
Electronic Journal of Statistics

Vol. 5 (2011) 1471–1494
ISSN: 1935-7524
DOI: 10.1214/11-EJS650

Iterative application of dimension

reduction methods

Amanda J. Shaker and Luke A. Prendergast

Department of Mathematics and Statistics
La Trobe University

Bundoora, VIC 3086, Australia
e-mail: ajshaker@students.latrobe.edu.au; luke.prendergast@latrobe.edu.au

Abstract: The goal of this article is to introduce an iterative application of
dimension reduction methods. It is known that in some situations, methods
such as Sliced Inverse Regression (SIR), Ordinary Least Squares (OLS) and
Cumulative Mean Estimation (CUME) are able to find only a partial basis
for the dimension reduction subspace. However, for many models these
methods are very good estimators of this partial basis. In this paper we
propose a simple iterative procedure which differs from existing combined
approaches in the sense that the initial partial basis is estimated first and
the second dimension reduction approach seeks only the remainder of the
dimension reduction subspace. Our approach is compared against that of
existing combined dimension reduction approaches via simulated data as
well as two example data sets.
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1. Introduction

In regression analysis, one of the challenges faced with multi-dimensional data
sets is graphical visualization to allow the relationship(s) between response and
predictor variables to be detected. Within the past 20 years, in order to com-
bat this challenge, several dimension reduction techniques that are very simple
to implement have been introduced, including Sliced Inverse Regression (SIR)
[16], Sliced Average Variance Estimation (SAVE) [8] and Principal Hessian Di-
rections (PHD) [18]. Whilst classical slicing estimation methods such as SIR
and SAVE require dividing the response into a discrete number of slices, more
recent methods have been proposed which negate the need for slicing, such
as Discretization-Expectation Estimation [27], Cumulative Mean Estimation
(CUME), Cumulative Variance Estimation (CUVE) and Cumulative Directional
Regression (CUDR) [26]. Consider a univariate response variable Y ∈ R and p-

dimensional predictor vector x = [X1, . . . , Xp]
⊤ ∈ R

p. Then we can define the
K-index model by

y = f
(
β⊤
1 x, . . . ,β

⊤
Kx, ǫ

)
, (1)

whereK < p, f is an unknown link function, β1, . . . ,βK are linearly independent
p-dimensional column vectors and ǫ is an error term independent of x. Define
S to be the span of (β1, . . . ,βK) and note that replacing x with β⊤

1 x, . . . ,β
⊤
Kx

reduces the dimension of the model, since the dimension of the latter is K < p.
Li [16] coined S the effective dimension reduction (e.d.r.) space whose elements
are e.d.r. directions. For identifiability purposes we will assume throughout that
S is a central dimension reduction (CDR) subspace, which Cook [6] defined to
be the intersection of all dimension reduction subspaces.

It is the aim of dimension reduction methods to find a basis for S. However,
existing methodologies are not without their limitations. To combine the noted
strengths of various methods, several authors have promoted the combination
of methods, in particular when one or more of the methods are restricted to
only find a partial basis for S (see, for e.g., [17, 25, 28, 23]). Methods that find
the full basis for S are said to have the “exhaustiveness” property, which was
rigorously defined in [15].

The purpose of this article is to propose a new way of combining two (or
potentially more) dimension reduction methods by using each one iteratively.
This approach ensures that second (or further) iterations only return informa-
tion regarding S that has not already been found. Section 2 discusses some
existing methods and argues the advantages and disadvantages of each. Section
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3 describes the theory and implementation of the iterative method of combin-
ing dimension reduction methods proposed in this article. The success of the
iterative approach is assessed at the sample level in Section 4, where it is com-
pared with various existing methods via simulations and examples. Concluding
remarks are given in Section 5.

2. Dimension reduction

The use of dimension reduction methods to be implemented within this paper
is not limited to the setting of a continuous Y . However, when Y is discrete it
is difficult to conceptualize the role of the error term in (1). The model can be
further generalized (see, for e.g., [6]) to state that Y and x are such that, for
B = [β1, . . . ,βK ],

Y ⊥⊥ x|B⊤x (2)

where ⊥⊥ denotes independence. This is equivalent to requiring that Y depends
on x only through β⊤

1 x, . . . ,β
⊤
Kx whilst avoiding the necessity of an error term.

Since the link function is unknown, we cannot uniquely determine the unique
e.d.r. directions given by β1, . . . ,βK . However, dimension reduction can still be
achieved via γ⊤

1 x, . . . ,γ⊤
Kx for any γ1, . . . ,γK such that the Span(γ1, . . . ,γK) =

Span(β1, . . . ,βK). In other words, any basis for S will suffice. Given a basis
γ1, . . . ,γK for S, a plot of Y versus γ⊤

1 x, . . . ,γ⊤
Kx is called a Sufficient Summary

Plot (SSP, see [6]) which can be used to explore the relationship between Y
and x in the lower dimensional setting. At the sample level and for {yi,xi}

n
i=1

denoting n sample realizations of (Y,x) and γ̂1, . . . , γ̂K an estimated basis for
S, an Estimated SSP (ESSP) is constructed by plotting the yi’s versus the
γ̂⊤
1 xi, . . . , γ̂

⊤
Kxi’s.

We now briefly discuss several dimension reduction techniques that will be
the focus of our iterative approach. For simplicity we discuss them only at the
population level (i.e. for a random Y,x). However, all are moment based and
therefore sample estimates follow simply.

2.1. Ordinary least squares

Whilst Ordinary Least Squares (OLS) was intended for use in the multiple linear
regression framework, it is also useful in the dimension reduction setting. Let
βols = Σ−1Σxy denote the OLS slope vector where Σxy = Cov(x, Y ) is the
covariance between x and Y . For K = 1 and an additive error in (1), Brillinger
[2] showed that when x is multivariate normal, βols = cβ1 for a c ∈ R. The
conditions for which this result holds were generalized by Li & Duan [19]. They
relaxed the normality condition for x and required only that E(x|β⊤

1 x) is linear
in β⊤

1 x. An additive error term was also no longer necessary.
In the case of a general K in (1), consider the following condition proposed

by Li [16]:
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Condition 2.1. E
(
x|B⊤x

)
is linear in B⊤x

which holds when x is elliptically symmetrically distributed. However, there are
other situations which satisfy Condition 2.1 and Hall & Li [11] showed that it
often approximately holds for high dimensional x.

Condition 2.1 is equivalent to E(x|B⊤x) = µ + ΣB(B⊤ΣB)−1B⊤(x − µ)
(see, for e.g., the proof to Lemma 1 in [21]). Let u be orthogonal to S. Under
Condition 2.1,

u⊤Σ−1Cov(x, Y ) =u⊤Σ−1E
{
E
[
(x− µ)(Y − E(Y ))|B⊤x

]}

=u⊤Σ−1E
{
(Y − E(Y ))E

[
(x− µ)|B⊤x

]}
= 0.

Hence, under Condition 2.1 and the model in (1), u⊤βols = 0 for all u orthogonal
to S so that βols ∈ S. As a result, even when K > 1, OLS can still be used
to extract part of S. Further discussion and results on this in a more general
setting (that includes OLS) can be found on pages 143-147 of Cook [6]. This is
an important point when we discuss opportunities for iterative use of dimension
reduction methods later.

2.2. Sliced inverse regression

Unlike OLS, Sliced Inverse Regression [16] (SIR) can, although is not guaranteed
to, return an entire basis for S when K > 1. Under Condition 2.1, Li [16]
showed that eigenvectors corresponding to non-zero eigenvalues of Cov[E(x|Y )]
are elements of ΣS (which we define as the basis for the span of the Σβi’s).

Let S1, S2, . . . , SH denote non-overlapping subranges of Y such that
⋃H

h=1
Sh =

range(Y ). Li circumvented the challenge faced with determining E(x|Y ) by
utilizing ‘slicing’ which is equivalent to discretizing Y according to which Sh

it belongs to. This slicing strategy means that E(x|Y ) is approximated by the
slice means given as E(x|Y ∈ Sh) = µh, (h = 1, . . . , H). The choice of ph’s is up
to the researcher although it is common (and straightforward) to choose equally
probable slices such that each ph = 1/H . In practice this is akin to choosing an
(approximately) equal number of observations per slice.

Let Γ = γ1, . . . ,γK denote the basis for S returned by SIR. When SIR
operates on the standardized predictor Z = Σ−1/2(x − µ) and is followed by
a re-standardization back to the original scale, then Γ⊤ΣΓ = IK such that
the dimension reduced predictors γ⊤

1 x, . . . ,γ⊤
Kx are uncorrelated and each have

unit variance. The SIR algorithm is therefore

Step 1 For p = [p1, . . . , pH ] and µz,h = E(Z|Y ∈ Sh), determine

Vp =

H∑

h=1

phµz,hµ
⊤
z,h.

Step 2 Return Σ−1/2η1, . . . ,Σ
−1/2ηK as a basis for S where η1, . . . ,ηK are

the eigenvectors corresponding to the K largest eigenvalues of Vp.
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Under Condition 2.1 and the model in (2), Σ−1/2ηi ∈ S if λi is non-zero [16,
6]. Hence, provided rank(Vp) = K, SIR returns a basis for S under these condi-
tions. However, there are two notable limitations which can cause rank(Vp) <
K, both of which are are important to this paper. Firstly, as illustrated by
Cook & Weisberg [8], for model types which exhibit some symmetric depen-
dency structure about the mean of x, SIR will fail to find an entire basis for S
(see, for e.g.,[16, 8]). Secondly, since p1µz,1 + p2µz,2 + . . . + pHµz,H = 0, the
µz,h’s are linearly dependent so that the maximum rank of Vp is H− 1. Whilst
for a continuous Y one can choose H large enough so that H−1 ≥ K, when Y is
discrete the response discretization is not necessary and the number of slices H
is equal to the number of unique elements in the response space. For example,
if Y is binary then there are H = 2 slices and the maximum rank of Vp is one.
Both of these limitations mean that for some model types, SIR may only find
part of a basis for S.

2.3. Sliced average variance estimation

Consider the following condition:

Condition 2.2. Cov
(
x|B⊤x

)
is constant.

Recalling the slicing approach used by SIR and discussed in Section 2.2,
Cook & Weisberg [8] showed that if Conditions 2.1 and 2.2 hold (which are
both satisfied when x is normal), then slice covariances also contain information
regarding S (Li and Wang [14] also noted that SAVE holds the exhaustiveness
property if x|Y is normally distributed). Cook & Weisberg therefore introduced
SAVE, which may be implemented in a similar manner to SIR but where Step
1 in the SIR algorithm becomes, for SAVE,

Step 1 For p = [p1, . . . , pH ] and Σz,h = Cov(Z|Y ∈ Sh), determine

Mp =
H∑

h=1

ph(Ip −Σz,h)
2

and the eigen-analysis in Step 2 is conducted on Mp to obtain a basis for S
after re-standardization.

SAVE does not suffer the same restrictions with respect to symmetric de-
pendency or rank deficiencies for a discrete response that SIR does. Therefore,
provided the additional Condition 2.2 also holds, SAVE can be a useful approach
for returning a basis for S.

2.4. Principal Hessian directions

For x ∼ Np(µ,Σ), Li [18] used Stein’s Lemma [24] and properties of the Hessian
matrix to introduce PHD which may also be used to derive a basis for S. As
with SAVE, the algorithm for PHD is similar to SIR where
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Step 1 For µY = E(Y ), determine the weight-covariance matrix

Σyzz = E
[
(Y − µY )ZZ

⊤
]

(3)

and, again, the eigen-analysis in Step 2 is now conducted on Σyzz to obtain a
basis for S after re-standardization.

One advantage of PHD over SIR and SAVE is that a slicing parameter need
not be chosen. Additionally, whilst the normality condition for x seems restric-
tive, PHD is still applicable if Conditions 2.1 and 2.2 hold, although, as noted
by Cook [5], the connection with the Hessian matrix may be lost. As stated by
Li [18], one restriction of PHD is that due to the nature of the Hessian matrix,
PHD is not expected to return linear components.

Li [18] also highlighted that when linear functions of x are added or subtracted
from Y then, under the normality condition for x, the Hessian matrix does not
change and at the population level PHD is not effected. This lead to another
version of PHD that utilizes

Σrzz = E
[
RZZ⊤

]
(4)

where R = Y − µY − β⊤
ols(x − µ) is the OLS residual. This version of PHD

is typically preferred (see, for e.g., [5]) and, for many model types, estimator
variability is smaller for this residuals-based approach when compared to the
standard PHD approach [22]. We note that this residuals approach simply in-
volves a transformation of Y using the OLS residual before the implementation
of PHD. This is distinguished from the method we later propose in Section 3.3,
which instead involves first implementing OLS in the dimension reduction sense
to obtain the first component of S (rather than to simply transform Y ), followed
by the implementation of residuals-based PHD.

2.5. Combined approaches

In the rejoinder to his original paper which introduced SIR, Li [17] introduced
SIRII which, like SAVE, utilized slice covariances. In doing so Li introduced
SIRIIα, for which a convenient notation is SIRIIα = (1− α)SIR2 + α(SIRII),
which should be read as sum of (1− α) times the SIR matrix squared (i.e. V2

p
)

and α times the SIRII matrix which is based on sliced covariances. In a similar
fashion, Ye & Weiss [25] introduced the combination of (1 − α)SIR+αPHD as
well as (1−α)SIR+αSAVE. Zhu et al. [28] analysed these methods further and
also introduced variations on the combination of (1−α)SIR+αSAVE. As a result
of their analysis, the hybrid method they recommended was (1−α)SIR+αSAVE
with a parameter value of α = 0.5.

2.6. Cumulative slicing procedures

Whilst the slicing approaches such as SIR and SAVE are simple to utilize, a
possible deficiency in the continuous response case is that they may be sensitive
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to the number of slices chosen. Zhu et al. [26] extended these methods by using
the idea of cumulative slicing. Whilst SIR extracts information regarding S
using slice means given as E(x|Y ∈ Sh) and SAVE via the slice covariances
denoted Cov(x|Y ∈ Sh), (h = 1, . . . , H), Cumulative Mean Estimation (CUME)
and Cumulative Variance Estimation (CUVE) instead use E[xI(Y ≤ ỹ)] and
Cov[xI(Y ≤ ỹ)] for all ỹ ∈ R and where I(·) is the indicator function. Like SIR,
CUME requires that Condition 2.1 holds and is similarly limited with respect
to detecting all components when symmetric dependency structure is evident.
Similarly to SAVE, CUVE requires that both Conditions 2.1 and 2.2 hold.

In the same way as for SIR, SAVE and PHD, we consider CUME and CUVE
initially on the standardized scale with a re-standardization back to the original
scale using Σ−1/2 following the eigen-decomposition step. For CUME, we then
have:

Step 1: Determine E
{
E[ZI(Y ≤ ỹ)]E[ZI(Y ≤ ỹ)]⊤

}

and for CUVE:
Step 1: For p̃ = P (Y ≤ ỹ), determine E

{
[p̃Ip − Cov(ZI(Y ≤ ỹ))]

2
}
.

The approaches also allow for the possibility of weighting with respect to
Y although we are specifically dealing with the case of equal weighting as rec-
ommended by Zhu et al. [26], which are shown above. In addition to CUME
and CUVE, Zhu et al. also provide a cumulative slicing extension to the di-
rectional regression proposed by Li and Wang [14]. Complementally to the
CUME and CUVE approaches, Cumulative Directional Regression (CUDR) uses

E[(x̃−x)(x̃−x)⊤I(Y ≤ y)I(Ỹ ≤ ỹ)] which contains information regarding ΣS

where (Ỹ , x̃) is an independent copy of (Y,x). CUME, CUVE and CUDR are
all moment-based approaches and so can be employed conveniently in practice.

3. Iterative use of inverse regression methods

Before we discuss a simple iterative approach for dimension reduction, we will
consider a motivating example that highlights how SIR can be a very good
estimator of a partial basis for S.

3.1. A motivating example

Consider the K = 2 model

Y =
(
β⊤
1 x

)2
+
(
β⊤
2 x

)3
(5)

where x ∼ N10(0, I10), β1 = (1, 0, . . . , 0)
⊤

and β2 = (0, 1, 0, . . . , 0)
⊤
. As dis-

cussed by Cook &Weisberg [8] and Li [16], we would expect SIR to fail at finding

the
(
β⊤
1 x

)2
part of the model due to symmetric dependency around the mean

of x. However, we do not expect SAVE to have trouble finding this component.
For this example we will consider simulating n = 120 observations according

to this model. Let Xn denote the 120 × 10 matrix whose ith row is xi—the
simulated regressor vector for the ith observation. Let Γ̂sir and Γ̂save denote
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Table 1

Average canonical correlations for 1000 trials of SIR and SAVE for n = 120 observations
generated from the model in (5). Standard deviations are in parentheses

SIR SAVE
1st canonical correlation 0.978 (0.014) 0.939 (0.042)
2nd canonical correlation 0.258 (0.195) 0.458 (0.285)

the K = 2 basis estimates for S that are returned by SIR and SAVE respec-
tively. Since the dimension reduced regressors are of primary importance and
it is a basis for S that is to be targeted, we will report the canonical correla-
tions between each of the estimated dimension reduced regressors and XB (the
dimension reduced regressors with B = [β1,β2]). We have also chosen H = 5
equally probable slices.

We provide the average canonical correlations in Table 1 where standard de-
viations of these correlations are in parentheses. We can see that SIR is highly
capable of finding one component with an average first canonical correlation of
0.978 and a small standard deviation of only 0.014. However, it typically per-
forms poorly with respect to the second element of the basis where the average
canonical correlation is only 0.258. SAVE also performs very well with the first
component (average first canonical correlation of 0.939) but not as well as SIR.
The standard deviation for the SAVE correlation is also three times that of SIR
indicating higher variability in estimation. As expected, SAVE performs better
than SIR when estimating the second component.

In conclusion for this motivating example, we see that SIR is capable of
estimating a partial basis extremely well for this model. It would therefore be
beneficial to use this partial estimate with another use of SAVE.

3.2. Theory

We now discuss the iterative usage of dimension reduction methods that pre-
serves a good partial estimate of a basis for S found by the first method. Given
the methods discussed in Section 2, a simple approach to achieve this is to re-
move the already estimated component from the matrix derived for the second
dimension reduction method in Step 1.

Proposition 3.1. Let C be a p × p symmetric matrix whose eigenvectors
corresponding to non-zero eigenvalues are elements of Σ1/2S. Furthermore,
let P be a projection matrix onto Σ1/2S1 ⊂ Σ1/2S. Let S ′

1 be the comple-
ment of S1. Then the eigenvectors corresponding to the non-zero eigenvalues of
(Ip −P)C (Ip −P) are elements of Σ1/2S ∩Σ1/2S ′

1 (the basis whose elements
are all in Σ1/2S but not in Σ1/2S1).

Proof. Since P is a projection matrix onto a subspace Σ1/2S, then Ip −P is a
projection matrix onto the complement of this space. Hence, any eigenvectors
corresponding to nonzero eigenvalues must still be elements of Σ1/2S although
they must also be orthogonal to Σ1/2S1.
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Proposition 3.1 is useful because it provides a simple means for which to
remove from estimation the already determined components of the dimension
reduction subspace. The result is general, and there exist many possible com-
binations of existing dimension reduction methods that can be used iteratively.
We will focus our attention on three particular iterative combinations where we
have chosen the methods due mainly to (i) the first method having proven to
be a useful estimator in many applications though also having noted limitations
and (ii) the second method being a natural pairing with the first and one which
seeks to overcome the aforementioned restrictions.

We choose to operate firstly on the z-scale (i.e. focus on Σ1/2S) and then
to re-standardize to the x-scale to preserve some convenient characteristics of
the dimension reduction methods discussed earlier. For example, if γ1, . . . ,γK

are a basis for S returned by SIR, SAVE or PHD, then Var(γ⊤
k x) = 1 and

Cov(γ⊤
k x,γ⊤

j x) = 0 (k 6= j). That is, the dimension reduced regressors are
scaled to have variance 1 and they are also mutually uncorrelated. By re-
moving the component on the z-scale for the iterative approach and then re-
standardizing with respect to Σ−1/2 (as is done for SIR, SAVE and PHD) we
retain these features for the final dimension reduction subspace basis.

3.3. Iterative OLS and PHD

As in Section 2.1, let βols denote the least squares slope vector which, under the
model in (1) and Condition 2.1, is an element of S. For simplicity, let γ1, . . . ,γL

denote the PHD directions where under the assumption of a normal x (or the
less restrictive combination of Conditions 2.1 and 2.2) and the model in (1),
Span(γ1, . . . ,γL) ⊆ S. Given that OLS can only, at most, find one direction in
the dimension reduction subspace, our intention here is to use PHD conditionally
on the implementation of OLS. To remove the OLS component from the basis
to be returned by PHD, we define the associated projection matrix for OLS as

Pols =
(
β⊤
olsΣβols

)−1
Σ1/2βolsβ

⊤
olsΣ

1/2 (6)

which projects onto the subspace of Σ1/2S spanned by Σ1/2βols.
Let the PHD matrix whose eigenvectors corresponding to non-zero eigen-

values are elements of Σ1/2S be denoted Σ·zz which is equal to either Σyzz or
Σrzz as denoted in (3) and (4) respectively. Therefore, to remove the component
already retrieved by OLS, Step 1 of the PHD algorithm becomes

Step 1 Determine (Ip −Pols)Σ·zz (Ip −Pols) .

Step 2 then involves an eigen-analysis of this matrix and re-standardized eigen-
vectors corresponding to nonzero eigenvalues to form a basis for S when com-
bined with the original OLS direction. Let Γ be this basis. Then choosing a

re-scaled OLS direction of
(
β⊤
olsΣβols

)−1/2
βols results in Γ⊤ΣΓ = IK so that

each dimension reduced predictor has unit variance and the dimension reduction
predictors are mutually uncorrelated (note, however, that simply choosing βols
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still results in uncorrelated dimension reduced regressors). We will refer to this
approach as PHD|OLS. We note that PHD|OLS is quite different from the Iter-
ative Hessian Directions (IHT) method proposed by Cook and Li [7]. Although
both methods are hybrids of OLS and PHD, PHD|OLS uses OLS and PHD
separately by retrieving a component by OLS first and then retrieving further
components using PHD conditional on the OLS component already obtained.
By contrast, IHT retrieves a basis for S based on an eigen decomposition of a
matrix constructed using the OLS direction and powers of the Hessian matrix.
Lue et al. [20] also use OLS in conjunction with r-based PHD, but in a censored
survival regression setting.

3.4. Iterative SIR and SAVE

SIR and SAVE make a natural pairing with SIR utilizing slice means and SAVE
slice covariances. When Y is continuous, the same slicing strategy can be imple-
mented for both although this isn’t strictly necessary. For the iterative approach
we choose to use SIR first since (i) simulations have shown that it has very good
estimation properties for a wide choice of models and (ii) there are some known
and discussed limitations involving some model types where only part of a basis
for S is achievable. Let γ1, . . . ,γL denote a partial basis for S returned by SIR.
Then the projection matrix onto the associated subspace of Σ1/2S is equal to

Psir = Σ1/2
L∑

l=1

γlγ
⊤
l Σ1/2. (7)

For this approach, which we will refer to as SAVE|SIR, Step 1 becomes

Step 1 Determine (Ip −Psir)Mp (Ip −Psir)

and Step 2 is applied to this matrix. For simplicity, let Γ denote the basis
for S which consists of the original SIR directions and the additional SAVE
directions from the iterative step, which are the elements corresponding to re-
standardized eigenvectors corresponding to non-zero eigenvalues of the matrix
in Step 2 above. Then, again, Γ⊤ΣΓ = IK resulting in unit variance dimension
reduced regressors that are mutually uncorrelated.

3.5. Iterative CUME and CUVE

The iterative approach for CUME and CUVE is almost identical to that taken
for SIR and SAVE. Since CUME requires fewer conditions on x than what
is required for CUVE, but where CUME may be restricted due to symmetric
dependency, we focus on the application of CUME to obtain a partial basis
followed by CUVE to find the remaining elements of a basis for S. Here we
define Pcume as the projection matrix for the partial basis of Σ1/2S obtained by
CUME. Application of CUVE then follows after a pre- and post-multiplication
of (Ip −Pcume) with respect to the matrix shown in Step 1 for CUVE.
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4. Simulated comparisons and examples

4.1. Simulated comparisons

In this Section, we compare the performance of SIR, SAVE, (1− α) SIR+αSAVE
(which, for simplicity, we will refer to as SIR+SAVE), SAVE|SIR, PHD|OLS,
CUDR and CUVE|CUME using simulated data. Note that SIR+SAVE is equiv-
alent to SIR when α = 0 and SAVE when α = 1. All models considered are
K = 2 models. Simulations were run 500 times for each model and we used the
canonical correlations between γ̂⊤

1 x, . . . , γ̂⊤
Kx and β⊤

1 x, . . . ,β
⊤
Kx as the method

of assessment. Similar methods of assessment are commonly used in the context
of dimension reduction analysis (see, for example, [16] and [28]).

The first two models we consider have a continuous response. For these models
we look at the first two canonical correlations, denoted r1 and r2, separately, as
well as looking at averages. Since we will be looking at K = 2 models where in
many cases some methods will be expected to estimate one direction very well
and the other poorly, seeing r1 and r2 separately will provide useful insight.

For x ∼ N10(0, I10) and ǫ ∼ N(0, 1), the first two models are

Model 1 For β1 = [1, 0, . . . , 0]⊤ and β2 = [0, 1, 0, . . . , 0]⊤,

Y =
(
β⊤
1 x

)3
+
(
β⊤
2 x

)2
+ ǫ

Model 2 For β1 = [1, 2,−3, 0, . . . , 0]⊤ and β2 = [1, 1, 0,−2, 0, . . . , 0]⊤,

Y = sin
(
0.5β⊤

1 x
)
+ cos

(
0.5β⊤

2 x
)
+ 0.3ǫ (8)

Figure 1 shows the results of the simulation for Model 1 for 500 trials. The
first two figures show the mean canonical correlations (first and second) whilst
the third is the mean of the average of the first two canonical correlations. The
table displays the standard deviations for the average canonical correlations.
Six methods are compared; namely SAVE, SAVE|SIR, PHD|OLS, SIR+SAVE,
CUDR and CUVE|CUME. Both the residuals-based and standard PHD ap-
proaches were considered, however only the residuals-based PHD results are
shown, as they were typically superior for this example. For SIR+SAVE, three
values of α were considered (0.2, 0.5 and 0.8), however for the sake of brevity
only the SIR+SAVE results with α = 0.2 are reported, as its performance was
superior to SIR+SAVE with α =0.5 and 0.8. We have chosen n = 50, 100, 200
and 400 and H = 2, 5 and 10 equally probable choices for SIR and SAVE.

Model 1 was used for simulations in [28] because it has both a symmetric
(β⊤

2 x)
2 and asymmetric (β⊤

1 x)
3 element, so we would expect SIR to do well at

identifying the asymmetric element and SAVE to do well at finding the sym-
metric element. Figure 1 shows that PHD|OLS and CUVE|CUME’s results are
better than or equal to those of any of the other methods for all choices of n for
both r1 and r2. SAVE|SIR is the next best performer, followed by SIR+SAVE
and CUDR. The canonical correlations for SAVE are consistently the lowest
for all choices of n and H and for both directions. SAVE also shows relative
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Table of Standard Deviations

n SAVE SAVE|SIR PHD|OLS S+S α = 0.2 CUDR CUVE|CUME

50 0.12 0.14 0.14 0.13 0.14 0.14

100 0.1 0.1 0.1 0.13 0.13 0.08

200 0.14 0.03 0.05 0.06 0.08 0.02

400 0.03 0.01 0.01 0.01 0.02 0.01

Figure 1. These figures show the mean first, second and average canonical correlations for
500 iterations of data simulated from Model 1 for four choices of n (50, 100, 200 and 400)
and three values of H (2, 5 and 10) for equally probable slices for SIR and SAVE. S+S refers
to SIR+SAVE. Standard deviations for the average canonical correlations are shown in the
table.
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sensitivity to the choice of H when compared with SAVE|SIR and SIR+SAVE.
PHD|OLS, CUDR and CUVE|CUME are not affected by the choice of H , since
slicing is not required for these methods. A summary of standard deviations
are shown within the figure for the average canonical correlations when H = 5.
The standard deviations show that, in general, the variability of all methods
decreases as n increases.

Similarly to the analysis for Model 1, Figure 2 shows the results of the sim-
ulation for Model 2. This model was chosen because, as for Model 1, the model
contains a symmetric and an asymmetric element. Again, CUVE|CUME and
PHD|OLS are the best performers for this model, and they produce superior
results for all choices of n and H and for both directions. Next are SAVE|SIR
and SIR+SAVE which provide similar results, followed by CUDR and SAVE
respectively. Models 1 and 2 show that for all chosen values of n, H and α, the
results of CUVE|CUME, SAVE|SIR and PHD|OLS are better than or equal to
those of SIR+SAVE and SAVE.

In the examples we have considered thus far, PHD|OLS and CUVE|CUME
have performed exceptionally well. However, PHD|OLS can be sensitive to ex-
tremely large response values (in comparison to other responses), whereas slicing
methods such as SIR, SAVE, CUME etc. can be robust to particularly large (or
small) response values since the response plays a ‘positioning role’ only for the
ordering of the regressors and we briefly highlight this here. Additionally, and
in fairness to PHD|OLS, we also provide an example where PHD|OLS is the
preferred approach in a setting where large responses are not a concern. The
third model we therefore consider is from Zhu et al. [26] and is defined to be, for
x ∼ N15(0,Σ), where Σ is the covariance matrix with ijth element defined to
be σij = 0.2|i−j|, and β1 = [1, 1, 1, 0, . . . , 0]⊤ and β2 = [1, 0, 0, 0, 1, 3, 0, . . . , 0]⊤,

Model 3

Y = exp
[
0.2

(
β⊤
1 x+ 1

)3
+ 0.2

(
1 +

(
β⊤
2 x/2

)2)
+ 0.2ǫ

]
. (9)

We also reconsider Model 2 but with directions β1 = [1, 0, . . . , 0]⊤ and β2 =
[0, 1, 0, . . . , 0]⊤. For brevity we report only the average canonical correlations
and standard deviations for 500 trials, p = 15 and n = 400.

Table 2 shows that for Model 3, which contains extremely large response
values in comparison to other responses, PHD|OLS performs poorly, achieving
an average canonical correlation of just 0.465, compared to 0.949 and 0.968
for SAVE|SIR and CUVE|CUME respectively. On the other hand, PHD|OLS
clearly outperforms the other two methods for modified Model 2, achieving an
average canonical correlation of 0.968 compared to 0.82 for SAVE|SIR and 0.898
for CUVE|CUME.

We now consider a model which has a discrete binary response, which, for
x ∼ N10(0, I10) and ǫ ∼ N(0, 1), is defined to be

Model 4 For β1 = [1, 0, . . . , 0]⊤ and β2 = [0, 1, 0, . . . , 0]⊤,

Y =

{
1, if β⊤

1 x <
(
β⊤
2 x

)2
− 0.65 + 0.25ǫ;

2, otherwise.
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Table of Standard Deviations

n SAVE SAVE|SIR PHD|OLS S+S α = 0.2 CUDR CUVE|CUME

50 0.14 0.16 0.15 0.15 0.13 0.15

100 0.11 0.14 0.11 0.14 0.12 0.09

200 0.11 0.07 0.06 0.09 0.12 0.05

400 0.13 0.03 0.03 0.03 0.12 0.02

Figure 2. These figures show the mean first, second and average canonical correlations for
500 iterations of data simulated from Model 2 for four choices of n (50, 100, 200 and 400)
and three values of H (2, 5 and 10) for equally probable slices for SIR and SAVE. S+S refers
to SIR+SAVE Standard deviations for the average canonical correlations are shown in the
table.
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Table 2

Average canonical correlations for 500 trials of PHD|OLS, SAVE|SIR and CUVE|CUME
for n = 400 observations generated from Models 4 and a modified Model 2. *For Model 2,

β1 = [1, 0, . . . , 0]⊤ and β2 = [0, 1, 0, . . . , 0]⊤. Standard deviations are in parentheses

PHD|OLS SAVE|SIR CUVE|CUME
Model 3 0.465 (0.084) 0.949 (0.036) 0.968 (0.017)
Model 2* 0.968 (0.015) 0.82 (0.124) 0.898 (0.085)
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Figure 3. Boxplots of the average canonical correlations for 500 iterations of data simulated
from Model 4 for three choices of n (50, 100 and 200). The methods compared are SIR, SAVE,
SAVE|SIR and SIR+SAVE with values of α = 0.95 down to α = 0.05 in increments of 0.05.
SS95 refers to SIR+SAVE with α = 0.95, SS90 is SIR+SAVE with α = 0.9, etc.

Since Model 4 is a binary response model, slicing occurs naturally. As such, we
focus our analysis on the SIR and SAVE based approaches which are then nat-
urally suited to this model. In Figure 3 we have chosen to show boxplots of the
average canonical correlations so that we could highlight a particular common-
ality between SIR+SAVE and SAVE|SIR. The results for SIR and SAVE|SIR
are on the right. SIR typically performs poorly due to its inability to target an
entire basis for S. SAVE does not perform well for small n, although its perfor-
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mance improves with increasing n. The results of SAVE|SIR and SIR+SAVE
are superior to those of SIR and SAVE, however the advantage of SAVE|SIR
is that it does not require the choice of an additional parameter α. What is
obvious, however, is that SIR+SAVE clearly improves as α decreases but also
the results seem to also approach those of SAVE|SIR. We discuss this in the
following remark.

Remark 4.1. As noted earlier in this section, SIR+SAVE is equivalent to SAVE
when α = 1 and equivalent to SIR when α = 0. As such, we would expect that
as α increases, the results of SIR+SAVE would approach those of SAVE, and
that as α decreases, the results of SIR+SAVE would approach those of SIR.
Figure 3 seems to support the former claim, however the opposite of the latter
claim has occurred where as α decreases, the results seem to approach those of
SAVE|SIR rather than SIR. This is limited to the binary response case and can
be explained. In the binary case, the SIR matrix has exact rank one. Therefore,
when the SAVE matrix is added, all of the additional information (other than
that already found by SIR) is in that matrix even if α is small (but nonzero). A
small α increases the chance of the SIR information being undisturbed by SAVE
for the SIR+SAVE approach. That is, for small α the SIR matrix is prominent
and the SIR information is likely to be utilized. For large α, the SAVE matrix
becomes dominant and, as such, the SAVE information is likely to contribute
the most to the estimated basis.

In Remark 4.1 we highlighted why SIR+SAVE seems to approach SAVE|SIR
when Y is binary despite it being typically expected to approach SIR with de-
creasing α. To highlight this further we reconsider Model 1 (a continuous model)
and also now consider a fifth model, which has a discrete ternary response, de-
fined as

Model 5 For β1 = [1, 0, . . . , 0]⊤ and β2 = [0, 1, 0, . . . , 0]⊤,

Y =





1, if β⊤
1 x < β⊤

2 x
2 − 0.95 + 0.25ǫ;

2, if β⊤
2 x

2 − 0.95 + 0.25ǫ ≤ β⊤
1 x < β⊤

2 x
2 − 0.15 + 0.25ǫ;

3, otherwise,

In Figure 4 we provide boxplots of average canonical correlations for Model
1 and Model 5. The data was simulated for n = 200 observations. Unlike in the
binary case, we can now see that the results for SIR+SAVE approach the results
for SIR with decreasing α. Once again the results approach those for SAVE as
α increases. Overall the best performers for both models were SIR+SAVE with
α approximately 0.5 and SAVE|SIR which provided similar results.

4.2. Choosing K and the number of iterations

So far we have dealt with known K. However, in practice K is usually not
known and needs to be estimated. Tests for K have been developed for the
various methods discussed in this paper. For example, Li ([16, 18]) introduced
conservative tests for SIR and PHD respectively whilst Cook [5] and Bentler
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B: Average canonical correlations with n=200 for Model 5
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Figure 4. Boxplots of the average canonical correlations for 500 iterations of data simulated
from Model 1 (top) and Model 5 (bottom) for n = 200. For the Model 1 results, H = 5.
The methods compared are SIR, SAVE, SAVE|SIR and SIR+SAVE with values of α = 0.95
down to α = 0.05 in increments of 0.05. SS95 refers to SIR+SAVE with α = 0.95, SS90 is
SIR+SAVE with α = 0.9, etc.

and Xie [1] provided further suggestions for improved tests for PHD. Zhu et al.
[26] provide tests for CUME, CUVE and CUDR. Other methods exist, including
those given by Bura and Cook [3] and Ferre [10].

When it comes to the number of directions to choose from the first method
(i.e. OLS, SIR or CUME for the approaches we have considered here) then
either:

(i) The number of initial directions may be already determined. For example,
naturally OLS can only return one initial direction and SIR is restricted to
returning, at most, H − 1 (the number of slices minus one) which is most
limiting when Y is discrete where H is the number of uniquely possible
responses.

(ii) A test for K or visual inspection of the eigenvalues from the eigen-decom-
position step in the algorithm can be used for guidance.

For the second situation above, many tests for K are biased towards the
expected value of K (i.e. the rank of the matrix in Step 1 of the methods
discussed earlier) rather than the true dimension K of the underlying model.
For example, we simulated 1000 trials of Model 1 for n = 400 and p = 10
and then used the test from Li [16] for SIR. The test selected K = 1 95.5% of
the time and when this happens the choice of one direction from SIR follows
naturally.
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Complementary to this, such estimates for K can be used simultaneously to
both determine the number of directions to select for the first method and also
the number of directions to choose from the second. For example, Zhu et al. [26]
consider various models with true dimension K = 2 but where, due to symmet-
rical dependence, CUME (and also SIR) are expected to find only one direction.
For the majority of their models (four of six) and 1000 simulated runs, the test

for K based on the CUME eigenvalues chose the estimated K as K̂ = 1 100%
of the time. On the other hand, the estimated K using the CUVE and CUDR
eigenvalues was chosen to be K̂ = 2 at least 80% of the time and up to 99% of
the time (with the exception of one model for CUDR). Hence, the contradicting
estimates for K occurring in practice would lead us to choose one direction from
the first method and then focus on achieving the final element in the second.
This approach can similarly be employed with SAVE|SIR and PHD|OLS.

For the iterative approaches we have chosen, we have opted for either OLS,
SIR or CUME to be the first method. We have done so for two reasons. Firstly,
these methods have less restrictive distributional conditions on x than the meth-
ods that follow next and have been shown to perform very well for a variety of
models. Secondly, it is these approaches that are known to lack ‘exhaustiveness’
when symmetric dependency is evident. However, there is no specific reason as
to why the order of application of the methods cannot be reversed. For example,
OLS could follow PHD however it is less obvious how many directions one would
choose for PHD and how to ensure that the chosen directions do not already
include the OLS direction. Hence, the application of OLS, SIR and CUME first
is an admission that these methods have missed some elements of S although an
acknowledgement that they may have been very successful in finding a partial
basis.

Finally, it may also be possible to carry out more than two iterations of
dimension reduction methods. For example, we could use OLS first, followed by
PHD and then finish with SIR to extract perhaps a final element that was not
detected via PHD|OLS. However, thought would need to be given as to why the
first two collectively may fail to find a complete basis and given that we have a
preference for small K, the larger choices of K that intuitively follow from more
than two iterations would still restrict the researcher in a data visualization
capacity. We anticipate that combining two dimension reduction methodologies
would suffice in most situations.

4.3. Examples

Example 4.1. For the first example we consider data provided by Dr. Hayley
Castlehouse and analyzed as part of her PhD dissertation [4]. The data consists
of soil compositions for 41 soil samples that were taken from a site in North
Lincolnshire, England. We let the response be iron-oxide bound arsenic (As)
in mg.kg−1. The 15 predictors are depth and level of the chemical compounds
PO3−

4 , Mg2+, Cl−, NO−
3 , NH

+
4 , SO

2−
4 , Ca2+, K+, F−, Na+, TIC, TOC, Fe,

and Mn.
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Table 3

Adjusted R2 results of a fitted polynomial model of degree 2, using either the first direction
(i.e. K = 1) or the first two directions (i.e. K = 2) found by each method, with H = 6 slices

if applicable to the method

Method Adjusted R2 (K = 1) Adjusted R2 (K = 2)
SIR 0.724 0.728
SAVE 0.234 0.282
SIR+SAVE 0.226 0.262
PHD 0.026 0.280
OLS 0.808 –
CUME 0.771 0.797
CUVE 0.333 0.316
CUDR 0.272 0.556
SAVE|SIR – 0.777
PHD|OLS – 0.892
CUVE|CUME – 0.789

To estimate the dimension of S, we implement the Bayesian information cri-
terion (BIC) recommended by Zhu et al. [26], which is based on the eigenvalues
returned by the dimension reduction method utilized. When run on the CUME
eigenvalues, we estimate K = 1. By contrast, when we use the CUDR eigen-
values, we estimate that K = 2. Given the contradiction between these two
estimates, we will look at including some iterative approaches in our analysis.

The eleven dimension reduction methods which are compared using this data
are contained in Table 3. Whilst OLS, PHD and the cumulative slicing proce-
dures do not require the choice of a slicing parameter, a value of H = 6 has been
chosen for the other methods. There are seven observations in each slice with the
exception of the fourth slice, which contains six observations. For SIR+SAVE,
a value of α = 0.5 has been chosen, which was the value recommended by Zhu
et al. in [28].

To assess the quality of the directions found, a polynomial model of degree two
has been fit using multiple linear regression least squares to the data. Table 3
shows the adjusted R2 values where either the first direction (i.e. K = 1) or
the first two directions (i.e. K = 2) found by each method have been used.
For all methods except CUVE, the results where K = 2 were an improvement
when compared to those where K = 1. However, the improvement for SIR
was almost negligible, as its adjusted R2 value only increased from 0.724 to
0.728. This indicates that SIR found all of its useful information in the first
direction, so that when it was combined with SAVE to find a second direction,
any useful information that SAVE was able to find resulted in a much better
adjusted R2 value for SAVE|SIR of 0.777. A similar phenomenon has occurred
with PHD|OLS. OLS on its own achieved an adjusted R2 value of 0.808, however
when combined with PHD, the extra information found by PHD was enough to
improve the adjusted R2 value to 0.892. In contrast with PHD|OLS’s adjusted
R2 value of 0.892 whenK = 2, PHD’s result, when used as a standalone method,
was 0.280. Similarly, SAVE’s adjusted R2 value was 0.282. These results show the
value of the iterative approach to dimension reduction because the performance
of PHD and SAVE has been greatly improved by conditioning on the information
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found by OLS and SIR respectively. SIR+SAVE’s result of adjusted R2=0.262
(for K = 2) indicates that in this instance, the information found by SIR was
overwhelmed by that of SAVE when the two matrices were added together with
α = 0.5. Overall, the best result was that of PHD|OLS when K = 2 (adjusted
R2 = 0.892).

Example 4.2. In the next example, we consider the Pen Digit data analysed
by Zhu & Hastie [29] and Sheather et al. [23]. The Pen Digit database contains
multiple samples from 44 different writers of handwritten digits from 0 to 9.
There are 16 attributes (or predictors) for each digit. Whilst there is both a
training dataset and a learning dataset, we focus on the training dataset, as did
Sheather et al. We also focus on the 0s and 8s, since the estimated sufficient
summary plots (ESSP) indicate that these two digits cannot be separated using
just one direction (see Figure 5). This results in n = 1, 499 observations, p = 16
predictors and a binary response.
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Figure 5. ESSPs of the Pen Digit data for digits ‘0’ (black) and ‘8’ (grey).
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Due to the discrete response of the Pen Digit data, which leads to natural
slicing of the data, the four methods we compare are SAVE, SIR, SAVE|SIR
and SIR+SAVE with α = 0.5. The first method of assessment we use is the
ESSP plot for each method shown in Figure 5. This figure shows that SIR
is able to separate the groups using the first direction, but the boundary of
separation slightly overlaps. SIR’s second direction, as expected, provides no
further useful information since the SIR matrix is of rank one and information
found in a second direction would be by chance only. The second directions
of SAVE|SIR and SIR+SAVE provide useful information, as they show greater
variability amongst the 8’s, making separation easier. SAVE also separates well,
and clearly needs two directions to do so.

The second method of assessment we use involves the use of cross validation
[13] and Support Vector Machines (SVM), introduced by Karatzoglou et al. [12].
We again compare SAVE, SIR, SAVE|SIR and SIR+SAVE with α = 0.5. Using
cross validation, we use random sampling to divide the data into a training set
and a testing set. Based on the directions found by the respective methods using
observations in the training set, we predict the response for each observation in
the testing set using a two-dimensional model via the use of SVM. To create
this model, the R package e1071 [9] was used and a radial kernel was chosen.
Thus, a classification rate can be found by calculating the percentage of correct
predictions. This process was repeated 500 times so that average classification
rates, along with standard deviations, could be found. In order to test the per-
formance of each dimension reduction method relative to sample size, we let the
number of observations in the training set take the values n = 200, n = 100,
n = 60 and n = 40.

Figure 6 shows the result of this analysis. For all chosen values of n, we
can see that SAVE|SIR and SIR+SAVE produce the best classification results.
This supports the results of the binary response simulation in Section 4.1, and
SAVE|SIR has the advantage because, unlike SIR+SAVE, it does not require
the choice of the extra parameter α. In general, SIR produces the worst results
because it is only able to find one direction. However, we note that whilst SAVE’s
average classification rate is higher than SIR’s, its variability is much higher
when n = 60 and n = 40, suggesting it is more volatile than SIR for this model.

5. Conclusions

In this article, we introduced a new way of combining existing dimension reduc-
tion methods. Whilst it is known that methods such as SIR, OLS and CUME
are restricted in some cases, we have shown that the information found by these
methods for part of S can still be extremely useful. We have compared this
new iterative method with existing stand-alone dimension reduction methods
using both simulated and real-world data with either a continuous or discrete
response, and found that the method we introduce is capable of producing supe-
rior results. We also compared the new method against the combination method
recommended by Zhu et al. [28], SIR+SAVE and found the results of the new
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Figure 6. Boxplots of classification rates for 500 random samples of the Pen Digit data for
four choices of n (200, 100, 60 and 40). Methods compared are SIR, SAVE, SAVE|SIR and
SIR+SAVE with α = 0.5 (SS50).

method to be at least as good as SIR+SAVE but without the added complica-
tion of having to choose the parameter α. This does not mean that our approach
should necessarily be preferred over the existing combinations, but rather that
it provides another alternative that may sometimes provide improved results.
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