
Electronic Journal of Statistics

Vol. 5 (2011) 31–40
ISSN: 1935-7524
DOI: 10.1214/11-EJS595

Convergence of functional k-nearest

neighbor regression estimate with

functional responses

Heng Lian∗

Division of Mathematical Sciences

School of Physical and Mathematical Sciences

Nanyang Technological University

Singapore 637371

e-mail: henglian@ntu.edu.sg

Abstract: Let (X1, Y1), . . . , (Xn, Yn) be independent and identically dis-
tributed random elements taking values in F×H, where F is a semi-metric
space and H is a separable Hilbert space. We investigate the rates of strong
(almost sure) convergence of the k-nearest neighbor estimate. We give two
convergence results assuming a finite moment condition and exponential
tail condition on the noises respectively, with the latter requiring less strin-
gent conditions on k for convergence.
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1. Introduction

Let (F , d(., .)) be a semi-metric space, (H, 〈·〉) a separable Hilbert space, and let
(X,Y ), (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be independent identically distributed
F × H-valued random pairs. In regression analysis, usually an estimate of the
function m(x) = E(Y |X = x) is being sought using n pairs of data points.

In the literature, two related classes of nonparametric estimates have been
proposed. The first one is the Nadaraya-Watson estimate or kernel estimate [20,
16], with the well-known drawback that it ignores the local denseness/sparseness
of the data and uses a fixed bandwidth parameter on the entire predictor space.
The k-nearest neighbor (k-NN) method addresses this problem by using adaptive
neighborhood size based on the distance of a point from its neighbors [5, 4, 13].

In the classical setting, the observation pairs reside in the Euclidean spaces. In
particular, F = Rd andH = R is the most common and most studied case in the
statistical literature. With the increasing interest at the present moment in many
fields of statistics in which the observations are curves, such as speech recordings,
weather data, commodity prices, functional regression analysis as an extension
of classical setting has risen to the center stage of statistical research. Two major
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approaches exist for functional data analysis. The parametric modeling approach
was masterfully documented in the monograph [19], and the nonparametric
approach was proposed in the pioneering work [9] and also popularized by the
book [11]. Another nonparametric approach is based on the reproducing kernel
Hilbert spaces framework [18, 15].

For some applications, the dependent variable takes values in a more gen-
eral space than finite-dimensional Euclidean spaces. For example, one might
predict annual precipitation using temperature measurements [19], or predict
future hourly electricity consumption based on past history [1]. In this note
we investigate the convergence rates of functional k-NN estimate when the re-
gression output takes values in a general separable Hilbert space H. Although
it is conceptually straightforward to apply k-NN method in this context, the
demonstration of its asymptotic properties poses technical difficulties due to
the functional responses.

This work can be regarded as an extension of [3] where k-NN method in func-
tional regression with scalar responses is studied. For functional responses, the
theoretical investigation involves extra complications. Besides, we use a slightly
more general setup (in terms of weights vni defined in the next section) and also
emphasize the role of the assumption on errors.

During the final stage of preparation for this manuscript, the author learned
that Dr. Frederic Ferraty and his collaborators have recently obtained corre-
sponding results with functional responses, although in the context of Nadaraya-
Watson kernel regression. On the one hand, they used the stronger assumption
on the noise (similarly to our Assumption 4 below) while we also obtained rates
under finite moment assumption (as in our Assumption 3). On the other hand,
they studied inferences using bootstrap and we did not investigate the inference
problems here.

2. Estimation and rates of convergence

Consider the simple additive noise model Y = m(X) + ǫ where ǫ takes val-
ues in H, has mean zero (in the sense of Bochner integral, see [14]), and is
independent of covariate X . Given n copies of independent observations Dn =
{(X1, Y1), . . . , (Xn, Yn)}, the k-NN estimate at any x ∈ F is defined by

m̂(x) =
n
∑

i=1

vniYi , (2.1)

where (vn1, . . . , vnn) is a (possibly random) probability vector. Note we consider
estimation and convergence at a fixed x and thus we sometimes omit explicitly
stating the fixed covariate. For example, a nearest neighbor always refers to the
nearest neighbor of a fixed x. Two specific examples of vni follow.

Example 1. Take vni = anj if Xi is the j−th nearest neighbor, with an1 ≥
an2 ≥ · · · ≥ ann a deterministic probability vector, thus putting more weights
in (2.1) for data closer to x. Setting anj = 1/k if j ≤ k and 0 otherwise gives us
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back the simple k-NN estimate. We should note that even in this simplest case,
vni depends not just onXi since allXj , j ≤ n together determine the identities of
x’s nearest neighbors, which leads to some complications in theoretical analysis.

Example 2. Take vni = K(d(Xi, x)/H)/
∑

j K(d(Xj , x)/H) where K is a ker-
nel function andH is the distance of the k−th nearest neighbor. Mathematically,

H = min{h ∈ R :

n
∑

i=1

I{Xi ∈ B(x, h)} ≥ k} , (2.2)

where B(x, h) = {x′ ∈ F : d(x′, x) ≤ h} and I{.} denotes the indicator func-
tion. For simplicity we only consider the case where the kernel function K is
compactly supported and nonincreasing on [0, 1].

Naturally we need the following assumption on the regression function to
obtain meaningful rates of convergence.

Assumption 1. m is bounded and Lipschitz continuous at x, that is, ||m(x)|| ≤
B, ∀x ∈ F and ||m(x) − m(x′)|| ≤ Md(x, x′)α. The Lipschitz condition only
needs to be satisfied locally on an open neighborhood of the fixed x.

In the following theoretical investigations, we directly take vn1 ≥ vn2 ≥ · · · ≥
vnn. For our two examples above, this amounts to assuming that the n data pairs
have already been ordered according to the distance of Xi to x so that X1 is the
nearest neighbor of x, for example (ties are broken by comparing indices in the
original sequence). We assume such reordering has been performed throughout.
We need the following conditions on vni.

Assumption 2. Suppose
∑n

i=k+1 vni = O(bn) and denote ‖v‖s = (
∑n

i=1 v
s
ni)

1/s,
we assume bn → 0, ‖v‖2 → 0, where the asymptotic orders are in the sense of
almost sure convergence. We also require that k/n→ 0 and k/ logn→ ∞.

Some moment conditions are necessary on the norm of the noise also.

Assumption 3. E||ǫ||r <∞ for some r > 2.

As an alternative, we can instead impose a stronger exponential tail condition.

Assumption 4. P (||ǫ|| > a) ≤ exp{−Cap} with C > 0 and p > 0, for any
a > 0.

Although Assumption 4 is much stronger than finite moment condition in
Assumption 3, it is satisfied by many Gaussian processes, whose norm typically
exhibits sub-Gaussian tails (see for example the Appendix of [23]) and thus
satisfies this assumption with p = 2.

Our convergence results below are stated in terms of the critical quantity
φ(h) := P ({x′ : x′ ∈ B(x, h)}) which is called the small ball probability. Its
importance has been demonstrated in [10, 11, 8] for functional kernel regression.
The quantity φ(h) is closely related to the ǫ−covering number of the Banach
space F , which is defined as the smallest number of open balls of radius ǫ that
cover the set F . A set with finite ǫ−covering number for all ǫ > 0 is called totally
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bounded. For our purpose, since we are interested in the regression function
at a fixed x ∈ F , the global property of total boundedness is not necessary.
However, if we assume a uniform small ball probability over F , that is cψ(h) ≤
P (B(x, h)) ≤ Cψ(h) for some positive increasing function ψ independent of x,
then it automatically implies total boundedness of F . In fact, supposeD(ǫ) is the
maximal number of points xi ∈ F with d(xi, xj) ≥ ǫ (the so-called ǫ−packing
number), we have 1 = P (F) ≥ D(ǫ) · cψ(ǫ/2) using the fact that each ball
of radius ǫ/2 around a point xi has probability at least cψ(ǫ/2), whence D(ǫ)
is finite and F is totally bounded by the well known relationship between the
packing number and the covering number (see for example [24]).

The main results for k-NN estimates satisfying the above assumptions are
the following.

Theorem 1. If Assumptions 1, 2 and 3 hold and
∑

∞

n=1(logn)
(r−2)/2(‖v‖r/

‖v‖2)r < ∞, then ||m̂(x) − m(x)|| = O(bn + [φ−1(2k/n)]α + (logn)1/2‖v‖2)
almost surely, where φ−1(x) := inf{h : φ(h) ≥ x}.

Alternatively, assuming exponential tail decay, we have

Theorem 2. If Assumptions 1, 2 and 4 hold, then ||m̂(x) −m(x)|| = O(bn +
[φ−1(2k/n)]α + (logn)1+1/p‖v‖2) almost surely.

Comparing the two related results above, we see that in Theorem 1, when
the weaker assumption 3 is used, we require an extra condition on the weight
vector vni. From the discussion after the corollary below, this condition actually
imposes some strong constraints on k in some simple examples.

The theorems above are stated for general weight vector vni, 1 ≤ i ≤ n.
When specialized to some commonly used weight vector, we have the following
corollary.

Corollary 1. For the simple k-NN estimates (vni = 1/k for i ≤ k and 0
otherwise), the theorems above hold with bn = 0 and ‖v‖2 = O(1/

√
k). The

same applies to Example 2 (with a kernel compactly supported and bounded
away from zero on [0, 1]) presented previously.

Remark 1. In the above Corollary we only aim for the simplest results while
more complicated kernel functions can be dealt with using lengthier arguments
and additional assumption on the small ball probability. In these two simple
examples we have vni ∼ 1/k for i ≤ k and 0 otherwise, and thus the condition
∑

∞

n=1(logn)
(r−2)/2(‖v‖r/‖v‖2)r <∞ reduces to

∑

∞

n=1(log n)
(r−2)/2k−(r/2−1) <

∞ (note k is a function of n). We see this condition generally requires that k
increases polynomially in n, with the requirement less stringent for bigger r.

Remark 2. In [11], the authors distinguished two types of processes: the frac-
tal type processes and the exponential type processes. The former is charac-
terized by φ(h) ∼ hτ , for some τ > 0 and the latter characterized by φ(h) ∼
exp{−(1/hτ1) log(1/hτ2)}, τ1 > 0, τ2 ≥ 0. The fractal type processes are similar
to finite dimensional problems in many aspects, while for infinite dimensional
case such as when the covariate curves belong to some smoothness class, ex-
ponential type processes are more typical. For example, the simple Gaussian
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process, Brownian motion, is of exponential type. The paper [22] provides other
more complicated Gaussian processes all of which are of exponential type. From
the rates obtained in the Corollary, it is easy to see that for exponential type pro-
cesses the convergence rates are logarithmic in the sample size, much slower than
the classical finite-dimensional cases. Note that as discussed above, under As-
sumption 3, we require that k increases polynomially in n, which seems to make
it similar to the finite dimensional case. However, this impression is misleading.
For example, when φ(h) ∼ exp{−1/hτ} as in typical functional contexts, we
have φ−1(2k/n) ∼ {1/ log(n/(2k))}1/τ , the convergence rate is logarithmic in n
whether k increases polynomially or logarithmically in n.

3. Proofs

In the proofs, different appearances of C denote possibly different positive con-
stants, even within the same expression. We start off by showing a relatively
simple result on the distance from x to its k−th nearest neighbor.

Lemma 1. Suppose k/n→ 0 and k/ logn→ ∞. Let H be the distance from x to
its k−th nearest neighbor as defined in (2.2), then P (H ≥ φ−1(2k/n), i.o.) → 0,
where i.o. means “infinitely often”, and φ−1(x) := inf{h : φ(h) ≥ x}.

Proof. First we note that φ is right-continuous and non-decreasing and thus
h = φ−1(x) implies φ(h) ≥ x. Denote a = φ−1(2k/n), p = φ(a) and thus
np ≥ 2k. We have

P (H ≥ φ−1(2k/n))

= P (
∑

i

I{Xi ∈ B(x, a)} ≤ k)

= P (
∑

i

I{Xi ∈ B(x, a)} − np ≤ k − np)

≤ P (|
∑

i

I{Xi ∈ B(x, a)} − np| ≥ np/2)

≤ 2exp{−1

2
(np/2)2/[np(1− p) + (np/6)]}

≤ 2exp{−Cnp} ,

where we applied the Bernstein’s inequality for Bernoulli random variables (see
for example the Appendix in [17]). Then P (H ≥ φ−1(2k/n), i.o.) → 0 can be
shown using Borel-Cantelli lemma noting that k/ logn→ ∞.

Proof of Theorem 1. We use the following decomposition into the bias term and
the variance term.

||m̂(x) −m(x)|| ≤ ||
∑

i

vni(m(Xi)−m(x))|| + ||
∑

i

vniǫi||. (3.1)
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The bias term is easier to deal with. In fact,

||
∑

i

vni(m(Xi)−m(x))|| ≤ 2B

n
∑

i=k+1

vni + ||
k

∑

i=1

vni(m(Xi)−m(x))||

= O(bn + [φ−1(
2k

n
)]α) ,

by Assumption 1 and Lemma 1.
Now we deal with the variance term. Let Sn =

∑n
i=1 vniǫi and the following

arguments are conditional on {X1, . . . , Xn} (in effect treating vni as nonrandom
weights). Following the idea of Section 6.3 in [14], we write ||Sn|| − E||Sn|| =
||
∑n

i=1 vniǫi||−E||
∑n

i=1 vniǫi|| =
∑n

i=1 di (where we remind the reader that the
expectation is conditional on {X1, . . . , Xn}), with di =E[||Sn|| |Gi]−E[||Sn|| |Gi−1]
where Gi is the σ−algebra generated by ǫ1, . . . , ǫi (G0 is the trivial σ−algebra).
It is easy to see that {di} is a real-valued martingale difference sequence which
enables us to use relevant exponential type inequalities below. Citing Lemma
6.16 in [14], we know

|di| ≤ ||ǫi||vni + vniE||ǫi|| ≤ ||ǫi||vni + Cvni (3.2)

and
E(d2i |Gi−1) ≤ v2niE||ǫi||2. (3.3)

We bound the variance term in four steps.
Step 1: We show E||Sn|| = O(‖v‖2).

E||Sn||

= E||
n
∑

i=1

vniǫi||

≤

√

√

√

√E〈
n
∑

i=1

vniǫi,

n
∑

i=1

vniǫi〉

= O(

√

∑

i

v2ni)

= O(‖v‖2) .

Step 2: Let d′i = diI{|di| ≤ L) for some L > 0 to be specified later. We have
P (

∑n
i=1(d

′

i − E(d′i|Gi−1)) > a) ≤ exp{−Ca2/(aL+ (
∑

i v
2
ni))}, ∀a > 0.

Using (3.3), E[(d′i−E(d′i|Gi−1))
2|Gi−1] ≤ E(d′2i |Gi−1) ≤ E(d2i |Gi−1) = O(v2ni)

and together with |d′i −E(d′i|Gi−1)| ≤ 2L, we get E(|d′i −E(d′i|Gi−1)|m|Gi−1) ≤
C(2L)m−2v2ni. Since d

′

i − E(d′i|Gi−1), i ≤ n is a martingale difference sequence,
using Lemma 8.9 in [21] (Berstein’s inequality for martingales), we obtain the
desired bound.

Step 3: Let d′′i = di − d′i = diI{|di| > L}. We have P (
∑

i |d′′i −E(d′′i |Gi−1)| >
a) ≤ C(

∑

i v
r
ni)L

1−r/a.
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Using Hölder’s inequality and Markov’s inequality, we have

E(|d′′i − E(d′′i |Gi−1)|)
≤ 2E(|d′′i |)
= 2E(|di|I{|di| > L})
≤ 2{E(|di|r)}1/rP (|di| > L)1−1/r

≤ 2{E(|di|r)}1/r{
E(|di|r)
Lr

}1−1/r

= 2E(|di|r)L1−r

≤ CvrniL
1−r ,

and note that in the last line above we used the bound (3.2). Thus we have
P (

∑

i |d′′i −E(d′′i |Gi−1)| > a) ≤ E[
∑

i |d′′i −E(d′′i |Gi−1)|]/a ≤ C(
∑

i v
r
ni)L

1−r/a.
Step 4: Finally, we demonstrate the bound for the variance term in (3.1).
Using E(di|Gi−1) = E(d′i|Gi−1) + E(d′′i |Gi−1) = 0, we have that di = d′i −

E(d′i|Gi−1) + (d′′i − E(d′′i |Gi−1)) and then

P (||Sn|| − E||Sn|| > 2a)

≤ P (
∑

i

(d′i − E(d′i|Gi−1)) > a) + P (
∑

i

(d′′i − E(d′′i |Gi−1)) > a)

≤ exp{−Ca2/(aL+ (
∑

i

v2ni))} + C(
∑

i

vrni)L
1−r/a ,

by the previous two steps. Setting a = C(log n)1/2‖v‖2 for a constant C large
enough and L = ‖v‖2(logn)−1/2, an application of the Borel-Cantelli Lemma
leads to ||Sn|| − E||Sn|| = O((log n)1/2‖v‖2), using the assumption that
∑

i(logn)
(r−2)/2(‖v‖r/‖v‖2)r <∞. Combining this with the result from Step 1,

the variance term is thus ||Sn|| = O((log n)1/2‖v‖2).
Proof of Theorem 2. The general proof strategy is the same as Theorem 1. In
particular, the bias term is bounded in the same way. For the variance term,
only Step 3 and Step 4 need to be replaced by the following.

Step 3’: We show P (
∑

i E(d′i|Gi−1) > a) + P (for some i, |di| > L) = O(n ·
exp{−CLp/vpn1}), if we set a = C(logn)1+1/p‖v‖2 and L = C(log n)1/pvn1 for
C large enough.

Consider the first probability, we have

E(d′i|Gi−1) ≤ E(|di|I{|di| > L|Gi−1)

≤ (E|di|r|Gi−1))
1/rP (|di| > L|Gi−1)

1−1/r

≤ C(E||ǫi||rvrni)1/rexp{−C(L− Cvni)
p/vpni}

≤ Cvniexp{−CLp/vpni}
≤ Cexp{−CLp/vpn1} ,

using (3.2) and Assumption 4 in the third inequality above. Thus E(d′i|Gi−1) ≤
a/n if we set a = C(logn)1+1/p‖v‖2 (note that a ≥ ‖v‖2 ≥ vn1 ≥ 1/n) and
L = C(logn)1/pvn1, and then P (

∑

iE(d′i|Gi−1) > a) = 0.
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For the other probability term, again using (3.2) and Assumption 4, we have

P (for some i, |di| > L)

≤ 1− P (∀i, vni||ǫi|| ≤ L− Cvni)

≤ 1− (1 − exp{−C(L− Cvni)
p/vpni})n

≤ 1− (1 − exp{−CLp/vpn1})n

≤ n · exp{−CLp/vpn1} ,

where in the last line above we used the simple inequality (1− x)n ≥ 1− nx.
Step 4’: To demonstrate the bound for the variance term, we use

P (||Sn|| − E||Sn|| > 2a)

= P (
∑

i

di > 2a)

≤ P (
∑

i

(d′i − E(d′i|Gi−1)) > a) + P (E(d′i|Gi−1) > a) + P (for some i, |di| > L)

≤ exp{−Ca2/(aL+
∑

i

v2ni)}+ n · exp{−CLp/vpn1} ,

by the bounds obtained in Step 2 and Step 3’. Finally set a = C1(logn)
1+1/p‖v‖2

and L = C2(logn)
1/pvn1 (choose C2 large enough to make the second term above

summable and then choose C1 large enough to make the first term summable)
and apply the Borel-Cantelli Lemma and then use the result from Step 1 to get
||Sn|| = O((log n)1+1/p‖v‖2).
Proof of Corollary 1. For the simple k-NN method this is obvious. For ker-
nel k-NN, it is also obvious that bn = 0 by the definition of H . Since vni =
K(d(Xi, x)/H)/

∑

j K(d(Xj , x)/H) ≤ C/
∑

j K(d(Xj , x)/H) andK(d(Xj , x)/H)
is bounded away from zero for j ≤ k and 0 for j > k by the assumptions made
on K, we have vni = O(1/k) for i ≤ k and 0 otherwise. It then follows that
‖v‖2 = O(1/

√
k).

4. Discussion

We assumed in the paper that H is a Hilbert space while the covariate space
is a much more general semi-metric space. That the response is in a Hilbert
space is necessary for applying the results in [14] and thus it seems difficult
to consider the response in a semi-metric space. However, it is possible to
assume that H is a Banach space. The proofs go through without change
for Banach space except for Step 1 in the proof where we used the inner
product. In general Banach space, it is not clear how to deal with E‖Sn‖ in
Step 1. However, under the additional assumption that H is a Banach space
of type p, then by Proposition 9.11 in [14] or Definition 2.3 in [2], we have
E‖Sn‖ = O((E‖Sn‖p)1/p) = O((

∑

i v
p
niE‖ǫi‖p)1/p) = O(‖v‖p) and thus an

extra ‖v‖p will appear in the convergence rates.
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Finally, we mention some possibilities for further studies. For functional re-
gression with scalar responses, uniform convergence was obtained in [12], asymp-
totic normality was shown in [8, 6] for the independent case and α-mixing case
respectively, and [7] studied inferences using bootstrap. We expect these results
can be extended to k-NN estimates with functional responses under stronger
assumptions.
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