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Abstract: In this paper we consider the trace regression model. Assume
that we observe a small set of entries or linear combinations of entries of an
unknown matrix A0 corrupted by noise. We propose a new rank penalized
estimator of A0. For this estimator we establish general oracle inequality for
the prediction error both in probability and in expectation. We also prove
upper bounds for the rank of our estimator. Then, we apply our general
results to the problems of matrix completion and matrix regression. In
these cases our estimator has a particularly simple form: it is obtained by
hard thresholding of the singular values of a matrix constructed from the
observations.

AMS 2000 subject classifications: 62J99, 62H12, 60B20, 60G15.
Keywords and phrases: Matrix completion, low rank matrix estimation,
recovery of the rank, statistical learning.

Received April 2011.

1. Introduction

In this paper we consider the trace regression problem. Assume that we observe
n independent random pairs (Xi, Yi), i = 1, . . . , n. Here Xi are random matrices
of dimension m1 ×m2 and known distribution Πi, Yi are random variables in R

which satisfy

E (Yi|Xi) = tr(XT
i A0), i = 1, . . . , n, (1)

where A0 ∈ R
m1×m2 is an unknown matrix, E (Yi|Xi) is the conditional expec-

tation of Yi given Xi and tr(A) denotes the trace of the matrix A. We consider
the problem of estimating of A0 based on the observations (Xi, Yi), i = 1, . . . , n.
Though the results of this paper are obtained for general n,m1,m2, our main
motivation is the high-dimensional case, which corresponds to m1m2 ≫ n, with
low rank matrices A0.

Setting ξi = Yi − E (Yi|Xi) we can equivalently write our model in the form

Yi = tr(XT
i A0) + ξi, i = 1, . . . , n. (2)

The noise variables (ξi)i=1,...,n are independent and have mean zero.
The problem of estimating low rank matrices recently generated a consider-

able number of works. The most popular methods are based on minimization
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of the empirical risk penalized by the nuclear norm with various modifications,
see, for example, [1, 2, 3, 4, 6, 7, 9, 14, 17].

In this paper we propose a new estimator of A0. In our construction we
combine the penalization by the rank with the use of the knowledge of the
distribution Π = 1

n

∑n
i=1 Πi. An important feature of our estimator is that in a

number of interesting examples we can write it out explicitly.
Penalization by the rank was previously considered in [5, 10] for the multi-

variate response regression model. The criterion introduced by Bunea, She and
Wegkamp in [5], the rank selection criterion (RSC), minimizes the Frobenius
norm of the fit plus a regularization term proportional to the rank. The rank
of the RSC estimator gives a consistent estimation of the number of the singu-
lar values of the signal XA0 above a certain noise level. Here X is the matrix
of predictors. In [5] the authors also establish oracle inequalities on the mean
squared errors of RSC. The paper [10] is mainly focused on the case of unknown
variance of the noise. The author gives a minimal sublinear penalty for RSC
and provides oracle inequalities on the mean squared risks.

The idea to incorporate the knowledge of the distribution Π in the construc-
tion of the estimator was first introduced in [13] but with a different penalization
term, proportional to the nuclear norm. In [13] the authors establish general
sharp oracle inequalities for trace regression model and apply them to the noisy
matrix completion problem. They also provide lower bounds.

In the present work we consider a more general model than the model of
[5, 10]. It contains as particular cases a number of interesting problems such
as matrix completion, multi-task learning, linear regression model, matrix res-
ponse regression model. The analysis of our model requires different techniques
and uses the matrix version of Bernstein’s inequality for the estimation of the
stochastic term, similarly to [13]. However, we use a different penalization term
than in [13] and the main scheme of our proof is quite different. In particular,
we obtain a bound for the rank of our estimator in a very general setting (Theo-
rem 2, (i)) and estimations for the prediction error in expectation (Theorem 3).
Such bounds are not available for nuclear norm penalization used in [13]. Note,
however, that under very specific assumptions on Xi, [4] shows that the rank of
A0 can be reconstructed exactly, with high probability, when the dimension of
the problem is smaller then the sample size.

The paper is organized as follows. In Section 2 we define the main objects
of our study, in particular, our estimator. We also show how some well-known
problems (matrix completion, column masks,”complete” subgaussian design)
are related to our model. In Section 3, we show that the rank of our estimator
is bounded from above by the rank of the unknown matrix A0 with a con-
stant close to 1. In the same section we prove general oracle inequalities for
the prediction error both in probability and in expectation. Then, in Section
4 we apply these general results to the noisy matrix completion problem. In
this case our estimator has a particularly simple form: it is obtained by hard
thresholding of the singular values of a matrix constructed from the observations
(Xi, Yi), i = 1, . . . , n. Moreover, up to a logarithmic factor, the rates attained by
our estimator are optimal under the Frobenius risk for a simple class of matrices
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A(r, a) defined as follows: for any A0 ∈ A(r, a) the rank of A0 is supposed not
to be larger than a given r and all the entries of A0 are supposed to be bounded
in absolute value by a constant a. Finally, in Section 5, we consider the matrix
regression model and compare our bounds to those obtained in [5].

2. Definitions and assumptions

For 0 < q ≤ ∞ the Schatten-q (quasi-)norm of the matrix A is defined by

‖A‖q =





min(m1,m2)
∑

j=1

σj(A)
q





1/q

for 0 < q <∞ and ‖A‖∞ = σ1(A),

where (σj(A))j are the singular values of A ordered decreasingly.
For any matrices A,B ∈ R

m1×m2 , we define the scalar product

〈A,B〉 = tr(ATB)

and the bilinear symmetric form

〈A,B〉L2(Π) =
1

n

n
∑

i=1

E (〈A,Xi〉〈B,Xi〉) , where Π =
1

n

n
∑

i=1

Πi. (3)

We introduce the following assumption on the distribution of the matrix Xi:

Assumption 1. There exists a constant µ > 0 such that, for all matrices
A ∈ R

m1×m2

‖A‖2L2(Π) ≥ µ−2‖A‖22.
Under Assumption 1 the bilinear form defined by (3) is a scalar product. This

assumption is satisfied, often with equality, in several interesting examples such
as matrix completion, column masks, “complete” subgaussian design.

The trace regression model is quite a general model which contains as par-
ticular cases a number of interesting problems:

• Matrix Completion Assume that the design matrices Xi are i.i.d uni-
formly distributed on the set

X =
{

ej(m1)e
T
k (m2), 1 ≤ j ≤ m1, 1 ≤ k ≤ m2

}

, (4)

where el(m) are the canonical basis vectors in R
m. Then, the problem

of estimating A0 coincides with the problem of matrix completion under
uniform sampling at random (USR). The latter problem was studied in
[11, 15] in the non-noisy case (ξi = 0) and in [17, 9, 13] in the noisy
case. In a slightly different setting the problem of matrix completion was
considered, for example, in [7, 6, 8, 11, 12].
For such Xi, we have the relation

m1m2‖A‖2L2(Π) = ‖A‖22, (5)

for all matrices A ∈ R
m1×m2 .
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• Column masks Assume that the design matrices Xi are i.i.d. replica-
tions of a random matrix X , which has only one nonzero column. If the
distribution of X is such that all the columns have the same probability
to be non-zero and the non-zero column Xj is such that E

(

XjX
T
j

)

is the
identity matrix, then the Assumption 1 is satisfied with µ =

√
m2.

• “Complete” subgaussian design Suppose that the design matrices Xi

are i.i.d. replications of a random matrix X and the entries of X are either
i.i.d. standard Gaussian or Rademacher random variables. In both cases,
Assumption 1 is satisfied with µ = 1.

• Matrix regression The matrix regression model is given by

Ui = ViA0 + Ei i = 1, . . . , l, (6)

where Ui are 1 ×m2 vectors of response variables, Vi are 1 ×m1 vectors
of predictors, A0 is an unknown m1 ×m2 matrix of regression coefficients
and Ei are random 1 ×m2 vectors of noise with independent entries and
mean zero.
We can equivalently write this model as a trace regression model. Let
Ui = (Uik)k=1,...,m2 , Ei = (Eik)k=1,...,m2 and ZT

ik = ek(m2)Vi, where
ek(m2) are the m2 × 1 vectors of the canonical basis of Rm2 . Then we can
write (6) as

Uik = tr(ZT
ikA0) + Eik i = 1, . . . , l and k = 1, . . . ,m2.

Set V =
(

V T
1 , . . . , V

T
l

)T
and U =

(

UT
1 , . . . , U

T
l

)T
. Then

‖A‖2L2(Π) =
1

l m2
E
(

‖V A‖22
)

.

Assumption 1, which is a condition of isometry in expectation, is used in
the case of random Xi. In the case of matrix regression with deterministic
Vi we do not need it, see section 5 for more details.

• Linear regression with vector parameter Letm1 = m2 and D denotes
the set of diagonal matrices of size m1 ×m1. If A and Xi ∈ D then the
trace regression model becomes the linear regression model with vector
parameter.

The main motivation of this paper is the matrix completion and matrix regres-
sion problems, which we treat in Section 4 and Section 5.

We define the following estimator of A0:

Â = argmin
A∈Rm1×m2

{

‖A‖2L2(Π) −
〈 2

n

n
∑

i=1

YiXi, A
〉

+ λrank(A)

}

, (7)

where λ > 0 is a regularization parameter and rank(A) is the rank of the
matrix A.
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For matrix regression problem and deterministic Xi, our estimator coincides
with the RSC estimator:

Â = argmin
A∈Rm1×m2

{

1

l m2
‖V A‖22 −

2

l m2

〈

V TU,A
〉

+ λrank(A)

}

= argmin
A∈Rm1×m2

{

‖U − V A‖22 + lm2λrank(A)
}

.

This estimator, called the RSC estimator, can be computed efficiently using the
procedure described in [5].

Under Assumption 1, the functional

A 7→ ψ(A) = ‖A‖2L2(Π) −
〈 2

n

n
∑

i=1

YiXi, A
〉

+ λrank(A)

tends to +∞ when ‖A‖L2(Π) → +∞. So there exists a constant c > 0 such
that minA∈Rm1×m2 ψ(A) = min‖A‖L2(Π)≤c ψ(A). As the mapping A 7→ rank(A)

is lower semi-continuous, the functional ψ(A) is lower semi-continuous; thus ψ
attains a minimum on the compact set {A : ‖A‖L2(Π) ≤ c} and the minimum is
a global minimum of ψ on R

m1×m2 .
Suppose that Assumption 1 is satisfied with equality, i.e.,

‖A‖2L2(Π) = µ−2‖A‖22.

Then our estimator has a particularly simple form:

Â = argmin
A∈Rm1×m2

{

‖A−X‖22 + λµ2rank(A)
}

, (8)

where

X =
µ2

n

n
∑

i=1

YiXi. (9)

The optimization problem (7) may equivalently be written as

Â = argmin
k

[

argmin
A∈Rm1×m2 , rank(A)=k

‖A−X‖22 + λµ2k

]

.

Here, the inner minimization problem is to compute the restricted rank estima-
tors Âk that minimizes the norm ‖A −X‖22 over all matrices of rank k. Write
the singular value decomposition (SVD) of X:

X =

rankX
∑

j=1

σj(X)uj(X)vj(X)T , (10)

where

• σj(X) are the singular values of X indexed in the decreasing order,
• uj(X) (resp. vj(X)) are the left (resp. right) singular vectors of X.
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Following [16], one can write:

Âk =

k
∑

j=1

σj(X)uj(X)vj(X)T . (11)

Using this, we easily see that Â has the form

Â =
∑

j:σj(X)≥
√
λµ

σj(X)uj(X)vj(X)T . (12)

Thus, the computation of Â reduces to hard thresholding of singular values in
the SVD of X.

Remark. We can generalize the estimator given by (7), taking the minimum
over a closed set of the matrices, instead of the set {A ∈ R

m1×m2}, such as a
set of all diagonal matrices, for example.

3. General oracle inequalities

In the following theorem we bound the rank of our estimator in a very general
setting. To the best of our knowledge, such estimates were not known. We also
prove general oracle inequalities for the prediction errors in probability analo-
gous to those obtained in [13, Theorem 2] for the nuclear norm penalization.

Given n observations Yi ∈ R and Xi, we define the random matrix

M =
1

n

n
∑

i=1

(YiXi − E(YiXi)).

The value ‖M‖∞ determines the “the noise level” of our problem.
Let ∆ = ‖M‖∞.

Theorem 2. Let Assumption 1 be satisfied and ̺ ≥ 1. If
√
λ ≥ 2̺µ∆, then

(i)

rank(Â) ≤
(

1 +
2

4̺2 − 1

)

rank(A0),

(ii)

‖Â−A0‖L2(Π) ≤ inf
A∈Rm1×m2

{

‖A−A0‖L2(Π)

+ 2

√

λmax

(

1

̺2
rank(A)0, rank(A)

)

}

,

(iii)

‖Â−A0‖2L2(Π) ≤ inf
A∈Rm1×m2

{

(

1 +
2

2̺2 − 1

)

‖A−A0‖2L2(Π)

+ 2λ

(

1 +
1

2̺2 − 1

)

rank(A)
}

.
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Proof. It follows from the definition of the estimator Â that, for all A ∈ R
m1×m2 ,

one has

‖Â‖2L2(Π) −
〈

2

n

n
∑

i=1

YiXi, Â

〉

+ λrankÂ

≤ ‖A‖2L2(Π) −
〈

2

n

n
∑

i=1

YiXi, A

〉

+ λrank(A).

Note that

1

n

n
∑

i=1

E(YiXi) =
1

n

n
∑

i=1

E(〈A0, Xi〉Xi)

and

1

n

n
∑

i=1

〈E(YiXi), A〉 = 〈A0, A〉L2(Π).

Therefore we obtain

‖Â−A0‖2L2(Π) ≤ ‖A−A0‖2L2(Π) + 2〈M, Â−A〉+ λ(rank(A)− rank(Â)).

(13)

Due to the trace duality 〈A,B〉 ≤ ‖A‖p‖B‖q for p and q such that 1/p+1/q=1,
we have

‖Â−A0‖2L2(Π) ≤ ‖A−A0‖2L2(Π) + 2∆‖Â−A‖1 + λ(rank(A)− rank(Â))

≤ ‖A−A0‖2L2(Π) + 2∆‖Â−A‖2
√

rank(Â−A)

+ λ(rank(A)− rank(Â)).

Under Assumption 1, this yields

‖Â−A0‖2L2(Π) ≤ ‖A−A0‖2L2(Π)

+ 2µ∆‖Â−A‖L2(Π)

√

rank(Â−A) + λ(rank(A)− rank(Â))

≤ ‖A−A0‖2L2(Π) + λ(rank(A)− rank(Â))

+ 2µ∆
(

‖Â−A0‖L2(Π) + ‖A−A0‖L2(Π)

)

√

rank(Â−A)

(14)

which implies

(

‖Â−A0‖L2(Π) − µ∆

√

rank(Â−A)
)2

≤
(

‖A−A0‖L2(Π) + µ∆

√

rank(Â−A)
)2

+ λ(rank(A)− rank(Â)).

(15)
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To prove (i), we take A = A0 in (15) and we obtain:

λ(rank(Â)− rank(A0)) ≤
(

µ∆

√

rank(Â−A0)
)2

≤ λ

4̺2
(rank(Â) + rank(A0)).

(16)

Thus,

rank(Â) ≤
(

1 +
2

4̺2 − 1

)

rank(A0). (17)

To prove (ii), we first consider the case rank(A) ≤ rank(Â). Then (15) implies

0 ≤λ(rank(Â)− rank(A)) ≤
(

‖A−A0‖L2(Π) + ‖Â−A0‖L2(Π)

)

×
(

‖A−A0‖L2(Π) − ‖Â−A0‖L2(Π) + 2µ∆

√

rank(Â−A)
)

.

Therefore, for rankA ≤ rank(Â), we have

‖Â− A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2µ∆

√

rank(Â−A)

≤ ‖A−A0‖L2(Π) + 2µ∆

√

rank(Â) + rank(A)

≤ ‖A−A0‖L2(Π) +

√

2λ

̺2
rank(Â).

(18)

Using (i) we obtain

‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2

√

λ

̺2
rank(A0). (19)

Consider now the case, rank(A) ≥ rank(Â). Using that
√
a2 + b2 ≤ a+ b for

a ≥ 0 and b ≥ 0, we get from (15) that

‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2µ∆

√

rank(Â−A)

+

√

λ(rank(A)− rank(Â))

≤ ‖A−A0‖L2(Π)

+
√
λ

(
√

rank(Â) + rank(A) +

√

rank(A)− rank(Â)

)

.

(20)

Finally, the elementary inequality
√
a+ c+

√
a− c ≤ 2

√
a yields

‖Â− A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2
√

λrank(A). (21)

Using (19) and (21), we obtain (ii).
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To prove (iii), we use (14) to obtain

‖Â−A0‖2L2(Π) ≤ ‖A−A0‖2L2(Π) + λ(rank(A)− rank(Â))

+ 2

√

λ
2

̺
√
2
‖Â−A0‖L2(Π)

√

rank(Â) + rank(A)

+ 2

√

λ
2

̺
√
2
‖A−A0‖L2(Π)

√

rank(Â) + rank(A).

From which we get
(

1− 1

2̺2

)

‖Â−A0‖2L2(Π) ≤
(

1 +
1

2̺2

)

‖A−A0‖2L2(Π)

+ λ(rank(A) + rank(Â)) + λ(rank(A)− rank(Â))

≤
(

1 +
1

2̺2

)

‖A−A0‖2L2(Π) + 2λ rank(A)

and (iii) follows.

In the next theorem we obtain bounds for the prediction error in expectation.
Setm = m1+m2,m1∧m2 = min(m1,m2) andm1∨m2 = max(m1,m2). Suppose
that E(∆2) < ∞ and let Br be the set of non-negative random variables W
bounded by r. We set

S = sup
W∈Bm1∧m2

E
(

∆2W
)

max{E(W ), 1} ≤ (m1 ∧m2)E
(

∆2
)

<∞.

Theorem 3. Let Assumption 1 be satisfied. Consider ̺ ≥ 1 and a regularization
parameter λ satisfying

√
λ ≥ 2̺µ

√
S. Then

(a)

E(rank(Â)) ≤ max

{(

1 +
2

4̺2 − 1

)

rank(A0),
1

4̺2

}

,

(b)

E

(

‖Â−A0‖L2(Π)

)

≤ inf
A∈Rm1×m2

{

‖A−A0‖L2(Π)

+
5

2

√

λmax

(

rank(A),
rank(A0)

̺2
,

1

4̺2

)

}

,

and
(c)

E

(

‖Â−A0‖2L2(Π)

)

≤ inf
A∈Rm1×m2

{(

1 +
2

2̺2 − 1

)

‖A−A0‖2L2(Π)

+2λ

(

1 +
1

2̺2 − 1

)

max

(

rank(A),
1

2

)}

.
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Proof. To prove (a) we take the expectation of (16) to obtain

λ(E(rank(Â))− rank(A0)) ≤ E

(

µ2∆2
(

rank(Â) + rankA0

))

. (22)

If A0 = 0, as
√
λ ≥ 2̺µC we obtain

λE(rank(Â)) ≤ µ2C2 max{E(rank(Â)), 1} ≤ λ

4̺2
max{E(rank(Â)), 1} (23)

which implies E(rank(Â)) ≤ 1
4̺2 .

If A0 6= 0, rank(Â) + rank(A0) ≥ 1 and we get

λ(E(rank(Â))− rank(A0)) ≤ µ2 C2
(

E

(

rank(Â)
)

+ rank(A0)
)

≤ λ

4 ̺2

(

E

(

rank(Â)
)

+ rank(A0)
)

which proves part (a) of Theorem 3.
To prove (b), (18) and (20) yield

‖Â− A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2µ∆

√

rank(Â) + rank(A)

+ Irank(Â)≤rank(A)

√

λ(rank(A)− rank(Â))

where Irank(Â)≤rank(A) is the indicator function of the event {rank(Â) ≤ rank(A)}.
Taking the expectation we obtain

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2µE

(

∆

√

rank(Â) + rank(A)

)

+
√
λE

(

Irank(Â)≤rank(A)

√

rank(A)− rank(Â)

)

.

Note that Cauchy-Schwarz inequality and C2 ≥ S imply

E (∆W ) ≤ Cmax{E(W ), 1}.

Taking W =

√

rank(Â) + rank(A) we find

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) + 2µCmax

{

1,E

√

rank(Â) + rank(A)

}

+
√
λE

(

Irank(Â)≤rank(A)

√

rank(A)− rank(Â)

)

.

(24)

If E

√

rank(Â) + rank(A) < 1, which implies A = 0, as
√
λ ≥ 2̺µC we obtain

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) +

√
λ

̺
.
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This prove (b) in the case E

√

rank(Â) + rank(A) < 1.

If E

√

rank(Â) + rank(A) ≥ 1, from (24) we get

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π)

+
√
λ

{

1

̺
E

(

Irank(Â)≤rank(A)

√

rank(Â) + rank(A)

)

+E

(

Irank(Â)≤rank(A)

√

rank(A) − rank(Â)

)

+
1

̺
E

(

Irank(Â)>rank(A)

√

rank(Â) + rank(A)

)}

.

Using that ̺ ≥ 1 and the elementary inequality
√
a+ c+

√
a− c ≤ 2

√
a we find

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) +
√
λ
(

2
√

rank(A) P(rank(Â) ≤ rank(A))

+
1

̺
E
(

Irank(Â)>rank(A)

√

2rank(Â)
)

)

.

The Cauchy-Schwarz inequality and (a) imply

E‖Â−A0‖L2(Π) ≤ ‖A−A0‖L2(Π) +
√
λ
(

2
√

rank(A) P(rank(Â) ≤ rank(A))

+
2

̺

√

max

{

rank(A0),
1

4̺2

}

P
1/2(rank(Â) > rank(A))

)

.

Using that x +
√
1− x ≤ 5/4 when 0 ≤ x ≤ 1 for x = P(rank(Â) ≤ rank(A))

we get (b).
We now prove part (c). From (14) we compute

‖Â−A0‖2L2(Π) ≤ ‖A−A0‖2L2(Π) + λ(rank(A) − rank(Â))

+ 2

(√
2µ̺∆

√

rank(Â) + rank(A)

)

×
(

1√
2̺

‖Â−A0‖L2(Π) +
1√
2̺

‖A−A0‖L2(Π)

)

≤
(

1 +
1

2̺2

)

‖A−A0‖2L2(Π) +
1

2̺2
‖Â−A0‖2L2(Π)

+ 4̺2µ2∆2(rank(Â) + rank(A)) + λ(rank(A)− rank(Â))

which implies

(

1− 1

2̺2

)

‖Â−A0‖2L2(Π) ≤
(

1 +
1

2̺2

)

‖A−A0‖2L2(Π)

+ 4 ̺2µ2∆2(rank(Â) + rank(A)) + λ(rank(A)− rank(Â)).
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Taking the expectation we obtain

E‖Â−A0‖2L2(Π) ≤
(

1− 1

2̺2

)−1
{

(

1 +
1

2̺2

)

‖A−A0‖2L2(Π)

+ 4 ̺2µ2
E

(

∆2(rank(Â) + rank(A))
)

+ λE(rank(A)− rank(Â))
}

.

As C2 ≥ S we compute

E‖Â−A0‖2L2(Π) ≤
(

1− 1

2̺2

)−1
{

(

1 +
1

2̺2

)

‖A−A0‖2L2(Π)

+ 4̺2µ2 C2 max
(

1,E(rank(Â)) + rank(A)
)

+ λ(rank(A)− E(rank(Â)))
}

.

(25)

The assumption on λ and (25) imply (c). This completes the proof of Theorem 3.

The next lemma gives an upper bound on S in the case when ∆ concentrates
exponentially around its mean.

Lemma 4. Assume that

P {∆ ≥ E∆+ t} ≤ exp {−ctα} . (26)

for some positive constants c and α. Then

S ≤ 2 (E∆)
2
+ e 21+1/p (p/cα)

2/α
(27)

for p ≥ max{2 log(m1 ∧m2) + 1, α}.
Proof. Write

E
(

∆2W
)

= (E (∆))
2
E(W ) + E

[

(

∆− E (∆)
)2

W

]

+ 2E (∆)E
[(

∆− E

(

∆
))

W
]

≤ 2 (E (∆))
2
max{E(W ), 1}

+ E

[

(

∆− E (∆)
)2

W

]

+ E

[

(

∆− E (∆)
)2

W 2

]

.

Setting W̄ = max{W,W 2}, we see that it is enough to estimate E
[

(∆−E(∆))2W̄
]

for 0 ≤ W̄ ≤ (m1∧m2)
2. Putting X = ∆− E (∆) and using Hölder’s inequality

we get

E
(

X2W̄
)

≤
(

EX2p
)1/p (

E W̄ q
)1/q (28)
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where q = 1 + 1/(p − 1). We first estimate
(

EX2p
)1/p

. Inequality (26) implies
that

(

EX2p
)1/p

=





+∞
∫

0

P

(

X > t1/(2p)
)

dt





1/p

≤





+∞
∫

0

exp{−ctα/(2p)}dt





1/p

= c−2/α

(

2p

α
Γ

(

2p

α

))1/p

.

(29)

The Gamma-function satisfies the following bound:

for x ≥ 2, Γ(x) ≤
(x

2

)x−1

, (30)

cf. Proposition 12. Plugging it into (29) we find

(

EX2p
)1/p ≤ 21/p

( p

cα

)2/α

. (31)

If E(W̄ q) < 1 we get (27) directly from (31). If E(W̄ q) ≥ 1, the bound W̄ ≤
(m1 ∧m2)

2 implies that
W̄ 1/(p−1) ≤ e

and thus
(

E

(

W̄ 1+1/(p−1)
))1−1/p

≤ eE(W̄ ). (32)

Then (27) follows from (31) and (32).

4. Matrix completion

In this section we present some consequences of the general oracles inequalities
of Theorems 2 and 3 for the model of USR matrix completion. Assume that the
design matrices Xi are i.i.d uniformly distributed on the set X defined in (4).
This implies that

m1m2‖A‖2L2(Π) = ‖A‖22, (33)

for all matrices A ∈ R
m1×m2 . Then, we can write Â explicitly

Â =
∑

j:σj (X)≥
√
λm1m2

σj(X)uj(X)vj(X)T . (34)

Set r̂ = rank(Â). In the case of matrix completion, we can improve point (i)
of Theorem 2 and give an estimation on the difference of the first r̂ singular
values of Â and A0. We also get bounds on the prediction error measured in
norms different from the Frobenius norm, in particular in the spectral norm.

Theorem 5. Let λ satisfy the inequality
√
λ ≥ 2µ∆ (as in Theorem 2). Then
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(i) r̂ ≤ rank(A0);

(ii) |σj(Â)− σj(A0)| ≤
√
λm1m2

2 for j = 1, . . . , r̂;

(iii) ‖Â−A0‖∞ ≤ 3

2

√
λm1m2;

(iv) for 2 ≤ q ≤ ∞, one has

∥

∥

∥Â−A0

∥

∥

∥

q
≤ 3

2
(4/3)

2/q
√

m1m2λ(rank(A0))
1/q ,

where we set x1/q = 1 for x > 0, q = ∞.

Proof. The proof is obtained by adapting the proof of [13, Theorem 8] to hard
thresholding estimators. For completeness, we give the proof of (iii) and (iv).

Let us start with the proof of (iii). Note that X − A0 = m1m2M . Let B =
X− Â, by (34) we have that σ1(B) ≤

√
λm1m2. Then

σ1(Â−A0) = σ1(X− A0 −B) = σ1(m1m2M −B)

≤ m1m2∆+
√

λm1m2 ≤ 3

2

√

λm1m2

(35)

and we get (iii).
To prove (iv) we use the following interpolation inequality (see [17, Lem-

ma 11]): for 0 < p < q < r ≤ ∞ let θ ∈ [0, 1] be such that θ
p + 1−θ

r = 1
q then for

all A ∈ R
m1×m2we have

‖A‖q ≤ ‖A‖θp ‖A‖
1−θ
r . (36)

For q ∈ (2,∞) take p = 2 and r = ∞. From Theorem 2 (ii) we get that

∥

∥

∥Â−A0

∥

∥

∥

2
≤ 2

√

m1m2λrank(A0). (37)

Now, plugging (iii) of Theorem 5 and (37) into (36), we obtain

∥

∥

∥Â−A0

∥

∥

∥

q
≤

∥

∥

∥Â−A0

∥

∥

∥

2/q

2

∥

∥

∥Â−A0

∥

∥

∥

1−2/q

∞
≤ 3

2
(4/3)

2/q
√

m1m2λ(rank(A0))
1/q

(38)
and (iv) follows. This completes the proof of Theorem 5.

In view of Theorems 2 and 3, to specify the value of regularization parameter
λ, we need to estimate ∆ with high probability. We will use the bounds obtained
in [13] in the following two settings of particular interest:

(A) Statistical learning setting. There exists a constant η such that
maxi=1,...,,n |Yi| ≤ η. Then, we set

ρ(m1,m2, n, t) = 4ηmax

{
√

t+ log(m)

(m1 ∧m2)n
,
2(t+ log(m))

n

}

, (39)

n∗ = 4(m1 ∧m2) logm, c∗ = 4η.
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(B) Sub-exponential noise. We suppose that the pairs (Xi, Yi)i are iid and that
there exist constants ω, c1 > 0, α ≥ 1 and c2 such that

max
i=1,...,,n

E exp

( |ξi|α
ωα

)

< c2, Eξ2i ≥ c1ω
2, ∀ 1 ≤ i ≤ n.

Let A0 = (a0ij) and maxi,j |a0ij | ≤ a. Then, we set

ρ(m1,m2, n, t) = C̃(ω ∨ a)max

{
√

t+ log(m)

(m1 ∧m2)n
,

(t+ log(m)) log1/α(m1 ∧m2)

n

}

,

(40)

n∗ = (m1 ∧m2) log
1+2/α(m), c∗ = C̃(ω ∨ a).

where C̃ > 0 is a large enough constant that depends only on α, c1, c2.

In both case we can estimate ∆ with high probability:

Lemma 6 ([13], Lemmas 1, 2 and 3). For all t > 0, with probability at least
1 − e−t in the case of statistical learning setting (respectively, 1 − 3e−t in the
case of sub-exponential noise), one has

∆ ≤ ρ(m1,m2, n, t). (41)

As a corollary of Lemma 6 we obtain the following bound for

S = sup
Bm1∧m2

E
(

∆2W
)

max{E(W ), 1} .

Lemma 7. Let one of the set of conditions (A) or (B) be satisfied. Assume
n > n∗, logm ≥ 5 and W is a non-negative random variable such that W ≤
m1 ∧m2, then

E
(

∆2W
)

≤ (c∗e)2 logm

n(m1 ∧m2)
max{E(W ), 1}. (42)

Proof. We will prove (42) in the case of statistical learning setting. The proof
in the case of sub-exponential noise is completely analogous. Set

t∗ =
n

4(m1 ∧m2)
− logm.

Note that Lemma 6 implies that

P (∆ > t) ≤ m exp{−t2 n(m1 ∧m2)(c
∗)−2} for t ≤ t∗ (43)

and
P (∆ > t) ≤ 3

√
m exp{−t n/(2c∗)} for t ≥ t∗. (44)
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We set ν1 = n(m1 ∧m2)(c
∗)−2, ν2 = n(2c∗)−1 and q = log(m)

log(m)−1 . By Hölder’s

inequality we get

E
(

∆2W
)

≤
(

E∆2 logm
)1/ logm

(EW q)
1/q

. (45)

We first estimate
(

E∆2 logm
)1/ logm

. Inequalities (43) and (44) imply that

(

E∆2 logm
)1/ logm

=





+∞
∫

0

P

(

∆ > t1/(2 logm)
)

dt





1/ logm

≤






m

(t∗)2k
∫

0

exp{−t1/ logmν1}dt

+ 3
√
m

+∞
∫

(t∗)2k

exp{−t1/(2 logm)ν2}dt







1/ logm

≤ e

(

log(m)ν− logm
1 Γ(logm) +

6√
m

log(m) ν−2 logm
2 Γ(2 logm)

)1/ logm

.

(46)

The Gamma-function satisfies the following bound:

for x ≥ 2, Γ(x) ≤
(x

2

)x−1

. (47)

We give a proof of this inequality in the Appendix. Plugging it into (46) we
compute

(

E∆2 logm
)1/ logm ≤ e

(

(log(m))logmν− logm
1 21−logm

+
6√
m
(log(m))2 logmν−2 logm

2

)1/ logm

.

Observe that n > n∗ implies ν1 logm ≤ ν22 and we obtain

(

E∆2 logm
)1/ logm ≤ e log(m)ν−1

1

(

21−logm +
6√
m

)1/ logm

. (48)

If E(W q) < 1 we get (42) directly from (45). If E(W q) ≥ 1, the bound W ≤
m1 ∧m2 implies that

(W )
1/(log(m)−1) ≤ exp

{

log(m1 ∧m2)

log(m)− 1

}

≤ exp

{

log(m)− log 2

log(m)− 1

}

≤ e exp

{

1− log 2

log(m)− 1

}

.

(49)
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and we compute

(

E

(

W 1+1/(log(m)−1)
))1−1/ logm

≤ E

(

W 1+1/(log(m)−1)
)

≤ e exp

{

1− log 2

log(m)− 1

}

E(W ).
(50)

The function
(

21−logm +
6√
m

)

exp

{

(1− log 2) logm

log(m)− 1

}

=
e

2

(

21−logm +
6√
m

)

exp

{

1− log 2

log(m)− 1

}

is a decreasing function of logm which is smaller then 1 for logm ≥ 5. This
implies

(

21−logm +
6√
m

)1/ logm

exp

{

1− log 2

log(m)− 1

}

< 1 (51)

Plugging (50) and (48) into (45) and using (51) we get (42). This completes the
proof of Lemma 7.

The natural choice of t in Lemma 6 is of the order logm (see the discussion in

[13]). Then, in Theorems 2 and 3 we can take
√
λ = 2̺c

√

(m1∨m2) log(m)
n , where

the constant c is large enough, to obtain the following corollary.

Corollary 8. Let one of the set of conditions (A) or (B) be satisfied. Assume

n > n∗, logm ≥ 5, ̺ ≥ 1 and
√
λ = 2̺c

√

(m1∨m2) log(m)
n . Then,

(i) with probability at least 1− 3/(m1 +m2), one has

‖Â−A0‖2√
m1m2

≤ inf
A∈Rm1×m2

{

‖A−A0‖2√
m1m2

+ 2

√

λmax

(

rank(A)0
̺2

, rank(A)

)

}

and, in particular,

‖Â−A0‖2√
m1m2

≤ 4c

√

(m1 ∨m2) log(m)rank(A0)

n
,

(ii) with probability at least 1− 3/(m1 +m2), one has

‖Â−A0‖22
m1m2

≤ inf
A∈Rm1×m2

{(

2̺2 + 1

2̺2 − 1

) ‖A−A0‖22
m1m2

+
4̺2λ

2̺2 − 1
rank(A)

}

,

(iii)

E‖Â−A0‖2√
m1m2

≤ inf
A∈Rm1×m2

{‖A−A0‖2√
m1m2

+
5

2

√

λmax

(

rank(A),
rank(A)0

̺2
,

1

4̺2

)

}
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and, in particular,

E‖Â−A0‖2√
m1m2

≤ 5c

√

(m1 ∨m2) log(m)

n
max

(

rank(A0),
1

4

)

,

(iv)

E‖Â−A0‖22
m1m2

≤ inf
A∈Rm1×m2

{(

2̺2 + 1

2̺2 − 1

) ‖A−A0‖22
m1m2

+

(

4̺2λ

2̺2 − 1

)

max

(

rank(A),
1

2

)}

,

and, in particular,

E‖Â−A0‖22
m1m2

≤ 16 c2(m1 ∨m2) log(m)

n
max

(

rank(A0),
1

2

)

.

(v) with probability at least 1− 3/(m1 +m2), one has

∥

∥

∥Â−A0

∥

∥

∥

∞
≤ 3ρc

√

m1m2
(m1 ∧m2) logm

n

(vi) with probability at least 1− 3/(m1 +m2), one has

‖Â−A0‖22
m1m2

≤
(

2̺2 + 1

2̺2 − 1

)

inf
0<q≤2

λ1−q/2‖A0‖qq
(m1m2)q/2

,

Proof. (i)–(iv) are straightforward in view of Theorems 2 and 3. (v) is a con-
sequence of Theorem 5 (iii). The proof of (vi) follows from (i) using the same
argument as in [13] Corollary 2.

This corollary guarantees that the normalized Frobenius error ‖Â−A0‖2√
m1m2

of the

estimator Â is small whenever n > C(m1∨m2) log(m)rank(A0) with a constant
C large enough. This quantifies the sample size n necessary for successful matrix
completion from noisy data.

Comparing Corollary 8 with Theorem 6 and Theorem 7 of [13] we see that,
in the case of Gaussian errors and for the statistical learning setting, the rate of
convergence of our estimator is optimal, for the class of matrices A(r, a) defined
as follows: for any A0 ∈ A(r, a) the rank of A0 is supposed not to be larger than
a given r and all the entries of A0 are supposed to be bounded in absolute value
by a constant a.

5. Matrix regression

In this section we apply the general oracles inequalities of Theorems 2 and 3
to the matrix regression model and compare our bounds to those obtained by



Rank penalized estimators 1179

Bunea, She and Wegkamp in [5]. Recall that matrix regression model is given
by

Ui = ViA0 + Ei i = 1, . . . , l, (52)

where Ui are 1 × m2 vectors of response variables, Vi are 1 × m1 vectors of
predictors, A0 is a unknown m1 ×m2 matrix of regression coefficients and Ei

are random 1×m2 vectors of noise with independent entries and mean zero.
As mentioned in the section 2, we can equivalently write this model as a

trace regression model. Let Ui = (Uik)k=1,...,m2 , Ei = (Eik)k=1,...,m2 and ZT
ik =

ek(m2)Vi where ek(m2) are the m2 × 1 vectors of the canonical basis of Rm2 .
Then we can write (52) as

Uik = tr(ZT
ikA0) + Eik i = 1, . . . , l and k = 1, . . . ,m2.

Set V = (V T
1 , . . . , V

T
l )T , U = (UT

1 , . . . , U
T
l )T and E = (ET

1 , . . . , E
T
l )

T , then for
deterministic predictors

‖A‖2L2(Π) =
1

l m2
‖V A‖22

Note that we use Assumption 1 in the proof of Theorem 2 to derive (14) from
(13). In the case of matrix regression with deterministic Vi, we do not need this
assumption and proceed as follows. Let PA denote the orthogonal projector on
the linear span of the columns of matrix A and let P⊥

A = 1 − PA. Note that
AP⊥

AT = 0. Then, one hasM = V TE = V TPV E. Now, we use (13) and the fact
that

〈M,A− Â〉 = 〈V TPVE,A− Â〉 = 〈PV E, V (A − Â)〉.

Hence, the trace duality yields (14) where we set ∆ = ‖PV E‖∞. Thus, in the
case of matrix regression with deterministic Vi, we have proved that Theorems
2 and 3 hold with ∆ = ‖PV E‖∞ even if Assumption 1 is not satisfied.

In order to get an upper bound on S = supW∈Bm1∧m2

E(∆2W )
max{E(W ),1} in the case

of Gaussian noise we will use the following result.

Lemma 9 ([5], Lemma 3). Let r = rank(V ) and assume that Eij are indepen-
dent N(0, σ2) random variables.Then

E(‖PVE‖∞) ≤ σ(
√
m2 +

√
r) (53)

and

P {‖PV E‖∞ ≥ E(‖PVE‖∞) + σt} ≤ exp
{

−t2/2
}

; (54)

Using (54) and Lemma 4 applied to PVE we get the following bound on S:

Lemma 10. Assume that Eij are independent N(0, σ2), then

S ≤ 2 (E (‖PVE‖∞))
2
+ 4 e σ2(2 log(m1 ∧m2) + 1). (55)
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For logm2 ≥ 4, we have that m2 ≥ 2 e(2 logm2+1). Then, these two lemmas
imply that in Theorems 2 and 3 we can take

√
λ = 4σ

(√
r +

√
m2

)

to get the
following corollary:

Corollary 11. Assume that Eij are independent N(0, σ2), logm2 ≥ 4, ρ ≥ 1

and
√
λ = 4ρσ

(√
r +

√
m2

)

. Then

(i) with probability at least 1− exp
(

−m2+r
2

)

, one has

‖V (Â− A0)‖2 ≤ inf
A∈Rm1×m2

{

‖V (A−A0) ‖2

+ 2

√

λmax

(

rank(A)0
̺2

, rank(A)

)

}

and, in particular,

‖V (Â−A0)‖2 .
(√
r +

√
m2

)
√

rank(A0),

(ii) with probability at least 1− exp
(

−m2+r
2

)

, one has

‖V (Â−A0)‖22 ≤ inf
A∈Rm1×m2

{

(

2̺2 + 1

2̺2 − 1

)

‖V (A−A0)‖22

+
4̺2λ

2̺2 − 1
rank(A)

}

,

(iii)

E

(

‖V (Â−A0)‖2
)

≤ inf
A∈Rm1×m2

{

‖V (A−A0)‖2

+
5

2

√

λmax

(

rank(A),
rank(A)0

̺2
,

1

4̺2

)

}

and, in particular,

E

(

‖V (Â−A0)‖2
)

.
(√
r +

√
m2

)
√

max (rank(A0), 1/4)

(iv)

E

(

‖V (Â−A0)‖22
)

≤ inf
A∈Rm1×m2

{

(

2̺2 + 1

2̺2 − 1

)

‖V (A−A0)‖22

+

(

4̺2λ

2̺2 − 1

)

max

(

rank(A),
1

2

)

}

,

and, in particular,

E

(

‖V (Â−A0)‖22
)

.
(√
r +

√
m2

)2
max (rank(A0), 1/2)
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The symbol . means that the inequality holds up to multiplicative numerical
constants.

This Corollary shows that our error bounds are comparable to those obtained
in [5]. Points (i) and (iii) are new; here we have inequalities with leading constant
1. The results (ii) and (iv) give the same bounds as in [5] up to constants and
to an additional exponentially small term in the analog of (iv) in [5].

6. Appendix

For completeness, we give here the proof of (47).

Proposition 12.

Γ(x) ≤
(x

2

)x−1

for x ≥ 2

Proof. We set Γ̃(x) = Γ(x)
(

2
x

)x−1
. Using functional equation for Γ we note

that Γ̃(x) = Γ̃(x+ 1)2−1
(

1 + 1
x

)x
. Applying this equality n times we get

Γ̃(x) = Γ̃(x+ n) exp







n−1
∑

j=0

(x + j) log

(

x+ j + 1

x+ j

)

− n log 2







. (56)

By Stirling’s formula, we have that

Γ̃(x+ n) =

√

π

2

(

2

e

)x+n √
x+ n

(

1 +O

(

1

x+ n

))

.

Plugging this into (56) we obtain

log Γ̃(x) = lim
n→∞





n−1
∑

j=0

(

(x+ j) log

(

x+ j + 1

x+ j

))

− n

−n log 2 + 1

2
log(x+ n)

]

+ x(log 2− 1) +
1

2
log(π/2).

Note that

n−1
∑

j=0

(

(x+ j) log

(

x+ j + 1

x+ j

))

− n =
n−1
∑

j=0





1
∫

0

x+ j

x+ j + u
du− 1





= −
n−1
∑

j=0

1
∫

0

u

x+ j + u
du.

Defining

F (x) = lim
n→∞



−
n−1
∑

j=0

1
∫

0

u

x+ j + u
du +

1

2
log(x+ n)− n log 2




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we have

log Γ̃(x) = F (x) + x(log 2− 1) +
1

2
log

(π

2

)

. (57)

Observe that F is infinitely differentiable on [1,+∞). Moreover the series defin-
ing F can be differentiated k times to obtain F (k). Thus

F ′(x) = lim
n→∞





n−1
∑

j=0

1
∫

0

u

(x+ j + u)2
du +

1

2(x+ n)





= lim
n→∞

n−1
∑

j=0

1
∫

0

u

(x + j + u)2
du

(58)

and

F ′′(x) = − lim
n→∞

n−1
∑

j=0

1
∫

0

2u

(x + j + u)3
du < 0. (59)

The relation (57) implies that (log Γ̃)′(2) = F ′(2) + log 2 − 1. Using (58) for
x = 2 we get

(log Γ̃)′(2) = lim
n→∞



log(n+ 2)− log 2−
n−1
∑

j=0

1

j + 3



+ log 2− 1

= lim
n→∞



logn−
n
∑

j=1

1

j



+
1

2
= −γ +

1

2
< 0

where γ is the Euler’s constant. Together with log Γ̃(2) = 0 and (log Γ̃)′′(2) =
F ′′(2) < 0 this implies that

log Γ̃(x) < 0

for any x ≥ 2. This completes the proof of Proposition 12.
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