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1. Introduction

Let the columns ofX = (X1, . . . , Xn) ∈ Rp×n be a sampleXi, i = 1, . . . , n, from
Np(0,Σ), the p-variate normal distribution with mean 0 and positive definite
variance matrix Σ. The sum of squares matrix S = XXT follows the p-variate
Wishart distribution with n degrees of freedom, denoted by Wp(Σ, n). If p > n,
then Wp(Σ, n) is called the singular Wishart distribution. Its density was given
by Uhlig [16] under the Hausdorff measure and by Srivastava [14] under the
Lebesgue measure on the functionally independent elements of S.

Let W ∼ Wp(Σ, n) and let W− be the usual Moore-Penrose inverse of W ,
defined as the unique matrix W− such that W−WW− = W−, WW−W = W ,
and WW− and W−W are symmetric. As indicated by this definition, we use
the usual inner products based on the identity matrix Ip for the two symmetry
conditions in the Moore-Penorse inverse, unless stated otherwise. If W is non-
singular then W− is the regular inverse. The distribution of W− is called the
inverse Wishart distribution when p ≤ n and the generalized inverse Wishart
distribution when p > n. Dı́az-Garćıa and Gutiérrez-Jáimez [4] gave an ex-
pression for the density function of the generalized inverse Wishart distribution
under the Hausdorff measure. Under the Lebesgue measure on the functionally
independent elements, the density was proposed by Bodnar and Okhrin [2] and
Zhang [18] but their results seem inconsistent. The density given by Bodnar and
Okhrin involves the eigenvalues of W−, while the density given by Zhang does
not. Both of their results were based on the density of the singular Wishart dis-
tribution given by Srivastava [14], and neither gave moments of the distribution.
If W ∼ Wp(Σ, n) and p ≤ n, then we denote the inverse Wishart distribution of
W−1 as W−1

p (Σ, n). If p > n the distribution of W− is denoted as W−
p (Σ, n).

In this note we derive the first two moments of W−
p (Ip, n) without relying on

an expression of its density function, and discuss the issues involved in extending
this result to W−

p (Σ, n). Our results are based on the first two moments of the
inverse Wishart distribution [17] plus an invariance argument. We also find the
order of the spectral norm ‖ · ‖ of Wp(Σ, n) as n, p → ∞. In addition to being a
contribution to random matrix theory, these results may play a role in Bayesian
analysis because the corresponding distributions are natural conjugate priors
for the covariance matrix in the normal distribution [4]. They are also useful in
studies of estimation methods for high dimensional n < p regressions.

We present our findings on the moments W−
p (I, n) in Theorem 2.1 of Sec-

tion 2. Those findings rely on an invariance relationship that is described in
Proposition 4.1 and is related to the classical mechanics literature on tensors.
Results on the moments of a W−

p (Σ, n) random matrix and on its order are
given in Section 3.2. The proof of Theorem 2.1 is given in Section 4 and the
proof of Proposition 4.1 is given in Section 4.5.
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Throughout this article ∼ means equal in distribution and Rp×q denotes
the collection of all real p× q matrices. For sequences {an} and {bn}, we write
an ≍ bn if there are constantsm,M andN such that 0 < m < |an/bn| < M < ∞
for all n > N . The Kronecker product ⊗ of two matrices A = (Aij) ∈ Ra×b and
B ∈ Rc×d is the ac × bd matrix expressed in block form as A ⊗ B = (AijB),
i = 1, . . . , a, j = 1, . . . , b. The vec operator [8] maps A ∈ Ra×b to Rab by
stacking its columns. We use ei ∈ Rp to denote the vector with a 1 in the i-
th position and 0’s elsewhere. The p2 × p2 commutation matrix is denoted as
Cp2 =

∑

i,j(ei ⊗ ej)(e
T
j ⊗ eTi ) [10, 11].

2. Moments of W−

p (Ip, n)

The first two moments of W−1
p (Ip, n) have been known for some time:

Proposition 2.1. (von Rosen, 1988) Let W ∼ Wp(Ip, n). If n > p + 3, then
rank(W ) = p with probability 1,

E(W−1) = a1Ip,

E(W−1W−1) = b1Ip,

var{vec(W−1)} = c1(Ip2 + Cp2) + 2d1vec(Ip)vec
T (Ip),

where a1 = (n− p− 1)−1, b1 = (n− 1)c1, c
−1
1 = (n− p)(n− p− 1)(n− p− 3),

and d−1
1 = (n− p)(n− p− 1)2(n− p− 3).

There is a close relationship between the form of var{vec(W−1)} and the
spectral decomposition of a fourth-order isotropic tensor from classical elasticity
theory: Expressing var{vec(W−1)} in terms of the elements of W−1

ij of W−1 and
rearranging terms we have

cov(W−1
ij ,W−1

kl ) = c1(δikδjl + δilδjk) + 2d1δijδkl

= {(2c1 + 6d1)/3}δijδkl + 2c1{(δikδjl + δilδjk)/2− δijδkl/3},

where Kronecker’s delta δij = 1 if i = j and 0 otherwise. Except for the coeffi-
cients (2c1 + 6d1) and 2c1, this form is identical to a classical tensor decompo-
sition that is related to the bulk and shear moduli (see, for example, equation
(14) of [1] and the associated references). Further comments on the relation-
ship between this work and continuum mechanics are given in Section 4. von
Rosen (1988) gives also various moments of W−1

p (Σ, n), but here our focus is on
Wisharts with Σ = Ip.

The following theorem gives results for W−
p (Ip, n) that are analogous to those

stated in Proposition 2.1 for W−1
p (Ip, n).

Theorem 2.1. Let W ∼ Wp(Ip, n). If p > n + 3, then rank(W ) < p with
probability 1,

E(W−) = a2Ip,

E(W−W−) = b2Ip,
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var{vec(W−)} = c2(Ip2 + Cp2) + 2d2vec(Ip)vec
T (Ip),

var{tr(W−)} = 2c3n+ 2d3n
2,

where

a2 =
n

p(p− n− 1)
,

b2 =
n(p− 1)c3

p
,

c2 =
n{p(p− 1)− n(p− n− 2)− 2}c3

p(p− 1)(p+ 2)
,

d2 =
n{n2(n− 1) + 2n(p− 2)(p− n) + 2p(p− 1)}d3

p2(p− 1)(p+ 2)
,

c−1
3 = (p− n)(p− n− 1)(p− n− 3) and d−1

3 = (p− n)(p− n− 1)2(p− n− 3).

The constraints n > p+3 and p > n+3 in Proposition 2.1 and Theorem 2.1
are needed to ensure that the moments exist. Comparing Proposition 2.1 and
Theorem 2.1 we see that the first two moments of W− have the same functional
form in the singular and nonsingular cases, differing only by aj , bj, cj and
dj , j = 1, 2. The following corollary gives the asymptotic magnitudes of these
factors. Essentially, it tells us that their asymptotic behavior depends weakly
on the rank of W . Its proof seems straightforward and is omitted.

Corollary 2.1. If n > p + 3 and p/n → r with 0 ≤ r < 1 as p, n → ∞ then
a1 ≍ n−1, b1 ≍ n−2, c1 ≍ n−3 and d1 ≍ n−4. If p > n + 3 and n/p → r with
0 < r < 1 as p, n → ∞ then a2 ≍ p−1 ≍ n−1, b2 ≍ p−2 ≍ n−2, c2 ≍ p−3 ≍ n−3

and d2 ≍ p−4 ≍ n−4.

To gain some intuition about the structure of the variance in Theorem 2.1, we
first recognize that one role of Ps ≡ (Ip2 +Cp2)/2 is to project onto the space of
symmetric p×p matrices: Let A be a p×p matrix. Then Psvec(A) = {vec(A)+
vec(AT )}/2 and vec−1(PsA) = (A + AT )/2. Also, Pv ≡ vec(Ip)vec

T (Ip)/p
projects onto span{vec(Ip)}. Consequently,

var{vec(W−)} = 2c2Ps + 2pd2Pv

= 2c2(Ps − Pv) + 2(c2 + pd2)Pv,

where Ps − Pv and Pv are orthogonal projection operators. One implication of
this development is given in the following corollary.

Corollary 2.2. The eigenvalues of vec{var(W−)} are 2(c2 + pd2) with mul-
tiplicity 1, 2c2 with multiplicity p − 1 and 0 with multiplicity p(p − 1). The
corresponding eigenvectors are vec(Ip)/

√
p, the eigenvectors of Ps − Pv and the

eigenvectors of Ip2 − Ps.

If W ∼ Wp(Σ, n) then Σ−1/2WΣ−1/2 ∼ Wp(Ip, n) and

W † = Σ−1/2
(

Σ−1/2WΣ−1/2
)−

Σ−1/2

is a reflexive generalized inverse of W . It follows straightforwardly that
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Corollary 2.3. If W ∼ Wp(Σ, n) and p > n+ 3 then

E(W †) = a2Σ
−1

var{vec(W †)} = c2(Ip2 + Cp2)(Σ−1 ⊗ Σ−1) + 2d2vec(Σ
−1)vecT (Σ−1)

cov(W †
ij ,W

†
kl) = c2(Σ

−1
ik Σ−1

jl +Σ−1
il Σ−1

jk ) + 2d2Σ
−1
ij Σ−1

kl ,

where W †
ij and Σ−1

ij denote element (i, j) of W † and Σ−1. The second and third

conclusions are the same, except the third is in terms of the elements of W †.

The form of var{vec(W †)} given in Corollary 2.3 is identical to the asymptotic
variance of the covariance matrix from a sample from an elliptically contoured
distribution. In that case the constants c2 = 1+ κ and d2 = κ/2, where κ is the
kurtosis of the distribution (see, for example, Tyler [15]).

Because ΣW †W and Σ−1WW † are symmetric, the reflexive generalized in-
verse W † of W is also the Moore-Penrose inverse in the inner products based on
Σ and Σ−1 [13], but W † it is not the usual Moore-Penrose inverse since W †W
and WW † are not symmetric. We were unable to find succinct expressions for
the mean and variance of W−(Σ, n) that are analogous to those for W−(Ip, n)
given in Theorem 2.1. In the next section we give some results on the moments
of W−

p (Σ, n). We also give the order of the spectral norm ‖ · ‖ of the scaled

Wishart Σ1/2W−
p (Σ, n)Σ1/2 as n, p → ∞, which may be helpful in asymptotic

studies of regressions with p > n.

3. Properties of W−

p (Σ, n)

3.1. Mean and variance

Let W ∼ Wp(Σ, n) with p > n + 3. The singular Wishart matrix W can be
decomposed as W ∼ Y Y T , where vec(Y ) ∼ N(0,Σ⊗ In). Since Y ∈ Rp×n has
rank n with probability 1, the usual Moore-Penrose generalized inverse can be
decomposed as

W− ∼ Y (Y TY )−2Y T ∼ Σ1/2Z(ZTΣZ)−2ZTΣ1/2, (3.1)

where Z ∈ Rp×n is a matrix of iid standard normal variates. Write the spectral
decomposition of Σ as Σ = ΓΛΓT , where Γ ∈ Rp×p is orthogonal and Λ > 0
is diagonal. Since the distribution of Z is invariant under orthogonal transfor-
mations we have W− ∼ ΓΛ1/2Z(ZTΛZ)−2ZTΛ1/2ΓT . Consequently, without
loss of generality, we assume that Σ = Λ is a diagonal matrix when studying
moments and other quantities. The left and right orthogonal transformations Γ
and ΓT can be restored straightforwardly for a general Σ > 0.

Let M(Λ) = E(W−). Then it follows that for all orthogonal matrices P ∈
Rp×p,M(PTΛP ) = PTM(Λ)P and thusM(Λ) is a tensor-valued isotonic tensor
function of Λ. Isotropic tensor functions have been studied extensively in the
literature on continuum mechanics (see [12] for an introduction and [9] for recent
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results). For instance, it is known from this literature that M(Λ) and Λ have
the same eigenvectors. Although there are various representations for isotropic
tensor functions [9], they do not seem to provide further illumination in this

setting. Let V (Λ) = var{vec(W−)} ∈ Rp2×P 2

. The variance V (PTΛP ) = (PT ⊗
PT )V (Λ)(P ⊗ P ) is similarly structured as a fourth-order tensor function, and
much the same comments apply.

When Λ = Ip, the distribution of W− is invariant under orthogonal transfor-
mations, W− ∼ PW−PT for all orthogonal P ∈ Rp×p. This invariance property
was used extensively in the moment derivations for Theorem 2.1. However, when
Λ 6= Ip with distribution of W− is no longer invariant and the moments of W−

become more complicated. Nevertheless, it is still possible to make some progress
using symmetry arguments involving the rows zTi of Z, essentially utilizing in-
variance under a restricted class of transformations. This leads to the results
stated in Theorem 3.1. In preparation, let mij(Λ) = E{zTi (ZTΛZ)−2)zj}, let
vij,kl(Λ) = cov{zTi (ZTΛZ)−2zj, z

T
k (Z

TΛZ)−2)zl}, and let Λi denote the ith
diagonal element of Λ, i, j, k, l = 1, . . . , p.

Theorem 3.1. Assume that Σ = Λ is a diagonal matrix with diagonal ele-
ments Λi, i = 1, . . . , p. Then M(Λ) is a diagonal matrix with diagonal elements
Mii(Λ) = Λimii(Λ) and

V (Λ) =

p
∑

i,j=1

ΛiΛjvii,jj(eie
T
j ⊗ eie

T
j ) +

p
∑

i,j=1

ΛiΛjvij,ij(eje
T
j ⊗ eie

T
i )(Ip + Cp2)

− 2

p
∑

i=1

Λ2
i vii,ii(eie

T
i ⊗ eie

T
i ),

where the Λ arguments for v(·) on the right hand side have been suppressed
to improve readability, vii,jj = cov{zTi (ZTΛZ)−2zi, z

T
j (Z

TΛZ)−2)zj}, vij,ij =

var{zTi (ZTΛZ)−2)zj} and vii,ii = var{zTi (ZTΛZ)−2)zi}.

The moments – mii, vij,ij , vii,jj and vii,ii – needed for Theorem 3.1 evidently
do not have tractable closed-form representations.

3.2. Order of ‖Σ1/2W−

p (Σ, n)Σ1/2‖

Let Z0 = Z(ZTZ)−1/2, and let λmax and λmin denote the largest and smallest
eigenvalues of Σ. Then

ΓTW−Γ = Λ1/2Z(ZTΛZ)−2ZTΛ1/2

= Λ1/2Z(ZTZ)−1(ZT
0 ΛZ0)

−2(ZTZ)−1ZTΛ1/2.

Because the normalized matrix Z0 has orthogonal columns, (ZT
0 ΛZ0)

−2 ≤ λ−2
minIp

and thus Σ1/2W−Σ1/2 ≤ λ−2
minΓΛW

−
I ΛΓT , where W−

I ∼ W−
p (Ip, n). The order

of ‖Σ1/2W−Σ1/2‖ can now be found by application of Chebyschev’s inequality.
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Let ǫ > 0 and, for notational convenience, let H = Σ1/2W−Σ1/2. Then for all
h ∈ Rp with ‖h‖ = 1,

Pr(hTHh ≥ ǫ) ≤ Pr(λ−2
minh

TΓΛW−
I ΛΓTh ≥ ǫ)

≤ ǫ−2λ−4
min{var(hTΓΛW−

I ΛΓTh) + E2(hTΓΛW−
I ΛΓTh)}

= ǫ−2λ−4
min(h

TΓΛ⊗ hTΓΛ)var{vec(W−
I )}(ΛΓTh⊗ ΛΓTh)

+ ǫ−2λ−4
mina

2
2(h

TΓΛ2ΓTh)2

≤ ǫ−2(λmax/λmin)
4{2(c2 + pd2) + a22},

where 2(c2 + pd2) = ‖var{vec(W−
I )}‖ as given in Corollary 2.2 and a2 is as

defined in Theorem 2.1. Combining this with Theorem 2.1 and the conclusions
of Corollary 2.1 we have

Corollary 3.1. Let W ∼ Wp(Σ, n).

(i) Assume that n > p + 3 and that p/n → r with 0 ≤ r < 1. Then
‖Σ1/2W−Σ1/2‖ = Op(n

−1).
(ii) Assume that the condition number λmax/λmin of Σ is bounded as p → ∞,

that p > n+ 3 and that n/p → r with 0 < r < 1. Then ‖Σ1/2W−Σ1/2‖ =
Op(n

−1).

4. Proof of Theorem 2.1

The general idea of this proof is to use invariance arguments along with moment
matching via Proposition 2.1.

A singular Wishart matrix W ∼ Wp(Ip, n), p > n + 3, can be decom-
posed as W = Y Y T with vec(Y ) ∼ N(0, Ip ⊗ In) and Y = HTD1/2U , where
HT ∈ Rp×n is semi-orthogonal HHT = In, U ∈ Rn×n is orthogonal and the
diagonal elements d1, . . . , dn of the diagonal matrix D ∈ Rn×n are non-zero
with probability 1. Consequently, W = HTDH and W− = HTD−1H . More-
over Y TY ∼ Wn(In, p) and since p > n+3, Y TY has full rank with probability
1 and (Y TY )−1 = UTD−1U ∼ W−1

n (In, p). Interchanging n and p in Proposi-
tion 2.1 we have

E{(Y TY )−1} = E(UTD−1U) = (p− n− 1)−1In, (4.1)

E{(Y TY )−1(Y TY )−1} = E(UTD−2U) = c3(p− 1)In, (4.2)

var{vec(Y TY )−1} = var{vec(UTD−1U)} (4.3)

= c3(In2 + Cn2) + 2d3vec(In)vec
T (In),

where c−1
3 = (p−n)(p−n− 1)(p−n− 3), d−1

3 = (p−n)(p−n− 1)2(p−n− 3).

4.1. E(W−)

Using the fact that Y ∼ PY for any orthogonal matrix P ∈ Rp×p, we get

E(W−) = E[{(PY )(PY )T }−] = PE(W−)PT
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and consequently E(W−) = aIp (see, for example, Eaton [5], Proposition 2.14).
It remains to find a. Since W− = HTD−1H ,

ap = tr{E(W−)} = tr{E(HTD−1H)} = tr{E(D−1)} = n(p− n− 1)−1,

where we used (4.1) for the last equality. From this we get E(W−); that is,
a = a2.

4.2. E(W−W−)

SinceE(W−W−) = PE(W−W−)PT for any orthogonal matrix P ,E(W−W−) =
bIp. To find b we have

bp = tr{E(W−W−)} = tr{E(HTD−2H)} = tr{E(D−2)} = c3n(p− 1),

where we used (4.2) for the last equality. From this we conclude that b = b2.

4.3. var{vec(W−)} and var{tr(W−)}

Our proof of this part is based on the following proposition which gives a char-
acterization of matrices that are invariant under a subclass of the orthogonal
transformations.

Proposition 4.1. Let A ∈ Rp2×p2

such that (PT ⊗ PT )A(P ⊗ P ) = A for all
orthogonal matrices P ∈ Rp×p. Then A = cIp2 + fCp2 + 2dvec(Ip)vec

T (Ip), for
some real multipliers c, d and f .

This proposition is apparently well-known in the literature on continuum
mechanics, where it is often referred to as a representation theorem for fourth-
order isotropic tensors. Its proof for the case p = 3 can be found in the classical
literature on Cartesian tensors [6]. Jog [7] provides a concise proof and cites
ten other demonstrations of the same result, most of which are for p = 3. All of
these proofs rely heavily on analytic traditions, notation and tensor operators
that are not readily found in the statistical literature and might seem elusive on
first reading. (A dictionary connecting tensors and common matrix operations
in statistics was given by Dauxois et al. [3].) For completeness we have included
in Section 4.5 a proof that does not use the technical machinery of continuum
mechanics, but relies only on the Kronecker product, vec operator [8] and the
commutation matrix [10, 11]. These operators were defined in the Introduction
and are used widely in the statistical literature.

The collection of matrices A that satisfies the hypothesis of Proposition 4.1
forms a vector space over the real field that is closed under transposition and
multiplication. The proposition essentially gives a basis {Ip2 , Cp2 , vec(Ip)vec

T (Ip)}
for A.

For notational convenience, let V = var{vec(W−)}. Since Y ∼ PY for any
orthogonal matrix P ∈ Rp×p we have

V = var[vec{(PY )(PY )T }−] = (P ⊗ P )V (PT ⊗ PT ),
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and consequently V satisfies the hypothesis of Proposition 4.1. However, V is
also invariant under multiplication by Cp2 . Using Proposition 4.1 this implies
that c = f : V − V Cp2 = (c− f)Ip2 − (c− f)Cp2 = 0. Consequently the class of
covariance matrices must be of the form

var{vec(W−)} = c(Ip2 + Cp2) + 2dvec(Ip)vec
T (Ip). (4.4)

It remains to find c and d which we do by moment matching.
From (4.4) we have

var{tr(W−)} = var{tr(D−1)} = var{vecT (Ip)vec(W−)} = 2cp+ 2dp2. (4.5)

Now, by (4.3) we get another expression for

var{tr(D−1)} = var{vecT (In)vec(Y TY )−1} = 2c3n+ 2d3n
2 (4.6)

and using (4.5) and (4.6) together we see that c and d must satisfy

cp+ dp2 = c3n+ d3n
2. (4.7)

Since we are pursuing two factors – c and d – we require a second independent
equation to determine them uniquely. This can be obtained by first taking the
trace of (4.4) to get tr[var{vec(W−)}] = cp2 + cp + 2dp. Second, we obtain a
known expression for tr[var{vec(W )−}] by writing it as

tr[var{vec(W−)}] = tr[E{vec(W−)vecT (W−)}]−tr[E{vec(W−)}ET {vec(W−)}]

and using previous results to reduce the right hand side. Using (4.2) and the
previously derived form for E(W−) we have

tr[E{vec(W−)vecT (W−)}] = tr[E{vec(HTD−1H)vecT (HTD−1H)}]
= tr{E(D−2)} = nc3(p− 1),

tr[E{vec(W−)}ET {vec(W−)}] = a22p.

Consequently,
cp2 + cp+ 2dp = nc3(p− 1)− a22p. (4.8)

Using Maple to solve (4.7) and (4.8) for c and d gives the solutions stated in
Theorem 2.1.

4.4. Moments of higher order

Moments of higher order can in principle be found similarly, by using results from
von Rosen [17] in combination with moment matching. For instance, consider
E{(W−)3} = E(HTD−3H) = b3Ip. Proceeding as in Section 4.2,E{(Y TY )−3} =
E(UTD−3U) = r3In, where r3 can be obtained from von Rosen’s Corollary 3.1
again interchanging the roles of n and p. Consequently, b3 = nr3/p.
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4.5. Proof of Proposition 4.1

The proof of Proposition 4.1 is based on using various subclasses of the orthogo-
nal matrices to characterize the columns of A. This characterization is described
in the next lemma, which uses the same hypothesis as the proposition.

Lemma 4.1. Let A ∈ Rp2×p2

be such that (PT ⊗ PT )A(P ⊗ P ) = A for all
orthogonal matrices P ∈ Rp×p. Then for some real factors h, d, s1 and s2,

(i) A(ei ⊗ ei) = hvec(Ip) + d(ei ⊗ ei) for i = 1, . . . , p.
(ii) A(ei ⊗ ej) = s1(ei ⊗ ej) + s2(ej ⊗ ei) for i 6= j = 1, . . . , p.

Proof. This proof is based on taking various forms for P in the hypothesized
relationship. We do not distinguish these forms notationally.

Part (i): Let P be any orthogonal matrix with the property that Pei = ei
for a selected index i. Restricting consideration to this subclass of orthogonal
matrices and multiplying the hypothesized equation on the right by ei ⊗ ei we
have (PT ⊗ PT )A(ei ⊗ ei) = A(ei ⊗ ei). Let M = vec−1{A(ei ⊗ ei)} so that

vec(PTMP ) = vec(M). (4.9)

Without lost of generality take i = p, and consider orthogonal matrices of the
form

P =

(

P1 0
0 1

)

,

where P1 ∈ R(p−1)×(p−1) is any orthogonal matrix. Clearly, Pep = ep. Partition
M = (Mjk), j, k = 1, 2 according to the partition of P . We consider the four
partition components Mjk separately.

(1). From (4.9) we get PT
1 M11P1 = M11 for all orthogonal matrices P1 ∈

Rp−1. It is well known that this implies M11 = hpIp−1 for some real multiplier
hp (see, for example, Eaton [5], Proposition 2.14).

(2). PT
1 M12 = M12 for all orthogonal matrices P1 implies that M12 = 0:

Write M12 = λU with U ∈ Rp−1 a semi-orthogonal matrix. Taking PT
1 to be an

orthogonal matrix with row j equal to UT , we haveM12 = λej for any j = 1 . . . p
and therefore M12 = 0. Similarly, M21 = 0.

(3). Finally, M22 ∈ R1 is arbitrary and it follows that M has the form
M = hpIp + dpepe

T
p with dp = M22 − hp. Therefore, for i = 1, . . . , p,

vec(M) = A(ei ⊗ ei) = hivec(Ip) + di(ei ⊗ ei). (4.10)

It remains to show that hi and di are constant over the index i. Take a new
P such that Pei = ej and Pej = ei for two selected indices i 6= j. Then using
(4.10), the hypothesis and (4.10) again we find

hivec(Ip) + di(ei ⊗ ei) = A(ei ⊗ ei)

= (PT ⊗ PT )A(P ⊗ P )(ei ⊗ ei)

= (PT ⊗ PT )A(ej ⊗ ej)
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= (PT ⊗ PT ) (hjvec(Ip) + dj(ej ⊗ ej))

= hjvec(Ip) + dj(ei ⊗ ei).

Therefore hi = hj = h, di = dj = d and part (i) follows.
Part (ii): The proof of this conclusion follows the same logic as the proof of

part (i), but we use the subclass of orthogonal matrices with the property that
Pei = ei and Pej = ej for selected indices i 6= j. Restricting consideration to
this subclass and multiplying the hypothesized equation on the right by ei ⊗ ej
we have (PT ⊗PT )A(ei ⊗ ej) = A(ei ⊗ ej). Let M = vec−1{A(ei ⊗ ej)} so that
vec(PTMP ) = vec(M). Without lost of generality take i = p − 1 and j = p,
and consider orthogonal matrices of the form

P =

(

P1 0
0 I2

)

,

where P1 ∈ R(p−2)×(p−2) is any orthogonal matrix. Partition M = (Mjk), j, k =
1, 2 to conform with the partitions of P . Using the hypothesis of the lemma, we
reason as follows. (1) PT

1 M11P1 = M11 for all P1 orthogonal matrices of order
p−2 again implies thatM11 = cijIp−2 for some real factor cij . (2) P

T
1 M12 = M12

for all orthogonal matrices P1 implies again M12 = 0, and analogously M21 = 0.
(3) M22 is arbitrary and therefore

A(ei ⊗ ej) = cijvec(Ip)+ s1ij(ei ⊗ ej)+ s2ij(ej ⊗ ei)+ tij(ei ⊗ ei) + uij(ej ⊗ ej).
(4.11)

It follows from part (i) and the fact that AT also satisfies the hypothesis that
(eTk ⊗ eTk )A(ei ⊗ ej) = 0 for i 6= j = 1, . . . , p and k = 1, . . . , p. Using this result
and multiplying (4.11) by (eTk ⊗ eTk ), with k 6= i and k 6= j, (eTi ⊗ eTi ) and
(eTj ⊗ eTj ) respectively we conclude that cij = tij = uij = 0 for i 6= j. Therefore

A(ei ⊗ ej) = s1ij(ei ⊗ ej) + s2ij(ej ⊗ ei), i 6= j. (4.12)

It remains to show that s1ij and s2ij are constant in the indices i 6= j. Take
a new subclass of P ’s such that, for two additional selected indices k 6= s,
Pei = ek, and Pej = es where still i 6= j. Then using (4.12), the hypothesis and
(4.12) again we get that

s1ij(ei ⊗ ej) + s2ij(ej ⊗ ei) = (PT ⊗ PT )A(P ⊗ P )(ei ⊗ ej)

= (PT ⊗ PT )A(ek ⊗ es)

= (PT ⊗ PT ) (s1ks(ek ⊗ es) + s2ks(es ⊗ ek))

= s1ks(ei ⊗ ej) + s2ks(ej ⊗ ei).

Multiplying the first and the last term by (eTi ⊗ eTj ) and (eTj ⊗ eTi ) respectively
we get

A(ei ⊗ ej) = s1(ei ⊗ ej) + s2(ej ⊗ ei), for i 6= j,

which concludes the proof of the lemma.



Generalized inverse Wishart moments 157

Turning to the proof of Proposition 4.1, we first show that the multipliers
in Lemma 4.1 are functionally related; in particular, d = s1 + s2. It follows
immediately from part (ii) of Lemma 4.1 that, for i 6= j, A(P ⊗ P )(ei ⊗ ej) =
(P ⊗P ) (s1(ei ⊗ ej) + s2(ej ⊗ ei)). Taking P to be in the subclass of orthogonal
matrices with the property that, for selected indices i 6= j, Pei = (ei + ej)/

√
2

and Pej = (ej − ei)/
√
2, we have immediately that

A

(

ei + ej√
2

⊗ ej − ei√
2

)

= s1

(

ei + ej√
2

⊗ ej − ei√
2

)

+ s2

(

ej − ei√
2

⊗ ei + ej√
2

)

Expanding this equation and simplifying we find that

d((ej ⊗ ej)− (ei ⊗ ei)) = (s1 + s2) ((ej ⊗ ej)− (ei ⊗ ei))

and consequently d = s1 + s2. The conclusion of the proposition now follows
from Lemma 4.1 with d = s1 + s2: Taking v =

∑

i,j cij(ei ⊗ ej),

Av = A





∑

i,j

cij(ei ⊗ ej)





=
∑

i6=j

cij (s1(ei ⊗ ej) + s2(ej ⊗ ei)) +

p
∑

i=1

cii (hvec(Ip) + (s1 + s2)(ei ⊗ ei))

= s1
∑

i,j

cij(ei ⊗ ej) + s2
∑

i,j

cij(ej ⊗ ei) + h

p
∑

i=1

ciivec(Ip)

= s1v + s2Cp2v + h1vec(Ip)vec
T (Ip)v,

where h1 = h
∑p

i=1 cii.

5. Proof of Theorem 3.1

Recall that Theorem 3.1 requires Σ = Λ to be a diagonal matrix. For notational
convenience, letH = (ZTΛZ)−2. The conclusion thatM(Λ) is a diagonal matrix
arises by noting that, for i 6= j, zTi Hzj ∼ −zTi Hzj, and thus E(zTi Hzj) = 0.

By a similar symmetry argument, the element vij,kl of V equals 0 when
at least one of its indices i, j, k, l is distinct; that is, not equal to any other
index. If no indices are distinct then they must be equal in pairs, leading to
four possibilities: for i 6= j, vii,jj , vij,ij , vij,ji and, for i = j, vii,ii. However,
vij,ij = vij,ji, which leads to the three v terms in the Theorem. The form of V
follows from these results, the representation V =

∑

ij,kl(ΛiΛkΛkΛl)
1/2vij,kl ×

vec(eie
T
j )vec(eke

T
l ), and the definition of the commutation matrix.
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