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Abstract. Azzalini’s skew-normal distribution is obtained through a condi-
tional reduction of a multivariate normal distribution parameterized with a
correlation matrix. It seems natural that when the parameterization of that
multivariate normal distribution is complexified, more flexible skew-normal
distributions could be obtained. In this note this specification strategy, previ-
ously explored by Azzalini [Scand. J. Stat. 33 (2006) 561–574] among many
other authors, is formally analyzed through an identification analysis.

1 Introduction

Skewed-normal distributions can be obtained as a conditional reduction of a mul-
tivariate normal distribution as follows (see Capitanio et al., 2003; Arellano-Valle
and Azzalini, 2006): let U0 ∈ R and U1 ∈ R

d be two random vectors such that

U =
(

U0
U1

)
∼ N1+d

((
0
0

)
,�∗ =

(
1 δT

δ �̄

))
,

where δ ∈ (−1,1)d, �̄ ∈ R
d×d is a positive definite symmetric matrix and �∗ is

a correlation matrix. Let Z d= (U1|U0 > −γ ), where d= means equal distribution.
Thus, the probability density function (p.d.f.) of Z is given by

fZ(z|θ) = C(γ )φd(z|�̄)�

(
γ + δT �̄−1z√
1 − δT �̄−1δ

)
, z ∈ R

d, (1.1)

where φd(z − μ|�) is the p.d.f. of the normal distribution Nd(0,�), �(z) is the
cumulative density function (c.d.f.) of the standard normal distribution evaluated
at z, and C−1(γ ) = �(γ ). Density (1.1) is parameterized by θ = (γ, δ, �̄) ∈ R ×
(−1,1)d × R

d×d . In this context, a random variable with a density given by (1.1)
and a parameter θ is said to have a standard extended skew-normal distribution;
it is denoted as Z ∼ E S Nd(θ). Alternatively, along the paper, we will denote as
Z ∼ S Nd(θ) the extended skewed-normal distribution obtained from a reduction
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of multivariate normal distribution parameterized with a covariance matrix instead
of a correlation matrix and with a given parameter θ . In this case, we will call
this distribution simply a skewed-normal distribution. It is important to stress that
the skewed-normal distributions are closed under affine linear transformations of
the form Y = ξ + ωZ, where ξ ∈ R

d is a location parameter and ω ∈ R
d×d is a

scale matrix. Thus, the skewed-normal distribution induced by Y will be called a
location-scale skewed-normal distribution.

From time to time, some skewed-normal distributions have been introduced, all
of them having a common genesis, namely, the reduction of a multivariate normal
distribution with a covariance matrix instead of a correlation matrix. The covari-
ance matrix which has been considered is of the following types:

� =
(

DT ϒD −DT ϒ

−ϒD ϒ + �

)
, � =

(
	 + DT �D DT �

�D �

)
,

where D ∈ R
d, ϒ and � are positive definite matrices in R

d×d , and 	 ∈ R
+. How-

ever, it is important to stress that the identifiability is typically lost when a mul-
tivariate normal distribution is reduced by conditioning (see Florens et al., 1990,
Chapter 4). The objective of this note consists, therefore, in establishing an identi-
fied parameterization of the skewed-normal distribution when a general covariance
matrix at the multivariate normal level is considered.

2 Identified parameterization for the skewed-normal distributions

Parameter identification can be defined in terms of parametric minimal sufficiency
(see Kadane, 1974; Picci, 1977; Florens et al., 1990). It can be proved that if the
mapping θ �−→ P θ is one-to-one, then θ is the minimal sufficient parameter for
the data Z in the sense that θ fully characterizes the sampling process p(Z|θ)

and if φ is another parameter characterizing the same sampling process, then θ

is an injective function of φ. Moreover, the minimal sufficient parameter is al-
ways a function of a countable number of sampling expectations (see Florens et
al., 1990, Chapter 4). This means that a parameterization of interest ψ = g(θ) for
some function g is identified, when there exist measurable functions f and h such
that ψ = h{E(f (Z)|θ)}. Consequently, only identified parameters have a statisti-
cal interpretation because they can be expressed in terms of the sampling process.

The identification of the skewed-normal distributions through the concept of
minimal sufficient parameter is next established by assuming that the multivariate
normal covariance matrix � is of the form

� =
(


 δT

δ �̄

)
, (2.1)
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where δ ∈ R
d, �̄ ∈ R

d×d is a variance–covariance matrix and 
 ∈ R
+. In this

case, the p.d.f. of Z d= (U1|U0 > −γ ) is given by

fZ(z|θ) = C(γ,
)φd(z|�̄)�

(
γ + δT �̄−1z√

 − δT �̄−1δ

)
, z ∈ R

d, (2.2)

where C−1(γ,
) = �(γ
−1/2) and θ = (γ, δ,
, �̄) ∈ R × R
d × R

+ × R
d×d,

with δ = (δ1, . . . , δd)T and ω̄ij = �̄[i, j ] for i, j = 1, . . . , d. Also, the r th cumu-
lants κr for Zi, Zj and Zk, i, j, k = 1, . . . , d , are given by

κ1
i =

(
δi


1/2

)
ζ1

(
γ


1/2

)
, κ2

ij = ω̄ij − δiδj



ζ2

(
γ


1/2

)
, (2.3)

κ3
ijk =

(
δiδj δk


3/2

)
ζ3

(
γ


1/2

)
, (2.4)

where ζr(x) is the r th derivative of ζ0(x) = log{2�(x)}. Considering η = 
−1/2γ

and αi = 
−1/2δi , and using (2.3)–(2.4), it follows that, for i, j, k = 1, . . . , d,

αi = κ1
i

ζ1(η)
, (2.5)

ω̄ij = κ2
ij − κ1

i κ1
j

ζ2(η)

ζ 2
1 (η)

, (2.6)

ζ3(η)

ζ 3
1 (η)

=
∑

i

∑
j

∑
k κ3

ijk

(
∑

i κ
1
i )(

∑
j κ1

j )(
∑

k κ1
k )

. (2.7)

It is important to stress that there are as many well-defined αi’s as δi ’s are dif-
ferent from zero. Taking into account that κr, r = 1,2,3, are measurable func-
tions of E[f (Z)|θ ], with f a measurable function, then, once η is identified from
equation (2.7), the identification of both ω̄ij and αi follows from equations (2.6)
and (2.5), respectively. The identification of η follows after noticing that the func-
tion υ(η) = ζ3(η)/ζ 3

1 (η) is a strictly increasing function (for a proof, see the Ap-
pendix). Consequently, the equation (2.7) implies that

η = υ−1
( ∑

i

∑
j

∑
k κ3

ijk

(
∑

i κ
1
i )(

∑
j κ1

j )(
∑

k κ1
k )

)
,

and, therefore, the minimal sufficient parameter of the skewed-normal sam-
pling process is given by ψ = (η,α, �̄) ∈ R × R

d × R
d×d , where η = 
−1/2γ

and α = 
−1/2δ. In other words, ψ is identified and then the p.d.f. of the
skewed-normal distribution can be written as a function of ψ , namely, fZ(z|θ) =
C(η)φd(z|�̄)�(

η+αT �̄−1z√
1−αT �̄−1α

)
.= fZ(z|ψ) with C−1(η) = �(η). Finally, note that,

since � is a variance–covariance matrix, 1 − αT �̄−1α > 0.
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3 Discussion

Although the result proposed above may seem straightforward, the main ob-
jective of it is to establish the fact that the identified parameters at the multi-
variate normal level are quite different from those which can be identified at
the skewed-normal level (after reduction by conditioning). Thus, for example,
in the case of the extended skew-normal distribution (2.2), the parameterization
θ = (γ, δ,
, �̄), indexing the extended skew-normal distribution (2.2), is not iden-
tified by the observations generated by the skew-normal process, although δ, 


and �̄ are identified with respect to the underlying multivariate normal distribu-
tion. However, according to the result presented in Section 2, the parameterization
ψ = (η = 
−1/2γ,α = 
−1/2δ, �̄) is identified by the skewed-normal process
(2.2); it can be noted that the identified parameter ψ is a noninjective function
of the parameter θ .

The previous comment leads to focus our attention on a typical way used to
construct a skewed-normal distribution, namely, through a reduction of a mul-
tivariate normal distribution in which � is a correlation matrix, instead of a
variance–covariance matrix (see, e.g., Azzalini, 2005; Arellano-Valle and Azza-
lini, 2006). In fact, the � matrix (2.1) becomes a correlation matrix after im-
posing the following restrictions: 
 = 1, ω̄ii = 1 and ω̄ij ∈ (−1,1) ∀i 	= j for
i, j = 1, . . . , d. Under these restrictions, it follows that δ ∈ (−1,1)d and, there-
fore, the parameter ψ = (γ, δ, �̄) ∈ R × (−1,1)d × R

d×d is identified. When
the parameter γ is equal to 0 and an affine linear transformation Y = ξ + ωZ
is considered, then a straightforward application of the result presented in Sec-
tion 2 leads to prove that the parameter ψ = (α, ξ ,�) ∈ R

d × R
d × R

d×d is iden-
tified, with α = 
−1/2ωδ and � = ω�̄ω. It is important to stress that the param-
eter ω cannot be estimated unless an additional restriction is considered. A typi-
cally considered restriction is ω = diag(ω11, . . . ,ωdd); in this case, the parameter
ψ = (δ, ξ ,ω, �̄) ∈ (−1,1)d × R

d × R
d×d × R

d×d is identified.
The reader can recognize that this form of constructing skewed-normal distribu-

tions considers particular restrictions leading to identify the parameters of interest
for the skewed-normal process, say, γ, δ, ξ and ω. In fact, the main advantage of
that form of constructing skewed-normal distributions is that the scale parameter
ω can be estimated from the skewed-normal sampling process and, when γ = 0, δ
is a function of the skewness index γ1 as defined by Fisher (2003). In addition, the
centered parameterization proposed by Azzalini and Dalla Valle (1996) allows to
make interpretable the parameters ξ and ω in terms of expectation and variance of
random variable Y, respectively.

Summarizing, it can be concluded that an eventual extension of a skewed-
normal distribution based on a parameterization of � more complex than (2.1)
necessarily will fail to get a proper extension. This conclusion is based on the fact
that an extension of a statistical model involves parameters which, on one hand,
are not involved in the initial statistical model and, on the other hand, are capable
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of being estimated. However, if it is necessary to restrict the parameters of the ex-
tended model in order to get the parameter identifiability, then the extension would
fail. It is important to remark that the loss of the identifiability is a consequence
of the truncation and/or the reduction trough conditionalization or marginalization
(see Hodoshima, 1988; Florens et al., 1990; Sapra, 2008). Finally, it should be
remarked that the restrictions needed to obtain a skewed-normal distribution are
not empirically justified because they are defined at the level of an unobservable
process, namely, the multivariate normal process. In any case, it could be said that
the assumed correlation structure is a way to fix the location and/or scale of the
truncated process.

Appendix

To prove that the real-valued function υ(x)
.= ζ3(x)/ζ 3

1 (x) is strictly increasing,
we consider the following steps:

Step 0. By using ζ0(x) = log{2�(x)}, it is easy to prove that

ζ1(x) = φ(x)/�(x),

ζ2(x) = −ζ1(x)
(
ζ1(x) + x

)
,

ζ3(x) = ζ1(x)
{(

ζ1(x) + x
)(

2ζ1(x) + x
) − 1

}
,

where −1 < ζ2(x) < 0 is an increasing function and ζ3(x) > 0 (see Sampford,
1953).

Step 1. Using the relations proposed in Step 0, we write υ(x) = λ(x) − ν(x),
where ν(x) = ζ2(x)/ζ 2

1 (x) and λ(x) = ν2(x) − 1
ζ 2

1 (x)
.

Step 2. It follows that υ ′(x) = λ′(x) − ν′(x), where λ′(x) = 2ν(x)ζ1(x){ζ3(x) ×
ζ1(x) − 2ζ 2

2 (x)} − 2ν(x)ζ 3
1 (x) + 4ζ1(x) and ν(x)′ = −ζ1(x){ν(x) + 1

ζ 2
1 (x)

+
ν2(x)}.

Step 4. λ′(x) > 0. In fact, taking into account that ν(x) < 0 ∀x ∈ R and that
ζ1(x) > 0 ∀x ∈ R, the conclusion follows if ζ3(x)ζ1(x) − 2ζ 2

2 (x) < 0 ∀x ∈ R.

But 0 < ζ3(x)ζ1(x) = ζ 2
2 (x)−ζ 2

1 (x)[1+ζ2(x)] because ζ3(x) > 0 ∀x ∈ R. Tak-
ing into account that ζ 2

1 (x)[1+ζ2(x)] > 0 (because −1 < ζ2(x) < 0), it follows
that ζ3(x)ζ1(x) < ζ 2

2 (x) ∀x ∈ R, which implies that ζ3(x)ζ1(x) − 2ζ 2
2 (x) < 0.

Step 5. ν′(x) < 0. In fact, it is enough to remark that ν(x) + 1
ζ 2

1 (x)
= 1+ζ2(x)

ζ1(x)
> 0

∀x ∈ R.

Step 6. Finally, from Steps 4 and 5, it is concluded that υ ′(x) > 0 ∀x ∈ R, thus the
proof.
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