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Abstract: In the context of clustering, we assume a generative model
where each cluster is the result of sampling points in the neighborhood of an
embedded smooth surface; the sample may be contaminated with outliers,
which are modeled as points sampled in space away from the clusters. We
consider a prototype for a higher-order spectral clustering method based
on the residual from a local linear approximation. We obtain theoretical
guarantees for this algorithm and show that, in terms of both separation
and robustness to outliers, it outperforms the standard spectral clustering
algorithm (based on pairwise distances) of Ng, Jordan and Weiss (NIPS
’01). The optimal choice for some of the tuning parameters depends on the
dimension and thickness of the clusters. We provide estimators that come
close enough for our theoretical purposes. We also discuss the cases of clus-
ters of mixed dimensions and of clusters that are generated from smoother
surfaces. In our experiments, this algorithm is shown to outperform pairwise
spectral clustering on both simulated and real data.
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1. Introduction

In a number of modern applications, the data appear to cluster near some low-
dimensional structures. In the particular setting of manifold learning [7, 17, 22,
47, 51], the data are assumed to lie near manifolds embedded in Euclidean space.
When multiple manifolds are present, the foremost task is separating them,
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meaning the recovery of the different components of the data associated with
the different manifolds. Manifold clustering naturally occurs in the human visual
cortex, which excels at grouping points into clusters of various shapes [21, 41].
It is also relevant for a number of modern applications. For example, in cos-
mology, galaxies seem to cluster forming various geometric structures such as
one-dimensional filaments and two-dimensional walls [39, 52]. In motion segmen-
tation, feature vectors extracted from moving objects and tracked along different
views cluster along affine or algebraic surfaces [10, 23, 35, 53]. In face recognition,
images of faces in fixed pose under varying illumination conditions cluster near
low-dimensional affine subspaces [6, 19, 31], or along low-dimensional manifolds
when introducing additional poses and camera views.

In the last few years several algorithms for multi-manifold clustering were
introduced; we discuss them individually in Section 1.3.3. We focus here on
spectral clustering methods, and in particular, study a prototypical multiway
method relying on local linear approximations, with precursors appearing in [1,
2, 12, 27, 48]. We refer to this method as Higher-Order Spectral Clustering
(HOSC). We establish theoretical guarantees for this method within a standard
mathematical framework for multi-manifold clustering. Compared with all other
algorithms we are aware of, HOSC is able to separate clusters that are much
closer together; equivalently, HOSC is accurate under much lower sampling rate
than any other algorithm we know of. Roughly speaking, a typical algorithm for
multi-manifold clustering relies on local characteristics of the point cloud in a
way that presupposes that all points, or at least the vast majority of the points,
in a (small enough) neighborhood are from a single cluster, except in places like
intersections of clusters. In contrast, though HOSC is also a local method, it
can work with neighborhoods where two or more clusters coexist.

1.1. Higher-order spectral clustering (HOSC)

We introduce our higher-order spectral clustering algorithm in this section, trac-
ing its origins to the spectral clustering algorithm of Ng et al. [42] and the
spectral curvature clustering of Chen and Lerman [11, 12].

Spectral methods are based on building a neighborhood graph on the data
points and partitioning the graph using its Laplacian [22, 34], which is closely
related to the extraction of connected components. The version introduced by
Ng et al. [42] is an emblematic example—we refer to this approach as SC. It
uses an affinity based on pairwise distances. Given a scale parameter ǫ > 0 and
a kernel φ, define

α(x1,x2) =

{

φ(‖x1 − x2‖/ǫ), x1 6= x2;
0, x1 = x2.

(1)

(‖ · ‖ denotes the Euclidean norm.) Standard choices include the heat kernel
φ(s) = exp(−s2) and the simple kernel φ(s) = 1{|s|<1}. Let x1, . . . ,xN ∈ R

D

denote the data points. SC starts by computing all pairwise affinities W =
(Wij), with Wij = α(xi,xj), for i, j = 1, . . . , N . It then computes the matrix
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Algorithm 1 Spectral Clustering (SC) [42]

Input:

x1,x2, . . . ,xN : the data points
ǫ: the affinity scale
K: the number of clusters

Output:

A partition of the data into K disjoint clusters

Steps:

1: Compute the affinity matrix W = (Wij), with Wij = α(xi,xj).

2: Compute the Z = (Zij) : Zij = Wij/(DiDj)1/2, where Di =
∑

j Wij .

3: Extract U = [u1, . . . ,uK ], the top K eigenvectors of Z.
4: Renormalize each row of U to have unit norm, obtaining a matrix V.
5: Apply K-means to the row vectors of V in R

K to find K clusters.
6: Accordingly group the original points into K disjoint clusters.

Z = (Zij) : Zij = Wij/(DiDj)
1/2, where Di =

∑

1≤j≤N Wij is the degree of
the ith point in the graph with similarity matrix W. Note that I − Z is the
corresponding normalized Laplacian. Providing the algorithm with the number
of clusters K, SC continues by extracting the top K eigenvectors of Z, obtaining
a matrix U ∈ R

N×K , and after normalizing its rows, uses them to embed the
data into R

K . The algorithm concludes by applying K-means to the embedded
points. See Algorithm 1 for a summary.

Spectral methods utilizing multiway affinities were proposed to better exploit
additional structure present in the data. The spectral curvature clustering (SCC)
algorithm of Chen and Lerman [11, 12] was designed for the case of hybrid linear
modeling where the manifolds are assumed to be affine, a setting that arises in
motion segmentation [35]. Assuming that the subspaces are all of dimension d—
a parameter of the algorithm, SCC starts by computing the (polar) curvature
of all (d + 2)-tuples, creating an N⊗(d+2)-tensor. The tensor is then flattened
into a matrix A whose product with its transpose, W = AA′, is used as an
affinity matrix for the spectral algorithm SC. (In practice, the algorithm is
randomized for computational tractability.) Kernel spectral curvature clustering
(KSCC) [10] is a kernel version of SCC designed for the case of algebraic surfaces.

The SCC algorithm (and therefore KSCC) is not localized in space as it fits
a parametric model that is global in nature. The method we study here may be
seen as a localization of SCC, which is appropriate in our nonparametric setting
since the manifolds resemble affine surfaces locally. This type of approach is
mentioned in publications on affinity tensors [1, 2, 27, 48] and is studied here
for the first time, to our knowledge. As discussed in Section 4, all reasonable
variants have similar theoretical properties, so that we choose one of the simplest
versions to ease the exposition. Concretely, we consider a multiway affinity that
combines pairwise distances between nearest neighbors and the residual from the
best d-dimensional local linear approximation. Formally, given a set ofm ≥ d+2
points, x1, . . . ,xm, define

Λd(x1, . . . ,xm) = min
L∈Ad

max
j=1,...,m

dist(xj , L), (2)
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Fig 1. The circle is of radius ǫ/2 and the band is of half-width η. Assuming we use the simple
kernel, the m-tuple on the left has affinity αd equal to one, while the other two m-tuples have
affinity equal to zero, the first one for having a diameter exceeding ǫ and the second one for
being ‘thicker’ than η.

where dist(x, S) := infs∈S ‖x− s‖ for a subset S ⊂ R
D and Ad denotes the set

of d-dimensional affine subspaces in R
D. In other words, Λd(x1, . . . ,xm) is the

width of the thinnest tube (or band) around a d-dimensional affine subspace that
contains x1, . . . ,xm. (In our implementation, we use the mean-square error; see
Section 3.) Given scale parameters ǫ > η > 0 and a kernel function φ, define the
following affinity: αd(x1, . . . ,xm) = 0 if x1, . . . ,xm are not distinct; otherwise:

αd(x1, . . . ,xm) = φ

(

diam(x1, . . . ,xm)

ǫ

)

· φ
(

Λd(x1, . . . ,xm)

η

)

, (3)

where diam(x1, . . . ,xm) is the diameter of {x1, . . . ,xm}. See Figure 1 for an
illustration.

Given data points x1, . . . ,xN and approximation dimension d, we compute
all m-way affinities, and then obtain pairwise similarities by clique expansion [2]
(note that several other options are possible [12, 27, 48]):

Wij =
∑

i1,...,im−2

αd(xi,xj ,xi1 , . . . ,xim−2
). (4)

Though it is tempting to choose m equal to d + 2, a larger m allows for more
tolerance to weak separation and small sampling rate. The down side is what
appears to be an impractical computational burden, since the mere computation
of W in (4) requires order O(Nm) flops. In Section 1.4, we discuss how to
reduce the computational complexity to O(N1+o(1)) flops, essentially without
compromising performance.

Once the affinity matrix W is computed, the SC algorithm is applied. We call
the resulting procedure higher-order spectral clustering (HOSC), summarized in
Algorithm 2. Note that HOSC is (essentially) equivalent to SC when η ≥ ǫ, and
equivalent to SCC when ǫ = ∞.
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Algorithm 2 Higher Order Spectral Clustering (HOSC)

Input:

x1,x2, . . . ,xN : the data points
d,m: the approximation dimension and affinity order
ǫ, η: the affinity scales
K: the number of clusters

Output:

A partition of the data into K disjoint clusters

Steps:

1: Compute the affinity matrix W = (Wij) according to (4).
2: Apply SC (Algorithm 1).

1.2. Generative model

It is time to introduce our framework. We assume a generative model where the
clusters are the result of sampling points near surfaces embedded in an ambient
Euclidean space, specifically, the D-dimensional unit hypercube (0, 1)D. For a
surface S ⊂ (0, 1)D and τ > 0, define its τ -neighborhood as

B(S, τ) = {x ∈ (0, 1)D : dist(x, S) < τ}.

The reach of S is the supremum over τ > 0 such that, for each x ∈ B(S, τ),
there is a unique point realizing inf{‖x − s‖ : s ∈ S} [20]. It is well-known
that, for C2 submanifolds, the reach bounds the radius of curvature from be-
low [20, Lem. 4.17]. For a connection to computational geometry, the reach
coincides with the condition number introduced in [43] for submanifolds with-
out boundary. Let vold(S) denote the d-dimensional Hausdorff measure, and ∂S
the boundary of S within (0, 1)D. For an integer 1 ≤ d ≤ D − 1 and a constant
κ ≥ 1, let S2

d(κ) be the class of d-dimensional, connected, C2 submanifolds
S ⊂ (0, 1)D of 1/κ ≤ diam(S) ≤ κ and reach(S) ≥ 1/κ, and if S has a bound-
ary, ∂S is a (d − 1)-dimensional C2 submanifold with reach(∂S) ≥ 1/κ. Given
surfaces S1, . . . , SK ∈ S2

d(κ) and τ < 1/κ, we generate clusters X1, . . . ,XK by
sampling Nk points uniformly at random in B(Sk, τ), the τ -neighborhood of Sk

in (0, 1)D, for all k = 1, . . . ,K. We call τ the jitter level. Except for Section 2.3,
where we allow for intersections, we assume that the surfaces are separated by
a distance of at least δ ≥ 0, i.e.

dist(Sk, Sℓ) := inf
x∈Sk

inf
y∈Sℓ

‖x− y‖ ≥ δ, ∀k 6= ℓ. (5)

In that case, by the triangle inequality, the actual clusters are separated by at
least δ − 2τ , i.e.

dist(Xk,Xℓ) ≥ δ − 2τ.

We assume that the clusters are comparable in size by requiring that Nk ≤ ζNℓ

for all k 6= ℓ, for some finite constant ζ. Let x1, . . . ,xN denote the data points
thus generated. See Figure 2 for an illustration.

Given data X := {x1, . . . ,xN}, we aim at recovering the clusters X1, . . . ,XK .
Formally, a clustering algorithm is a function taking data X , and possibly other
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Fig 2. This figure illustrates the generative model. Left: Three surfaces (here curves) with
their τ -neighborhood. The curves are separated by at least δ. Right: Points sampled within
the tubular neighborhoods of the surfaces.

Fig 3. This figure illustrates the generative model with outliers included in the data.

tuning parameters, and outputs a partition of X . We say that it is ‘perfectly
accurate’ if the output partition coincides with the original partition of X into
X1, . . . ,XK. Our main focus is on relating the sample size N and the separation
requirement in (5) (in order for HOSC to cluster correctly), and in particular
we let τ and δ vary with N . This dependency is left implicit. In contrast, we
assume that d,K, ζ are fixed. Also, we assume that d, τ,K are known throughout
the paper (except for Section 2.1 where we consider their estimation). Though
our setting is already quite general, we discuss some important extensions in
Section 4.

We will also consider the situation where outliers may be present in the data.
By outliers we mean points that were not sampled near any of the underlying
surfaces. We consider a simple model where outliers are points sampled uni-
formly in (0, 1)D \ ⋃k B(Sk, δ0) for some δ0 > 0, in general different from δ.
That is, outliers are at least a distance δ0 away from the surfaces. We let N0

denote the number of outliers, while N still denotes the total number of data
points, including outliers. See Figure 3 for an illustration.
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1.3. Performance in terms of separation and robustness

1.3.1. Performance of SC

A number of papers analyze SC under generative models similar to ours [3, 40,
44, 54], and the closely related method of extracting connected components of
the neighborhood graph [3, 9, 36, 37]. The latter necessitates a compactly sup-
ported kernel φ and may be implemented via a union-of-balls estimator for the
support of the density [16]. Under the weaker (essentially Lipschitz) regularity
assumption

C−1 ǫd ≤ vold(B(s, ǫ) ∩ S) ≤ C ǫd, ∀ǫ ∈ (0, 1/C), ∀s ∈ S, (6)

Arias-Castro [3] shows that SC with a compactly supported kernel is accurate
if

δ − 2τ ≫ sep
N
:=

(

logN

N

)1/d

∨ τ1−d/D

(

logN

N

)1/D

. (7)

(a∨b denotes the maximum of a and b and aN ≫ bN if aN/bN → ∞ as N → ∞).
With the heat kernel, the same result holds up to a

√
logN multiplicative factor.

See also [36, 37], which prove a similar result for the method of extracting
connected components under stronger regularity assumptions. At the very least,
(7) is necessary for the union-of-balls approach and for SC with a compactly
supported kernel, because sep

N
is the order of magnitude of the largest distance

between a point and its closest neighbor from the same cluster [45]. Note that
(6) is very natural in the context of clustering as it prevents S from being
too narrow in some places and possibly confused with two or more disconnected
surfaces. And, when C in (6) is large enough and κ is small enough, it is satisfied
by any surface S belonging to S2

d(κ). Indeed, such a surface resembles an affine
subspace locally and (6) is obviously satisfied for an affine surface.

When outliers may be present in the data, as a preprocessing step, we identify
as outliers data points with low connectivity in the graph with affinity matrix
W, and remove these points from the data before proceeding with clustering.
(This is done between Steps 1 and 2 in Algorithm 1.) In the context of spectral
clustering, this is very natural; see, e.g., [3, 12, 37]. Using the pairwise affinity
(1), outliers are properly identified if δ0 − τ satisfies the lower bound in (7) and
if the sampling is dense enough, specifically [3],

Nk ≥ (Nd/D ∨NτD−d) log(N), ∀k = 1, . . . ,K. (8)

When the surfaces are only required to be of Lipschitz regularity as in (6), we
are not aware of any method that can even detect the presence of clusters among
outliers if the sampling is substantially sparser.

1.3.2. Performance of HOSC

Methods using higher-order affinities are obviously more complex than methods
based solely on pairwise affinities. Indeed, HOSC depends on more parame-
ters and is computationally more demanding than SC. One, therefore, wonders
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Fig 4. Left: data. Middle: output from SC. Right: output from HOSC. The sampling is much
sparser than in the original paper of Ng et al. [42], which is why SC fails. This figure is part
of Figure 13 in Section 3, which displays more numerical experiments.

whether this higher level of complexity is justified. We show that HOSC does
improve on SC in terms of clustering performance, both in terms of required
separation between clusters and in terms of robustness to outliers.

Our main contribution in this paper is to establish a separation requirement
for HOSC which is substantially weaker than (7) when the jitter τ is small
enough. Specifically, HOSC operates under the separation

δ − 2τ ≫ (τ ∧ sep
N
) ∨ sep2

N
, (9)

where a ∧ b denotes the minimum of a and b, and sep
N

is the separation re-
quired for SC with a compactly supported kernel, defined in (7). This is proved
in Theorem 1 of Section 2. In particular, in the jitterless case (i.e. τ = 0), the
magnitude of the separation required for HOSC is (roughly) the square of that
for SC at the same sample size; equivalently, at a given separation, HOSC re-
quires (roughly) the square root of the sample size needed by SC to correctly
identify the clusters.

That HOSC requires less separation than SC is also observed numerically. In
Figure 4 we compare the outputs of SC and HOSC on the emblematic example
of concentric circles given in [42] (here with three circles). While the former fails
completely, the latter is perfectly accurate. Indeed, SC requires that the majority
of points in an ǫ-ball around a given data point come from the cluster containing
that point. In contrast, HOSC is able to properly operate in situations where the
separation between clusters is so small, or the sampling rate is so low, that any
such neighborhood is empty of data points except for the one point at the center.
To further illustrate this point, consider the simplest possible setting consisting
of two parallel line segments in dimension D = 2, separated by a distance δ > 0,
specifically, S1 := {(t, 0) : t ∈ [0, 1]} and S2 := {(t, δ) : t ∈ [0, 1]}. Suppose N/2
points are sampled uniformly on each of these line segments. It is well-known
that the typical distance between a point on Sk and its nearest neighbor on Sk

is of order O(1/N); see [45]. Hence, a method computing local statistics requires
neighborhoods of radius at least of order 1/N , for otherwise some neighborhoods
are empty. From (9), HOSC is perfectly accurate when δ = (logN)3/N2, say.
When the separation δ is that small, typical ball of radius of order 1/N around
a data point contains about as many points from S1 as from S2 (thus SC cannot
work). See Figure 5 for an illustration.
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As a bonus, we also show that HOSC is able to resolve intersections in some
(very) special cases, while SC is incapable of that. See Proposition 6 and also
Figure 12.

To make HOSC robust to outliers, we do exactly as described above, iden-
tifying outliers as data points with low connectivity in the graph with affinity
matrix W, this time computed using the multiway affinity (3). The separation
and sampling requirements are substantially weaker than (8), specifically, δ0−τ
is required to satisfy the lower bound in (9) and the sampling

Nk ≫ (Nd/(2D−d) ∨NτD−d) log(N), ∀k = 1, . . . ,K. (10)

This is established in Proposition 5, and again, we are not aware of any method
for detection that is reliable when the sampling is substantially sparser. For
example, when τ = 0 and we are clustering curves (d = 1) in the plane (D = 2)
(with background outliers), the sampling requirement in (8) is roughly Nk ≫
N1/2 log(N), compared to Nk ≫ N1/3 log(N) in (10). In Figure 6 below we
compare both SC and HOSC on outliers detection, using the data in Figure 4
but further corrupted with 33.3% outliers.
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x 10
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Fig 5. Clustering results obtained by SC (left) and HOSC (right) on a data set of two lines
with small separation (δ = 0.005). 100 points are sampled from each line, equally spaced (at
a distance 0.01). Note that the inter-point separation on the same cluster is twice as large as
the separation between clusters. In this case, SC cannot separate the two lines correctly, as
we have argued. In contrast, HOSC performs perfectly when clustering the data, which again
agrees with the theory and our expectation. We have also tried increasing the separation δ
from 0.005 to 0.025, in which case both SC and HOSC perform correctly.
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Fig 6. Left: data with outliers. Middle: outliers (black dots) detected by SC. Right: outliers
(black dots) detected by HOSC. This figure is part of Figure 15 in Section 3, where more
outliers-removal experiments are conducted.
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1.3.3. Other methods

We focus on comparing HOSC and SC to make a strong point that higher-order
methods may be preferred to simple pairwise methods when the underlying
clusters are smooth and the jitter level is small. In fact, we believe that no
method suggested in the literature is able to compete with HOSC in terms of
separation requirements. We quickly argue why.

The algorithm of Kushnir et al. [32] is multiscale in nature and is rather
complex, incorporating local information (density, dimension and principal di-
rections) within a soft spectral clustering approach. In the context of semi-
supervised learning, Goldberg et al. [25] introduce a spectral clustering method
based on a local principal components analysis (PCA) to utilize the unlabeled
points. Both methods rely on local PCA to estimate the local geometry of the
data and they both operate by coarsening the data, eventually applying spec-
tral clustering to a small subset of points acting as representative hubs for other
points in their neighborhoods. They both implicitly require that, for the most
part, the vast majority of data points in each neighborhood where the statistics
are computed come from a single cluster. Souvenir and Pless [49] suggest an al-
gorithm that starts with ISOMAP and then alternates in EM-fashion between
the cluster assignment and the computation of the distances between points and
clusters—this is done in a lower dimensional Euclidean space using an MDS em-
bedding. Though this iterative method appears very challenging to be analyzed,
it relies on pairwise distances computed as a preprocessing step to derive the
geodesic distances, which implicitly assumes that the points in small enough
neighborhoods are from the same manifold. Thus, like the SC algorithm, all
these methods effectively rely on neighborhoods where only one cluster dom-
inates. This is strong evidence that their separation requirements are at best
similar to that of SC. The methods of Haro et al. [30] and Gionis et al. [24]
are solely based on the local dimension and density, and are powerless when
the underlying manifolds are of same dimension and sampled more or less uni-
formly, which is the focus of this paper. The method of Guo et al. [29] relies on
minimizing an energy that, just as HOSC, incorporates the diameter and local
curvature of m-tuples, with m = 3 for curves and m = 4 for surfaces in 3D,
and the minimization is combinatorial over the cluster assignment. In principle,
this method could be analyzed with the arguments we deploy here. That said,
it seems computationally intractable.

1.4. Computational considerations

Thus it appears that HOSC is superior to SC and other methods in terms of
separation between clusters and robustness to outliers, when the clusters are
smooth and the jitter is small. But is HOSC even computationally tractable?

Assume K and D are fixed. The algorithm starts with building the neigh-
borhood graph (i.e., computing the matrix W). This may be done by brute
force in O(mNm) flops. Clearly, this first step is prohibitive, in particular since
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we recommend using a (moderately) large m. However, we may restrict com-
putations to points within distance ǫ, which essentially corresponds to using a
compactly supported kernel φ. Hence, we could apply a range search algorithm
to reduce computations. Alternatively, at each point we may restrict computa-
tions to its ℓ = ωN log(N) nearest neighbors, with ωN → ∞, or in a slightly
different fashion, adapt the local scaling method proposed in [56] by replac-
ing ǫ in αd(xi1 , . . . ,xim) by (ǫi1 · · · ǫim)1/m, where ǫi denotes the distance be-
tween xi and its ℓth nearest neighbor. The reason is that the central condition
(12) effectively requires that the degree at each point be of order log(N)m−1

(roughly), which is guaranteed if the ℓ-nearest neighbors are included in the
computations; see [3, 36] for rigorous arguments leading to that conclusion.
In low dimensions, D = O(log logN), a range search and ℓ-nearest-neighbor
search may be computed effectively with kd-trees in O(Npoly(logN)) flops. In
higher dimensions, it is essential to use methods that adapt to the intrinsic
dimensionality of the data. Assuming that d is small, the method suggested
in [8] has a similar computational complexity. Hence, the (approximate) affinity
matrix W can be computed in order O(Npoly(logN)) + O(N · ℓm); assuming
m ≤ log(N)/(ωN log log(N)), this is of order O(N1+1/ωN ). This is within the
possible choices for m in Theorem 1.

Assume we use the ℓ-nearest-neighbor approximation to the neighborhood
graph, with ℓ = ωN log(N). Then computing Z may be done in O(N1+1/ωN )
flops, since the affinity matrix W has at most ℓm = O(N1/ωN ) non-zero coeffi-
cients per row. Then extracting the leading K eigenvectors of Z may be done in
O(KN1+1/ωN ) flops, using Lanczos-type algorithms [15]. Thus we may run the
ℓ-nearest neighbor version of HOSC in O(N1+1/ωN ) flops, and it may be shown
to perform comparably.

We actually implemented the ℓ-nearest-neighbor variant of HOSC and tried it
on a number of simulated datasets and a real dataset from motion segmentation.
The results are presented in Section 3. The code is publicly available online [13].

1.5. Content

The rest of the paper is organized as follows. The main theoretical results are
in Section 2 where we provide theoretical guarantees for HOSC, including in
contexts where outliers are present or the underlying clusters intersect. We em-
phasize that HOSC is only able to separate intersecting clusters under very
stringent assumptions. In the same section we also address the issue of estimat-
ing the parameters that need to be provided to HOSC. In theory at least, they
may be chosen automatically. In Section 3 we implemented our own version of
HOSC and report on some numerical experiments involving both simulated and
real data. Section 4 discusses a number of important extensions, such as when
the surfaces self-intersect or have boundaries, which are excluded from the main
discussion for simplicity. We also discuss the case of manifolds of different in-
trinsic dimensions, suggesting an approach that runs HOSC multiple times with
different d. And we describe a kernel version of HOSC that could take advantage



1548 E. Arias-Castro et al.

of higher degrees of smoothness. Other extensions are also mentioned, including
the use of different kernels. The proofs are postponed to the Appendix.

2. Theoretical guarantees

Our main result provides conditions under which HOSC is perfectly accurate
with probability tending to one in the framework introduced in Section 1.2.
Throughout the paper, we state and prove our results when the surfaces have
no boundary and for the simple kernel φ(s) = 1{|s|<1}, for convenience and ease
of exposition. We discuss the case of surfaces with boundaries in Section 4.2 and
the use of other kernels in Section 4.5.

Theorem 1. Consider the generative model of Section 1.2. For ρN → ∞ slowly
(e.g., ρN = log logN), assume the parameters of HOSC satisfy

logN ≥ m ≥ logN√
log ρN

, (11)

ǫ ≥
(

ρ2
N

logN

N

)1/d

∨ τ1−d/D

(

ρ2
N

logN

N

)1/D

. (12)

and

η ≥ ǫ ∧ (τ + ρNǫ
2) (13)

Assume that (5) holds with

δ − 2τ > ǫ ∧ ρNη. (14)

Under these conditions, when N is large enough, HOSC is perfectly accurate
with probability at least 1−N−ρN .

To relate this to the separation requirement stated in the Introduction, the
condition (9) is obtained from (14) by choosing ǫ and η equal to their respective
lower bounds in (12) and (13).

We further comment on the theorem. First, the result holds if ρN = ρ and ρ
is sufficiently large. We state and prove the result when ρN → ∞ as a matter
of convenience. Also, by (11) and (14), the weakest separation requirement is
achieved when m is at least of order slightly less than O(logN) so that ρN
is of order O(1). However, as discussed in Section 1.4, the algorithm is not
computationally tractable unless m = o(logN). This is another reason why we
focus on the case where ρN → ∞. Regarding the constraints (12)-(13) on ǫ and
η, they are there to guarantee that, with probability tending to one, each cluster
is ‘strongly’ connected in the neighborhood graph. Note that the bound on ǫ is
essentially the same as that required by the pairwise spectral method SC [3, 36].
In turn, once each cluster is ‘strongly’ connected in the graph, clusters are
assumed to be separated enough that they are ‘weakly’ connected in the graph.
The lower bound (14) quantifies the required separation for that to happen.
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Fig 7. Clustering results obtained by SC (left) and HOSC (right) on the data set of Figure 5,
but with separation δ = 0.025 and jitter τ = 0.01. In this example, neither SC nor HOSC can
successfully separate the two lines. This example supports our claim that when the jitter is
large enough (relative to separation), HOSC does not improve over SC and the two algorithms
will output the same clustering.

Note that it is specific to the simple kernel. For example, the heat kernel would
require a multiplicative factor proportional to

√
logN .

So how does HOSC compare with SC? When the jitter is large enough that
τ ≫ (log(N)/N)1/d, we have η ≥ ǫ and the local linear approximation contribu-
tion to (3) does not come into play. In that case, the two algorithms will output
the same clustering (see Figure 7 for an example).

When the jitter is small enough that τ ≪ (log(N)/N)1/d, HOSC requires less
separation, as demonstrated in Figure 5. Intuitively, in this regime the clusters
are sampled densely enough relative to the thickness τ that the smoothness of
the underlying surfaces comes into focus and each cluster, as a point cloud,
becomes locally well-approximated by a thin band. We provide some numerical
experiments in Section 3 showing HOSC outperforming SC in various settings.

Thus, HOSC improves on SC only when the jitter is small. This condition
is quite severe, though again, we do not know of any other method that can
accurately cluster under the weak separation requirement displayed here, even
in the jitterless case. It is possible that some form of scan statistic (i.e., matched
filters) may be able to operate under the same separation requirement without
needing the jitter to be small, however, we do not know how to compute it in
our nonparametric setting—even in the case of hybrid linear modeling where the
surfaces are affine, computing the scan statistic appears to be computationally
intractable. At any rate, the separation required by HOSC is essentially optimal
when τ is of order O(N−1/d) or smaller. A quick argument for the case d = 1
and D = 2 goes as follows. Consider a line segment of length one and sample N
points uniformly at random in its τ -neighborhood, with τ = O(1/N). The claim
is that this neighborhood contains an empty band of thickness of order slightly
less than O(1/N2), and therefore cannot be distinguished from two parallel line
segments. Indeed, such band of half-width λ inside that neighborhood is empty
of sample points with probability (1−λ/τ)N , which converges to 1 if Nλ/τ → 0,
and when τ = O(1/N), this is the case if λ = o(1/N2).
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In regards to the choice of parameters, the recommended choices depend
solely on (d, τ,K). These model characteristics are sometimes unavailable and
we discuss their estimation in Section 2.1. Afterwards, we discuss issues such as
outliers (Section 2.2) and intersection (Section 2.3).

2.1. Parameter estimation

In this section, we propose some methods to estimate the intrinsic dimension d
of the data, the jitter τ and the number of clusters K. Though we show that
these methods are consistent in our setting, further numerical experiments are
needed to determine their potential in practice.

Compared to SC, HOSC requires the specification of three additional pa-
rameters. This is no small issue in practice. In theory, however, we recommend
choosing d and K consistent with their true values, ǫ and η as functions of τ , and
m of order slightly less than log(N). The true unknowns are therefore (d, τ,K).
We provide estimators for d and K that are consistent, and an estimator for
τ that is accurate enough for our purposes. Specifically, we estimate d and τ
using the correlation dimension [28] and an adaptation of our own design. The
number of clusters K is estimated via the eigengap of the matrix Z.

2.1.1. The intrinsic dimension and the jitter level

A number of methods have been proposed to estimate the intrinsic dimensional-
ity; we refer the reader to [33] and references therein. The correlation dimension,
first introduced in [28], is perhaps the most relevant in our context, since surfaces
may be close together. Define the pairwise correlation function

Cor(ǫ) =
∑

i

∑

j 6=i

1{‖xi−xj‖≤ǫ}.

The authors of [28] recommend plotting logCor(ǫ) versus log ǫ and estimating
the slope of the linear part. We use a slightly different estimator that allows us
to estimate τ too, if it is not too small. The idea is to regress logCor(ǫ) on log ǫ
and identify a kink in the curve. See Figure 8 for an illustration.

Though several (mostly ad hoc) methods have been proposed for finding
kinks, we describe a simple method for which we can prove consistency. Fix
ρN → ∞, with ρN ≪ logN . Define

rN = −
[

log log(N)− logN

d log ρN

]

− 2.

Let Ar = logCor(ρ−r
N

). If there is r ∈ {3, . . . , rN − 2D − 1} such that

(Ar −Ar+1)/ log ρN > D − 1/2,

then let r̂ ≥ 0 be the smallest such r; otherwise, let r̂ = rN−2D. Define τ̂ = ρ−r̂
N

;

and also d̂ = D, if r̂ = 3, and d̂ the closest integer to (A3 − Ar̂)/(r̂ log ρN),
otherwise.
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Fig 8. A correlation curve for a simulated data set of 240 points sampled from the τ -
neighborhood of three disjoint one-dimensional curves (d = 1) in dimension ten (D = 10)
crossing all dimensions. The jitter is τ = 0.01. We see that the linear part of the curve has
slope (near) 1, which coincides with the intrinsic dimension of the curves. The kink appears
near τ̂ := exp(−4.5) = 0.0111, a close approximation to τ .

Proposition 1. Consider the generative model described in Section 1.2 with
S1, . . . , SK ∈ S2

d(κ). Assume that τ ≤ ρ−3
N

and, if there are N0 outliers, assume
that N − N0 ≥ N/ρN. Then the following holds with probability at least 1 −
N−√

ρN : if r̂ < rN − 2D, then τ ∈ [τ̂ /ρN , ρN τ̂ ]; if r̂ = rN − 2D, then τ ≤ τ̂ ;

moreover, if r̂ > 3, d̂ = d.

In the context of Proposition 1, the only time that d̂ is inconsistent is when
τ is of order ρ−3

N
or larger, in which case d̂ = D; this makes sense, since the

region
⋃

k B(Sk, τ) is in fact D-dimensional if τ is of order 1. Also, τ̂ is within
a ρN factor of τ if τ is not much smaller than (log(N)/N)1/d.

We now extend this method to deal with a smaller τ . Consider what we just
did. The quantity Cor(ǫ) is the total degree of the ǫ-neighborhood graph built
in SC. Fixing (d,m), we now consider the total degree of the η-neighborhood
graph built in HOSC. Define the multiway correlation function

Cord,m(ǫ, η) =
∑

i

D
1/(m−1)
i .

Similarly, we shall regress logCord,m(ǫ, η) on log η and identify a kink in the
curve (Figure 9 displays such a curve).

Using the multiway correlation function, we then propose an estimator τ̂ as
follows. We assume that the method of Proposition 1 returned r̂ = rN − 2D, for
otherwise we know that τ̂ is accurate. Choose d = d̂ and m ≥ log(N)(log ρN)

2.
Note that this is the only time we require m to be larger than logN . Let Bs =
logCord,m(ρ−r̂

N
, ρ−r̂−s

N
). If there is s ∈ {0, . . . , r̂ − 1} such that

(Bs −Bs+1)/ log ρN > D − d− 1/2,

then let ŝ be the smallest one; otherwise, let ŝ = r̂. We then redefine τ̂ as
τ̂ = ρ−r̂−ŝ+1

N
.
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Fig 9. Correlation curves corresponding to SC (left) and HOSC (right) for the data set
of Figure 8, but with a much smaller τ = 1e − 4. We see that the pairwise correlation
function works poorly in this case, while the multiway correlation curve has a kink near
τ̂ := exp(−10.5) = 2.754e− 5, within a factor of 1

4
of the true τ .

Proposition 2. In the context of Proposition 1, assume that r̂ = rN − 2D.
Then redefining τ̂ as done above, the following holds with probability at least
1−N−√

ρN : if ŝ < r̂, then τ ∈ [τ̂ /ρN , ρN τ̂ ]; if ŝ = r̂, then τ ≤ τ̂ .

Now, τ̂ comes close to τ if τ is not much smaller than (log(N)/N)2/d. Whether
this is the case, or not, the statement of Theorem 1 applies with τ̂ in place of τ
in (13).

Though our method works in theory, it is definitely asymptotic. In practice,
we recommend using other approaches for determining the location of the kink
and the slope of the linear part of the pairwise correlation function (in log-
log scale). Robust regression methods with high break-down points, like least
median of squares and least trimmed squares, worked well in several examples.
We do not provide details here, as this is fairly standard, but the figures are
quite evocative.

2.1.2. The number of clusters

HOSC depends on choosing the number of clusters K appropriately. A common
approach consists in choosing K by inspecting the eigenvalues of Z. We show
that, properly tuned, this method is consistent within our model.

Proposition 3. Compute the matrix Z in HOSC with the same choice of pa-
rameters as in Theorem 1, except that knowledge of K is not needed. Set the
number of clusters equal to the number of eigenvalues of Z (counting multiplic-
ity) exceeding 1−N−2/ρN . Then with probability at least 1−N−ρN , this method
chooses the correct number of clusters.

We implicitly assumed that d and τ are known, or have been estimated as
described in the previous section. The proof of Proposition 3 is parallel to that
of [3, Prop. 4], this time using the estimate provided in part (A1) of the proof
of Theorem 1. Details are omitted.
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Fig 10. The top six eigenvalues of the weight matrix Z obtained by HOSC in Step 2 for
the same data used in Figure 8. Though in this example the clusters are well-separated, the
eigengap is still very small (about 0.005).

Figure 10 illustrates a situation where the number of clusters is correctly cho-
sen by inspection of the eigenvalues, more specifically, by counting the number
of eigenvalue 1 in the spectrum of Z (up to numerical error). This success is due
to the fact that the clusters are well-separated, and even then, the eigengap is
quite small.

We apply this strategy to more data later in Section 3, and show that it can
correctly identify the parameter K in some cases (see Figure 14). In general
we do not expect this method to work well when the data has large noise or
intersecting clusters, though we do not know of any other method that works
in theory under our very weak separation requirements.

2.2. When outliers are present

So far we have only considered the case where the data is devoid of outliers.
We now assume that some outliers may be included in the data as described at
the end of Section 1.2. As stated there, we label as outlier any data point with
low degree in the neighborhood graph, as suggested in [3, 12, 37]. Specifically,
we compute D as in Step 2 of HOSC, and then label as outliers points xi with
degree Di below some threshold. Let ρN → ∞ slower than any power of N , e.g.,
ρN = logN . We propose two thresholds:

(O1) Identify as outliers points with degree:

D
1/(m−1)
i ≤ ρ−1

N
max

j
D

1/(m−1)
j .

(O2) Identify as outliers points with degree:

D
1/(m−1)
i ≤ ρNNǫdηD−d.

Taking up the task of identifying outliers, only the separation between outliers
and non-outliers is relevant, so that we do not require any separation between
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the actual clusters. We first analyze the performance of (O1), which requires
about the same separation between outliers and non-outliers as HOSC requires
between points from different clusters in (14).

Proposition 4. Consider the generative model described in Section 1.2. Assume
that N − N0 ≥ N/ρN and that (11)-(13) hold. In terms of separation, assume
that δ0 − τ > ǫ ∧ ρNη. Then with probability at least 1 − N−ρN , the procedure
(O1) identifies outliers without error.

We now analyze the performance of (O2), which requires a stronger separa-
tion between outliers and non-outliers, but operates under very weak sampling
requirements.

Proposition 5. Assume that m is as in (11), and

ǫ = (ρN log(N)/N)1/(2D−d), η = (ρN log(N)/N)2/(2D−d). (15)

In terms of separation, assume that δ0 − τ > ǫ. In addition, suppose that

Nk ≥ ρN log(N)Nd/(2D−d) ∨NτD−d, ∀k = 1, . . . ,K. (16)

Then with probability at least 1 − N−ρN , the procedure (O2) identifies outliers
without error.

If δ0 = τ , so that outliers are sampled everywhere but within the τ -tubular re-
gions of the underlying surfaces, then both (O1) and (O2) may miss some outliers
within a short distance from some B(Sk, τ). Specifically, (O1) (resp. (O2)) may
miss outliers within ǫ ∧ ρNη (resp. within ǫ) from some B(Sk, τ). Using Weyl’s
tube formula [55], we see that there are order N0(ǫ ∧ ρNη)

D−d (resp. N0ǫ
D−d)

such outliers, a small fraction of all outliers.
The sampling requirement (16) is weaker than the corresponding requirement

for pairwise methods displayed in (8). In fact, (16) is only slightly stronger than
what is required to just detect the presence of a cluster hidden in noise. We
briefly explain this point. Instead of clustering, consider the task of detecting
the presence of a cluster hidden among a large number of outliers. Formally,
we observe the data x1, . . . ,xN , and want to decide between the following two
hypotheses: under the null, the points are independent, uniformly distributed in
the unit hypercube (0, 1)D; under the alternative, there is a surface S1 ∈ S2

d(κ)
such that N1 points are sampled from B(S1, τ) as described in Section 1.2, while
the rest of the points, N − N1 of them, are sampled from the unit hypercube
(0, 1)D, again uniformly. Assuming that the parameters d and τ are known, it
is shown in [4, 5] that the scan statistic is able to separate the null from the
alternative if

N1 ≫ Nd/(2D−d) ∨NτD−d. (17)

We are not aware of a method that is able to solve this detection task at a
substantially lower sampling rate, and (16) comes within a logarithmic factor
from (17). We thus obtain the remarkable result that accurate clustering is
possible within a log factor of the best (known) sampling rate that allows for
accurate detection in the same setting.
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2.3. When clusters intersect

We now consider the setting where the underlying surfaces may intersect. The
additional conditions we introduce are implicit constraints on the dimension of,
and the incidence angle at, the intersections. We suppose there is an integer
0 ≤ dint ≤ d− 1 and a finite constant C > 0 such that

vold(B(Sk ∩ Sℓ, ǫ) ∩ Sk) ≤ Cǫd−dint , ∀ǫ ∈ (0, 1/κ), ∀k 6= ℓ. (18)

(The subscript int stands for ‘intersection’.) In addition, we assume that for
some θint ∈ (0, π/2],

dist(x, Sℓ) ≥ δ ∧ sin(θint) dist(x, Sk ∩ Sℓ), ∀x ∈ Sk, ∀k 6= ℓ with Sk ∩ Sℓ 6= ∅.
(19)

(18) is slightly stronger than requiring that Sk ∩ Sℓ has finite dint-dimensional
volume. If the surfaces are affine, it is equivalent to the condition dim(Sk∩Sℓ) ≤
dint, ∀k 6= ℓ. (19), on the other hand, is a statement about the minimum an-
gle at which any two surfaces intersect. For example, if the surfaces are affine
within distance δ of their intersection, then (19) is equivalent to their maxi-
mum (principal) angle being bounded from below by θint. See Figure 11 for an
illustration.

Proposition 6. Consider the setting of Theorem 1, with (5) replaced by (19).
In addition, assume that (18) holds. Define

γN := N2ǫd(ǫ ∧ ρNη)
d−dint(sin θint)

dint−d.

Then there is a constant C > 0 such that, with probability at least 1 − C γN ,
HOSC is perfectly accurate.

Fig 11. Illustration of intersecting surfaces. Though the human eye easily distinguishes the
two clusters, the clustering task is a lot harder for machine learning algorithms. The main
issue is that there are too many data points at the intersection of the two tubular regions.
However, in very special cases HOSC is able to separate intersecting clusters (see Figure 12
for such an example).
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Fig 12. Left: data. Middle: output from HOSC. Right: Output from SC. This example shows
that HOSC is able to separate intersecting curvilinear clusters when the incidence angle is
perpendicular and there is no jitter (τ = 0). In particular, the conditions of Proposition 6
are satisfied. On the contrary, SC fails in this case.

The most favorable case is when τ = 0 and θint = π/2. Then with our choice
of ǫ and η in Theorem 1, assuming ρN increases slowly, e.g., ρN ≺ logN , we
have γN → 0 if 2dint < d, and partial results suggest this cannot be improved
substantially. This constraint on the intersection of two surfaces is rather severe.
Indeed, a typical intersection between two (smooth) surfaces of same dimension
d is of dimension d − 1, and if so, only curves satisfy this condition. Figure 12
provides a numerical example showing the algorithm successfully separating
two intersecting one-dimensional clusters. Thus, even with no jitter and the
surfaces intersecting at right angle, HOSC is only able to separate intersecting
clusters under exceptional circumstances. Moreover, even when the conditions
of Proposition 6 are fulfilled, the probability of success is no longer exponentially
small, but is at best of order (1/N)1−2dint/d. That said, SC does not seem able
to properly deal with intersections at all (see also Figure 12). It essentially
corresponds to taking η = ǫ in HOSC, in which case γN never tends to zero.

Though the implications of Proposition 6 are rather limited, we do not know
of any other clustering method which provably separates intersecting clusters
under a similar generative model. This is a first small step towards finding such
a method.

3. Software and numerical experiments

We include in this section a few experiments where a preliminary implemen-
tation of HOSC outperforms SC, to demonstrate that higher-order affinities
can bring a significant improvement over pairwise affinities in the context of
manifold clustering.

In our implementation of HOSC, we used the heat kernel φ(s) = exp(−s2).
Following the discussion in Section 1.4, at each point we restrict the compu-
tations to its ℓ nearest neighbors so that we practically remove the locality
parameter ǫ from the affinity function of (3) and obtain

αd(x1, . . . ,xm) =

{

φ (Λd(x1, . . . ,xm)/η) , if x2, . . . ,xm ∈ ℓ-NN(x1) distinct;

0, otherwise,

(20)
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where ℓ-NN(x1) is the set of the ℓ nearest neighbors of x1. For computational
ease, we used

Λ
(2)
d (x1, . . . ,xm) = min

L∈Ad

√

√

√

√

1

m

m
∑

j=1

dist(xj , L)2, (21)

which can be easily computed using the bottom m − d singular values of the

m points. Note that, since Λd/
√
m ≤ Λ

(2)
d ≤ Λd, the results we obtained apply,

with η changed by a
√
m factor, at most. (In the paper, the standard choice for

η is a power of N , while m is of order at most logN , so this factor is indeed
negligible.) In practice, we always search a subinterval of [0, 1] for the best
working η (e.g., [.001, .1]), based on the smallest variance of the corresponding
clusters in the eigenspace (the row space of the matrix V), as suggested in [42].
When the given data contains outliers, the optimal choice of η is based on the
largest gap between the means of the two sets of degrees (associated to the
inliers and outliers), normalized by the maximum degree. The code is available
online [13].

3.1. Synthetic data

We first generate five synthetic data sets in the unit cube (0, 1)D (D = 2 or 3),
shown in Figure 13. In this experiment, the actual number of clusters (i.e. K)
and dimension of the underlying manifolds (i.e. d) are assumed known to all
algorithms. For HOSC, we fix ℓ = 10,m = d + 2, and use the subinterval
[0.001, 0.1] as the search interval of η. For SC, we considered two ways of tuning
the scale parameter ǫ: directly, by choosing a value in the interval [0.001, 0.25]
(SC-NJW); and by the local scaling method of [56] (SC-LS), with the number
of nearest neighbors ℓ = 5, . . . , 15. The final choices of these parameters were
also based on the same criterion as used by HOSC.

Figure 13 exhibits the clusters found by each algorithm when applied to
the five data sets, respectively. Observe that HOSC succeeded in a number
of difficult situations for SC, e.g., when the sampling is sparse, or when the
separation is small at some locations.

We also plot the leading eigenvalues of the matrix Z obtained by HOSC on
each data set; see Figure 14. We see that in data sets 1, 2, 5, the number of
eigenvalue 1 coincides with the true number of clusters, while in 3 and 4 there
is some discrepancy between the Kth eigenvalue and the number 1. Though we
do not expect the eigengap method to work well in general, Figure 14 shows
that it can be useful in some cases.

Figure 15 displays some experiments including outliers. We simply sampled
points from the unit square (0, 1)2 uniformly at random and added them as out-
liers to the first three data sets in Figure 13, with percentages 33.3%, 60% and
60%, respectively. We applied SC and HOSC assuming knowledge of the propor-
tion of outliers, and labeled points with smallest degrees as outliers. Choosing
the threshold automatically remains a challenge; in particular, we did not test
the theory.
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Fig 13. Left column: data. (The third example shows a sphere containing an ellipsoid inside.)
Middle column: best output from SC with the scale parameter chosen by both searching the
interval [0.001, 0.25] and applying local scaling [56] with at most 15 nearest neighbors. Right
column: output from HOSC. The optimal value of η is selected from the interval [0.001, 0.1].
We also tried the simple kernel instead of the heat kernel, and obtained same results except
in data set 3.

We observe that HOSC could successfully remove most of the true outliers,
leaving out smooth structures in the data; in contrast, SC tended to keep isolated
high-density regions, being insensitive to sparse smooth structures. A hundred
replications of this experiment (i.e., fixing the clusters and adding randomly gen-
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Fig 14. Top eigenvalues of the matrix Z obtained by HOSC on each of the five data sets in
Figure 13 (in same order).
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Fig 15. Outlier-removal experiments. Left column: data with outliers. The percentages of out-
liers are 33.3%, 60% and 60%, respectively. Middle: outliers (black dots) detected by pairwise
spectral clustering (both SC-NJW and SC-LS, but only the better result is shown). Right:
outliers (black dots) detected by HOSC. The use of the simple kernel (instead of the heat
kernel) in HOSC gives very similar results.
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erated outliers) show that the True Positive Rates (i.e., percentages of correctly
identified outliers) for (SC, HOSC) are (58.1% vs 67.7%), (75.4% vs 86.8%) and
(76.8% vs 88.0%), respectively.

3.2. Real data

We next compare SC and HOSC using the two-view motion data studied in
[10, 46]. This data set contains 13 motion sequences: (1) boxes, (2) carsnbus3, (3)
deliveryvan, (4) desk, (5) lightbulb, (6) manycars, (7) man-in-office, (8) nrbooks3,
(9) office, (10) parking-lot, (11) posters-checkerboard, (12) posters-keyboard, and
(13) toys-on-table; and each sequence consists of two image frames of a 3-D
dynamic scene taken by a perspective camera (see Figure 16 for a few such
sequences). Suppose that several feature points have been extracted from the
moving objects in the two camera views of the scene. The task is to separate the
trajectories of the feature points according to different motions. This applica-
tion, which lies in the field of structure from motion, is one of the fundamental
problems in computer vision.

Given a physical point x ∈ R
3 and its image correspondences in the two

views (x1, y1)
′, (x2, y2)

′ ∈ R
2, one can always form a joint image sample y =

(x1, y1, x2, y2, 1)
′ ∈ R

5. It is shown in [46] that, under perspective camera pro-
jection, all the joint image samples y corresponding to different motions live on
different manifolds in R

5, some having dimension 2 and others having dimen-
sion 4. Exploratory analysis applied to these data suggests that the manifolds in
this dataset mostly have dimension 2 (see Figure 17). Therefore, we will apply
our algorithm (HOSC) with d = 2 to these data sets in order to compare with
pairwise spectral clustering (SC-NJW, SC-LS).

Fig 16. Three exemplary two-view motion sequences (arranged in columns): (4) desk, (6)
manycars and (7) man-in-office. The true clusters are displayed in different colors and mark-
ers (the black dots are outliers).
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Fig 17. The true clusters of the three sequences in Figure 16 (in same order), shown in top
three principal dimensions. (The outliers have been removed from the data and thus are not
displayed). These plots clearly indicate that the underlying manifolds are two dimensional.

We use the following parameter values for the two algorithms. In HOSC, we
choose ℓ = 20,m = d+ 2, η ∈ [.0001, .1], while in SC we try both searching the
interval [.001, .5] (SC-NJW) and local scaling with at most 24 nearest neighbors
(SC-LS).

The original data contains some outliers. In fact, 10 sequences out of the
13 are corrupted with outliers, with the largest percentage being about 32%.
We first manually remove the outliers from those sequences and solely focus on
the clustering aspects of the two algorithms. Next, we add outliers back and
compare them regarding outliers removal. (Note that we need to provide both
algorithms with the true percentage of outliers in each sequence.) By doing so
we hope to evaluate the clustering and outliers removal aspects of an algorithm
separately and thus in the most accurate way.

Table 1 presents the results from the experiments above. Observe that HOSC
achieved excellent clustering results in all but two sequences, with zero error on

Table 1

The misclassification rates and the numbers of true outliers detected by HOSC, SC-NJW
and SC-LS. In the clustering experiment, the outliers-free data is used; then the outliers are
added back so that each of these algorithms can be applied to detect them. For SC-NJW, the

tuning parameter is selected from the interval [.001, .5]; for SC-LS, a maximum of 24
nearest neighbors are used; for HOSC, 20 nearest neighbors are used and the flatness

parameter η is selected from the interval [.0001, .1]

Data Clustering Errors # True Outliers Detected
seq. #samples #out. SC-NJW SC-LS HOSC SC-NJW SC-LS HOSC

1 115,121 2 0.85% 0.85% 0.85% 1 1 1
2 85,45,89 28 0% 0% 0% 24 24 24
3 62,192 0 30.3% 23.6% 30.3% N/A N/A N/A
4 50,50,55 45 0.65% 2.58% 1.29% 35 30 37
5 51,121,33 0 0% 0% 0% N/A N/A N/A
6 54,24,23,43 0 18.8% 0% 0% N/A N/A N/A
7 16,57 34 19.2% 19.2% 0% 17 12 26
8 129,168,91 32 22.9% 17.8% 22.9% 12 17 23
9 76,109,74 48 0% 0% 0% 36 28 36
10 19,117 4 0% 47.8% 0% 0 0 1
11 100,99,81 99 0% 1.79% 0% 42 39 73
12 99,99,99 99 0.34% 0.34% 0% 80 43 91
13 49,42 35 33.0% 15.4% 2.20% 7 6 21
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Fig 18. Clustering results of both HOSC and SC (left to right) on sequence (7). (The truth
is shown in Figure 17, rightmost plot). In this example, HOSC correctly found the two clus-
ters, using geometric information; in contrast, SC failed because it solely relies on pairwise
distances.

eight sequences, one mistake on sequence (13), and two mistakes on each of
(1) and (4). We remark that HOSC also outperformed the algorithms in [10,
Table 1], in terms of clustering accuracy, but due to the main aim of this paper,
we do not include those results in Table 1. In contrast, each of SC-NJW and
SC-LS failed on at least five sequences (with over 15% misclassification rates),
both containing the two bad sequences for HOSC. As a specific example, we
display in Figure 18 the clusters obtained by both HOSC and SC on sequence
(7), demonstrating again that higher order affinities can significantly improve
over pairwise affinities in the case of manifold data. Regarding outliers removal,
HOSC is also consistently better than SC-NJW and SC-LS (if not equally good).

4. Extensions

4.1. When the underlying surfaces self-intersect

In our generative model described in Section 1.2 we assume that the surfaces
are submanifolds, implying that they do not self-intersect. This is really for
convenience as there is essentially no additional difficulty arising from self-
intersections. If we allow the surfaces to self-intersect, then we bound the maxi-
mum curvature (from above) and not the reach. We could, for example, consider
surfaces of the form S = f(Bd(0, 1)), where f : Bd(0, 1) → (0, 1)D is locally bi-
Lipschitz and has bounded second derivative. A similar model is considered
in [38] in the context of set estimation. Clearly, proving that each cluster is
connected in the neighborhood graph in this case is the same. The only issue
is in situations where a surface comes within distance ǫ from another surface
at a location where the latter intersects itself. The geometry involved in such a
situation is indeed complex. If we postulate that no such situation arises, then
our results generalize immediately to this setting.
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Fig 19. An example of a surface with a boundary coming close to another surface. This is a
potentially problematic situation for HOSC as the points near the boundary of one surface and
close to the other surface may be strongly connected to points from both clusters. Numerically,
we show in Figure 13 such an example where HOSC is successful.

4.2. When the underlying surfaces have boundaries

When the surfaces have boundaries, points near the boundary of a surface may
be substantially connected with points on a nearby surface. See Figure 19 for
an illustration. This is symptomatic of the fact that the algorithm is not able
to resolve intersections in general, as discussed in Section 2.3, with the notable
exception of clusters of dimension d = 1, as illustrated in the ‘two moons’
example of Figure 13.

If we require a stronger separation between the boundary of a surface and
the other surfaces, specifically,

dist(∂Sk, Sℓ) ≥ δ‡, ∀k 6= ℓ, (22)

with δ‡ − 2τ > ǫ, no point near the boundary of a cluster is close to a point
from a different cluster. (A corresponding requirement in the context of outliers
would be that outliers be separated from the boundary of a cluster by at least
δ0,‡, with δ0,‡ − τ > ǫ.)

4.3. When the data is of mixed dimensions

In a number of situations, the surfaces may be of different intrinsic dimensions.
An important instance of that is the study of the distribution of galaxies in
space, where the galaxies are seen to cluster along filaments (d = 1) and walls
(d = 2) [39]. We propose a top-down approach, implementing HOSC for each
dimension d starting at D − 1 and ending at 1 (or between any known upper
and lower bounds for d).

At each step, the algorithm is run on each cluster obtained from the pre-
vious step, including the set of points identified as outliers. Indeed, when the
dimension parameter of the algorithm is set larger than the dimension of the
underlying surfaces, HOSC may not be able to properly separate clusters. For
example, two parallel segments satisfying the separation requirement of Theo-
rem 1 still belong to a same plane and HOSC with dimension parameter d = 2
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would not be able to separate the two line segments. Another reason for process-
ing the outlier bin is the greater disparity in the degrees of the data points in
the neighborhood graph often observed with clusters of different dimensions. At
each step, the number of clusters is determined automatically according to the
procedure described in Section 2.1, for such information is usually not available.
The parameters ǫ and η are chosen according to (15). Partial results suggest that,
under some additional sampling conditions, this top-down procedure is accurate
under weaker separation requirements than required by pairwise methods, which
handle the case of mixed dimensions seamlessly [3]. The key is that an actual
cluster Xk, as defined in Section 1.2, is never cut into pieces. Indeed, properties
(A1) and (A4) in the proof of Theorem 1, which guarantee the connectivity and
regularity (in terms of comparable degrees) of the subgraph represented by Xk,
are easily seen to also be valid when the dimension parameter of the algorithm
is set larger than d. (This observation might explain the success of the SCC
algorithm of [12] in some mixed settings when using an upper bound on the
intrinsic dimensions.)

4.4. Clustering based on local polynomial approximations

For 1 ≤ d ≤ D − 1 and an integer r ≥ 3, let Sr
d(κ) be the subclass of S2

d(κ)
of d-dimensional submanifolds S such that, for every x ∈ S with tangent Tx,
the orthogonal projection S ∩ B(x, 1/κ) → Tx is a Cr-diffeomorphism with all
partial derivatives of order up to r bounded in supnorm by κ. For example, Sr

d(κ)
includes a subclass of surfaces of the form S = f(Bd(0, 1)), where f : Bd(0, 1) →
(0, 1)D is locally bi-Lipschitz and has its first r derivatives bounded. (We could
also consider surfaces of intermediate, i.e., Hölder smoothness, a popular model
in function and set estimation [18, 38].)

Given that surfaces in Sr
d are well-approximated locally by polynomial sur-

faces, it is natural to choose an affinity based on the residual of the best d-
dimensional polynomial approximation of degree at most r−1 to a set of points
x1, . . . ,xm. This may be implemented via the “kernel trick” with a polynomial
kernel, as done in [10] for the special case of algebraic surfaces. The main dif-
ference with the case of C2 surfaces that we consider in the rest of the paper
is the degree of approximation to a surface S ∈ Sr

d by its osculating algebraic
surface of order r − 1; within a ball of radius ǫ, it is of order O(ǫr).

Partial results suggest that, under similar conditions, the kernel version of
HOSC with r known may be able to operate under a separation of the form
(9), with the exponent 2/d replaced by r/d and, in the presence of outliers,
within a logarithmic factor of the best known sampling rate ratio achieved by
any detection method [4, 5]:

min
k

Nk ≥ Nd/(rD−(r−1)d) ∨NτD−d. (23)

Regarding the estimation of τ , defining the correlation dimension using the
underlying affinity defined here allows to estimate τ accurately down to (essen-
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tially) (log(N)/N)r/d, if the surfaces are all in Sr
d(κ). The arguments are parallel

and we omit the details.

Thus, using the underlying affinity defined here may allow for higher ac-
curacy, if the surfaces are smooth enough. However, this comes with a larger
computational burden and at the expense of introducing a new parameter r,
which would need to be estimated if unknown, and we do not know a good way
to do that.

4.5. Other extensions

The setting we considered in this paper, introduced in Section 1.2, was delib-
erately more constrained than needed for clarity of exposition. We list a few
generalizations below, all straightforward extensions of our work.

• Sampling. Instead of the uniform distribution, we could use any other
distribution with a density bounded away from 0 and ∞, or with fast
decaying tails such as the normal distribution.

• Kernel. The rate of decay of the kernel φ dictates the range of the affinity
(3). Let ωN be a non-decreasing sequence such that N3mφ(ωN) → 0. For
a compactly supported kernel, ωN = sup{s : φ(s) > 0}, while for the
heat kernel, we can take ωN = 2

√
m logN . As we will take m → ∞, φ is

essentially supported in [0, ωN ] so that points that are further than ωNǫ
apart have basically zero affinity. Specifically, we use the following bounds:

φ(1)1{|s|<1} ≤ φ(s) ≤ 1{|s|<ωN} + φ(ωN).

The results are identical, except that statements of the form δ − 2τ > Z
are replaced with δ − 2τ > ωNZ.

• Measure of flatness. As pointed out in the introduction, any reasonable
measure of linear approximation could be used instead. Our choice was
driven by convenience and simplicity.

Appendix A: Preliminaries

We gather here some preliminary results. Recall that, for a, b ∈ R, a ∨ b :=
max(a, b); a ∧ b := min(a, b); a+ = a ∨ 0. For (aN), (bN) ∈ R

N, aN ≺ bN means
aN = O(bN); aN ≍ bN means both aN = O(bN) and bN = O(aN); aN ≪ bN
means aN = o(bN). For L ∈ Ad, PL denotes the orthogonal projection onto L.
The canonical basis of RD is denoted e1, . . . , eD.

A.1. Large deviations bounds

The following result is a simple consequence of Hoeffding’s or Bernstein’s in-
equalities.
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Lemma 1 ([50], Lem. 5.3.7). Let (Xi)i≥1 be independent random variables in
[0, 1].

If 4a ≤∑i E (Xi),

P

(

∑

i

Xi ≤ a

)

≤ exp(−a).

If a ≥ 8
∑

i E (Xi),

P

(

∑

i

Xi ≥ a

)

≤ exp(−a).

A.2. Some geometrical results

We start by quantifying how well a surface S ∈ S2(κ) is locally approximated
by its tangent. Recall that, for an affine subspace T , PT denotes the orthogonal
projection onto T . For any s ∈ S, let Ts denote the tangent of S at s.

Lemma 2. For any S ∈ S2
d(κ) and s ∈ S, the orthogonal projection onto Ts is

injective on B(s, 1/(4κ))∩S and P−1
Ts

has Lipschitz constant bounded by
√
2 on

its image, which contains B(s, 1/(8κ)) ∩ Ts. Moreover,

B(s, ǫ) ∩ S ⊂ B(Ts, κǫ
2), ∀ǫ,

and
B(s, ǫ) ∩ Ts ⊂ B(S, 2κǫ2), ∀ǫ < 1/(8κ).

Proof. This sort of result is standard in differential geometry. We follow the
exposition in [43]. We note that the manifold parameter τ in [43], i.e., the
inverse of the condition number, coincides with the manifold’s reach. We thus
fix here an S ∈ S2

d(κ) and denote τ := reach(S). Since 1/κ is a lower bound on
the reach for manifolds in S2

d(κ), we have the inequality τ ≥ 1/κ.
Fix also a point s ∈ S. Applying [43, Lem. 5.4], we obtain that PTs

is one-
to-one on B(s, ǫ) ∩ S for any ǫ < τ/2, in particular, ǫ < 1/(2κ). We obtain an
estimate on the image of PTs

as follows. We note that [43, proof of Lem. 5.3]
implies that

PTs
(B(s, ǫ) ∩ S) ⊇ B(s, ǫ cos arcsin(ǫ/(2τ))) ∩ Ts. (24)

Furthermore,

if ǫ ≤ 1/(4κ), cos arcsin(ǫ/(2τ)) ≥ cos arcsin(κǫ/2) ≥
√

63/64 > 1/2. (25)

Combining (24) and (25), we conclude that

PTs
(B(s, ǫ) ∩ S) ⊇ B(s, ǫ/2) ∩ Ts, ∀ǫ ≤ 1/(4κ). (26)

In particular, for ǫ = 1/(4κ), we obtain that the range of PTs
(when applied to

B(s, 1/(4κ)) ∩ S) contains the ball B(s, 1/(8κ)) ∩ Ts.
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Next, for any s′ ∈ B(s, 1/(4κ)) ∩ S, the derivative of the linear operator PTs

in the direction u, a unit vector in Ts′ , is

∇u(PTs
) = (PTs

) · u = cos θ1(Ts, span{u}) ≥ cos θ1(Ts, Ts′), (27)

where θ1 denotes the largest principal angle between the corresponding sub-
spaces. In order to further bound from below the RHS of (27), we couple [43,
Props. 6.2, 6.3] and use τ ≥ 1/κ to obtain that

cos θ1(Ts, Ts′) ≥
√

1− 2κ‖s− s′‖. (28)

Combining (27) and (28) we conclude that P−1
Ts

has Lipschitz constant bounded

by
√
2 in B(s, 1/(4κ)) ∩ Ts.

For the inclusions, we use the fact that

‖PTs
(x)− x‖ ≤ (κ/2) · ‖s− x‖2, ∀x, s ∈ S, (29)

which appears in [20, Th. 4.18(2)]. This immediately implies the first inclusion—
which actually holds for any ǫ > 0 and with κ replaced by κ/2. The second
inclusion follows by combining (26) with (29).

Next, we estimate the volume of the intersection of the neighborhood of a
surface and a ball centered at a point within that neighborhood.

Lemma 3 ([3], Lem. 1). For S satisfying (6), x ∈ B(S, τ) and ǫ, τ > 0,

volD(B(S, τ) ∩B(x, ǫ)) ≍ ǫd(ǫ ∧ τ)D−d, volD(B(S, τ)) ≍ τD−d.

The following result is on the approximation of a set of points in the neigh-
borhood of a d-dimensional affine subspace by a d-dimensional affine subspace
generated by a subset of d+ 1 points.

Lemma 4. There is a constant C > 0 depending only on d such that, if
z1, . . . , zm ∈ B(L, η), with L ∈ Ad and m ≥ d + 2, then there exists H ∈ Ad

generated by d+ 1 points among z1, . . . , zm, such that z1, . . . , zm ∈ B(H,Cη).

Proof. For points a1, . . . , ak, let aspan{a1, . . . , ak} denote the affine subspace of
minimum dimension passing through a1, . . . , ak. Let (i1, i2) ∈ argmaxi,j ‖zi−zj‖
and, for d ≥ k ≥ 3,

ik ∈ arg max
i6=i1,...,ik−1

dist(zi, aspan{zi1 , . . . , zik−1
}).

Let Ak = aspan{zi1 , . . . , zik+1
}, for d ≥ k ≥ 1. Define λ1 = ‖zi2 − zi1‖ and, for

d ≥ k ≥ 2, λk = dist(zik+1
, span{zi1 , . . . , zik}). Also, let v1 = (zi2 −zi1)/λ1 and,

for k ≥ 2, vk = (zik+1
−PAk−1

zik+1
)/λk. Without loss of generality, assume that

zi1 is the origin, which allows us to identify a point z with the vector z−zi1 . Take
z ∈ {z1, . . . , zm} and express it as z = a1v1 + · · ·+ advd +w, with w ⊥ Ad. We
show that ‖w‖ ≤ Cη for a constant C depending only on d, which implies that
z ∈ B(Ad, Cη). Let C1 > 0, to be made sufficiently large later. By construction,
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A1 ⊂ · · · ⊂ Ad and λ1 ≥ · · · ≥ λd with ‖PA⊥

k−1
z‖ ≤ λk for all k = 1, . . . , d.

Consequently, if λd ≤ C1η, then ‖w‖ ≤ ‖PA⊥

d−1
z‖ ≤ λd ≤ C1η and we are done.

Therefore, assume that λd > C1η. Define qk = PLvk. We have

‖qk − vk‖ = ‖PL⊥vk‖ =
1

λk
‖PL⊥PA⊥

k−1
zik+1

‖ ≤ 1

λk
‖PL⊥zik+1

‖ ≤ η

λk
≤ 1

C1
.

Hence, for C1 large enough, q1, . . . ,qd are linearly independent, and therefore
span L. Suppose this is the case and define matrices V with columns v1, . . . ,vd

and Q with columns q1, . . . ,qd. Then, by continuity, for C1 large enough we
have

‖PL − PAd
‖ = ‖Q(QTQ)−1QT −VVT ‖ ≤ 1/2,

where ‖ · ‖ here denotes the (Euclidean) operator norm. When C1 is that large,
we have

‖PLw‖ = ‖(PL − PAd
)w‖ ≤ 1

2
‖w‖ ≤ 1

2
(‖PLw‖+ ‖PL⊥w‖) ,

so that ‖PLw‖ ≤ ‖PL⊥w‖. Now, using the triangle inequality,

‖PL⊥w‖ ≤ ‖PL⊥z‖ + |a1|‖PL⊥v1‖+ · · ·+ |ad|‖PL⊥vd‖. (30)

Because z ∈ B(L, η), we have ‖PL⊥z‖ ≤ η. For the other terms, we have
‖PL⊥vk‖ ≤ η/λk as before, and, using the fact that, by construction, the
v1, . . . ,vd are orthonormal with Ak = span{v1, . . . ,vk} and ‖PA⊥

k−1
z‖ ≤ λk,

together with the Cauchy-Schwartz inequality, we also have

|ak| = |vT
k z| =

∣

∣

∣v
T
k PA⊥

k−1
z

∣

∣

∣ ≤ λk.

Hence, the RHS in (30) is bounded by (d+ 1)η, implying

‖w‖ ≤ ‖PLw‖+ ‖PL⊥w‖ ≤ 2‖PL⊥w‖ ≤ 2(d+ 1)η.

We then let C = max(C1, 2d+ 2).

Below we provide an upper bound on the volume of the three-way intersection
of the neighborhood of a surface, a ball centered at a point on the surface and the
neighborhood of an affine d-dimensional subspace passing through that point, in
terms of the angle between this subspace and the tangent to the surface at that
same point. The principal angles between linear subspaces L,L′ ∈ Ad, denoted
by

π

2
≥ θ1(L,L

′) ≥ · · · ≥ θd(L,L
′) ≥ 0,

are recursively defined as follows:

cos θr(L,L
′) = min

u∈L
min
u′∈L′

uTu′ = uT
r u

′
r,
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subject to

‖u‖ = ‖u′‖ = 1;

uTus = 0, ∀s = 1, . . . , r − 1;

u′Tu′
s = 0, ∀s = 1, . . . , r − 1.

Note that the orthogonality constraints are void when r = 1. (Some authors use
the reverse ordering, e.g, [26].)

Lemma 5. Consider a surface S ∈ S2
d(κ). Suppose ǫ ≥ η∨τ , η ≥ ǫ2 and τ > 0.

Let Ψ be the uniform distribution on B(S, τ). For s ∈ S, let Ts be the tangent
space to S at s. Then for L ∈ Ad containing s,

Ψ(B(s, ǫ) ∩B(L, η)) ≺ ǫd(1 ∧ (η/τ))D−d
d
∏

j=1

(

1 ∧ η ∨ τ

ǫ θj(L, Ts)

)

.

Proof. Fix s ∈ S and L ∈ Ad containing s, and let T := Ts and θj := θj(L, T )
for short. By definition,

Ψ(B(s, ǫ) ∩B(L, η)) =
volD(B(S, τ) ∩B(s, ǫ) ∩B(L, η))

volD(B(S, τ))
.

By Lemma 3, it suffices to show that

volD(B(S, τ) ∩B(L, η) ∩B(s, ǫ)) ≺ ǫd(η ∧ τ)D−d
d
∏

j=1

(

1 ∧ η ∨ τ

ǫ θj

)

.

We divide the proof into two cases; though the proof is similar for both, the
first case is simpler and allows us to introduce the main ideas with ease before
generalizing to the second case.

Case ǫ2 ≤ τ . We use Lemma 2 and the fact that τ ≥ ǫ2, to get

B(S, τ) ∩B(s, ǫ) ⊂ B(T, (1 + κ)τ) ∩B(s, ǫ). (31)

Ignoring the constant factor 1 + κ, we bound

volD(B(T, τ) ∩B(L, η) ∩B(s, ǫ)).

We may assume without loss of generality that s is the origin and

T = span{e1, . . . , ed}, and

L = span{(cos θ1)e1 + (sin θ1)ed+1, . . . , (cos θd)ed + (sin θd)e2d}.
Then

B(T, τ) = {(z1, . . . , zD) :
∑

j>d

z2j ≤ τ2};

B(L, η) = {(z1, . . . , zD) :
∑

j≤d

(zj sin θj − zd+j cos θj)
2 +

∑

j>2d

z2j ≤ η2};

B(s, ǫ) = {(z1, . . . , zD) :
∑

j

z2j ≤ ǫ2}.



1570 E. Arias-Castro et al.

Take j ≤ d; since |zd+j| ≤ τ , we have

|zj sin θj − zd+j cos θj | ≤ η ⇒ |zj | ≤ 2(η ∨ τ)/ sin θj ≤ π(η ∨ τ)/θj .

Therefore,

B(T, τ)∩B(L, η)∩B(s, ǫ) ⊂
d
∏

j=1

[

−ǫ ∧ π(η ∨ τ)

θj
, ǫ ∧ π(η ∨ τ)

θj

]

×BD−d(0, η∧τ).

From that we obtain the desired bound.
Case τ ≤ ǫ2. The arguments here are a little different and we simply bound

volD(B(S, τ) ∩B(s, ǫ)). Assume that ǫ < 1/(8κ). Because PT is contractile, we
have

PT (S ∩B(s, ǫ)) ⊂ T ∩B(s, ǫ) = Bd(0, ǫ),

so that, by Lemma 2,

S ∩B(s, ǫ) ⊂ P−1
T (Bd(0, ǫ)),

where P−1
T : Bd(0, ǫ) → S ∩B(s, ǫ). Hence,

B(S, τ) ∩B(s, ǫ) ⊂ {(a,b) : a ∈ Bd(0, ǫ), ‖b− P−1
T (a)‖ ≤ τ}.

And by direct integration, the set on the RHS has D-volume of order ǫdτD−d

since P−1
T is Lipschitz on Bd(0, ǫ) by Lemma 2.

A companion of the previous result, the following lemma provides a lower
bound on the angle between the affine subspace and the tangent.

Lemma 6. Let ǫ, η > 0, and take S ∈ S2
d(κ). Suppose L ∈ Ad is such that

B(L, η) contains s ∈ S and y ∈ B(s, ǫ). Let Ts the tangent to S at s. Then

θ1(L, Ts) ≥
dist(y, S)− 2κǫ2 − η

ǫ + η
.

Proof. Let T denote Ts for short, and let L′ be the line passing through s and
PL(y). Since L′ ⊂ L, we have θ1(L, T ) ≥ θ1(L

′, T ), and using the triangle
inequality and the fact that θ ≥ sin θ, for θ ≥ 0, this is bounded below by

dist(PL(y), T )

dist(PL(y), s)
≥ dist(y, T )− η

dist(s,y) + η
.

The denominator does not exceed ǫ+ η. For the numerator,

dist(y, T ) = ‖PT (y) − y‖ ≥ dist(y, S) − dist(PT (y), S).

Since ‖y−s‖ ≤ ǫ, we have PT (y) ∈ T ∩B(s, ǫ), so that dist(PT (y), S) ≤ 2κǫ2 by
Lemma 2. Consequently, the numerator is bounded from below by dist(y, S) −
κǫ2 − η.
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Next is another result estimating some volume intersections. It is similar to
Lemma 5, though the conditions are different.

Lemma 7. Consider a surface S ∈ S2
d(κ). Let Ψ be the uniform distribution

on B(S, τ). Then for ǫ ≥ η and τ > 0,

sup
y,L

Ψ(B(y, ǫ) ∩B(L, η)) ≺ ǫd(1 ∧ (η/τ))D−d,

where the supremum is over y ∈ R
D and L ∈ Ad, and the implicit constants

depend only on κ, d. Also, for ǫ ≥ 10η, η ≥ 10κǫ2 and τ > 0, and any x ∈
B(S, τ),

sup
L

Ψ(B(x, ǫ) ∩B(L, η)) ≻ ǫd(1 ∧ (η/τ))D−d.

Proof. The proof is similar to that of Lemma 5. We divide the proof into two
parts.

Upper bound. Let x ∈ B(S, τ) ∩B(y, ǫ) ∩B(L, η). When η ≥ τ , we use

B(S, τ) ∩B(y, ǫ) ∩B(L, η) ⊂ B(S, τ) ∩B(x, 2ǫ),

while, when η ≤ τ , we use

B(S, τ) ∩B(y, ǫ) ∩B(L, η) ⊂ B(L, η) ∩B(x, 2ǫ).

In both cases, we conclude with Lemma 3.

Lower bound. Let s be the point on S closest to x, with tangent subspace T .
When η ≥ 2τ + 4κǫ2, take as L the translate of T passing through x and use
Lemma 2 to get

B(S, τ) ∩B(x, ǫ) ⊂ B(T, τ + κ(τ + ǫ)2) ⊂ B(L, η),

and therefore

B(S, τ) ∩B(x, ǫ) ∩B(L, η) ⊃ B(S, τ) ∩B(x, ǫ).

We then use Lemma 3. Now, suppose η ≤ 2τ + 4κǫ2 and notice that, since
η ≥ 10κǫ2, we have τ ≥ 3κǫ2. First, assume that ǫ ≥ 10τ . We use Lemma 2 to
get

B(S, τ) ∩B(x, ǫ) ⊃ B(T, τ − 2κǫ2) ∩B(s, ǫ) ∩B(x, ǫ),

and therefore,

B(S, τ)∩B(x, ǫ)∩B(L, η) ⊃ B(T, τ − 2κǫ2)∩B(L, η)∩B(s, ǫ)∩B(x, ǫ). (32)

Without loss of generality, assume that x is the origin, L = span{e1, . . . , ed}.
Since the volume is least when ‖x − s‖ = τ , assume that s = τed+1 (seen as
a point in space). Define ν = (η + 2κǫ2)/2 and note that ν ≤ η ∧ (2τ) by the
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conditions on η and τ . Then

B(T, τ − 2κǫ2) ∩B(L, η) ⊃ {(z1, . . . , zD) :
∑

j>d+1

z2j + (zd+1 − ν)2 ≤ (η/3)2};

B(s, ǫ) = {(z1, . . . , zD) :
∑

j 6=d+1

z2j + (zd+1 − τ)2 ≤ ǫ2};

B(x, ǫ) = {(z1, . . . , zD) :
∑

j

z2j ≤ ǫ2}.

By the conditions imposed on ǫ, η, τ , the RHS in (32) contains

Bd(0, ǫ/10)× [η/4, 3η/4]×BD−d−1(0, η/10).

Therefore the result. Finally assume that τ ≥ ǫ/10 and take L passing through
x and z = (1 − λ)x + λs, where λ = ǫ/(2τ). We have ‖z − x‖ ≤ ǫ/2 and
‖z−s‖ ≤ τ−ǫ/2, so that B(z, ǫ/2) ⊂ B(S, τ)∩B(x, ǫ) by the triangle inequality.
Hence,

B(S, τ) ∩B(L, η) ∩B(x, ǫ) ⊃ B(L, η) ∩B(z, ǫ/2).

We then conclude with Lemma 3.

Lemma 8. Let Ψ be the uniform distribution on a measurable subset A ⊂ R
D

of positive D-volume. Then for ǫ ≥ η,

sup
y,L

Ψ(B(y, ǫ) ∩B(L, η)) ≺ ǫdηD−d,

where the supremum is over y ∈ R
D and L ∈ Ad, and the implicit constant

depends only on d and volD(A).

Proof. The proof is parallel to (and simpler than) that of Lemma 7. We omit
details.

A.3. A perturbation bound

In the proof of Theorem 1, we follow the strategy outlined in [42] based on
verifying the following conditions (where (A4) has been simplified). Let Ik =
{i : xi ∈ Xk} and let W̊k denote the matrix with coefficients indexed by i, j ∈ Ik
and defined as

W̊ij =
∑

i1,...,im−2∈Ik

αd(xi,xj ,xi1 , . . . ,xim−2
), D̊i =

∑

j∈Ik

W̊ij .

Let W̊ij = 0 if i ∈ Ik, j ∈ Iℓ, with k 6= ℓ. Those are the coefficients of W and
D under infinite separation, i.e.,assuming δ = ∞. (In fact δ > ǫ + 2τ is enough
since we use the simple kernel.)

(A1) For all k, the second largest eigenvalue of W̊k is bounded above by 1− γ.
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(A2) For all k, ℓ, with k 6= ℓ,

∑

i∈Ik

∑

j∈Iℓ

W 2
ij

D̊iD̊j

≤ ν1.

(A3) For all k and all i ∈ Ik,

1

D̊i

∑

j /∈Ik

Wij ≤ ν2





∑

s,t∈Ik

W 2
st

D̊sD̊t





−1/2

.

(A4) For all k and all i, j ∈ Ik, D̊i ≤ QD̊j.

The following result is a slightly modified version of [42, Th. 2], stated and
proved in [3, Th. 7]. See also [11, Th. 4.5]. Recall the matrix V defined in
Algorithm 1.

Theorem 2. Let v1, . . . ,vN denote the row vectors of V. Under (A1)-(A4),
there is an orthonormal set {r1, . . . , rK} ⊂ R

K such that,

1

N

K
∑

k=1

∑

i∈Ik

‖vi − rk‖2 ≤ 4Qγ−2(K2ν1 +Kν22).

Appendix B: Main proofs

For a set A, its cardinality is denoted by #A. Throughout the paper, C denotes
a generic constant that does not depend on the sample size N and satisfies
C ≥ 1.

B.1. Proof of Theorem 1

Given Theorem 2, we turn to proving that the four conditions (A1)-(A4) hold
with probability tending to one with ν1 = ν22 = (ρN/ζ)

−m/2, γ > C−mN−2 and
Q ≤ Cm for some constant C > 0. Since m log(ρN/ζ) ≫ logN , this implies

max
i=1,...,N

min
k=1,...,K

‖vi − rk‖ → 0.

Therefore, since the rk’s are themselves orthonormal, the K-means algorithm
with near-orthogonal initialization outputs the perfect clustering.

We restrict ourselves to the case where τ ≤ (ρ2
N
log(N)/N)1/d, for otherwise

η ≥ ǫ and HOSC is essentially SC, studied in [3]. With that bound on τ , (12)
reduces to ǫ ≥ (ρ2

N
log(N)/N)1/d. By the same token, we assume that η ≤ ǫ, so

that ǫ ≥ η ≥ τ + ρNǫ
2.

To verify conditions (A2), (A3) and (A4) we need to estimate the degree of
each vertex under infinite separation and the edge weights under finite separa-
tion. We start with the case of infinite separation.
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Proposition 7. With probability at least 1−N−ρ2
N/(Kζ),

1{‖xi−xj‖≤ǫ/2}Nkǫ
d ≺ W̊

1/(m−2)
ij ≺ 1{‖xi−xj‖≤ǫ}Nkǫ

d; (33)

and also,

D̊
1/(m−1)
i ≍ Nkǫ

d, (34)

uniformly over i, j ∈ Ik and k = 1, . . . ,K.

Proof. Within a cluster, the linear approximation factor in (3) is a function of
the proximity factor. This is due to Lemma 2. Formally, let G̊i,ǫ denote the
degree of xi in the neighborhood graph built by SC, i.e.

G̊i,ǫ = #{j ∈ Ik, j 6= i : xj ∈ B(xi, ǫ)},

Then Proposition 7 is a direct consequence of Lemma 9, which relates G̊i,ǫ to

W̊ij and D̊i, and of Proposition 8, which estimates G̊i,ǫ.

Lemma 9. We have

1{‖xi−xj‖≤ǫ/2}(G̊i,ǫ/2 − 1){m−2} ≤ W̊ij ≤ 1{‖xi−xj‖≤ǫ}(G̊i,ǫ − 1){m−2},

and,
G̊i,ǫ/2(G̊i,ǫ/2 − 1){m−2} ≤ D̊i ≤ G̊i,ǫ(G̊i,ǫ − 1){m−2},

where r{m} = r(r − 1) · · · (r −m+ 1).

Note that r{m} ≤ rm, and r{m} ≥ (r/3)m for r ≥ m.

Proof. We focus on the first expression, as the second expression is obtained by
summing the first one over j ∈ Ik, j 6= i, where k is such that i ∈ Ik. Therefore,
fix i, j ∈ Ik. The upper bound on W̊ij comes from the fact that

diam(xi,xj ,x1, . . . ,xm−2) ≤ ǫ ⇒ x1, . . . ,xm−2 ∈ B(xi, ǫ).

The lower bound comes from

x1, . . . ,xm−2 ∈ B(xi, ǫ/2) ⇒ diam(xi,x1, . . . ,xm−2) ≤ ǫ,

and the fact that,

x1, . . . ,xm−2 ∈ B(Sk, τ) ∩B(xi, ǫ/2) ⇒ x1, . . . ,xm−2 ∈ B(Tsi
, η),

where si is the point on Sk closest to xi. Indeed, take x ∈ B(Sk, τ)∩B(xi, ǫ/2)
and let s ∈ Sk such that ‖x−s‖ ≤ τ . By the triangle inequality, ‖s−si‖ ≤ ǫ/2+
2τ , so that, by Lemma 2, s ∈ B(Tsi

, κ(ǫ/2+2τ)2). Therefore, x ∈ B(Tsi
, κ(ǫ/2+

2τ)2 + τ). We then conclude with the fact that τ ≤ ǫ and η ≥ τ + ρNǫ
2, with

ρN → ∞.

Note that N ≤ KζNk, which together with (12) implies

Nkǫ
d(1 ∧ (ǫ/τ))D−d ≥ ρ2

N
/(Kζ) logN, ∀k = 1, . . . ,K. (35)

The following bound on G̊i,ǫ is slightly more general than needed at this point.
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Proposition 8. Assume that (35) holds. Then with probability at least 1 −
N−ρ2

N/(Kζ),
G̊i,ǫ ≍ Nkǫ

d(1 ∧ (ǫ/τ))D−d, (36)

uniformly over i ∈ Ik and k = 1, . . . ,K.

Proof. This is done in the proof of [3, Eq. (A4)] and we repeat the arguments
here for future reference. Let Ψk denote the uniform distribution on B(Sk, τ).
By definition, for any (measurable) set A,

Ψk(A) =
volD(A ∩B(Sk, τ))

volD(B(Sk, τ))
. (37)

Since G̊i,ǫ is the sum of independent Bernoulli random variables, by Lemma 1,
it suffices to bound it in expectation. Using Lemma 3, we have

E

(

G̊i,ǫ

)

= NkΨk(B(xi, ǫ)) ≍ Nkǫ
d(1 ∧ (ǫ/τ))D−d.

Applying Lemma 1 and (35), we then get

P

(

G̊i,ǫ > 16EG̊i,ǫ

)

∨ P

(

G̊i,ǫ < EG̊i,ǫ/8
)

≤ N−2(ρ2
N/(Kζ)).

We then apply the union bound and use the fact that N · N−2(ρ2
N/(Kζ)) ≤

N−ρ2
N/(Kζ), since ρ2

N
→ ∞.

We now turn to bounding the size of the edge weights Wij under finite sep-
aration. We do so by comparing them with the edge weights under infinite
separation.

Proposition 9. With probability at least 1−N−ρN ,

(Wij − W̊ij)
1/(m−2) ≺ 1{‖xi−xj‖≤ǫ}Nǫd/ρN . (38)

uniformly over i ∈ Ik, j ∈ Iℓ and k, ℓ = 1, . . . ,K.

Proof. If k = ℓ, Wij−W̊ij is the sum of αd(xi,xj ,xi1 , . . . ,xim−2
) over (distinct)

i1, . . . , im−2 that are not all in Ik. When k 6= ℓ, W̊ij = 0 and Wij is again the
same sum except this time over all (distinct) i1, . . . , im−2. Both situations are
similar and we focus on the latter. We assume that ‖xi−xj‖ ≤ ǫ, for otherwise
the bound is trivially satisfied. Note that this implies that ρNη ≤ δ − 2τ ≤ ǫ.

Define
Gi,ǫ = #{j 6= i : xj ∈ B(xi, ǫ)}, (39)

which is the equivalent of G̊i,ǫ under finite separation, as well as

Hi,ǫ,η(L) = #{j 6= i : xj ∈ B(xi, ǫ) ∩B(L, η)},

and
H∗

i,j,ǫ,η = max
M

Hi,ǫ,η(LM ),



1576 E. Arias-Castro et al.

where the maximum is over all M ⊂ {1, . . . , N}, of size |M | = d+ 1 such that
xj ∈ B(LM , η). Then Proposition 9 is a direct consequence of Lemma 10, which
relates Gi,ǫ and H∗

i,j,ǫ,η to Wij , and of Propositions 10 and 11, which bound Gi,ǫ

and H∗
i,j,ǫ,η, respectively.

Lemma 10. There is a constant C > 0 such that

Wij ≤ (Gi,ǫ + 1)d+1(H∗
i,j,ǫ,Cη)

{m−d−1}. (40)

Proof. By definition of the affinity (3) and the triangle inequality, we have

Wij ≤
∑

M

1{∃L∈Ld:xn∈B(xi,ǫ)∩B(L,η),∀n∈M∪{i,j}},

where the sum is over M ⊂ {1, . . . , N} such that |M | = m−2 and i, j /∈ M . For
a subset M ⊂ {1, . . . , N}, of size |M | = d+1, let LM denote the affine subspace
spanned by {xn, n ∈ M}. By Lemma 4, we may limit ourselves to subspaces L
that are generated by d+ 1 data points, obtaining

Wij ≤
∑

M

1{xn∈B(xi,ǫ),∀n∈M} (41)

×
∑

M ′

1{xn∈B(xi,ǫ)∩B(LM ,Cη),∀n∈M ′∪{i,j}},

where M is any subset of {1, . . . , N} of size d + 1, and M ′ is any subset of
{1, . . . , N}\(M∪{i, j}) such thatM ′∪M∪{i, j} is of sizem. Such anM is of size
at most m−d−1 and does not contain i or j. For any M , B(xi, ǫ)∩B(LM , Cη)
contains at most H∗

i,j,ǫ,Cη data points other than xi and xj , so that the second

sum is bounded by (H∗
i,j,ǫ,Cη)

m−d−1 independently of M . Similarly, B(xi, ǫ)

contains at most Gi,ǫ + 1 points, so the first sum is bounded by (Gi,ǫ + 1)d+1.
The result follows.

Proposition 10. Assume that (35) holds. Then with probability at least 1 −
N−ρ2

N/(Kζ),
Gi,ǫ ≺ Nǫd(1 ∧ (ǫ/τ))D−d, (42)

uniformly over i = 1, . . . , N .

Proof. We have

E (Gi,ǫ) =
∑

ℓ

NℓΨℓ(B(xi, ǫ)).

Now, by Lemma 3, for all ℓ such that dist(xi, Sℓ) ≤ ǫ+ τ ,

Ψℓ(B(xi, ǫ)) ≺ ǫd(1 ∧ (ǫ/τ))D−d.

Hence,
E (Gi,ǫ) ≺ Nǫd(1 ∧ (ǫ/τ))D−d.

We then use Lemma 1 and (35).
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Proposition 11. With probability at least 1−N−ρN ,

H∗
i,j,ǫ,η ≺ Nǫd

ρN

, (43)

uniformly over i ∈ Ik, j ∈ Iℓ and k 6= ℓ in {1, . . . ,K}.
Proof. For L ∈ Ad, Hi,ǫ,η(L) is a sum of independent Bernoulli random vari-
ables, with expectation

E (Hi,ǫ,η(L)) =
∑

ℓ

NℓΨℓ(B(xi, ǫ) ∩B(L, η)).

Take ℓ such that B(Sℓ, τ) ∩B(xi, ǫ) ∩B(L, η) 6= ∅, and let x be in that set and
s be the point on Sℓ closest to x. Then by the triangle inequality and the fact
that ǫ ≥ η ≥ τ ,

B(Sℓ, τ) ∩B(xi, ǫ) ∩B(L, η) ⊂ B(Sℓ, τ) ∩B(s, 3ǫ) ∩B(Ls, 3η),

where Ls is the translate of L passing through s. Therefore,

Ψℓ(B(xi, ǫ) ∩B(L, η)) ≤ 1{dist(xi,Sℓ)≤ǫ+τ} · sup
s∈Sℓ

Ψℓ(B(s, 3ǫ) ∩B(Ls, 3η)).

Our focus is on L such that xi,xj ∈ B(L, η), which transfers as xi,xj ∈
B(Ls, 3η) by the triangle inequality. Since xi and xj belong to different clusters,
for a given ℓ, at least one of them does not belong to Xℓ. Hence, by Lemma 6
and the fact that δ ≫ η ≥ τ + κǫ2, θ1(L, Ts) ≻ δ/ǫ uniformly over s ∈ Sℓ and
ℓ. (Remember that θ1(L, T ) denotes the largest principal angle between L and
T .) Together with Lemma 5, we thus get

Ψℓ(B(s, 3ǫ) ∩B(Ls, 3η)) ≤ Cǫd(η/δ).

Hence, by the fact that δ ≥ ρNη, we have

E (Hi,ǫ,η(L)) ≤ CNǫd(η/δ) ≤ CNǫd/ρN .

With Lemma 1 and (12), we then get

sup
L

P
(

Hi,ǫ,η(L) > 16CNǫd/ρN

)

≤ N−2ρN .

Hence, by the union bound,

P
(

H∗
i,j,ǫ,η > 16CNǫd/ρN

)

≤ Nd+1 ·N−2ρN . (44)

The right hand side is bounded by N−ρN eventually.

We now turn to verifying (A1)-(A4).

• Verifying (A4): (34) immediately implies (A4) with Q = Cm for some
constant C > 0.
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• Verifying (A3): Take k = 1, . . . ,K. By (33), (34) and (38),

∑

i,j∈Ik

W 2
ij

D̊iD̊j

≺ ǫ−2(1 + (ρN/ζ)
−2(m−2)) ≺ ǫ−2,

and also,
1

D̊i

∑

j /∈Ik

Wij ≺ (N/Nk)ǫ
−d(ρN/ζ)

−(m−1).

Since N/Nk ≤ N , ǫ ≻ N−1/d and m log(ρN/ζ) ≫ logN , we may take
ν2 = (ρN/ζ)

−m/2.

• Verifying (A2): Take k, ℓ = 1, . . . ,K, with k 6= ℓ. Then by (33), (34) and
(38),

∑

i∈Ik

∑

j∈Iℓ

W 2
ij

D̊iD̊j

≺ ǫ−2d(ρN/ζ)
−2(m−2).

Since ǫ ≻ N−1/d and m log(ρN/ζ) ≫ logN , we may take ν1 = (ρN/ζ)
−m.

• Verifying (A1): As suggested in [42], we approach this through a lower
bound on the Cheeger constant. Let Z̊k be the matrix obtained from W̊k

following SC. That Z̊k has eigenvalue 1 with multiplicity 1 results from the
graph being fully connected [14]. The Cheeger constant of W̊k is defined
as:

hk = min
|I|≤Nk/2

∑

i∈I

∑

j∈Ik\I W̊ij
∑

i∈I D̊i

,

where the minimum is over all subsets I ⊂ Ik of size |I| ≤ Nk/2. The
spectral gap of Z̊k is then at least h2

k/2. By (33)-(34), there is a constant
C > 0 such that,

hk ≥ C−m(Nkǫ
d)−1 min

|I|≤Nk/2

∑

i∈I

∑

j∈Ik\I 1{‖xi−xj‖≤ǫ/2}

|I| .

From here, the proof is identical to that of [3, Eq. (A1)], which bounds
the minimum from below by 1/Nk, so that hk ≥ C−mN−1

k .

B.2. Proof of Proposition 6

From the proof of Theorem 1, it suffices to verify that (A2) and (A3) still hold
under the conditions of Proposition 6, and in view of (19), we may focus on Wij

for i ∈ Ik and j ∈ Iℓ, with k 6= ℓ, such that ‖xi − xj‖ ≤ ǫ and with xj close to
an intersection, specifically, for some p 6= ℓ,

dist(xj , Sℓ ∩ Sp) ≤ ν, where ν := (sin θint)
−1(ǫ ∧ ρNη).
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In fact, we show that, under the conditions of Proposition 6, with probability
at least 1− γN , there is no such a pair of points (xi,xj). For fixed (k, ℓ, p), the
probability that xi ∼ Ψk and xj ∼ Ψℓ satisfy these conditions is

E
(

Ψk(B(xj , ǫ))1{xj∈B(Sℓ∩Sp,ν)}
)

, (45)

after integrating over xi. By Lemma 3,

Ψk(B(xj , ǫ)) ≺ ǫd.

where the implicit constant depends only on κ, d. Moreover, by condition (18),

Ψℓ(B(Sℓ ∩ Sp, ν)) ≺ νd−dint .

Therefore, using the union bound, the probability that there is such a pair of
points is of order not exceeding

∑

k,ℓ

NkNℓ · ǫdνd−dint = N2ǫdνd−dint = γN → 0.

B.3. Proof of Propositions 4 and 5

Without loss of generality, we assume that δ0 is small and that η ≤ ǫ/10. Let
Ψ0 be the uniform distribution on (0, 1)D \ ⋃k B(Sk, δ0). By Lemma 3, this

set has D-volume of order 1 − O(KδD−d
0 ), with KδD−d

0 small since K is fixed.
Therefore, for A ⊂ (0, 1)D,

Ψ0(A) ≍ volD

(

A \
⋃

k

B(Sk, δ0)

)

.

Let I0 ⊂ {1, . . . , N} index the outliers and let N0 be the number of outliers.

In view of how the procedures (O1) and (O2) work, we need to bound the
degrees of non-outliers from below and the degrees of outliers from above. The
following lower bound holds

Nkǫ
d(1 ∧ (η/τ))D−d ≥ (ρN/(Kζ)) logN, ∀k = 1, . . . ,K. (46)

For (O1), it comes from (11)-(12) and the fact that, for all k 6= 0, Nk ≥
N/(KζρN), since N ≤ KζNk + N0, implying Nk ≥ (N − N0)/(Kζ), and
N − N0 ≥ N/ρN in our assumptions. For (O2), it comes from (15) and (16)
(and the inequality holds with ρN in place of ρN/(Kζ)). In the same vein,

Nk(1 ∧ (η/τ))D−d ≫ NηD−d, ∀k = 1, . . . ,K. (47)

We prove a result that is more general than what we need now.
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Proposition 12. Assume (46) and (47). Then with probability at least 1 −
N−ρN/(Kζ),

Nkǫ
d(1 ∧ (η/τ))D−d ≺ D

1/(m−1)
i ≺ Nkǫ

d(1 ∧ (η/τ))(D−d)(1− d+1

m−1
), (48)

uniformly over i ∈ Ik, k 6= 0; and also,

D
1/(m−1)
i ≺ (N −N0)ǫ

d(1 ∧ (η/τ))(D−d)(1− d+1

m−1
)ξ1−

d+1

m−11{δ0≤ǫ+τ}

+Nǫdη(D−d)(1− d+1

m−1
), (49)

uniformly over i ∈ I0, where ξ = 1 if τ ≥ ǫ, and ξ = 1 ∧ (η/δ0), otherwise.

Proof. Define
Hi,ǫ,η = max

L∈Ad

Hi,ǫ,η(L).

Proposition 12 is a direct consequence of Lemma 11 which relates Di to Gi,ǫ

(defined in Section B.1) and Hi,ǫ,η, and of Propositions 13 and 14 (together with
(47)), which bound Gi,ǫ and Hi,ǫ,η, respectively.

Lemma 11. There is a constant C > 0 such that

H
{m−1}
i,ǫ/2,η ≤ Di ≤ G

{d+1}
i,ǫ (H∗

i,ǫ,Cη)
{m−d−2}. (50)

Proof. We get the upper bound by following the arguments in the proof of (38).
For the lower bound, we simply have

Di ≥
∑

M :|M|=m−1

1{∃L∈Ld:xj∈B(xi,ǫ/2)∩B(L,η),∀j∈M}

≥ H
{m−1}
i,ǫ/2,η .

The bounds for Gi,ǫ and Hi,ǫ,η that follow are more general than needed at
this point. In particular, the case of large τ will only be useful in Section C.

Proposition 13. Assume (46) holds with ǫ in place of η. Then with probability
at least 1−N−ρN/(Kζ),

Nkǫ
d(1 ∧ (ǫ/τ))D−d ≺ Gi,ǫ ≺ Nkǫ

d(1 ∧ (ǫ/τ))D−d +N0ǫ
D. (51)

uniformly over i ∈ Ik and k = 1, . . . ,K. Also,

Gi,ǫ ≺ (N −N0)ǫ
d(1 ∧ (ǫ/τ))D−d1{δ0≤ǫ+τ} +NǫD. (52)

uniformly over i ∈ I0

Proof. The proof is similar to that of Proposition 8. We bound Gi,ǫ in expecta-
tion. Suppose i ∈ Ik with k 6= 0. Then by Lemma 3

E (Gi,ǫ) ≥ NkΨkB(xi, ǫ) ≍ Nkǫ
d(1 ∧ (ǫ/τ))D−d.
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For the upper bound, by Lemma 3 and the simple bound

Ψ0(B(xi, ǫ)) ≺ ǫD,

we have

E (Gi,ǫ) =
∑

ℓ

NℓΨℓ(B(xi, ǫ)) ≺ (N −N0)ǫ
d(1 ∧ (ǫ/τ))D−d +N0ǫ

D,

with N − N0 ≤ (Kζ)Nk for any k 6= 0. As in as in Proposition 8, we then
use Lemma 1 together with (46) and the union bound, to conclude the proof
of (51). The proof of (52) is identical, except that, when δ0 > τ + ǫ, we have
Ψℓ(B(xi, ǫ)) = 0 if ℓ 6= 0 and i ∈ I0.

Proposition 14. If (46) holds, then with probability at least 1−N−ρN/(Kζ),

Hi,ǫ/2,η ≻ Nkǫ
d(1 ∧ (η/τ))D−d, H∗

i,ǫ/2,η ≺ Nkǫ
d(1 ∧ (η/τ))D−d +N0ǫ

dηD−d,
(53)

uniformly over i ∈ Ik and k 6= 0; and also,

H∗
i,ǫ/2,η ≺ (N −N0)ǫ

d(1 ∧ (η/τ))D−dξ1{δ0≤ǫ+τ} +NǫdηD−d. (54)

uniformly over i ∈ I0

Proof. First assume that i ∈ Ik with k 6= 0. For the lower bound in (53), let L
be a subspace such that

Ψk(B(xi, ǫ) ∩B(L, η)) ≻ ǫd(1 ∧ (η/τ))D−d,

which exists by the lower bound in Lemma 7. We have Hi,ǫ,η ≥ Hi,ǫ,η(L), and
the term on the right hand side is a sum of independent Bernoulli random
variables with expectation

E (Hi,ǫ,η(L)) = NkΨk(B(xi, ǫ) ∩B(L, η)) ≻ Nkǫ
d(1 ∧ (η/τ))D−d.

We then apply Lemma 1, using (46), and the union bound. For the upper bound
in (53), the arguments are the same as in the proof of (43), except for the
following bound in expectation, valid for any L ∈ Ad,

E (Hi,ǫ,η(L)) =
∑

ℓ

NℓΨℓ(B(xi, ǫ) ∩B(L, η))

≺ (N −N0)ǫ
d(1 ∧ (η/τ))D−d +N0ǫ

dηD−d,

by Lemmas 7 and 8.
Now, assume that i ∈ I0. Again, the arguments are the same as in the proof

of (43), except that the bounds in expectation are different. Specifically, if δ0 >
ǫ + τ , then Ψℓ(B(xi, ǫ) ∩ B(L, η)) = 0, ∀ℓ 6= 0, so that, by Lemma 8, for any
L ∈ Ad,

E (Hi,ǫ,η(L)) ≺ N0ǫ
dηD−d.

Otherwise,

E (Hi,ǫ,η(L)) ≺ (N −N0)ǫ
d(1 ∧ (η/τ))D−dξ +N0ǫ

dηD−d.
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We are now in a position to prove Propositions 4 and 5. We first consider

(O1). By (48) and (49), and the fact that τ ≤ η ≤ ρ
−3/(D−d)
N , we have

max
i

D
1/(m−1)
i ≺ (N −N0)ǫ

d ≺ (N/ρN)ǫ
d.

On the one hand, by (48), D
1/(m−1)
i ≻ Nkǫ

d ≻ (N/ρN)ǫ
d, uniformly over i ∈

Ik, ∀k 6= 0. Hence, since ρN → ∞, no non-outlier is identified as an outlier. On
the other hand, by (49), for any i ∈ I0,

D
1/(m−1)
i ≺ Nǫd(ξ1−

d+1

m−1 + ηD−d− d+1

m−1 ) ≪ Nǫd/ρ2
N
,

since ξ ≺ η/δ0 ≺ ρ−3
N

and η ≤ ǫ ≤ ρ
−3/(D−d)
N . Hence, all outliers are identified

as such.
We now consider (O2). On the one hand, by (48) and (16), and the expression

for ǫ and η, we have

D
1/(m−1)
i ≻ Nkǫ

d(1 ∧ (η/τ))D−d ≻ ρ3
N
logN ≻ ρ2

N
NǫdηD−d,

uniformly over k 6= 0 and i ∈ Ik. Hence, no non-outlier is identified as an outlier.
On the other hand, by (49), for any i ∈ I0,

D
1/(m−1)
i ≺ NǫdηD−d− d+1

m−1 ≺ NǫdηD−d,

which comes from m ≫ log(N)/ log(ρN). Hence, all outliers are identified as
such.

Appendix C: Proofs for the estimation of parameters

C.1. Proof of Proposition 1

Recalling the definition of Gi,ǫ in (39), we have

Cor(ǫ) =
∑

i

Gi,ǫ.

Let ǫr = ρ−r
N

and let r0 be the integer defined by ǫr0+1 < τ ≤ ǫr0 . Define

r∗
N
:= ((1− d/D)r0 + (d/D)rN)) ∧ rN ,

and note that, for r ≤ r∗
N
, (46) with ǫ in place of η is satisfied for ǫr. As there

are only order logN such r’s, Proposition 13 and the union bound imply that,
with probability at least 1− log(N)N−ρN/(Kζ),

(N/ρN)
2ǫdr(1 ∧ (ǫr/τ))

D−d ≺ Cor(ǫr) ≺ (N/ρN)
2ǫdr(1 ∧ (ǫr/τ))

D−d,

uniformly over r ≤ r∗
N
. Note that we used the fact that N2ǫDr ≪ (N/ρN)

2ǫdr(1∧
(ǫr/τ))

D−d, which holds since r, r0 ≥ 3. When this is the case,

Ar =

{

2 logN − dr log ρN +O(1), r ≤ r0;
2 logN −Dr log ρN − (D − d) log τ +O(1), r > r0.
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In particular, for r ≤ r∗
N
,

Ar −Ar+1

log ρN

=

{

d+ o(1), r ≤ r0 − 1;
D + o(1), r ≥ r0 + 1.

From the first part, we see that r̂ ≥ r0 ∧ (rN − ⌈2D/d⌉), since d ≤ D − 1
and ρN → ∞. To use the second part, note that r0 + 2 ≤ r∗

N
if, and only if,

r0 ≤ rN −⌈2D/d⌉. If this is the case, r̂ ≤ r0+1. From this follows the statement
in Proposition 1.

C.2. Proof of Proposition 2

We follow the proof of Proposition 1. We assume that d̂ = d, which happens
with probability tending to one. Let ηs = ρ−r̂−s

N
and s0 = r0 − r̂. Define

s∗
N
:= ((2Dd+ d− 2)/(D − d) + s0) ∧ (r̂ − 1),

and note that, for s ≤ s∗
N
, (46) is satisfied for ǫr̂ and ηs. Indeed, using the fact

that ǫr̂ ≥ (log(N)/N)1/dρ2D+1
N

and τ ≤ ρ−r0
N

, we get

Nkǫ
d
r̂(1 ∧ (ηs/τ))

D−d ≥ (N/(Kζ)ρN)(log(N)/N)ρ
(2D+1)d
N (1 ∧ ρ

(s0−s)(D−d)
N )

= ρN log(N) · ρ−2+(2D+1)d−(D−d)(s−s0)+
N ,

and the exponent in ρN is non-negative by the upper bound on s. As there are
only order logN such s’s, Proposition 12 and the union bound imply that, with
probability at least 1− log(N)N−ρN/(Kζ),

Cor(ǫr̂, ηs) ≻ (N/ρN)
2ζ−1ǫdr̂(1 ∧ (ηs/τ))

D−d,

Cor(ǫr̂, ηs) ≺ (N/ρN)
2ǫdr̂(1 ∧ (ηs/τ))

D−d−(d+1)/(m−1),

uniformly over s ≤ s∗
N
. Note that we used the fact that

N2ǫdr̂η
D−d
s ≪ (N/ρN)

2ǫdr̂(1 ∧ (ηs/τ))
D−d.

When this is the case,

Bs = 2 logN − dr̂ log ρN +O(1),

when s ≤ s0, and

Bs = 2 logN −Dr̂ log ρN + (−(D − d) +O(1/m))(s log ρN + log τ) +O(1),

when s > s0. In particular, for s ≤ s∗
N
,

Bs −Bs+1

log ρN

=

{

o(1), s ≤ s0 − 1;
D − d+ o(1), s = s0 + 1.

From here the arguments are parallel to those used in Proposition 1.
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