =log(�=� ) and 0 < " < 1. The upper boundY( j ) 6 Y(1) 6 (a+ ") log n
w.h.p. follows from (i) , and it remains to �nd a matching lower bound.

Let k := d(1 � " )a logne. Then, since� n ! � ,

logP(� (n ) = k) = log wk + k log � n � log �( � n )

= � k(log � + o(1)) + k(log � + o(1)) + O(1)

= � k log(�=� ) + o(k) = � (1 � " + o(1)) log n

and thus
n P(� (n ) > k) > n P(� (n ) = k) = n" + o(1) ! 1 :

By Theorem 19.7(iii) (and the last sentence in Theorem19.7), this implies w.h.p.

Y( j ) > k > (1 � " )a logn

This completes the proof, since we can take" arbitrarily small.

Specialising Theorem19.7 to the tree case (m = n � 1), we obtain the fol-
lowing. (Recall that � 2 < 1 is automatic when � > 1.)

Corollary 19.11. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and
wk > 0 for some k > 2, and let � have the distribution given by(� k ) in (7.1).
Suppose that� > 1 and � 2 := Var � < 1 . Then, as n ! 1 , for the largest
degreesY(1) > Y(2) > : : : in Tn , dTV (Y(1) ; � (1) ) ! 0 and, for every �xed j ,
dK (Y( j ) ; � ( j ) ) ! 0.

Proof. The case! = 1 is a special case of Theorem19.7, with � = 1.
The case! < 1 is trivial: for every �xed j , Y( j ) = ! w.h.p. by Theorem 19.1,

and, trivially, � ( j ) = ! w.h.p.

The comparison with � ( j ) in Theorem 19.7 and Corollary 19.11is appealing
since � ( j ) is the j :th largest of n i.i.d. random variables. For applications it is
often convenient to modify this a little by taking a Poisson number of variables
instead.

Consider an in�nite i.i.d. sequence � 1; � 2; : : : , let as above� ( j ) be the j :th
largest among the �rst n elements of the sequence and de�ne~� ( j ) as the j :th
largest among the �rst N (n) elements � 1; : : : ; � N (n ) , where N (n) � Po(n) is a
random Poisson variable independent of� 1; � 2; : : : .
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Lemma 19.12. W.h.p. ~� ( j ) = � ( j ) and thus dTV ( ~� ( j ) ; � ( j ) ) ! 0 as n ! 1 for
every �xed j > 1.

Proof. Let n� := bn � n2=3c, and let � �
( j ) be the j :th largest of � 1; : : : ; � n � . By

symmetry, the positions of the j largest among� 1; : : : ; � n are uniformly random
(we resolve any ties in the ordering at random); thus the probability that one
of them has index> n � is at most j (n � n� )=n = o(1). Hence, w.h.p. all j are
among � 1; : : : ; � n � , and then � ( j ) = � �

( j ) .
Furthermore, w.h.p. n� 6 N (n) 6 n+ , and a similar argument (using condi-

tioning on N (n)) shows that w.h.p. ~� ( j ) = � �
( j ) . Hence, w.h.p.� ( j ) = � �

( j ) = ~� ( j ) .
Now use Lemma19.5(v).

We can thus replace� ( j ) by ~� ( j ) in Theorem 19.7and Corollary 19.11. (We can

similarly replace � (n )
( j ) by ~� (n )

( j ) de�ned in the same way.) The advantage is that,
by standard properties of the Poisson distribution, the corresponding counting
variables

eNk := jf i 6 N (n) : � = kgj

are independent Poisson variables with eNk � Po(n P(� = k)). We similarly
de�ne eN [k; 1 ) :=

P 1
l = k

eN l � Po
�
n P(� > k)

�
.

Remark 19.13. An equivalent way to express this is that the multiset � n :=
f � i : i 6 N (n)g is a Poisson process onN0 with intensity measure � n given by
� n f kg = n P(� = k).

We thus have (exactly), for any j and k,

P( ~� ( j ) 6 k) = P
� eN [k+1 ;1 ) < j

�
= P

�
Po(n P(� > k )) < j

�
; (19.48)

in particular
P( ~� (1) 6 k) = e� n P( �>k ) : (19.49)

This gives the following special case of Theorem19.7. (There is a similar version
with � (n ) .)

Corollary 19.14. Suppose thatw0 > 0 and ! = 1 . Suppose further that
n ! 1 and m = m(n) with m = �n + o(

p
n) where 0 < � 6 � , and that either

� < � or � 2 := Var � < 1 . Then, uniformly in all k > 0,

P(Y( j ) 6 k) = P
�
Po(n P(� > k )) < j

�
+ o(1) (19.50)

for each �xed j > 1; in particular

P(Y(1) 6 k) = e� n P( �>k ) + o(1): (19.51)

Proof. Immediate by Theorem 19.7(v), Lemma 19.12and (19.48){( 19.49).

Remark 19.15. Since eN [h (n ) ;1 ) > j () ~� ( j ) > h(n), it follows easily from
Lemmas19.12and 19.5(iv) that for any sequenceh(n),

edK
�
N [h (n ) ;1 ) ; eN [h (n ) ;1 )

�
! 0: (19.52)
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Hence, Theorem19.7(iv) is equivalent to edK
�
N [h (n ) ;1 ) ; eN [h (n ) ;1 )

�
! 0, and thus

edK

�
N [h (n ) ;1 ) ; Po

�
n P(� > h(n))

� �
! 0: (19.53)

This is another, essentially equivalent, way to express the results above.

19.3. The subcase � < �

When � < � , we have � < � and the random variable � has some �nite ex-
ponential moment, cf. Section 8; hence the probabilities � k decrease rapidly.
Theorem 19.7 and Corollary 19.14 show that Y(1) (and each Y( j ) ) has its dis-
tribution concentrated on k such that P(� > k) is of the order 1=n. If the
decrease of� k is not too irregular, this implies strong concentration of Y(1) ,
with, rougly speaking, Y(1) � k when P(� > k) � 1=n. To make this precise,
we de�ne three versions of a suitable such estimatek = k(n). Let, as above,
� k = P(� = k) = � k wk =�( � ) and let

� k := P(� > k) =
1X

l = k

� l : (19.54)

De�ne

k1(n) := max f k : � k > 1=ng; (19.55)

k2(n) := max f k : � k > 1=ng; (19.56)

k3(n) := max f k :
p

� k � k+1 > 1=ng: (19.57)

Note that k1(n) 6 k2(n) and k2(n) � 1 6 k3(n) 6 k2(n).
We consider the typical case whenwk+1 =wk converges ask ! 1 . We assume

implicitly that wk+1 =wk is de�ned for all large k; thus wk > 0 and ! = 1 . If
wk+1 =wk ! a as k ! 1 , then (3.5) yields � = 1 =a; hence� = 1 if a = 0 and
0 < � < 1 if a > 0.

Theorem 19.16. Suppose thatw0 > 0 and that wk+1 =wk ! a < 1 as k ! 1 .
Suppose further that n ! 1 and m = m(n) with m = �n + o(

p
n) where

0 < � < � .

(i) Then, for each j > 1,

Y( j ) = k1(n) + Op (1) = k2(n) + Op (1) = k3(n) + Op (1):

(ii) If a = 0 , then, moreover, w.h.p.,

jY( j ) � k1(n)j 6 1; jY( j ) � k2(n)j 6 1; Y( j ) 2 f k3(n); k3(n) + 1 g:

Proof. (i): We have, as said above,� = 1 =a > 0. Furthermore, since � < � , we
have � < � and thus, ask ! 1 ,

� k+1

� k
= �

wk+1

wk
! �a =

�
�

< 1: (19.58)
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It follows from ( 19.58) and (19.54), using dominated convergence, that, as
k ! 1 ,

� k

� k
=

1X

i =0

� k+ i

� k
!

1X

i =0

(�a ) i =
1

1 � �a
: (19.59)

If ` is chosen such that (�a )` < 1� �a , then (19.59) and (19.58) imply � k+ ` =� k !
(�a )` =(1 � �a ) < 1 as k ! 1 , and thus, for large k, � k+ ` < � k < � k ; hence,
for large n, k1(n) 6 k2(n) 6 k1(n) + `. Thus, recalling that jk2(n) � k3(n)j 6 1,

k1(n) = k2(n) + O(1) = k3(n) + O(1): (19.60)

Furthermore, (19.58) and (19.59) yield also

� k+1

� k
! �a < 1: (19.61)

By (19.56), n� k2 (n ) > 1 > n � k2 (n )+1 . This and (19.61) imply that if 
( n) is
any sequence with 
(n) ! 1 , then n� k2 (n ) � 
( n ) ! 1 and n� k2 (n )+
( n ) ! 0.
Consequently, recalling the de�nition (19.54), by Theorem 19.7(ii){ (iii) (or by
Corollary 19.14) w.h.p. Y( j ) > k2(n) � 
( n) and Y( j ) < k 2(n) + 
( n). Since

( n) ! 1 is arbitrary, this yields Y( j ) = k2(n) + Op (1). (See e.g. [62].) The
result follows by (19.60).

(ii): When a = 0, ( 19.59) yields � k � � k , (19.58) yields � k+1 =� k ! 0
and (19.61) yields � k+1 =� k ! 0 as k ! 1 . It follows easily from (19.55){
(19.57) that n� k1 (n ) � 1 ! 1 , n� k1 (n )+2 ! 0, n� k2 (n ) � 1 ! 1 , n� k2 (n )+2 ! 0,
n� k3 (n ) ! 1 , n� k3 (n )+2 ! 0, and the results follow by Theorem 19.7(ii){
(iii) .

If a = 0, i.e. wk+1 =wk ! 0 ask ! 1 , thus Y(1) is asymptotically concentrated
at one or two values. (This was shown, in the tree case, by Meir and Moon [88],
after showing concentration to at most three values in [87]; see also Kolchin,
Sevast'yanov and Chistyakov [77], Kolchin [76] and Carr, Goh and Schmutz [21]
for special cases.) Ifa > 0, we still have a strong concentration, but not to any
�nite number of values as is seen by Theorem19.19below.

We consider two important examples, where we apply this to random trees,
so m = n � 1 and � = 1. (Recall that Y(1) then is the largest outdegree inTn .
The largest degree is w.h.p.Y(1) + 1, since w.h.p. it is not attained at the root,
e.g. because the root degree isOp (1) by Theorem 7.10; this should be kept in
mind when comparing with results in other papers.)

Example 19.17. For uniform random labelled ordered rooted trees, we have
by Example 10.1� � Ge(1=2) with � k = 2 � k � 1 and thus P(� > k) = 2 � k . Hence
Y(1) has asymptotically the same distribution as the maximum ofn i.i.d. geomet-
rically distributed random variables, which is a simple and well-studied example,
see e.g. Leadbetter, Lindgren and Rootz�en [82]. Explicitly, Corollary 19.14ap-
plies and (19.51) yields, uniformly in k > 0,

P(Y(1) 6 k) = e� n 2� k � 1
+ o(1): (19.62)

(This was, essentially, shown by Meir and Moon [87].)



Simply generated trees and random allocations 207

One way to express this is to introduce a random variableW with the Gumbel
distribution

P(W 6 x) = e� e� x
; �1 < x < 1 : (19.63)

Then (19.62) yields, uniformly for k 2 Z,

P(Y(1) 6 k) = P
�
W < (k + 1) log 2 � logn

�
+ o(1)

= P
� W + log n

log 2
< k + 1

�
+ o(1)

= P
� �

W + log n
log 2

�
6 k

�
+ o(1):

(19.64)

In other words, extending dK to Z-valued random variables,

dK
�
Y(1) ; b(W + log n)=log 2c

�
! 0: (19.65)

Thus, the maximum degreeY(1) can be approximated (in distribution) by b(W +
logn)=log 2c = bW=log 2+log2 nc. HenceY(1) � log2 n is tight but no asymptotic
distribution exists; Y(1) � log2 n can be approximated bybW=log 2 + log2 nc �
log2 n = bW=log 2 + f log2 ngc � f log2 ng (where we let f xg := x � b xc denote
the fractional part of x), which shows convergence in distribution for any sub-
sequence such thatf log2 ng converges to some� 2 [0; 1], but the limit depends
on � . See furtherJanson[60, in particular Lemma 4.1 and Example 4.3].

In the same way we see thatY( j ) can be approximated in distribution by
bWj =log 2 + log2 nc where Wj has the distribution

P(Wj 6 x) = P(Po(e� x ) < j ) =
j � 1X

i =0

e� ix

i !
e� e� x

; �1 < x < 1 ; (19.66)

with density function e� jx e� e� x
=(j � 1)!; further Wj

d= � logVj , where Vj has
the Gamma distribution Gamma( j; 1). (Cf. Leadbetter, Lindgren and Rootz�en
[82, Section 2.2] for the relation between the distributions of� ( j ) and � (1) in the
i.i.d. case.)

Example 19.18. For uniform random labelled unordered rooted trees, we have
by Example 10.2 � � Po(1) with � k = e� 1=k!. We have wk+1 =wk ! 0, so
Theorem 19.16(ii) applies and shows that Y(1) is concentrated on at most two
values, as proved byKolchin [76, Theorem 2.5.2]; see also Meir and Moon [88]
and Carr, Goh and Schmutz [21].

Explicitly, ( 19.51) yields (treating the rather trivial case n > k 1=2 � k! sepa-
rately)

P(Y(1) < k ) = e� ne � 1 =k!(1+ O(1=k)) + o(1) = e� ne � 1 =k! + o(1) (19.67)

which by Stirling's formula yields

P(Y(1) < k ) = exp
�
� elog n � (k+ 1

2 ) log k+ k � log( e
p

2� ) � + o(1) (19.68)
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uniformly in k > 1, cf. Carr, Goh and Schmutz [21]. It follows easily from
Stirling's formula, or from ( 19.68), that k1(n); k2(n); k3(n) � logn= log logn,
and more precise asymptotics can be found too; cf. [90, 87, 21].

In fact, the simple Example 19.17is typical for the casewk+1 =wk ! a > 0 as
k ! 1 ; then Y(1) always has asymptotically the same distribution as the max-
imum of i.i.d. geometric random variables, provided we adjust the number of
these variables according tow. We state some versions of this in the next theo-
rem. For simplicity we consider only the maximumY(1) , and leave the extensions
to Y( j ) for general �xed j to the reader.

Theorem 19.19. Suppose thatw0 > 0 and that wk+1 =wk ! a as k ! 1 , with
0 < a < 1 . Suppose further thatn ! 1 and m = m(n) with m = �n + o(

p
n)

where 0 < � < � .
Let q := �a = �=� < 1. Let k(n) be any sequence such that� k(n ) = �(1 =n);

equivalently, k(n) = k1(n) + O(1), and let N = N (n) be integers such that

N �
n� k(n ) q� k (n )

1 � q
=

nwk(n ) a� k (n )

�( � )(1 � q)
: (19.69)

(i) Let � 1; : : : ; � N be i.i.d. random variables with a geometric distribution
Ge(1 � q), i.e., P(� i = k) = (1 � q)q� k , k > 0. Then

Y(1)
d
� max

i 6 N
� i : (19.70)

(ii) Let W have the Gumbel distribution(19.63). Then

Y(1)
d
� b W=log(1=q) + log 1=q N c: (19.71)

(iii) Let bn := n� k(n ) ; thus bn = �(1) . Then

Y(1) � k(n)
d
�

��
W + log( bn =(1 � q))

�
=log(1=q)

�
: (19.72)

Thus Y(1) � k(n) is tight, and converges for every subsequence such that
bn converges.

Hence Y(1) � k(n) converges for every subsequence such thatbn converges,
but the limit depends on the subsequence soY(1) � k(n) does not have a limit
distribution. (For the distributions that appear as subsequence limits, seeJanson
[60, Examples 4.3 and 2.7].) Note that necessarilyk(n) ! 1 and thus N ! 1
as n ! 1 .

We show �rst a simple lemma, similar to Lemma 19.5.

Lemma 19.20. Let X n and X 0
n be integer-valued random variables and sup-

pose that there exists a sequence of integersk(n) such that X n � k(n) is tight.
(Equivalently: X n = k(n) + Op (1).) Then the following are equivalent:

(i) P(X n 6 k(n) + `) � P(X 0
n 6 k(n) + `) ! 0 for each �xed ` 2 Z;
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(ii) dK (X n ; X 0
n ) ! 0;

(iii) X n
d
� X 0

n , i.e., dTV (X n ; X 0
n ) ! 0.

Proof. By considering X n � k(n) and X 0
n � k(n) we may assume thatk(n) = 0.

Let " > 0. SinceX n is tight, there exists L such that P(jX n j > L ) < " for every
n. Suppose that (i) holds. Then

dTV (X n ; X 0
n ) =

1X

` = �1

�
P(X n = `) � P(X 0

n = `)
�

+

6
LX

` = � L

�
P(X n = `) � P(X 0

n = `)
�

+ + P(jX n j > L ) 6 o(1) + ":

This shows (iii). The implications (iii) = ) (ii) and (ii) = ) (i) are trivial.

Proof of Theorem 19.19. By (19.58), � k+1 =� k ! q as k ! 1 , and it follows
from (19.55) that n� k1 (n ) 2 [1; q� 1 + o(1)]. It follows further that � k(n ) =
�(1 =n) () k(n) = k1(n) + O(1), as asserted, and then� k(n ) q� k (n ) �
� k1 (n ) q� k1 (n ) ; thus we may replacek(n) by k1(n) in ( 19.69).

(i): For each �xed ` 2 Z, by (19.59), (19.58) and (19.69),

n P(� > k(n) + `) = n� k(n )+ ` � n� k(n )+ ` =(1 � q) � n� k(n ) q
` =(1 � q)

� Nqk(n )+ ` = N P(� 1 > k(n) + `);
(19.73)

furthermore, this is �(1). Hence, ( 19.51) yields

P
�
Y(1) < k (n) + `

�
= e� n P( � > k(n )+ ` ) + o(1) = e� N P( � 1 > k(n )+ ` ) + o(1)

=
�
1 � P(� 1 > k(n) + `)

� N
+ o(1)

= P
�
max
i 6 N

� i < k (n) + `
�

+ o(1);

and (19.70) follows by Lemma19.20, sinceY(1) � k1(n) is tight by Theorem 19.16.
(ii): As in ( 19.64), uniformly in k 2 Z,

P
�

max
i 6 N

� i < k
�

=
�
1 � qk � N

= e� Nq k

+ o(1)

= P
�
W < k log(1=q) � logN

�
+ o(1)

= P
��

W + log N
log(1=q)

�
< k

�
+ o(1):

(19.74)

Hence,dTV
�
maxi 6 N � i ; bW=log(1=q)+log 1=q N c

�
! 0, and (19.71) follows from

(19.70) and Lemma 19.20.
(iii): By ( 19.69), log1=q N = k(n) + log 1=q(bn =(1 � q)) + o(1), and (19.72)

follows easily from (19.71), using Lemma19.20and the fact that W is absolutely
continuous.
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Remark 19.21. For later use we note that Theorem 19.19, as other results,
extends to the casew0 = 0 by the argument in Remark 11.8; we now have to
assume� > � := min f k : wk > 0g. The extension of Theorem19.19(i) is perhaps
more subtle that other applications of this argument sinceN will change by a
factor � q� , but (ii) and (iii) are straightforward, and then (i) follows by ( 19.74)
and Lemma 19.20.

If the weight sequence is very irregular,Y(1) can fail to be concentrated even
in the case� < � .

Example 19.22. Let ` j := 2 2j
and S := f ` j gj > 1. Let wk = 2 � k if k 2 S,

wk = 0 if k > 2 and k =2 S, and choosew0 :=
P

k2 S(k � 1)wk and w1 := 1 �P
k2 S kwk . Then (wk ) is a probability weight sequence with� :=

P 1
k=0 kwk = 1.

Furthermore, � = 2, �( � ) = 1 and, by Lemma 3.1(iv), � := 	( � ) = 1 . Choose
m = n � 1 (the tree case); thus� = 1 < � and � = 1 so (� k ) = ( wk ).

Note that ` j +1 = `2
j . If n = 2 ` j , then P(� > ` j ) � 2� ` j = n� 1, P(� >

` j +1 ) � 2� ` j +1 � n� 1 and P(� > ` j � 1) � 2� ` j � 1 � n� 1; hence it follows from
(19.51) that for the subsequencen = 2 ` j with j 2 S, P(Y(1) < ` j +1 ) ! 1,
P(Y(1) < ` j ) ! e� 1 and P(Y(1) < ` j � 1) ! 0. Thus, along this subsequence,
P(Y(1) = ` j ) ! 1 � e� 1 and P(Y(1) = ` j � 1) ! e� 1, i.e., P

�
Y(1) = log 2 n

�
!

1 � e� 1 and P
�
Y(1) = log 1=2

2 n
�

! e� 1.

19.4. The subcase w k +1 =wk ! 0 as k ! 1

We have seen in Theorem19.16that when wk+1 =wk ! 0 ask ! 1 , the maxi-
mum Y(1) is asymptotically concentrated at one or two values. We shall see that
for \most" (in a sense speci�ed below) values ofn, Y(1) is concentrated at one
value, but there are also rather large transition regions whereY(1) takes two
values with rather large probabilities.

We have, as said before Theorem19.16, ! = 1 and � = 1 . Furthermore, by
Lemma 3.1(v), � = 1 .

We de�ne
nk := b1=� k c; (19.75)

noting that nk+1 =nk � � k =� k+1 ! 1 as k ! 1 ; in particular, nk+1 > n k (for
large k, at least). The results above then can be stated as follows.

Theorem 19.23. Suppose thatw0 > 0 and that wk+1 =wk ! 0 as k ! 1 .
Suppose further that n ! 1 and m = m(n) with m = �n + o(

p
n) where

0 < � < 1 .

(i) Consider n in a subsequence such that for somek(n) and somex 2 (0; 1 ),
n=nk(n ) ! x. Then

P
�
Y(1) = k(n) � 1

�
! e� x ;

P
�
Y(1) = k(n)

�
! 1 � e� x :
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(ii) Let 
 k ! 1 as k ! 1 . If n ! 1 with n =2
S 1

k=1 [
 � 1
k nk ; 
 k nk ], then, for

k(n) such that nk(n ) < n < n k(n )+1 ,

P
�
Y(1) = k(n)

�
! 1:

Proof. (i): Along the subsequence, using (19.54), (19.59) and (19.75),

n P(� > k(n)) = n� k(n ) � n� k(n ) �
n

nk(n )
! x: (19.76)

Hence, (19.51) yields P(Y(1) 6 k(n) � 1) ! e� x . Furthermore, by (19.76) and
(19.61), n P(� > k (n)) ! 0 and n P(� > k(n) � 1) ! 1 ; hence (19.51) yields
P(Y(1) 6 k(n)) ! 1 and P(Y(1) 6 k(n) � 2) ! 0.

(ii): We may assume 
 k > 1. Then the assumptions imply 
 k(n ) nk(n ) <
n < 
 � 1

k (n )+1 nk(n )+1 , where k(n) ! 1 and thus 
 k(n ) ! 1 as n ! 1 . Hence,
similarly to ( 19.76),

n P
�
� > k(n)

�
�

n
nk(n )

> 
 k(n ) ! 1 ;

n P
�
� > k(n) + 1

�
�

n
nk(n )+1

< 
 � 1
k (n )+1 ! 0;

and the result follows by (19.51).

Roughly speaking, the values ofn such that Y(1) takes two values with sig-
ni�cant probabilities thus form intervals around each nk , of the same length on
a logarithmic scale; between these intervals,Y(1) is concentrated at one value.

Example 19.24. Consider again uniform random labelled unordered rooted
trees, as in Example19.18. We have nk = bk!=ec. In this case, it is simpler to
rede�ne nk := k!; Theorem 19.23(ii) is una�ected but (i) is modi�ed to

P
�
Y(1) = k(n) � 1

�
! e� x=e ; (19.77)

P
�
Y(1) = k(n)

�
! 1 � e� x=e : (19.78)

Cf. Carr, Goh and Schmutz [21].

Remark 19.25. We have for simplicity considered only the maximum valueY(1)

in Theorem 19.23. It is easily seen, by minor modi�cations in the proof, that for
any �xed j , in (ii) also Y( j ) = k(n) w.h.p., while in (i) Y( j ) 2 f k(n) � 1; k(n)g
w.h.p., but the two probabilities have limits depending on j ; in fact, the number
of j such that Y( j ) = k(n) converges in distribution to Po(x). We omit the details.

To make the statement about \most" n precise, recall that theupper and lower
densitiesof a setA � N are de�ned as lim supn !1 a(n)=n and lim inf n !1 a(n)=n,
wherea(n) := jf i 6 n : i 2 Agj; if they coincide, i.e., if the limit lim n !1 a(n)=n
exists, it is called the density. Similarly, the the logarithmic density of A is
limn !1

1
log n

P
i 6 n; i 2 A

1
i , when this limit exists, with upper and lower logarith-

mic densities de�ned using lim sup and lim inf. It is easily seen that if a set has
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a density, then it also has a logarithmic density, and the two densitiescoincide.
(The converse does not hold.) Furthermore, de�ne

p�
n := max

k
P(Y(1) = k):

It follows from Theorem 19.16that the second largest probability P(Y(1) = k) is
1 � p�

n + o(1). Thus, for n in a subsequence,Y(1) is asymptotically concentrated
at one value if and only if p�

n ! 1; if p�
n stays away from 1,Y(1) takes two values

with large probabilities.

Theorem 19.26. Suppose thatw0 > 0 and that wk+1 =wk ! 0 as k ! 1 .
Suppose further that n ! 1 and m = m(n) with m = �n + o(

p
n) where

0 < � < 1 .

(i) If 1
2 < a < 1, then the setf n : p�

n < a g has upper density
log a

1� a =log 1
1� a > 0 and lower density0.

(ii) There exists a subsequence ofn with upper density 1 and logarithmic den-
sity 1 such that p�

n ! 1.

Note that the upper density in (i) can be made arbitrarily close to 1 by
taking a close to 1. This was observed by Carr, Goh and Schmutz [21] for the
case in Example19.24. (However, they failed to remark that the lower density
nevertheless is 0.)

Proof. (i): Let b1 := � loga and b2 := � log(1� a); thus 0 < b1 < b2 < 1 . Then
max(e� x ; 1 � e� x ) < a () x 2 (b1; b2), and it follows from Theorem 19.23
(and a uniformity in x implicit in the proof) that for any " > 0, if n 2

S
k [(b1 +

")nk ; (b2 � " )nk ], then p�
n < a for large n, while if n =2

S
k [(b1 � " )nk ; (b2 + ")nk ],

then p�
n > a for large n. Sincenk+1 =nk ! 0 ask ! 1 , it is easily seen that for

any b0
1; b0

2 with 0 < b0
1 < b0

2 < 1 ,
S

k [b0
1nk ; b0

2nk ] has upper density (b0
2 � b0

1)=b0
2

and lower density 0; it follows by taking b0
j := bj � " and letting " ! 0 that the

set f n : p�
n < a g has upper density (b1 � b2)=b2 and lower density 0.

(ii): Let 
 k be an increasing sequence with 
k % 1 so slowly that log 
 k =
o(log(nk =nk � 1)). Let A :=

S
k [
 � 1

k nk ; 
 k nk ]. By Theorem 19.23(ii), p�
n ! 1

as n ! 1 with n =2 A, so it su�ces to prove that A has lower density 0 and
logarithmic density 0.

It is easily seen that for the upper logarithmic density of A, it su�ces to
considern 2 fb 
 k nk cg, which gives

lim sup
k !1

P k
j =1

P 
 j n j

i =
 � 1
j n j

1=i

log(
 k nk )
6 lim sup

k !1

P k
j =1

�
2 log 
 j + O(1)

�

P k
j =1 log(nj =nj � 1)

! 0:

Hence the logarithmic density exists and is 0.
The lower density is at most, considering the subsequenceb
 � 1

k nk c,

lim inf
k !1

a(
 � 1
k nk )


 � 1
k nk

6 lim inf
k !1


 k � 1nk � 1


 � 1
k nk

= lim
k !1


 k � 1
 k

nk =nk � 1
= 0 ;
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since 
 k � 1 6 
 k < (nk =nk � 1)1=3 for large k. (Alternatively, it is a general fact
that the lower density is at most the (lower) logarithmic density, for any set
A � N.)

19.5. The subcase � = � and � 2 = 1

We give two examples of the case� = � and � 2 = 1 . (In both examples, we may
assume that � = 1 and m = n � 1, so the examples apply to simply generated
random trees.) The �rst example shows that Theorem19.7does not always hold
if � 2 = 1 ; the second shows that it sometimes does.

Example 19.27. Let 1 < � < 2 and let (wk ) be a probability weight sequence
with w0 > 0 and wk � ck� � � 1 as k ! 1 , for some c > 0. (This is as in
Example 12.10 with � = � + 1 2 (2; 3). If ( wk ) is not a probability weight
sequence, we may replacec by c0 := c=�(1).) We have � = 1, and thus � =
	(1) =

P
kwk < 1 . (We may obtain any desired � > 0, for example� = 1, by

adjusting the �rst few wk .)
We consider the casem = �n + O(1); thus m=n ! � = � . (This includes

the tree casem = n � 1 in the case � = 1. Actually, it su�ces to assume
m = �n + o(n1=� ).) Then � = 1 = � , and � k = wk .

The random variable � thus satis�es E � = � = � . Note that � 2 := Var � = 1 .
(This is the main reason for taking 1 < � < 2; if we take � > 2, then � 2 < 1
and Theorem 19.7 applies.) Furthermore,

P(� > k) =
1X

l = k

wl � c� � 1k � � : (19.79)

As in the proof of Theorem 18.14, there exists by [39, Section XVII.5] a stable
random variable X � (satisfying (19.93) and (19.113)) such that

Sn � n�
n1=�

d�! X � ; (19.80)

moreover, by [46, x 50], the local limit law ( 18.22) holds uniformly for all integers
`. Note that the density function g is bounded and uniformly continuous onR,
and that g(0) > 0 by (18.24). (In fact, g(x) > 0 for all x. See also [39, Section
XVII.6] for an explicit formula for g as a power series;X � is, after rescaling,
the extreme case
 = 2 � � , in the notation there.)

By (19.14) and (18.22),

P(Y1 = k) =
wk P(Sn � 1 = m � k)

P(Sn = m)
= wk

g(� k=n1=� ) + o(1)
g(0) + o(1)

= wk
g(� k=n1=� ) + o(1)

g(0)
;

(19.81)

uniformly in k > 0.
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For a non-negative function f on [0; 1 ), de�ne

X f
n :=

nX

i =1

f (Yi =n1=� ): (19.82)

In particular, if f is the indicator 1f a 6 x 6 bg of an interval [a; b], we write
X a;b

n and have in the notation of (19.7)

X a;b
n := jf i 6 n : an1=� 6 Yi 6 bn1=� gj = N [an 1=� ;bn 1=� ]: (19.83)

Suppose that f is either the indicator of a compact interval [a; b] � (0; 1 ),
or a continuous function with compact support in (0; 1 ) (or, more generally,
any Riemann integrable function with support in a compact interval in (0; 1 )).
Then, using (19.81) and dominated convergence,

E X f
n = n

1X

k=0

f (k=n1=� ) P(Y1 = k) = n
1X

k=0

f (k=n1=� )wk
g(� k=n1=� ) + o(1)

g(0)

= n1+1 =�
Z 1

0
f (bxn 1=� c=n1=� )wbxn 1=� c

g(�b xn 1=� c=n1=� ) + o(1)
g(0)

dx

!
Z 1

0
f (x)cx� � � 1 g(� x)

g(0)
dx: (19.84)

In the special case whenf (x) = 1f a 6 x 6 bg with 0 < a < b < 1 , we further
similarly obtain,

E X a;b
n (X a;b

n � 1) = n(n � 1)
X

k;j > 0

f (k=n1=� )f (j=n 1=� ) P(Y1 = k; Y2 = j )

= n(n � 1)
X

k;j > 0

f (k=n1=� )f (j=n 1=� )wk wl
P(Sn � 2 = m � k � j )

P(Sn = m)

! c2
Z 1

0

Z 1

0
f (x)f (y)x � � � 1y� � � 1 g(� x � y)

g(0)
dx dy

= c2
Z b

a

Z b

a
x � � � 1y� � � 1 g(� x � y)

g(0)
dx dy

and, more generally, for any` > 1,

E(X a;b
n )` ! c`

Z b

a
� � �

Z b

a

Ỳ

i =1

x � � � 1
i

g(� x1 � � � � � x` )
g(0)

dx1 � � � dx` : (19.85)

For each such interval [a; b], this integral is bounded by CR` for all ` > 1, for
someC and R (depending ona and b), and it follows by the method of moments

that X a;b
n

d�! X a;b
1 , where X a;b

1 is determined by its factorial moments

E(X a;b
1 )` = c`

Z b

a
� � �

Z b

a

Ỳ

i =1

x � � � 1
i

g(� x1 � � � � � x` )
g(0)

dx1 � � � dx` : (19.86)
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(It follows that X a;b
1 has a �nite moment generating function, so the method of

moment applies.) Furthermore, joint convergence for several intervals holds by
the same argument. It follows also (by some modi�cations or by approximation

with step functions; we omit the details) that X f
n

d�! X f
1 for every continuous

f > 0 with compact support and someX f
1 .

Let � n be the multiset f Yi =n1=� : Yi > 0g, regarded as a point process on
(0; 1 ). (I.e., formally we let � n be the discrete measure

P
i :Yi > 0 � Yi =n 1=� . See

e.g. Kallenberg [68] or [69] for details on point processes, orJanson[57, x 4] for

a brief summary.) The convergenceX f
n

d�! X f
1 for every continuousf > 0 with

compact support in (0; 1 ) implies, see [68, Lemma 5.1] or [69, Lemma 16.15
and Theorem 16.16], that � n converges in distribution, as a point process on
(0; 1 ), to some point process � on (0; 1 ). The distribution of � is determined
by (19.86), where X a;b

1 is the number of points of � in [ a; b]. By (19.86) or
(19.84), the intensity measure is given by

E � = cg(0)� 1x � � � 1g(� x) dx: (19.87)

We can also consider in�nite intervals. Let a > 0. Then, using again (19.14)
and noting that

P 1
k= �1 P(Sn � 1 = m � k) = 1,

E X a;1
n = n

X

k> an 1=�

P(Y1 = a) = n
X

k> an 1=�

wk
P(Sn � 1 = m � k)

P(Sn = m)

6 nC1(an1=� )� � � 1

P
k> an 1=� P(Sn � 1 = m � k)

P(Sn = m)

6 C1a� � � 1n� 1=� 1
n� 1=� (g(0) + o(1))

6 C2a� � � 1:

(19.88)

By Fatou's lemma, (19.88) implies E X a;1
1 6 C2a� � � 1 < 1 . Hence,X a;1

1 < 1
a.s. for everya > 0, and we may order the points in � in decreasing order as

� = f � j gJ
j =1 with � 1 > � 2 > : : : : (19.89)

(Here J = X 0;1
1 6 1 is the random number of points in �. We shall see that

J = 1 a.s.)
The bound (19.88) is uniform in n, and tends to 0 asa ! 1 . It follows, see

[57, Lemma 4.1], that if we regard � n and � as point processes on [0; 1 ], the

convergence �n
d�! � on (0 ; 1 ) implies the stronger result

� n
d�! � on [0 ; 1 ]: (19.90)

The points in � n , ordered in decreasing order, areY(1) =n1=� > Y(2) =n1=� > : : : .
If we extend (19.89) by de�ning � j := 0 when j > J , the convergence (19.90) of
point processes on [0; 1 ] is by [57, Lemma 4.4] equivalent to joint convergence
of the ranked points, i.e.

Y( j ) =n1=� d�! � j ; j > 1 (jointly) : (19.91)
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We claim that each � j > 0 a.s., and thusJ = X 0;1
1 = 1 a.s. Suppose the op-

posite:P(� j = 0) = � > 0 for somej . Then, for every" > 0, lim inf P(Y( j ) =n1=� <
") > P(� j < " ) > � , and it follows that there exists a sequence"n ! 0 such that
P(Y( j ) =n1=� < " n ) > �=2 for all n. We may assume that"n n1=� ! 1 . Let A > 0

and take (for large n) an := "n and bn :=
�
" � �

n � �c � 1A
� � 1=�

. Then an ; bn ! 0.
For k 6 bn n1=� = o(n1=� ), (18.22) implies P(Sn � 1 = m � k)=P(Sn = m) ! 1,
and the argument in (19.84){( 19.85) yields, for each` > 1,

E
�
X an ;bn

n

�
` �

0

@n
bn n 1=�
X

k= an n 1=�

wk

1

A

`

�

 

c
Z bn

an

x � � � 1 dx

! `

=
�
c� � 1�

a� �
n � b� �

n

�� `
= A ` :

(19.92)

Hence,X an ;bn
n

d�! Po(A); in particular,

�=2 6 P(Y( j ) =n1=� < " n ) 6 P(X an ;bn
n < j ) ! P(Po(A) < j ):

Taking A large enough, we can makeP(Po(A) < j ) < �= 2, a contradiction which
proves our claim.

We have shown that (19.91) holds with � j > 0. Furthermore, since the in-
tensity (19.87) is absolutely continuous, each� j has an absolutely continuous
distribution. Hence Y(1) , and everyY( j ) , is of the ordern� 1=� , with a continuous
limit distribution � j (and thus no strict concentration at some constant times
n� 1=� ).

Note that if we consider i.i.d. variables � 1; : : : ; � n , then f � i =n1=� : � i > 0g
converges (as is easily veri�ed) to a Poisson process on [0; 1 ] with intensity
cx� � � 1 dx. This intensity di�ers from the intensity of � in ( 19.87), and, since
g(� x) ! 0 as x ! 1 , it is easy to see that � (1) =n1=� and Y(1) =n1=� have
di�erent limit distributions. Thus, Theorem 19.7 does not hold in this case.
(However, Y(1) and � (1) are of the same ordern� 1=� .) Note also that, as an easy
consequence of (19.86), the limiting point process � in this example is not a
Poisson process.

Remark 19.28. The distribution of the limiting point process � in Exam-
ple 19.27is in principle determined by (19.86) and its extension to joint conver-
gence for severalX a i ;bi

1 . This can be made more explicit as follows. (See  Luczak
and Pittel [ 83] for similar calculations.)

It follows from Feller [39, Section XVII.5], see e.g. [63] for detailed calcula-
tions, that X � has the characteristic function

' (t) = exp
�
c�( � � )( � it)� �

; t 2 R: (19.93)

(Note that �( � � ) > 0 and Re(� it)� < 0 for t 6= 0 since 1 < � < 2.) The
inversion formula gives

g(x) =
1

2�

Z 1

�1
e� ixt ' (t) dt =

1
2�

Z 1

�1
e� ixt + c�( � � )( � i t ) �

dt; (19.94)
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and (19.86) yields

E(X a;b
1 )` =

1
2�g (0)

c`
Z b

a
� � �

Z b

a

Ỳ

j =1

x � � � 1
j

Z 1

�1

Ỳ

j =1

eix j t ' (t) dt dx1 � � � dx`

=
1

2�g (0)

Z 1

�1

�
c

Z b

a
x � � � 1ei tx dx

� `
' (t) dt:

(19.95)

In particular, E(X a;b
1 )` = O(C` ) for some C < 1 (with C depending ona but

not on b). Hence, X a;b
1 has probability generating function, convergent for all

complex z,

E zX a;b
1 = E

1X

` =0

�
X a;b

1

`

�
(z � 1)`

=
1X

` =0

(z � 1)`

`!
�

1
2�g (0)

Z 1

�1

�
c

Z b

a
x � � � 1ei tx dx

� `
' (t) dt

=
1

2�g (0)

Z 1

�1
exp

�
(z � 1)c

Z b

a
x � � � 1ei tx dx

�
' (t) dt:

(19.96)

We can here letb ! 1 , so (19.96) holds for b = 1 too. In particular, taking
z = 0, we obtain, using (19.91), the limit distribution of Y(1) =n1=� as

P(� 1 6 x) = P(X x; 1
1 = 0)

=
1

2�g (0)

Z 1

�1
exp

�
� c

Z 1

a
x � � � 1ei tx dx

�
' (t) dt

=
1

2�g (0)

Z 1

�1
exp

�
� c

Z 1

a
x � � � 1ei tx dx + c�( � � )( � it)�

�
dt

=
1

2�g (0)

Z 1

�1
exp

�
c
� Z a

0
x � � � 1�

ei tx � 1 � itx
�

dx �
a� �

�
� it

a1� �

� � 1

��
dt;

(19.97)

where the last equality holds because

�( � � )u� =
Z 1

0
x � � � 1�

e� ux � 1 + ux
�

du (19.98)

when Reu > 0 and 1< � < 2.
Furthermore, by extending (19.86) to joint factorial moments for several (dis-

joint) intervals, it follows similarly, for step functions f , that the random variable
X f

1 =
P 1

j =1 f (� j ) satis�es

E eX f
1 =

1
2�g (0)

Z 1

�1
exp

�
c

Z 1

0

�
ef (x ) � 1

�
x � � � 1ei tx dx

�
' (t) dt

=
1

2�g (0)

Z 1

�1
exp

�
c

Z 1

0

�
ef (x ) � 1

�
x � � � 1ei tx dx + c�( � � )( � it)�

�
dt

=
1

2�g (0)

Z 1

�1
exp

�
c
� Z 1

0
x � � � 1�

ef (x )+i tx � 1 � itx
�

dx
��

dt:

(19.99)
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By taking limits, ( 19.99) extends to, e.g., any bounded measurablef with com-
pact support in (0; 1 ]. SinceE esX f

1 = E eX sf
1 for s 2 R, this formula determines

(in principle) the distribution of each X f
1 and thus of �.

Example 19.29. Let (wk ) be as in Example19.27but with � = 2, i.e., wk �
ck� 3 as k ! 1 , for some c > 0. (Example 12.10 with � = 3.) We still have
(19.79); further, � = 1, and thus � = 	(1) =

P
kwk < 1 . (We may again

obtain any desired � > 0, for example � = 1, by adjusting the �rst few wk .)
As in Example 19.27. we consider the casem = �n + O(1), including the tree

casem = n � 1 when � = 1. Thus, again, m=n ! � = � , � = 1 = � , � k = wk ,
and the random variable � satis�es E � = � = � , while � 2 := Var � = 1 .

As in the proof of Theorem 18.14, we have the central limit theorem (18.25),
and the local limit law ( 18.26) holds uniformly for all integers `.

ChooseB (n) := n1=2 log logn = o(
p

n logn). Then, by (18.26),

Z (m; n) = P(Sn = m) =
g(0) + o(1)

p
n logn

(19.100)

and, uniformly for all k 6 B (n),

Z (m � k; n � 1) = P(Sn � 1 = m � k) =
g(0) + o(1)
p

n logn
: (19.101)

Hence, by (19.14), (19.22) holds. Furthermore, (18.26) yields also, sinceg(0) =
maxx 2 R g(x),

Z (m � k; n � 1) = P(Sn � 1 = m � k) 6
g(0) + o(1)
p

n logn
; (19.102)

uniformly for all k > 0; hence (19.14) implies that ( 19.17){( 19.18) hold.
For our B (n) we have by (19.79)

P(� > B (n)) = O(B (n) � 2) = o(n� 1); (19.103)

so (19.19) holds, and thus (19.20) holds.
The proof of Theorem 19.7 now holds without further modi�cations; hence

the conclusions of Theorem19.7 holds for this example, although� 2 = 1 .

Note that in Example 19.27, although the asymptotic distributions of Y(1)

and � (1) are di�erent, they are still of the same order of magnitude. We do not
know whether this is true in general. This question can be formulatedmore
precisely as follows.

Problem 19.30. In the case � = � , do Theorem 19.7(ii) { (iii) hold also when
� 2 = 1 ?

In any case, we can ask about the possible rates of growth ofY(1) , for example
as follows, where we for de�niteness consider the tree casem = n � 1 (and thus
� = 1).
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Problem 19.31. For which sequences! (n) does there exist a weight sequence
with � = 1 such that, with m = n � 1, Y(1) > ! (n) w.h.p.?

As remarked earlier, the answer is positive for! (n) = n1� " , for any " > 0,
as shown by Example19.27with � < 1=(1 � " ).

19.6. The case � > �

We turn to the case � > � . Then, as brie
y discussed in Section 11, the
asymptotic formula for the numbers Nk in Theorem 11.4 accounts only forP 1

k=0 k� k n = �n = �n balls, so there arem � �n � (� � � )n balls miss-
ing. A more careful treatment of the limits show that the explanation is that
Theorem 11.4 really implies that the \small" boxes (i.e., those with rather few
balls) have a total of about

P 1
k=0 k� k n = �n = �n balls, while the remaining

� (� � � )n balls are in a few \large" boxes. One way to express this precisely is
the following simple result.

Lemma 19.32. Let w = ( wk )k> 0 be a weight sequence withw0 > 0 and ! = 1 .
Suppose thatn ! 1 and m = m(n) with m=n ! � where � < � < 1 .

(i) For any sequenceK n ! 1 ,
X

k6 K n

kN k > �n + op (n) and
X

k>K n

kN k 6 (� � � )n + op (n):

(ii) There exists a sequence
 n ! 1 such that for any sequenceK n ! 1
with K n 6 
 n we have

X

k6 K n

kN k = �n + op (n) and
X

k>K n

kN k = ( � � � )n + op (n):

Proof. The two statements in each part are equivalent, since

1X

k=0

kN k = m = �n + o(n): (19.104)

(i): For every �xed `, Theorem 11.4 implies

1
n

X

k6 `

kN k
p

�!
X

k6 `

k� k : (19.105)

Let " > 0. Since
P 1

k=0 k� k = � < 1 , there exists` such that
P

k6 ` k� k > � � " ,
and (19.105) implies that w.h.p.

1
n

X

k6 `

kN k > � � ":

Since" is arbitrary, this implies
P

k6 K n
kN k > �n + op (n).

(ii): For each �xed `,
P

k6 ` k� k <
P 1

k=0 k� k = � , and thus (19.105) implies
P(

P
k6 ` kN k > �n ) ! 0. Hence, there exists an increasing sequence of integers
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n` such that if n > n` , then P
� P

k6 ` kN k > �n
�

< 1=`. Now de�ne 
 n = `
for n` 6 n < n ` +1 . Then

P
k6 
 n

kN k 6 �n w.h.p., which together with (i)
yields (ii).

Consider the \large" boxes. One obvious possibility is that there is a single
\giant" box with � (� � � )n balls; more formally, (� � � )n + op (n) balls (a
\monopoly"). Applying Lemma 19.32(i) with K n = o(n), we see that for every
" > 0, w.h.p. there are then less than"n balls in all other boxes with more than
K n balls each; thus, eitherY(2) 6 K n or Y(2) < "n . Consequently, this case is
de�ned by

Y(1) = ( � � � )n + op (n); (19.106)

Y(2) = op (n): (19.107)

Equivalently, Y(1) =n
p

�! � � � and Y(2) =n
p

�! 0. This thus describes condensa-
tion of the missing balls to a single box.

We will see in Theorem 19.34 that, indeed, this is the case for the impor-
tant example of weights with a power-law. Another, more extreme example is
Example 10.8, wk = k!, where � = 0, see Example19.36.

However, if (wk ) is very irregular, (19.106){( 19.107) do not always hold. Ex-
amples19.37and 19.38give examples where, at least for a subsequence, either
Y(2) =n

p
�! a > 0, so there are at least two giant boxes with ordern balls each

(an \oligopoly"), or Y(1) =n
p

�! 0, so there is no giant box with ordern balls,
and the missing (� � � )n balls are distributed over a large number (necessarily
! 1 as n ! 1 ) of boxes, each with a large buto(n) number of balls.

Example 19.33. We consider Example12.10; wk � ck� � as k ! 1 . If � 6 2,
then � = 1 , see (12.46), and thus � < � and Theorems19.3and 19.7apply. We
are interested in the case� > � , so we assume� > 2. In this case, Jonsson and
Stef�ansson [67] showed (for the case of random trees) that when� > � we have
the simple situation with condensation to a single giant box. We state this in the
next theorem, which also includes further, more precise, results.(Note that the
case� < � is covered by Theorems19.3 and 19.7, with Y(1) of order logn; the
case� = � is studied in Examples19.27and 19.29for 2 < � 6 3, and is covered
by Theorem 19.7 when � > 3; in both casesY(1) is of order n� 1=( � � 1) = o(n).)

Theorem 19.34. Suppose thatwk � ck� � as k ! 1 for some c > 0 and
� > 2. Then � < 1 . Suppose furtherm=n ! � > � . Let � := � � 1 > 1 and
c0 := c=�(1) .

(i) The random allocation Bm;n = ( Y1; : : : ; Yn ) has largest components

Y(1) = ( � � � )n + op (n); (19.108)

Y(2) = op (n): (19.109)

(ii) The partition function is asymptotically given by

Z (m; n) � c(� � � )� � �(1) n � 1n1� � : (19.110)
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(iii) Furthermore,

�
Y(1) ; Y(2) ; : : : ; Y(n )

� d
�

�
m �

n � 1X

i =1

� i ; � 0
(1) ; : : : ; � 0

(n � 1)

�
; (19.111)

where � 0
(1) ; : : : ; � 0

(n � 1) are the n � 1 i.i.d. random variables � 1; : : : ; � n � 1,
with distribution (� k ), ordered in decreasing order.

(iv) Y(1) = m � �n + Op (n1=� ) and

n� 1=� �
m � �n � Y(1)

� d�! X � ; (19.112)

where X � is an � -stable random variable with Laplace transform

E e� tX � = exp
�
c0�( � � )t � �

; Ret > 0: (19.113)

(v) Y(2) = Op (n1=� ) and

n� 1=� Y(2)
d�! W; (19.114)

where W has the Fr�echet distribution

P(W 6 x) = exp
�

�
c0

�
x � �

�
; x > 0: (19.115)

(vi) More generally, for eachj > 2, Y( j ) = Op (n1=� ) and

n� 1=� Y( j )
d�! Wj ; (19.116)

where Wj has the density function

c0x � � � 1

�
c0� � 1x � �

� j � 2

(j � 2)!
exp

�
� c0� � 1x � � �

; x > 0; (19.117)

and c0� � 1W � �
j � �( j � 1; 1).

Note that � k = wk =�(1) and that �( � � ) > 0 in (19.113).
Part (iii) shows that Y(2) ; : : : ; Y(n ) asymptotically are as order statistics of

n � 1 i.i.d. random variables � i ; thus the giant box absorbs the dependency
between the variablesY1; : : : ; Yn introduced by the conditioning in ( 11.7).

Remark 19.35. Jonsson and Stef�ansson [67] considered only trees, and thus
m = n � 1 and � = 1, and then showed the tree versions of (i) and (ii). (They
further showed Theorem7.1 when wk � ck� � .) In the tree case (i) says that
the random tree Tn has w.h.p. a node of largest degree (1� � )n + o(n), while
all other nodes have degreeso(n); further, by Theorem 15.5, (ii) becomes

Zn � c(1 � � ) � � �(1) n � 1n� � � (1 � � )� � �(1) n � 1wn : (19.118)

Proof of Theorem 19.34. We may assume thatw0 > 0 by the argument in Re-
mark 11.8. Furthermore, using (11.9) for (ii), by dividing wk (and c) by �(1),
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we may assume that (wk ) is a probability weight sequence, and thus �(1) = 1.
For � > � we have� = � = 1, and thus then � k = wk .

(i): �( t) has radius of convergence� = 1, and since� > 2, �(1) =
P

k wk < 1
and � = � 0(1)=�(1) < 1 .

Consider as in Example11.2 i.i.d. random variables � 1; : : : ; � n with distribu-
tion ( � k ) = ( wk ) and mean � = � .

Fix a small " > 0. We assume that" < � � � .
By the law of large numbers,Sn � 1=n

p
�! � = � . We may thus �nd a sequence

� n ! 0 such that jSn � 1 � n� j 6 n� n w.h.p.
Sincem=n � � � � n ! � � � > " , we havem � �n � � n n > "n for large n; we

consider only suchn.
We separate the eventSn = m into four disjoint cases (subevents):

E1 : Exactly one � i > "n , and that � i satis�es j� i � (m � �n )j 6 � n n.
E2 : Exactly one � i > "n , and that � i satis�es j� i � (m � �n )j > � n n.
E3 : � i > "n for at least two i 2 f 1; : : : ; ng.
E4 : All � i 6 "n .

We shall show that E1 is the dominating event. We de�ne also the events

E1i : Sn = m, j� i � (m � �n )j 6 � n n and � j 6 "n for j 6= i .
E�

1i : Sn = m, j� i � (m � �n )j 6 � n n.
E�

2i : Sn = m, j� i � (m � �n )j > � n n, � i > "n .
D ij : Sn = m, � i > "n , � j > "n .

Then E1 is the disjoint union
S n

i =1 E1i , so by symmetry

P(E1) = n P(E11): (19.119)

Furthermore, for any i ,

E1i � E �
1i � E 1i [

[

j 6= i

D ij

and thus, again using symmetry,

P(E�
11) > P(E11) > P(E�

11) � n P(D12): (19.120)

Using the fact that jk � (m � �n )j 6 � n n implies wk � ck� � � c(�n � �n ) � � ,
together with jSn � 1 � n� j 6 � n n w.h.p., we obtain

P(E�
11) =

X

j k � (m � �n ) j6 � n n

P(� 1 = k; Sn = m)

=
X

j k � (m � �n ) j6 � n n

P(� 1 = k) P(Sn � 1 = m � k)

=
X

j k � (m � �n ) j6 � n n

c(� � � )� � n� � �
1 + o(1)

�
P(Sn � 1 = m � k)

= c(� � � )� � n� � P
�
jSn � 1 � n� j 6 � n n

��
1 + o(1)

�

= c(� � � )� � n� � �
1 + o(1)

�
:

(19.121)
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Similarly, allowing the constants Ci here and below to depend on" ,

P(E�
2i ) =

X

j k � (m � �n ) j>� n n; k>"n

P(� i = k; Sn = m)

6 C1("n )� �
X

j k � (m � �n ) j>� n n; k>"n

P(Sn � 1 = m � k)

6 C2n� � P
�
jSn � 1 � �n j > � n n

�
= o

�
n� � �

:

(19.122)

For any i and j , by symmetry,

P(D ij ) = P(� n > "n; � n � 1 > "n; S n = m)

=
X

k>"n

P(� n = k) P(Sn � 1 = m � k; � n � 1 > "n )

6 C3("n )� �
X

k>"n

P(Sn � 1 = m � k; � n � 1 > "n )

6 C3("n )� � P(� n � 1 > "n ) 6 C4("n )1� 2� :

(19.123)

Hence, (19.120) and (19.121) yield

P(E11) = c(� � � ) � � n� � + o
�
n� � �

+ O
�
n2� 2� �

= c(� � � )� � n� � + o
�
n� � �

and hence, by (19.119),

P(E1) = c(� � � )� � n1� � + o
�
n1� � �

: (19.124)

Furthermore, (19.122) yields

P(E2) 6
nX

i =1

P(E�
2i ) = n P(E�

21) = o
�
n1� � �

; (19.125)

and (19.123) also yields

P(E3) 6
X

i<j

P(D ij ) 6 n2 P(D12) = O
�
n3� 2� �

= o
�
n1� � �

: (19.126)

It remains to estimate P(E4). We de�ne the truncated variables �� i := � i 1f � i 6
"n g and �Sn :=

P n
i =1

�� i . Thus E4 � f �Sn = mg and hence, for every reals,

P(E4) 6 e� sm E es �S = e� sm
�

E es �� 1

� n
: (19.127)

Let s := a logn=n, for a constant a > 0 chosen later. Then,

E es �� 1 = 1 + sE �� 1 +
"nX

k=1

� k
�
esk � 1 � sk

�

6 1 + s� + C5

2�=sX

k=1

k � � s2k2 + C5

"nX

k=2 �=s

k � � esk :

(19.128)
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We have, treating the cases 2< � < 3, � = 3 and � > 3 separately, usings ! 0,

2�=sX

k=1

s2k2� � 6 C6s2 max
�
1; (2�=s )3� � ; log(2�=s )

�
= o(s):

Furthermore, for k > 2�=s ,

k � � esk

(k + 1) � � es(k+1)
=

�
1 +

1
k

� �
e� s 6 e�=k � s 6 es=2� s = e� s=2:

Hence, the �nal sum in (19.128) is dominated by a geometric series
X

k6 b"n c

(b"n c) � � esb"n ce� s(b"n c� k )=2 6 C7s� 1n� � es"n = C7s� 1n� � ea" log n :

If we assumea" 6 � � 2, the sum is thus 6 C8n1� � + a" 6 C8n� 1 = o(s).
Consequently, (19.128) yields

E es �� 1 6 1 + s� + o(s) 6 exp
�
s� + o(s)

�

and thus (19.127) yields

P(E4) 6 exp
�
� sm + ns� + o(ns)

�
= exp

�
� ns(� � � + o(1))

�
= n� a( � � � )+ o(1) :

(19.129)
We choose �rst a := �= (� � � ) and then " < (� � 2)=a, and see by (19.129) that
then P(E4) = n� � + o(1) = o

�
n1� �

�
. Combining (19.124), (19.125), (19.126) and

(19.129), we �nd

P(Sn = m) = P(E1) + o
�
n1� � �

= c(� � � )� � n1� � + o
�
n1� � �

; (19.130)

and, in particular, P(E1 j Sn = m) ! 1. Consequently, by conditioning on
Sn = m we see that w.h.p.jY(1) � (m � �n )j 6 � n n and Y(2) 6 "n . Since" can
be chosen arbitrarily small, this completes the proof of (19.108){( 19.109).

(ii): Z (m; n) = P(Sn = m), so (19.110) follows from (19.130), since we assume
�(1) = 1.

(iii): Since E1 � f Sn = mg and P(E1 j Sn = m) ! 1,

(Y1; : : : ; Yn ) d=
�
(� 1; : : : ; � n ) j Sn = m

� d
�

�
(� 1; : : : ; � n ) j E1

�
: (19.131)

When we consider the ordered variablesY(1) ; : : : ; Y(n ) , we may by symmetry
condition on E1n instead of E1. Note that E1n is the event (� 1; : : : ; � n ) 2 A,
where A is the set

n
(x1; : : : ; xn ) : x j 6 "n for j 6 n � 1; xn = m �

n � 1X

i =1

x i ;
�
�
�
n � 1X

i =1

x i � �n
�
�
� 6 � n n

o
:

Since (x1; : : : ; xn ) 2 A implies jxn � (m � �n )j 6 � n n, we then have, similarly
to (19.121),

P(� n = xn ) � cx� �
n � c(m � �n )� � � c(� � � )� � n� � :
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Furthermore, x1; : : : ; xn � 1 determine xn by
P n

1 x i = m. It follows that, uni-
formly for all ( x1; : : : ; xn ) 2 A,

P
�
(� 1; : : : ; � n ) = ( x1; : : : ; xn )

�

=
�
1 + o(1)

�
c(� � � )� � n� � P

�
(� 1; : : : ; � n � 1) = ( x1; : : : ; xn � 1)

�

=
�
1 + o(1)

�
c(� � � )� � n� � P

�
(� 1; : : : ; � n � 1; m � Sn � 1) = ( x1; : : : ; xn )

�
:

Hence, since the factorc(� � � )� � n� � is a constant for eachn,

�
(� 1; : : : ; � n ) j E1n

� d
�

�
(� 1; : : : ; � n � 1; m � Sn � 1) j eEn

�
; (19.132)

where eEn is the event

�
(� 1; : : : ; � n � 1; m � Sn � 1) 2 A

	
=

�
� j 6 "n for j 6 n � 1;

�
�Sn � 1 � �n

�
� 6 � n n

	
:

(19.133)
If eEn holds, then m � Sn � 1 > m � �n � � n n > "n (for large n), so the largest
variable among� 1; : : : ; � n � 1; m� Sn � 1 is m� Sn � 1. Hence, ordering the variables,
we obtain using (19.131){( 19.132)

�
Y(1) ; : : : ; Y(n )

� d
�

�
(m � Sn � 1; � 0

(1) ; : : : ; � 0
(n � 1) ) j eEn

�
: (19.134)

Finally, observe that jSn � 1 � �n j 6 � n n w.h.p. and

P
�
� j > "n for somej 6 n � 1

�
6 n P(� 1 > "n ) = O

�
n2� � �

! 0:

Hence,P( eEn ) ! 1, and thus

�
(m � Sn � 1; � 0

(1) ; : : : ; � 0
(n � 1) ) j eEn

� d
�

�
m � Sn � 1; � 0

(1) ; : : : ; � 0
(n � 1)

�
: (19.135)

The result (19.111) follows from (19.134) and (19.135).

(iv): By (iii), m � n� � Y(1)
d
�

P n � 1
i =1 � i � n� , and (19.112) follows by stan-

dard results on domains of attraction for stable distributions, seee.g.Feller [39,
Section XVII.5].

(v): By (iii), Y(2)
d
� � 0

(1) , and (19.114) follows by standard results on the
maximum of i.i.d. random variables, as in e.g. Leadbetter, Lindgren andRootz�en
[82]: using P(� > x ) � c� � 1x � � as x ! 1 , we have

P(Y(1) 6 xn 1=� ) = P(� 0
(1) 6 xn 1=� ) + o(1) = P(� 6 xn 1=� )n � 1 + o(1)

=
�
1 � (c� � 1 + o(1))( xn 1=� )� � � n � 1

+ o(1)

! exp
�
� c� � 1x � � �

:

(vi): Similar, cf. Leadbetter, Lindgren and Rootz�en [ 82, Section 2.2].
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Example 19.36. If we take wk = k!, then � = � = 0. Consider the tree case
m = n � 1. By Example 10.8, translating to balls-in-boxes, w.h.p. there areN1

boxes with 1 ball each and a single box with the remainingn � 1 � N1 balls,

while all other boxes are empty; furthermore, N1
d�! Po(1) so N1 = Op (1).

Hence,Y(1) = n + Op (1) and Y(2) 6 1 w.h.p.
If we take wk = k!� with 0 < � < 1, and still m = n� 1, then by Example10.9

and [64], Y(1) = n + Op (n1� � ) = n + op (n) and Y(2) 6 b1=� c w.h.p.
If we take wk = k!� with � > 1, and still m = n � 1, then by Example 10.9,

w.h.p. there is a single box containing alln � 1 balls; thus Y(1) = n � 1 and
Y(2) = 0 w.h.p.

In particular, ( 19.106){( 19.107) hold, with � = 1 and � = 0, for all three
cases. We guess that the same is true for any� < 1 , but we have not checked
the details.

Example 19.37. We consider the tree casem = n � 1. Let S := f k0; k1; : : : g be
an in�nite set with k0 = 0, k1 = 1, k2 = 2, and kj for j > 3 chosen recursively
as speci�ed below. Letwk = ( k + 1) � 4 for k 2 S, and wk = 0 otherwise; thus,
supp(w) = S. (S = N0 gives Example10.7 with � = 4.) Then � = 1 and

� = 	(1) =
P 1

k=0 kwkP 1
k=0 wk

6
P 1

k=0 k(k + 1) � 4

w0
= � (3) � � (4) < 0:2 < 1; (19.136)

thus � = � = 1.
To begin with, we require that kj > jk j � 1 for j > 3. Take n = kj . A good

allocation of n � 1 balls in n boxes has at mostkj � 1 balls in any box, since
n � 1 < k j , so

Y(1) 6 kj � 1 6 kj =j = n=j: (19.137)

Hence, forn in the subsequencef kj g, the random allocation Bn � 1;n has Y(1) =
o(n).

Next, suppose that k0; : : : ; kj � 1 are given, and let w (k j � 1 ) be w truncated
at kj � 1 as in (13.4); for ease of notation we denote the corresponding gener-
ating function by � j (t) :=

P j � 1
i =0 wk i t

k i and write 	 j (t) := t� 0
j (t)=� j (t) and

Z j (m; n) := Z (m; n; w (k j � 1 ) ). Note that ( 19.136) applies to each 	 j too, and
thus

	 j (1) < 0:2: (19.138)

Take n = 3 kj (where kj is not yet determined). A good allocation with n � 1
balls has at most 2 boxes withkj balls, and for the remaining boxes the weights
w and w (k j � 1 ) coincide. We thus obtain

Z (3kj � 1; 3kj ) = Z j (3kj � 1; 3kj ) + 3 kj wk j Z j (2kj � 1; 3kj � 1)

+
�

3kj

2

�
w2

k j
Z j (kj � 1; 3kj � 2): (19.139)

Let the three terms on the right-hand side beA0; A1; A2, whereA i corresponds
to the case wheni boxes havekj balls. The generating function � j is a polyno-
mial, with radius of convergence� j = 1 and, by Lemma 3.1, � j := 	 j (1 ) =
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! (w (k j � 1 ) ) = kj � 1 > 2. De�ne �; � 0 and � 00 by 	 j (� j ) = 1, 	 j (� 0
j ) = 2 =3,

	 j (� 00
j ) = 1 =3. Since 	 j (1) < 1=3 by (19.138), we have 1< � 00

j < � 0
j < � j < 1 .

Theorem 18.1 applies to each termA i in (19.139), with � = 1 ; 2
3 ; 1

3 , respec-
tively; hence, askj ! 1 ,

logA0 = 3 kj log
� j (� j )

� j
+ o(kj ); (19.140)

logA1 = 3 kj log
� j (� 0

j )

(� 0
j )2=3

+ o(kj ); (19.141)

logA2 = 3 kj log
� j (� 00

j )

(� 00
j )1=3

+ o(kj ): (19.142)

By (11.16) and � 00
j > 1,

� j (� j )
� j

6
� j (� 00

j )

� 00
j

<
� j (� 00

j )

(� 00
j )1=3

and
� j (� 0

j )

(� 0
j )2=3

6
� j (� 00

j )

(� 00
j )2=3

<
� j (� 00

j )

(� 00
j )1=3

:

Hence, the constant multiplying kj is larger in (19.142) than in ( 19.140) and
(19.141), so by choosingkj large enough, we obtainA2 > jA 1 and A2 > jA 0,
and thus

P(B3k j � 1;3k j has 2 boxes withkj balls) =
A2

A0 + A1 + A2
> 1 �

2
j

: (19.143)

This constructs recursively the sequence (kj ) and thus S and w, and (19.143)
shows that for n in the subsequence (3kj ) j , Bn � 1;n w.h.p. has 2 boxes withn=3
balls each.

By Lemma 17.1, it follows that, for this subsequence,Tn w.h.p. has 2 nodes
with outdegreesn=3.

To summarise, we have found a weight sequence with 0< � < 1 such that,
with m = n � 1, for one subsequence

Y(1) =n ! 0 (19.144)

and for another subsequence w.h.p.

Y(1) = Y(2) = n=3: (19.145)

Hence, neither (19.106) nor (19.107) holds. (It is easy to modify the construction
such that for every ` > 1, there is a subsequence withY(1) = � � � = Y( ` ) =
n=(` + 1).)

Example 19.38. Let S := f 0g [ f 2i : i > 0g. We will construct a weight
sequencew recursively with support supp(w) = S and � = 0. Let w0 = 1.
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Let i > 0. If w0; : : : ; w2i � 1 are �xed and we let w2i ! 1 , then for every m
with 2 i 6 m < 2i +1 and every n,

P(Bm;n contains a box with 2i balls) ! 1: (19.146)

Hence, we can recursively choosew2i so large that, for every i > 0, if 2i 6 m <
2i +1 and 2i 6 n 6 22i , then, by (11.3),

P(Bm;n contains a box with 2i balls) > 1 � i � 1: (19.147)

We further take w2i > (2i )!; thus � = 0 and � = 0.
Consider the tree case,m = n� 1. Thus � = 1. If 2 i < n 6 2i +1 , then (19.147)

applies and shows thatBn � 1;n w.h.p. contains a box with 2i balls, so w.h.p.

Y(1) = 2 blog 2 (n � 1)c = 2 dlog 2 n e� 1: (19.148)

Hence,Y(1) =n w.h.p. is a (non-random) value that oscillates between1
2 and 1,

depending on the fractional part f log2 ng of log2 n. Consequently, (19.106) holds
for subsequences such that 06= f log2 ng ! 0, but not in general.

Moreover, conditioned on the existence of a box with 2i balls, the remainder
of the allocation is a random allocationBm � 2i ;n � 1 of the remaining m � 2i balls
in n� 1 boxes. For example, ifn = 2 i +1 , som = 2 i +1 � 1, we havem� 2i = 2 i � 1,
and we can apply (19.147) again (with i � 1) to see that w.h.p.Y(2) = 2 i � 1 = n=4.
Continuing in the same way we see that forn in the subsequence (2i ), we have,
for each �xed j , w.h.p.

Y( j ) = 2 � j n: (19.149)

Hence neither (19.106) nor (19.107) holds in this case.
Similar results follow easily for other subsequences. For example, for n in the

subsequence (br2i c) i > 1, where 1
2 < r < 1 and r has the in�nite binary expansion

r = 2 � ` 1 + 2 � ` 2 + : : : , with 1 = `1 < ` 2 < : : : , we have w.h.p.Y( j ) = 2 � ` i dn=re
for each �xed j .

Example 19.39. Let again m = n � 1, so � = 1. Taking wk = k! for k 2
supp(w) = f 0g [ f i ! : i > 0g, we obtain an example with � = 0 and thus � = 0
such that Y(1) =n ! 0 for some subsequences, for example forn = i ! (since then
Y(1) 6 (i � 1)!).

Problem 19.40. Is Y(1) =n
p

�! 0 possible when0 < � < � ? Example 19.37
shows that this is possible for a subsequence, but we conjecture that it is not
possible for the full sequence, and, a little stronger, thatthere always is some
" > 0 and some subsequence along whichY(1) > "n w.h.p.

Problem 19.41. Is Y(1) =n
p

�! 0 possible when� > � = 0 ? (Example 19.39
shows that this is possible for a subsequence.)

We expect that bad behaviour as in the examples above only can occur for
quite irregular weight sequences, but we have no general result beyond Theo-
rem 19.34. We formulate two natural problems.
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Problem 19.42. Suppose thatwk > wk+1 for all (large) k. Does this imply
that (19.106){ (19.107) hold when� > � ?

Problem 19.43. Suppose thatwk+1 =wk ! 1 as k ! 1 . (Hence, � = 0 and
� = 0 .) Does this imply that (19.106){ (19.107) hold when� > � ?

19.7. Applications to random forests

We give some applications of the results above to the size of the largest tree(s)
in di�erent types of random forests witn n trees andm > n nodes. We consider
only the casem=n ! � with 1 < � < 1 ; for simplicity we further assume that
m = �n + O(1), although this can be relaxed and, moreover, the general case
m=n ! � can be handled by using� n := m=n and the corresponding� n :=
� (� n ) as in Theorem 11.6; for details and for results in the casesm = n + o(n)
and m=n ! 1 , see Pavlov [94, 95, 96, 97], Kolchin [76],  Luczak and Pittel [83],
Kazimirov and Pavlov [72] and Bernikovich and Pavlov [12].

The random forests considered here are described by balls-in-boxes with
weight sequences withw0 = 0 and w1 > 0, see Section12. As usual, we use
(without further comments) the argument in Remark 11.8 to extend theorems
above to the casew0 = 0. (See Remark19.21.)

We �rst consider random rooted forests as in Example12.6. We have

wk =
kk � 1

k!
�

1
p

2�
k � 3=2ek ; as k ! 1 ; (19.150)

and thus wk+1 =wk ! e as k ! 1 . (Alternatively, we may use ewk := e� k wk �
(2� )� 1=2k � 3=2, see (12.30){( 12.31) and Example 12.10.) Since � = 1 , see Ex-
amples12.6 and 12.10, � < � and Theorem 19.19applies for any � 2 (1; 1 ).

We have a = e and thus, by (12.28),

q := �e =
� � 1

�
e1=� 2 (0; 1) (19.151)

and, consequently,

log(1=q) = � logq = � log
�

1 �
1
�

�
�

1
�

> 0: (19.152)

As k ! 1 , by (12.22), (12.27) and (19.150),

� k =
wk � k

�( � )
=

�
� � 1

wk � k � (2� )� 1=2 �
� � 1

k � 3=2qk : (19.153)

It follows that � k(n ) = �(1 =n) for

k(n) =
logn � 3

2 log logn
log(1=q)

+ O(1); (19.154)
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and then (19.69) yields

N � n
�

p
2� (� � 1)(1 � q)

k(n)� 3=2 �
� log3=2(1=q)

p
2� (� � 1)(1 � q)

n log� 3=2 n: (19.155)

Consequently, Theorem19.19(ii) yields the following theorem for the maximal
tree sizeY(1) ; this is due to Pavlov [94, 96] (in a slightly di�erent formulation),
who also gives further results. We further use Theorem19.16(i) to give a simple
estimate for the sizeY( j ) of the j :th largest tree. (More precise limit results for
Y( j ) are also easily obtained from (19.50).)

Theorem 19.44. For a random rooted forest, with m = �n + O(1) where
1 < � < 1 ,

Y(1)
d
�

�
logn � 3

2 log logn + log b+ W
log(1=q)

�
; (19.156)

where W has the Gumbel distribution (19.63) and

b :=
� log3=2(1=q)

p
2� (� � 1)(1 � q)

(19.157)

with q given by (19.151){ (19.152).
Furthermore, Y( j ) = Y(1) + Op (1) for each �xed j .

Next, let us, more generally, consider a random simply generated forest as in
Example 12.8, de�ned by a weight sequencew. Then the tree sizes in the random
forest are distributed as balls-in-boxes with the weight sequence (Zk )1

k=0 , where
Zk is the partition function ( 2.5) for simply generated trees with weight sequence
w (and Z0 = 0).

We assume that� (w) > 1; thus there exists� 1 > 0 such that 	( � 1) = 1, and
then w 0 := ( � k

1 wk =�( � 1)) k is an equivalent probability weight sequence with
expectation 1, see Lemma4.2. (� 1 is the same as� in Theorem 7.1, but here we
need to consider several di�erent� 's so we modify the notation.) This probability
weight sequencew 0 de�nes the same random forest, which thus can be realized as
a conditioned critical Galton{Watson forest. Recall from ( 4.10) and Theorem7.1
that the probability distribution w 0 has variance � 2 = � 1	 0(� 1); we assume
that � 2 is �nite, which always holds if � (w) > 1 and thus � 1 < � (w). We
further assume, for simplicity, that w has span 1. We then have the following
generalization of Theorem19.44, see Pavlov [95, 96], where also further results
are given.

Theorem 19.45. Consider a simply generated random forest de�ned by a
weight sequencew, and assume thatm = �n + O(1) where1 < � < 1 . Suppose
that � (w) > 1 and span(w) = 1 . De�ne � 1 > 0 by 	( � 1) = 1 , and assume that
� 2 := � 1	 0(� 1) < 1 (this is automatic if � (w) > 1). De�ne further � 2 > 0 by

	( � 2) = 1 � 1=� (19.158)
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and let

q :=
� 2

�( � 2)
�

�( � 1)
� 1

: (19.159)

Then 0 < q < 1 and

Y(1)
d
�

�
logn � 3

2 log logn + log b+ W
log(1=q)

�
; (19.160)

where W has the Gumbel distribution (19.63) and

b :=
� 1 log3=2(1=q)

� 2

p
2�� 2(1 � q)

: (19.161)

Furthermore, Y( j ) = Y(1) + Op (1) for each �xed j .

Proof. Replacew by the equivalent probability weight sequenceew = ( ewk ) with
ewk := � k

2 wk =�( � 2). This probability weight sequence has expectation 	( � 2) < 1
by (4.9), and using it we realize the random forest as a conditioned subcritical
Galton{Watson forest. The partition function eZk for ew is by (4.3) and Theo-
rem 18.11,

eZk =
� k � 1

2

�( � 2)k Zk �
1

p
2�� 2

� k � 1
2

�( � 2)k �
�( � 1)k

� k � 1
1

k � 3=2: (19.162)

Moreover, by (2.6), ( eZk ) is the distribution of the size of a Galton{Watson pro-
cess with o�spring distribution ew. Since this o�spring distribution is subcritical
with expectation 	( � 2) < 1, the size distribution ( eZk ) has �nite mean

1X

k=0

k eZk =
1

1 � 	( � 2)
= �; (19.163)

by our choice of � 2.
The sizes of the trees in the random forest are distributed as balls-in-boxes

with the weight sequence (eZk ), see Example12.8. We apply Theorem 19.19,
translating wk to eZk . By (19.162),

eZk+1 =eZk ! a :=
� 2

�( � 2)
�

�( � 1)
� 1

; as k ! 1 : (19.164)

Note further that (with this weight sequence ( eZk )) � in Theorem 19.19is chosen
such that the equivalent probability weight sequence

�
� k eZk = eZ (� )

�
has expec-

tation � . We have already constructed (eZk ) such that it is a probability weight
sequence with this expectation, see (19.163); hence we have� = 1 and q = a,
which yields (19.159).

As in (19.154), � k(n ) = eZk(n ) = �(1 =n) for

k(n) =
logn � 3

2 log logn
log(1=q)

+ O(1); (19.165)
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and then (19.69) yields, by (19.162),

N � n
� 1p

2�� 2� 2(1 � q)
k(n)� 3=2 �

� 1 log3=2(1=q)

� 2

p
2�� 2(1 � q)

n log� 3=2 n: (19.166)

The result (19.160) now follows from Theorem19.19(ii). Finally, again, Theorem
19.16(i) gives the estimate for Y( j ) .

Example 19.46. Consider a random ordered rooted forest. This is obtained
by the weight sequencewk = 1, see Example 12.8, and we have by (10.1){
(10.2) �( t) = 1 =(1 � t) and 	( t) = t=(1 � t). Hence, � 1 = 1 =2 and � 2 = 2 (see
Example 10.1); furthermore, (19.158) is � 2=(1 � � 2) = 1 � 1=� , which has the
solution

� 2 =
� � 1
2� � 1

: (19.167)

Consequently, Theorem19.45 says that (19.160) holds, with the parameters q
and b given by, see (19.159) and (19.161),

q =
� 2(1 � � 2)
� 1(1 � � 1)

= 4 � 2(1 � � 2) =
4� (� � 1)
(2� � 1)2 = 1 �

1
(2� � 1)2 (19.168)

and

b =
(2� � 1)3

4
p

� (� � 1)
log3=2(1=q): (19.169)

Example 19.47. The random rooted unlabelled forest in Example12.11 is
described by a weight sequence that also satis�eswk � c1k � 3=2� � k as k ! 1 ,
and we thus again obtain (19.160), although the parameters q and b now are
implicitly de�ned using the generating function of the number of unlabelled
rooted trees, see Pavlov [97].

Example 19.48. For the random recursive forest in Example12.13, we have

wk = k � 1; k > 1: (19.170)

Thus Theorem 19.19applies with a = 1 and q = � 2 (0; 1) given by

q
(1 � q)j log(1 � q)j

= �; (19.171)

see (12.56). (Recall that � = 1 , so we can take any� > 1 here.) In this case,
see (12.55), � k(n ) = k(n) � 1qk(n ) =j log(1 � q)j = �(1 =n) for

k(n) =
logn � log logn

log(1=q)
+ O(1); (19.172)

cf. (19.154), and then (19.69) yields

N �
log(1=q)

(1 � q)j log(1 � q)j
n log� 1 n: (19.173)
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Consequently, Theorem19.19(ii) yields

Y(1)
d
�

�
logn � log logn + log b+ W

log(1=q)

�
; (19.174)

where W has the Gumbel distribution (19.63) and, using (19.171),

b :=
log(1=q)

(1 � q)j log(1 � q)j
=

� log(1=q)
q

: (19.175)

We thus obtain a result similar to the cases above, but with a di�erent coe�cient
for log logn in (19.174). See Pavlov and Loseva [98] for further results.

If we consider the random unrooted forest in Example12.7, we �nd di�erent
results. In this case, the tree sizes are described by balls-in-boxes with the weight
sequencewk = kk � 2=k!, k > 1 (and w0 = 0). Alternatively, we can use the
probability weight sequence (12.40)

ewk := 2 wk e� k =
2kk � 2e� k

k!
; (19.176)

which by Stirling's formula satis�es ( 12.41)

ewk �
2

p
2�

k � 5=2; as k ! 1 : (19.177)

Since we now have� = 2 < 1 , see Examples12.7 and 12.10, there is a
phase transition at � = 2. We show in the theorem below that for � < 2
we have a result similar to Theorems19.44 and 19.45 with maximal tree size
Y(1) = Op (log n), but for � > 2 there is a unique giant tree with size of order
n. At the phase transition, with m=n ! 2, the result depends on the rate of
convergence ofm=n; if, for example, m = 2 n exactly, the maximal size is of
order n2=3; see further  Luczak and Pittel [83], where precise results for general
m = m(n) are given. (By the proof below, (iii) in the following theorem holds
as soon asm=n ! � > 2, but (i) and (ii) are more sensitive.)

Theorem 19.49. Consider a random unrooted forest, and assume thatm =
�n + O(1) where 1 < � < 1 .

(i) If 1 < � < 2, let

q := 2
� � 1

�
e2=� � 1: (19.178)

Then 0 < q < 1 and

Y(1)
d
�

�
logn � 5

2 log logn + log b+ W
log(1=q)

�
; (19.179)

where W has the Gumbel distribution (19.63) and

b :=
� 2 log5=2(1=q)

2
p

2� (� � 1)(1 � q)
(19.180)

Furthermore, Y( j ) = Y(1) + Op (1) for each �xed j .
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(ii) If � = 2 , then

Y( j ) =n2=3 d�! � j (19.181)

for each j , where � j > 0 are some random variables. The distribution of
� 1 is given by (19.97) with � = 3 =2 and c = (2 =� )1=2.

(iii) If 2 < � < 1 , then Y(1) = ( � � 2)n + Op (n2=3). More precisely,

n� 2=3�
m � 2n � Y(1)

� d�! X; (19.182)

where X is a 3
2 -stable random variable with Laplace transform

E e� tX = exp
� 25=2

3
t3=2

�
; Ret > 0: (19.183)

For j > 2, Y( j ) = Op (n2=3), and n� 2=3Y( j )
d�! Wj where W2 has the

Fr�echet distribution

P(W2 6 x) = exp
�

�
23=2

3
p

�
x � 3=2

�
; x > 0: (19.184)

and, more generally, Wj has the density function (19.117) with c0 =
(2=� )1=2 and � = 3 =2.

Note that the exponents 3
2 , 1 and 5

2 in (19.150), (19.170) and (19.177) appear
as coe�cients of log logn in (19.156), (19.174) and (19.179), respectively.

Proof. (i): This is very similar to the proofs of Theorems 19.44and 19.45. We
usewk = kk � 2=k!. Then, as for rooted forests and (19.150) above,wk+1 =wk ! e
as k ! 1 . Further, � is given by (12.38), and thus q := �e is given by (19.178).
It follows, cf. ( 19.154) and (19.177), that � k(n ) = �(1 =n) for

k(n) =
logn � 5

2 log logn
log(1=q)

+ O(1); (19.185)

and then (19.69) yields

N �
nwk(n ) e� k (n )

�( � )(1 � q)
� n

� 2

2
p

2� (� � 1)(1 � q)
k(n)� 5=2

�
� 2 log5=2(1=q)

2
p

2� (� � 1)(1 � q)
n log� 5=2 n:

(19.186)

Hence Theorem19.19(ii) yields ( 19.179).
(ii): We use the equivalent probability weight sequence (ewk ) given by (19.176).

By (19.177), it satis�es the assumptions in Example 19.27 with � = 3 =2 and
c = (2 =� )1=2; thus (19.181) follows from (19.91), and (19.97) in Remark 19.28
applies.

(iii): We use again the probability weight sequence (ewk ) and apply Theo-
rem 19.34. We have c0 = c = (2 =� )1=2 by (19.176), and thus c0�( � 3=2) =
c04

3 �(1 =2) = 2 5=2=3 and c0=� = 2 3=2=(3
p

� ).
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Example 19.50. The random unrooted unlabelled forest (with labelled trees)
in Example 12.11 is described by another weight sequence that satis�eswk �
ck� 5=2� � k ask ! 1 , and we thus obtain a result similar to Theorem19.49, al-
though the parameters di�er (they can be obtained from the generating function
of the number of unlabelled trees); in particular, the phase transition appears
when � is � � 2:0513, see Bernikovich and Pavlov [12] for details.

We do not know any corresponding results for random completely unlabelled
forests (n unlabelled trees consisting ofm unlabelled nodes); as said in Exam-
ple 12.11, they cannot be described by balls-in-boxes.

20. Large nodes in simply generated trees with � < 1

In the tree case with � < 1, the results in Section19.6show condensation in the
form of one or, sometimes, several nodes with very large degree,together making
up the \missing mass" of about (1� � )n. On the other hand, Theorem7.1 shows
concentration in a somewhat di�erent form, with a limit tree bT having exactly
one node of in�nite degree. This node corresponds to a node with very large
degree inTn for n large but �nite. How large is the degree? Why do we only see
one node with very large degree in Theorem7.1, but sometimes several nodes
with large degrees above (Examples19.37and 19.38)?

The latter question is easily answered: recall that the convergence in Theo-
rem 7.1 means convergence of the truncated trees (\left balls")T [m ]

n , see Lemma
6.3; thus we only see a small part of the tree close to the root, and thetwo pic-
tures above are reconciled: ifm is large but �xed, then in the set V(T) \ V [m ]

of nodes, there is with probability close to 1 exactly one node with very large
degree. (There may be several nodes with very large degree in thetree, but for
any �xed m, w.h.p. at most one of them is in V [m ].) Of course, to make this
precise, we would have to de�ne \very large", for example as below using a se-
quence 
 n growing slowly to 1 as in Lemma19.32, but we are at the moment
satis�ed with an intuitive description.

To see how large the \very large" degree is, let us �rst look at the root.
Lemma 15.7 says that the distribution of the root degree is the size-biased
distribution of Y1. We can write (15.7) as

P(d+
Tn

(o) = d) =
d

n � 1

nX

i =1

P(Yi = d) =
d

n � 1

nX

j =1

P(Y( j ) = d); (20.1)

hence the distribution of the root degree can be described by: sample (Y1; : : : ; Yn )
and then take Y(1) with probability Y(1) =(n � 1), Y(2) with probability Y(2) =(n �
1), . . . .

In particular, if Y(1) = (1 � � )n + op (n), then (20.1) implies

P(d+
Tn

(o) = Y(1) ) = 1 � � + o(1); (20.2)

and comparing with Theorem 7.10 we see that w.h.p. either the root degree is
small (more precisely,Op (1)), or it is the maximum outdegree Y(1) . However, we
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also see that ifY(1) is not (1� � )n+ op (n), then this conclusion does not hold; for
example, in Example19.38 for n in the subsequence (2i ) where (19.149) holds
for each �xed j ,

P(d+
Tn

(o) = 2 � j n) ! 2� j : (20.3)

In the case � = 0, we only have to consider the root, since the node with
in�nite degree in bT always is the root, but for 0 < � < 1, the node with in�nite
degree in bT may be somewhere else. We shall see that it corresponds to a node
in Tn with a large degree having (asymptotically) the same distribution as the
root degree just considered, conditioned to be \large".

To make this precise, let 
 n ! 1 be a �xed sequence which increases so
slowly that Lemma 19.32(ii) holds. We say that an outdegreed+ (v) is large if
it is greater than 
 n ; we then also say that the nodev is large. (Note that by
Lemma 19.32(ii), w.h.p. at least one large node exists.) For eachn, let eDn by
a random variable whose distribution is the size-biased distribution ofa large
outdegree, i.e. of (Y1 j Y1 > 
 n ):

P( eDn = k) =
k P(Y1 = k)

P
l> 
 n

l P(Y1 = l)
=

k E NkP
l> 
 n

l E N l
=

k E Nk

(1 � � + o(1))n
; (20.4)

for k > 
 n and P( eDn = k) = 0 otherwise. Equivalently, in view of Lemma 15.7,
eDn has the distribution of the root degreed+

Tn
(o) conditioned to be greater than


 n . See also (20.1), and note that if Y(1) = (1 � � )n + op (n), then eDn
d
� Y(1) ,

i.e., we may take eDn = Y(1) w.h.p.; in this case (but not otherwise) we thus
have eDn = (1 � � )n + op (n).

Note that if 
 0
n is another such sequence, similarly de�ning a random variable

eD 0
n , then

P
l> 
 n

l P(Y1 = l) � (1 � � )n �
P

l> 
 0
n

l P(Y1 = l), and it follows that

eDn
d
� eD 0

n ; hence the choice of 
n will not matter below.
We claim that, w.h.p., the in�nite outdegree in bT corresponds to an outdegree

eDn in Tn . To formalise this, recall from Section6 that we may consider our trees
as subtrees of the in�nite tree U1 with node set V1 , and that the convergence
of trees de�ned there means convergence of eachd+ (v), see (6.6). Let bT be the
random in�nite tree de�ned in Section 5; we are in case (T2), and thus bT has
a single nodev with outdegree d+

bT
(v) = 1 . We assume that eDn and bT are

independent, and de�ne the modi�ed degree sequence

ed+
bT

(v) :=

(
d+

bT
(v); d+

bT
(v) < 1 ;

eDn ; d+
bT

(v) = 1 :
(20.5)

We thus change the single in�nite value to the �nite eDn , leaving all other values
unchanged. (Note that ed+

bT
(v) may depend onn, since eDn does.) We then have

the following theorem.

Theorem 20.1. For any �nite set of nodes v1; : : : ; v` 2 V1 ,
�
d+

Tn
(v1); : : : ; d+

Tn
(v` )

� d
�

� ed+
bT

(v1); : : : ; ed+
bT

(v` )
�
: (20.6)
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Proof. Let " > 0, and let v� denote the unique node inbT with d+
bT

(v� ) = 1 . By

increasing the setf v1; : : : ; v` g, we may assume that it equalsV [m ] (see Section6)
for somem, and that m is so large that P(v� 2 V [m ]) > 1 � " . We may then
�nd K < 1 such that

P
�
d+

bT
(v) 2 (K; 1 ) for somev 2 V [m ]� < ":

SinceTn
d�! bT by Theorem 7.1, we may by the Skorohod coupling theorem [69,

Theorem 4.30] assume that the random trees are coupled such that Tn ! bT a.s.,
and thus d+

Tn
(v) ! d+

bT
(v) a.s. for every v. Then, for large n, with probability

> 1 � 3" , v� 2 V [m ], d+
Tn

(v) = d+
bT

(v) = ed+
bT

(v) 6 K for all v 2 V [m ] n f v� g,

and d+
Tn

(v� ) ! d+
bT

(v� ) = 1 . We may assume that 
 n ! 1 so slowly that

furthermore P(d+
Tn

(v� ) 6 
 n ) 6 " . (Recall that we may change 
 n without
a�ecting the result ( 20.6).)

Let n be so large that also 
n > m and 
 n > K . It follows from Lemma 15.9
that for each choice ofv0 2 V [m ] and numbersd(v) for v 2 V [m ] nv0, and k > 
 n ,

P
�
d+

Tn
(v) = d(v) for v 2 V [m ] n f v0g and d+

Tn
(v0) = k

�

=
�
k + O(1)

�
C(f d(v)g; v0; n) P(Y1 = k)

for some constantC(f d(v)g; v0; n) > 0 not depending onk; hence, by (20.4),

P
�
d+

Tn
(v0) = k j d+

Tn
(v) = d(v) for v 2 V [m ] n f v0g and d+

Tn
(v0) > 
 n

�

=
�
1 + o(1)

� k P(Y1 = k)
P

k> 
 n
k P(Y1 = k)

=
�
1 + o(1)

�
P( eDn = k):

There is only a �nite number of choices ofv0 and (d(v)) v2 V [m ] nf v0g, and it follows

that we may choose the coupling ofTn and bT above such that alsod+
Tn

(v� ) = eDn

w.h.p.; thus, with probability > 1 � 4" + o(1), d+
Tn

(v) = ed+
bT

(v) for all v 2 V [m ].
The result follows since" > 0 is arbitrary.

We give some variations of this result, where we replaceed+
bT

(v) by the degree

sequences of some random trees obtained by modifyingbT . (Note that ed+
bT

(v) is
not the degree sequence of a tree.)

First, let bT1n be the random tree obtained by pruning the tree bT at the
node v� with in�nite outdegree, keeping only the �rst eDn children of v� . Then
bT1n is a locally �nite tree, and, in fact, it is a.s. �nite. The random tree bT1n

can be constructed asbT in Section 5, starting with a spine, and then adding
independent Galton{Watson trees to it, but now the number of children of a
node in the spine is given by a �nite random variable �� n with the distribution

P( �� n = k) = P(b� = k)+ P(b� = 1 ) P( eDn = k) = k� k +(1 � � ) P( eDn = k): (20.7)

The nodes not in the spine (the normal nodes) have o�spring distribution ( � k )
as before. (This holds also for the following modi�cations.)

The spine in bT1n stops when we obtainb� = 1 , but we may also de�ne another
random tree bT2n by continuing the spine to in�nity; this de�nes a random in�nite
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but locally �nite tree having an in�nite spine; each node in the spine has a
number of children with the distribution in ( 20.7), and the spine continues
with a uniformly randomly chosen child. Equivalently, bT2n can be de�ned by
a Galton{Watson process with normal and special nodes as in Section 5, but
with the o�spring distribution for special nodes changed from (5.2) to ( 20.7).

Finally, let bYn by a random variable with the size-biased distribution of Y1:

P( bYn = k) =
k P(Y1 = k)
(n � 1)=n

=
k E Nk

n � 1
; (20.8)

recalling that
P

k kN k = n � 1; cf. (20.1) and (20.4). (Thus bYn
d= d+

Tn
(o) by

Lemma 15.7 and (20.1).) De�ne the in�nite, locally �nite random tree bT3n by
the same Galton{Watson process again, but now with o�spring distribution bYn

for special nodes. (This does not involveeDn or 
 n .) Thus bT3n also has an in�nite
spine.

We then have the following version of Theorem20.1, where we also use the
metric � 1 on T lf de�ned by

� 1(T1; T2) := 1 =sup
�

m > 1 : d+
T1

(v) = d+
T2

(v) for v 2 V [m ] 	 : (20.9)

Theorem 20.2. For j = 1 ; 2; 3, and any �nite set of nodes v1; : : : ; v` 2 V1 ,

�
d+

Tn
(v1); : : : ; d+

Tn
(v` )

� d
�

� ed+
bTjn

(v1); : : : ; ed+
bTjn

(v` )
�
: (20.10)

Equivalently, there is a coupling ofTn and bTjn such that � 1(Tn ; bTjn ) ! 0 as
n ! 1 .

Proof. If 
 n > m we have eDn > m and then the branches ofbT pruned to make
bT1n are all outside V [m ], and thus d+

bT1n
= ed+

bT
de�ned in ( 20.5) for all v 2 V [m ].

Thus the result for bT1n follows from Theorem 20.1.
Next, for any given m, and for any endpoint x of the spine of bT1n , the prob-

ability that the continuation in bT2n of the spine contains some node inV [m ] is
less thanm=
 n = o(1); thus, w.h.p. bT1n and bT2n are equal on anyV [m ].

Finally, Lemma 20.3below implies that we can couplebT2n and bT3n such that
they w.h.p. agree on eachV (m ) ; then bT1n and bT3n are w.h.p. equal on each
V [m ].

Lemma 20.3. �� n
d
� bYn .

Proof. For each �xed k, P( �� n = k) = k� k as soon as 
n > k , and P( bYn = k) !
k� k by (20.8) and Theorem 11.7. Hence,

j P( �� n = k) � P( bYn = k)j ! 0: (20.11)

By (20.7), (20.4) and (20.8), uniformly for k > 
 n ,

P( �� n = k) = k� k + (1 � � )
k P(Y1 = k)
1 � � + o(1)

= k� k +
�
1 + o(1)

�
P( bYn = k);



Simply generated trees and random allocations 239

hence
X

k> 
 n

j P( �� n = k) � P( bYn = k)j 6
X

k> 
 n

�
k� k + o(1) P( bYn = k)

�
=

X

k> 
 n

k� k + o(1):

(20.12)
Further, for any �xed K ,


 nX

k= K +1

�
P( �� n = k) � P( bYn = k)

�
+ 6


 nX

k= K +1

P( �� n = k) =

 nX

k= K +1

k� k : (20.13)

Using Lemma19.5(vii) together with ( 20.11) for k 6 K , (20.12) and (20.13) we
obtain

dTV ( �� n ; bYn ) =
1X

k=1

�
P( �� n = k) � P( bYn = k)

�
+ 6

1X

k= K +1

k� k + o(1): (20.14)

SinceK is arbitrary and
P 1

1 k� k < 1 , it follows that dTV ( �� n ; bYn ) ! 0.

21. Further results and problems

21.1. Level widths

Let, as in Remark 5.6, lk (T ) denote the number of nodes with distancek to the
root in a rooted tree T.

If � > 1, then bT is a locally �nite tree so all level widths lk ( bT ) are �nite.
It follows easily from the characterisation of convergence in Lemma6.2 that, in
this case, the functional lk is continuous at bT , and thus Theorem 7.1 implies
(seeBillingsley [15, Corollary 1, p. 31])

lk (Tn ) d�! lk ( bT ) < 1 (21.1)

for eachk > 0.
On the other hand, if � < 1, then bT has a node with in�nite outdegree; this

node has a random distanceL � 1 to the root, where L as in Section5 is the
length of the spine, and thuslL ( bT ) = 1 .

In the case 0< � < 1, we have� 0 < 1 and P(� > 1) = 1 � � 0 > 0, so for
any j , there is a positive probability that the Galton{Watson tree T has height
at least j , and it follows that of the in�nitely many copies of T that start in
generation L , a.s. in�nitely many will survive at least until generation L + j .
Consequently, a.s.,lk ( bT ) = 1 for all k > L , while lk ( bT ) < 1 for k < L . It
follows easily from Lemma6.3, that in this case too, for eachk > 0, the mapping
lk : T ! N0 is continuous at bT . Consequently,

lk (Tn ) d�! lk ( bT ) 6 1 ; k = 0 ; 1; : : : ; (21.2)

with P(lk ( bT ) < 1 ) = P(L > k ) = � k . (Recall that � = � in this case by (7.2).)
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When � = 0, however, (21.2) does not always hold. By Example5.1, bT is an
in�nite star, with l1( bT ) = 1 and lk ( bT ) = 0 for all k > 2. By Theorem 7.10,

l1(Tn ) = d+
Tn

(o) d�! b� d= l1( bT ), so (21.2) holds for k = 1 (and trivially for k = 0)

in the case� = 0 too (with l1( bT ) = 1 ). However, by Example 10.8, if wk = k!,

then l2(Tn ) d�! Po(1), so l2(Tn ) does not converge tol2( bT ) = 0. Similarly, by
Example 10.9, if j > 2 and wk = k!� with 0 < � < 1=(j � 1), then the number
of paths of length j attached to the root in Tn tends to 1 (in probability), so
l j (Tn )

p
�! 1 , while l j ( bT ) = 0.

Turning to moments, we have for the expectation, by (5.8), E lk ( bT ) = 1
if 0 < � < 1 or � 2 = 1 ; in this case (21.1){( 21.2) and Fatou's lemma yield
E lk (Tn ) ! E lk ( bT ) = 1 .

If � > 1 and � 2 < 1 , then (5.7) yields E lk ( bT ) = 1 + k� 2 < 1 . In this case,
for each �xed k, the random variables lk (Tn ), n > 1, are uniformly integrable,
and thus (21.1) implies E lk (Tn ) ! E lk ( bT ), seeJanson[59, Section 10]. (In the
case� > 1, this was shown already by Meir and Moon [85].) Consequently, for
any w with � > 0 and any �xed k,

E lk (Tn ) ! E lk ( bT ) 6 1 : (21.3)

(When � = 0, this is not always true, by the examples above.)
For higher moments, there remains a small gap. Letr > 1. When 0< � < 1,

(21.3) trivially implies E lk (Tn )r ! E lk ( bT )r = 1 , so suppose� > 1. Then,
by (5.2), E b� r = E � r +1 , so if E � r +1 = 1 , then E l1( bT )r = 1 ; moreover, each
lk ( bT ), k > 1, stochastically dominatesb� (consider the o�spring of the k:th node
on the spine), and thus E lk ( bT )r = 1 for every k > 1. Consequently, again
immediately by Fatou's lemma and (21.2), E lk (Tn )r ! E lk ( bT )r = 1 . The
only interesting case is thus whenE � r +1 < 1 . If r > 1 is an integer, it was
shown in [59, Theorem 1.13] that E � r +1 < 1 implies that E lk (Tn )r , n > 1,
are uniformly bounded for eachk > 1. We conjecture that, moreover,lk (Tn )r ,
n > 1, are uniformly integrable, which by (21.1) would yield the following:

Conjecture 21.1. For every integer r > 1 and everyk > 1, if � > 0, then

E lk (Tn )r ! E lk ( bT )r 6 1 : (21.4)

We further conjecture that this holds also for non-integerr > 0.

One thus has to consider the caseE � r +1 < 1 only, and the result from [59]
implies that ( 21.4) holds if E � r +2 < 1 , since thenE lk (Tn )br c+1 are uniformly
bounded.

21.2. Asymptotic normality

In Theorem 7.11, we proved that Nd, the number of nodes of outdegreed in the
random tree Tn , satis�es Nd=n

p
�! � d.
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In our case I� (� > 1 or � = 1 and � 2 < 1 ), Kolchin [ 76, Theorem 2.3.1]
gives the much stronger result that the random variableNd is asymptotically
normal, for every d > 0:

Nd � n� dp
n

d�! N (0; � 2
d); (21.5)

with

� 2
d := � d

�
1 � � d �

(d � 1)2� d

� 2

�
: (21.6)

(In fact, Kolchin [ 76] gives a local limit theorem which is a stronger version of
(21.5).)

Under the assumption � 3 < 1 , Janson[55, Example 3.4] gave another proof
of (21.5), and showed further joint convergence for di�erent d, with asymptotic
covariances, usingI k := 1f � = kg,

� 2
kl = Cov( I k ; I l ) �

Cov(I k ; � ) Cov(I l ; � )
Var �

= � k � kl � � k � l �
(k � 1)(l � 1)� k � l

� 2 :

(21.7)
Moreover, Janson [55] showed that if E j� jr < 1 for every r (which in partic-

ular holds when � > 1 since then� < � and � has some exponential moment),
then convergence of all moments and joint moments holds in (21.5); in particular

E Nk = n� k + o(n) and Cov(Nk ; N l ) = n� 2
kl + o(n): (21.8)

In the case � > 1, Minami [89] and Drmota [33, Section 3.2.1] have given
other proofs of the (joint) asymptotic normality using the saddle point method;
Drmota [33] shows further the stronger moment estimates

E Nd = n� d + O(1) and Var Nd = n� 2
d + O(1): (21.9)

Problem 21.2. Do these results hold in the case� = 1 , � 2 < 1 without extra
moment conditions? Do they extend to the case� = 1 , � 2 = 1 ? What happens
when 0 6 � < 1?

Problem 21.3. Extend this to the more general case of balls-in-boxes as in
Theorem 11.4. (We guess that the case0 < � < � is easy by the methods in
the references above, in particular [55] and [33, Section 3.2.1], but we have not
checked the details.)

Problem 21.4. Extend this to the subtree counts in Theorem7.12.

21.3. Height and width

We have studied the random treesTn without any scaling. Since our mode of
convergence really means that we consider only a �nite number of generations at
a time, we are really looking at the base of the tree, with the �rst generations.
The results in this paper thus do not say anything about, for example, the
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height and width of Tn . (Recall that if T is a rooted tree, then the height
H (T) := max f k : lk (T ) > 0g, the maximum distance from the root, and the
width W (T) := max k f lk (T )g, the largest size of a generation.) However, there
are other known results.

In the case� > 1, � 2 < 1 (the case I� in Section 8), it is well-known that
both the height H (Tn ) and the width W (Tn ) of Tn typically are of order

p
n;

more precisely,

H (Tn )=
p

n d�! 2� � 1X; (21.10)

W (Tn )=
p

n
d

�! �X; (21.11)

where X is some strictly positive random variable (in fact, X equals the max-
imum of a standard Brownian excursion and has what is known as a theta
distribution), see e.g. Kolchin [76], Aldous [4], Chassaing, Marckert and Yor
[25], Janson [59] and Drmota [33]. There are also results for a single level giv-
ing an asymptotic distribution for lk(n ) (Tn )=

p
n when the levelk(n) � a

p
n for

somea > 0, seeKolchin [76, Theorem 2.4.5].
Since the variance� 2 appears as a parameter in these results, we cannot

expect any simple extensions to the case� 2 = 1 , and even less to the case
0 6 � < 1. Nevertheless, we conjecture that (21.10) and (21.11) extend formally
at least to the case� = 1 and � 2 = 1 :

Conjecture 21.5. If � = 1 and � 2 = 1 , then H (Tn )=
p

n
p

�! 0.

Conjecture 21.6. If � = 1 and � 2 = 1 , then W (Tn )=
p

n
p

�! 1 .

Problem 21.7. Does � < 1 imply that H (Tn )=
p

n
p

�! 0?

Problem 21.8. Does � < 1 imply that W (Tn )=
p

n
p

�! 1 ?

Furthermore, still in the case � > 1, � 2 < 1 , Addario-Berry, Devroye and
Janson [1] have shown sub-Gaussian tail estimates for the height and width

P(H (Tn ) > x
p

n) 6 Ce� cx 2
; (21.12)

P(W (Tn ) > x
p

n) 6 Ce� cx 2
; (21.13)

uniformly in all x > 0 and n > 1 (with some positive constantsC and c de-
pending on � and thus on w). In view of (21.11), we cannot expect (21.13) to
hold when � 2 = 1 (or when � < 1), but we see no reason why (21.12) cannot
hold; (21.10) suggests thatH (Tn ) typically is smaller when � 2 = 1 .

Problem 21.9. Does (21.12) hold for any weight sequencew (with C and c
depending onw, but not on x or n)?

It follows from ( 21.10){( 21.11) and (21.12){( 21.13) that E H (Tn )=
p

n and
E W (Tn )=

p
n converge to positive numbers. (In fact, the limits are

p
2�=� andp

�= 2� , see e.g. Janson [61], where also joint moments are computed.)

Problem 21.10. What are the growth rates of E H (Tn ) and E W (Tn ) when
� 2 = 1 or � < 1?
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21.4. Scaled trees

The results (21.10){( 21.11), as well as many other results on various asymptotics
of Tn in the case� > 1, � 2 < 1 , can be seen as consequences of the convergence
of the tree Tn , after rescaling in a suitable sense in both height and width byp

n, to the continuum random tree de�ned by Aldous [3, 4, 5], see also Le Gall
[80]. (The continuum random tree is not an ordinary tree; it is a compact metric
space.) This has been extended to the case� 2 = 1 when � is in the domain of
attraction of a stable distribution, see e.g. Duquesne [34] and Le Gall [80, 81];
the limit is now a di�erent random metric space called a stable tree.

Problem 21.11. Is there some kind of similar limiting object in the case� < 1
(after suitable scaling)?

21.5. Random walks

Simple random walk on the in�nite random tree bT has been studied by many
authors in the critical case � > 1, in particular when � 2 < 1 , see e.g. Kesten
[74], Barlow and Kumagai [9], Durhuus, Jonsson and Wheater [35], Fujii and
Kumagai [43], but also when� 2 = 1 , see Croydon and Kumagai [30] (assuming
attraction to a stable law).

A di�erent approach is to study simple random walk on Tn and study asymp-
totics os n ! 1 . For example, by rescaling the tree one can obtain convergence
to a process on the continuum random tree (when� 2 < 1 ) or stable tree
(assuming attraction to a stable law), see Croydon [28, 29].

For � < 1, the simple random walk on bT does not make sense, since the
tree has a node with in�nite degree. Nevertheless, it might be interesting to
study simple random walk on Tn and �nd asymptotics of interesting quantities
as n ! 1 .

21.6. Multi-type conditioned Galton{Watson trees

It seems likely that there are results similar to the ones in Section7 for multi-
type Galton{Watson trees conditioned on the total size, or perhaps on the num-
ber of nodes of each type, and for corresponding generalizationsof simply gen-
erated random trees. We are not aware of any such results, however, and leave
this as an open problem. (See Kurtz, Lyons, Pemantle and Peres [78] for related
results that presumably are useful.)

22. Di�erent conditionings for Galton{Watson trees

One of the principal objects studied in this paper is the conditioned Galton{
Watson tree (T j jT j = n), i.e. a Galton{Watson tree T conditioned on its total
size beingn; we then let n ! 1 . This is one way to consider very large Galton{
Watson trees, but there are also other similar conditionings. For comparison, we
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brie
y consider two possibilities; see further Kennedy [73] and Aldous and Pit-
man [6]. We denote the o�spring distribution by � and its probability generating
function by �( t).

22.1. Conditioning on jT j > n .

If E � 6 1, i.e., in the subcritical and critical cases,jT j < 1 a.s. and thus T
conditioned on jT j > n is a mixture of (T j jT j = N ) = TN for N > n. It follows

immediately from Theorem 7.1 that ( T j jT j = N ) d�! bT as n ! 1 .
If E � > 1, i.e., in the supercritical case, on the other hand, the eventjT j = 1

has positive probability, and the events jT j > n decrease tojT j = 1 . Conse-
quently,

(T j jT j > n) d�! (T j jT j = 1 ); (22.1)

a supercritical Galton{Watson tree conditioned on non-extinction.

Remark 22.1. When T is supercritical, the conditioned Galton{Watson tree
(T j jT j = 1 ) in ( 22.1) can be constructed by a 2-type Galton{Watson process,
somewhat similar to the construction of bT in Section5: Let q := P(jT j < 1 ) < 1
be the extinction probability, which is given by �( q) = q. Consider a Galton{
Watson processT with individuals of two types, mortal and immortal , where
a mortal gets only mortal children while an immortal may get both mortal and
immortal children. The numbers � 0 of mortal and � 00of immortal children are
described by the probability generating functions

E x � 0
y� 00

= � m (x) := � q(x) = �( qx)=q (22.2)

for a mortal and

E x � 0

y� 00

= � i (x) :=
�( qx + (1 � q)y) � �( qx)

1 � q
(22.3)

for an immortal (with the children coming in random order). Note tha t the
subtree started by a mortal is subcritical (since � 0

m (1) = � 0(q) < 1, cf. (4.9)),
and thus a.s. �nite, while every immortal has at least one immortal child (since
� i (x; 0) = 0) and thus the subtree started by an immortal is in�nite. It is
easily veri�ed that T conditioned on non-extinction equals this random treeT
started with an immortal, while T conditioned on extinction equalsT started
with a mortal. (See Athreya and Ney [8, Section I.12], where this is stated in a
somewhat di�erent form.)

One important di�erence from bT is that T does not have a single spine;
started with an immortal it has a.s. an uncountable number of in�nite paths
from the root.

Note that bT in the critical case can be seen as a limit case of this construction.
If we let q % 1, which requires that we really consider a sequence of di�erent
distributions with generating functions � (n ) (t) ! �( t), then taking the limits in
(22.2){( 22.3) gives for the limiting critical distribution the o�spring generating
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functions � m (x) = �( x) and � i (x; y) = y� 0(x), which indeed are the generating
functions for the o�spring distributions in Section 5 in the critical case (with
mortal = normal and immortal = special), since E xb� � 1y = y� 0(x) = � i (x; y)
by (5.4).

22.2. Conditioning on H (T ) > n .

To condition on the height H (T ) being at least n is the same as conditioning
on ln (T ) > 0, i.e., that the Galton{Watson process survives for at least n
generations.

If E � > 1, i.e., in the supercritical case, the eventsln (T ) > 0 decrease to
jT j = 1 . Consequently,

(T j H (T ) > n) = ( T j ln (T ) > 0)
d

�! (T j jT j = 1 ); (22.4)

exactly as when conditioning onjT j > n in (22.1). By Remark 22.1, the limit
equalsT , started with an immortal.

In the subcritical and critical cases, the following result, proved by Kesten
[74] (at least for E � = 1, see also Aldous and Pitman [6]), shows convergence
to the size-biased Galton{Watson treeT � in Remark 5.7.

Theorem 22.2. Suppose that� := E � 6 1. Then, as n ! 1 ,

(T j H (T ) > n) = ( T j ln (T ) > 0) d�! T � : (22.5)

Proof. Let rn := P(ln (T ) > 0), the probability of survival for at least n genera-
tions. Then rn ! 0 asn ! 1 . Fix ` > 0 and a treeT with height `. Conditioned
on T ( ` ) = T, the remainder of the tree consists ofl ` (T ) independent branches,
each distributed asT , and thus, for n > ` ,

P(T ( ` ) = T j H (T ) > n) =
P(T ( ` ) = T and H (T ) > n)

P(H (T ) > n)

=
P(T ( ` ) = T)

�
1 � (1 � rn � ` ) l ` (T )

�

P(H (T ) > n)
:

(22.6)

Let T( ` )
f be the set of �nite trees of height `. Summing (22.6) over T 2 T( ` )

f
yields 1, and thus

P(H (T ) > n) =
X

T 2 T ( ` )
f

P(T ( ` ) = T)
�
1 � (1 � rn � ` ) l ` (T ) � (22.7)

Dividing by rn � ` , and noting that for any N > 1,
�
1 � (1 � r )N

�
=r % N as

r & 0, we �nd by monotone convergence

P(H (T ) > n)
rn � `

=
X

T 2 T ( ` )
f

P(T ( ` ) = T)
1 � (1 � rn � ` ) l ` (T )

rn � `

!
X

T 2 T ( ` )
f

P(T ( ` ) = T)l ` (T ) = E l ` (T ) = � ` :
(22.8)
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Hence, by (22.6) and (5.11),

P(T ( ` ) = T j H (T ) > n) �
P(T ( ` ) = T)l ` (T )rn � `

P(H (T ) > n)

!
P(T ( ` ) = T)l ` (T )

� ` = P(T � ( ` ) = T):

(22.9)

Thus, (T j H (T ) > n)( ` ) d�! T � ( ` ) , and the result follows by (6.9).

Note that if E � = 1, then T � = bT , see Remark5.7, so the limits in Theorems
7.1 and 22.2 of T conditioned on jT j = n and H (T ) > n have the same limit.
However, in the subcritical caseE � < 1, T � 6= bT ; moreover, T � di�ers also
from the limit in Theorem 7.1, which is bT for a conjugated distribution, and
the same is true in the supercritical case. Hence, as remarked by Kennedy [73],
conditioning on jT j = n and H (T ) > n give similar results (in the sense that
the limits as n ! 1 are the same) in the critical case, but quite di�erent results
in the subcritical and supercritical cases. Similarly, conditioning onjT j > n and
H (T ) > n give quite di�erent results in the subcritical case. Aldous and Pit-
man [6] remarks that the two di�erent limits as n ! 1 both can be intuitively
interpreted as \T conditioned on being in�nite", which shows that one has to
be careful with such interpretations.
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