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Abstract. In this paper we introduce a new method to add a parameter to a
family of distributions. The additional parameter is completely studied and a
full description of its behaviour in the distribution is given. We obtain several
mathematical properties of the new class of distributions such as Kullback–
Leibler divergence, Shannon entropy, moments, order statistics, estimation of
the parameters and inference for large sample. Further, we show that the new
distribution has the reference distribution as special case, and that the usual
inference procedures also hold in this case. We present a comprehensive study
of two special cases of the exp-G class: exp-Weibull and exp-beta distribu-
tions. Further, an application to the real data set is presented. This family also
opens a wide variety of research, as the authors may develop its special cases
in full detail.

1 Introduction

The present work is an enhanced and extended version of the pioneering
manuscript presented at Estância de São Pedro, São Paulo, Brazil, in the 18°
SINAPE, 2008; see Barreto-Souza et al. (2008). One year after the primary version
of this work was published in the annals of the SINAPE, Nadarajah et al. (2009)
published a few similar results in a technical report.

In many practical situations, usual probability distributions do not provide an
adequate fit. For example, if the data are asymmetric, normal distribution will not
be a good choice. With this, several methods of introducing a parameter to expand
a family of distributions have been studied.

Marshall and Olkin (1997) introduced a new way to expand probability distribu-
tions and applied to yield a two-parameter extension of the exponential distribution
which can serve as a competitor to such commonly-used two-parameter distribu-
tions as the Weibull, gamma and lognormal distributions. Furthermore, this method
was used to obtain a three-parameter extension of the Weibull distribution. More-
over, Mudholkar et al. (1996) introduced a three-parameter distribution alternative
to the Weibull distribution, that has the Weibull as limiting distribution.

Some methods of introducing of parameters to symmetric distributions have
been studied in order to add skewness. For instance, Azzalini (1985) introduced
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and studied the well-known skew-normal distribution, which is obtained by adding
a shape parameter to the normal distribution. Another symmetric distribution that
was extended by adding a skewness parameter was the Student’s t-distribution
by Jones and Faddy (2003). Finally, Ma and Genton (2004) introduced a general
class of skew-symmetric distributions, whereas Ferreira and Steel (2006) provided
a general perspective on the introduction of skewness into symmetric distributions.

Jones (2004) introduced a class of distributions that adds two parameters to
a reference distribution. Further, Jones and Pewsey (2009) advanced a four-
parameter family that has both symmetric and skewed members and allows for tail
weights that are both heavier and lighter than those of the generating distribution.

Recently, Morais and Barreto-Souza (2011) introduced a three-parameter class
of distributions, so-called Weibull-power series (WPS) distributions. The WPS dis-
tributions are very useful in the modeling of lifetime data since they have a flex-
ible hazard function that can be increasing, decreasing and upside-down bathtub
shaped, among others.

In this article, we introduce a new method to add a parameter to some reference
distribution. The resulting distribution exhibits the remarkable reciprocal property.
We study this parameter in detail, and we give a full description of its behaviour in
the distribution. The augmented distribution has several connections with the refer-
ence distribution, for instance, the Kullback–Leibler divergence of the augmented
distribution with respect to the original distribution is finite and only depends on
the new parameter. Several others properties in this direction are also given. The
inferential aspects of this distribution are studied in detail.

Special attention must be given to the fact that it is not straightforward that this
new distribution contains the reference distribution as a special case. We show that
this is the case if we enlarge the parameter space, and, also, that this enlargement
is good, in the sense that all the standard inferential procedures work if this new
value in the parameter space is considered to be the true value of the parameter.

The remainder of the article unfolds as follows: in Section 2 the new class of
distributions is introduced. Several properties are given in Section 3, including a
characterization of the new class and a full study with respect to the new parameter.
In Section 4 we discuss estimation of the parameters and inferential aspects are
carefully studied. Two special cases of the exp-G class are studied in Sections 5
and 6. In Section 7 we present an application to the real data set. The paper is
concluded in Section 8. The Appendix contains the proofs of the results presented
in the article.

2 The new class of distributions

The c.d.f. of a random variable with truncated exponential distribution in the inter-
val [0,1] with parameter λ is given by

F ∗
λ (x) = 1 − e−λx

1 − e−λ
, (2.1)
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where λ > 0 and x ∈ [0,1]. We now observe that F ∗
λ (·) is a c.d.f. for λ ∈ R \ {0},

and that

lim
λ→0

F ∗
λ (x) = x, x ∈ [0,1].

Therefore, we extend the parameter space of the distribution above for the entire
line:

Fλ(x) =
{

F ∗
λ (x), if λ �= 0,

x, if λ = 0.

We now define the new class as follows. Let G(x; θ) be the c.d.f. of a continuous
or discrete random variable with θ being the parameters related to G, then the class
of distributions exp-G, indexed by λ, is defined by

FG
λ (x) = Fλ(G(x; θ)). (2.2)

From now on, we will denote a random variable X with c.d.f. (2.2) by X ∼
exp-G(�), where � = (λ, θ)T .

If G(x; θ) is a c.d.f. of a continuous random variable, then the exp-G distribu-
tion is absolutely continuous for every λ �= 0, and its probability density function
(p.d.f.), which is the derivative of the c.d.f. (2.2) with respect to x, is given by

f (x) ≡ fλ(x) = λ

1 − e−λ
g(x; θ) exp{−λG(x; θ)}, (2.3)

where g(·; θ) is the p.d.f. associated to the c.d.f. G(·; θ). If λ = 0, we obtain that
f0(x) = limλ→0 fλ(x) = g(x; θ). Let G(x; θ) be a c.d.f. of a discrete random vari-
able taking values on the set {x1, x2, . . .}, where x1 < x2 < · · ·, then the corre-
sponding exp-G distribution is also discrete, taking values on the same set for
every λ �= 0, and its probability function is given by

Pλ(xi) = exp{−λG(xi−1; θ)} − exp{−λG(xi; θ)}
1 − e−λ

, (2.4)

where G(x0) = 0. For λ = 0, we have that P0(xi) = limλ→0 Pλ(xi) = G(xi; θ) −
G(xi−1; θ).

If G(x; θ) is an absolutely continuous c.d.f., then its hazard function is given by

h(x; θ) ≡ hλ(x; θ) = λg(x; θ)

1 − exp{−λS(x; θ)} , (2.5)

where S(x; θ) = 1 − G(x; θ) is the survival function of a random variable with
c.d.f. G(·, θ).
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3 Properties

3.1 Relationship between exp-G and G distributions

We now state several results regarding the relationship between the exp-G and G

distributions, where proofs can be found in the Appendix.

Proposition 3.1. Let X and Xλ have G distribution and exp-G distribution with
parameter λ, respectively. Let also μ be the law of X, and μλ be the law of Xλ.
Then,

(i) X and Xλ have the same support for all λ ∈ R;
(ii) if X is continuous, singular (see Billingsley, 1995, page 409, for a definition)

or discrete, then Xλ is continuous, singular or discrete, respectively, for all
λ ∈ R;

(iii) μ � μλ, that is, μλ is absolutely continuous with respect to μ. Moreover, the
Radon–Nikodym derivative of μλ with respect to μ is, almost surely,

dμλ

dμ
(x) = 1

1 − e−λ
lim
ε→0
ε>0

exp{−λG(x − ε)} − exp{−λG(x)}
G(x) − G(x − ε)

;

(iv) if X is continuous and λ �= 0, the relative entropy (Kullback–Leibler diver-
gence) between X and Xλ is

DKL(μ ‖ μλ) = −
∫

log
dμλ

dμ
dμ = 1 − λ

eλ − 1
− log

(
λ

1 − e−λ

)
.

If λ = 0, we have that DKL(μ ‖ μ0) = 0;
(v) if E(|X|r ) < ∞, then E(|Xλ|r ) < ∞, and, moreover, if λ > 0,

E(|X|r ) ≥ λ

1 − e−λ
E(|Xλ|r ),

and if λ < 0,

λ

1 − e−λ
E(|X|r ) ≤ E(|Xλ|r ).

For λ = 0, it follows that E(|X|r ) = E(|X0|r ).

3.2 A characterization

We now give a characterization for our class of distributions through Shannon en-
tropy. Such entropy were introduced by Shannon (1948) and, for a random variable
X with density f (·), with respect to a σ -finite measure μ, usually the Lebesgue or
counting measure, is given by

HS(f ) = −
∫

R

f (x) logf (x) dμ. (3.1)
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Jaynes (1957) introduced one of the most powerful techniques employed in the
field of probability and statistics called maximum entropy method. This method is
closely related to the Shannon entropy and considers a class of density functions

F = {
f (x) :Ef {Ti(X)} = αi, i = 0, . . . ,m

}
, (3.2)

where Ti(X), i = 1, . . . ,m, are absolutely integrable functions with respect to
f dμ, and T0(X) = α0 = 1. In the continuous case, the maximum entropy prin-
ciple suggests to derive the unknown density function of the random variable X by
the model that maximizes the Shannon entropy in (3.1), subject to the information
constraints defined in the class F.

The maximum entropy distribution is the density of the class F, denoted by
f ME, which is obtained as the solution of the optimization problem

f ME = arg max
f ∈F

HS(f ).

Jaynes (1957), in page 623, states that the maximum entropy distribution f ME,
obtained by the constrained maximization problem described above, “is the only
unbiased assignment we can make; to use any other would amount to arbitrary as-
sumption of information which by hypothesis we do not have.” It is the distribution
which should not incorporate additional exterior information other than which is
specified by the constraints.

In order to obtain a maximum entropy characterization for our class of dis-
tributions, we now derive suitable constraints. For this, the next result plays an
important role. We will assume in Propositions 3.2 and 3.3 that the reference mea-
sure, μ, is the Lebesgue measure, and that all the random variables involved are
continuous.

Proposition 3.2. Let G be the distribution of a continuous random variable, with
p.d.f., g(·), and let X be a random variable with p.d.f., f (·), given by (2.3). Then,
we have that

(C1) E{logg(X; θ)} = E{logg(G−1(U ; θ))}

= λ

1 − e−λ

∫ 1

0
logg(G−1(u; θ))e−λu du,

(C2) E{G(X; θ)} = 1

λ
− 1

eλ − 1
,

and the Shannon entropy of f (·) is given by

HS(f ) = 1 − λ

eλ − 1
− log

(
λ

1 − e−λ

)
− E{logg(G−1(U ; θ))}, (3.3)

where U follows truncated exponential distribution with parameter λ and c.d.f.
given by (2.1).
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The next proposition shows that the class exp-G of distributions has maximum
entropy in the class of all probability distributions specified by the constraints
stated therein.

Proposition 3.3. The p.d.f. f (·) of a random variable X, given by (2.3), is the
unique solution of the optimization problem

f = arg max
h∈F

HS(h),

under the constraints (C1) and (C2) presented in Proposition 3.2.

3.3 λ as a concentration parameter

We provide two asymptotic results of this class, by making the parameter λ tend to
±∞. These results will allow us to give an interpretation for this parameter. Since
Fλ(x) → x as λ → 0, we have, trivially, that if XG

λ ∼ exp-G and XG ∼ G, then

XG
λ

d−→ XG,

as λ → 0, where
d−→ stands for convergence in distribution.

Therefore, the definition of the family exp-G by using (2.2) with λ ∈ R is good.
This fact plays an important role in our paper because this makes the family exp-G
contain G as a particular case. The following result is very important since regular
distributions in Statistics enjoy many desirable properties.

Proposition 3.4. If G is a parametric regular probability distribution, with para-
metric space �, then so is the exp-G distribution, with respect to the parametric
space R × �.

Proof. The proof follows from a simple verification of the conditions given in
Chapter 6 (Section 5) from Lehmann and Casella (2003). �

The distribution may present very different behaviour for large absolute values
of λ, thus showing that this is a rich class of distributions.

Going further on the discussion of what happens when the absolute value of λ is
large, we begin by noting that FG

λ will tend to one if λ tends to infinity, whenever
x is such that G(x) > 0, and will be zero otherwise. Therefore, if Xλ follows a
exp-G distribution, where G is any c.d.f., then

Xλ
v−→ δa,

as λ → ∞, where a = inf{x;G(x) > 0}, ‘
v−→’ stands for vague convergence, and

δa is the Dirac’s measure concentrated on a, that is, δa({a}) = 1. Note that we
needed to consider the vague convergence instead of convergence in distribution
to allow a = −∞. If a = −∞, then

Xλ
v−→ 1,
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where 1 is the function identically equal to one, which is not a probability measure.
However, we may interpret this case as a “probability measure” concentrated at
−∞, that is, if a random variable would follow 1, then pr(X ≤ x) = 1 for all
x ∈ R.

We now obtain the asymptotic behaviour of λ → −∞. For this case, a simple
calculus argument allows us to conclude that FG

λ will tend to zero, whenever x

is such that G(x) < 1, and will be 1 otherwise. Therefore, if Xλ follows a exp-G
distribution, where G is any c.d.f., then

Xλ
v−→ δb,

as λ → −∞, where b = sup{x;G(x) < 1}. Note that we also needed to use the
vague convergence to include the case where b = ∞. In this case

Xλ
v−→ 0,

where 0 is the function identically equal to zero, which, again, is not a probabil-
ity measure. However, we may, accordingly, interpret this case as a “probability
measure” concentrated at ∞, that is, if a random variable would follow 0, then
pr(X ≤ x) = 0 for all x ∈ R.

We see from this result that the parameter λ can be interpreted as a concentration
parameter, because it moves the exp-G distribution to a degenerated distribution
in a (if a is finite), when it varies from zero to infinity, and to a degenerated distri-
bution in b (if b is finite) when it varies from 0 to minus infinity. Furthermore, if a

equals minus infinity, the distribution moves towards the left side of the axis until
the mass escapes entirely, when λ tends to infinity. Analogously, when b equals
infinity, the distribution moves towards the right side of the axis until the mass
escapes entirely, when λ tends to minus infinity.

3.4 Reciprocal property

This family of distributions enjoys a very interesting reciprocal property. We begin
by introducing some notation, let XG ∼ G, and 1/XG ∼ S, where G is continuous.
Therefore, we have that if XG

λ ∼ exp-G, then 1/XG
λ ∼ exp-S. To see this, observe

that, for λ �= 0,

pr(1/XG
λ ≤ x) = pr(XG

λ ≥ 1/x) = 1 − exp{λ(1 − G(1/x))}
1 − exp{λ} = F ∗−λ(S(1/x)).

We also would like to remark that the reciprocal of XG
λ has a corresponding exp-S

distribution with −λ, that is, XG
λ has c.d.f. FG

λ (x) and 1/XG
λ has c.d.f. FS−λ(x).

This means that whenever we study a special case of the exp-G distribution, we
may easily study the reciprocal case.
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3.5 Expansions, order statistics and moments

We now give an useful expansion for the p.d.f. (2.3). With this expansion, we
can obtain mathematical properties such as ordinary moments, factorial moments
and moment generating function of the exp-G distribution. Expanding the term
e−λG(x;θ) in (2.3), it follows

f (x) = λ

1 − e−λ
g(x; θ)

∞∑
j=0

(−λ)j

j ! G(x; θ)j . (3.4)

Let now X1, . . . ,Xn be a random sample with p.d.f. in the form (2.3) and define
Xi:n the ith order statistic. The p.d.f. of the Xi:n, say, fi:n, is given by

fi:n(x) = 1

B(i, n − i + 1)
f (x)F (x)i−1{1 − F(x)}n−i

(3.5)

= λg(x; θ)e−λG(x;θ)

B(i, n − i + 1)(1 − e−λ)n

{
1 − e−λG(x;θ)}i−1{

e−λG(x;θ) − e−λ}n−i
.

By using binomial expansion for the terms {1 − e−λG(x;θ)}i−1 and {e−λG(x;θ) −
e−λ}n−i in (3.5), it follows

fi:n(x) = (1 − e−λ)−n

B(i, n − i + 1)

i−1∑
j=0

n−i∑
k=0

(−1)n+j−k−i

j + k + 1

(
i − 1

j

)(
n − i

k

)
e−λ(n−k−i)

(3.6)
× (

1 − e−λ(j+k+1))fj,k(x),

where fj,k(·) denotes the p.d.f. of a random variable with exp-G(λ(j + k + 1), θ)

distribution. Therefore, the p.d.f. of Xi:n can be written as a linear combination of
pdfs in the form (2.3) and, hence, the mathematical properties of the order statistics
can be obtained from associated exp-G distribution.

We now give general expressions for the moments of the family exp-G of dis-
tributions. Consider X and Y as random variables with exp-G(λ, θ) and G distri-
butions, respectively. An useful expression for the r th moment of the exp-G dis-
tributions follows from (3.4) and it is given in function of the probability weighted
moments of the Y :

E(Xr) = λ

1 − e−λ

∞∑
j=0

(−λ)j

j ! E{Y rG(Y ; θ)j }. (3.7)

In particular, formula (3.7) provides us another proof of condition (v) in Propo-
sition 3.1. Finally, with the result (3.6) the r th moment of the ith order statistic is
given by

E(Xr
i:n) = (1 − e−λ)−n

B(i, n − i + 1)

i−1∑
j=0

n−i∑
k=0

(−1)n+j−k−i

j + k + 1

(
i − 1

j

)(
n − i

k

)
e−λ(n−k−i)

(3.8)
× (

1 − e−λ(j+k+1))E(Zr
j,k),
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where Zj,k has exp-G(λ(j + k + 1), θ) distribution.

4 Maximum likelihood estimation and inference

Let X be a random variable with exp-G(λ, θ) distribution, with λ �= 0. The log-
density of X with observed value x is given by

	 = 	(λ, θ) = log{λ/(1 − e−λ)} + logg(x; θ) − λG(x; θ)

and the associated score function is U = (∂	/∂λ, ∂	/∂θ), where

∂	

∂λ
= 1

λ
− 1

eλ − 1
− G(x; θ),

∂	

∂θ
= U∗(θ) − λ

∂G(x; θ)

∂θ
,

with U∗(θ) being the associated score function of the log-density of a random
variable with p.d.f. g(·, θ). From regularity conditions, we have E{G(X; θ)} =
λ−1 − (eλ − 1)−1 and E{∂G(X; θ)/∂θ} = λ−1E{U∗(θ)}.

The information matrix K = K((λ, θ)) is

K =
(

κλ,λ κλ,θ

κθ,λ κθ,θ

)
,

where

κλ,λ = 1

λ2 − eλ

(eλ − 1)2 , κθ,θ = λE

{
∂2G(X; θ)

∂θ ∂θ
}

− E

{
∂U∗(θ)

∂θ

}
,

κθ,λ = λ−1E{U∗(θ)}.
For a random sample x = (x1, . . . , xn) of size n from X and � = (λ, θ)T , the

total log-likelihood is

	n = 	n(�) =
n∑

i=1

	(i),

where 	(i) is the log-likelihood for the ith observation (i = 1, . . . , n) as given
before. The total score function is Un = Un(�) = ∑n

i=1 U(i), where U(i) for
i = 1, . . . , n has the form given earlier and the total information matrix is Kn(θ) =
nK(�).

The maximum likelihood estimator (MLE) �̂ of � is obtained numerically from
the solution of the nonlinear system of equations Un = 0. Under conditions that are
fulfilled for the parameter � in the interior of the parameter space but not on the
boundary, the asymptotic distribution of

√
n(�̂ − �)

A∼ Nk+1(0,K(�)−1),

where ‘
A∼’ stands for the asymptotic distribution. The asymptotic multivariate nor-

mal Nk+1(0,Kn(�̂)−1) distribution of �̂ can be used to construct approximate
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confidence regions for some parameters and for the hazard and survival functions.
In fact, an 100(1 − γ )% asymptotic confidence interval for each parameter �i is
given by

ACIi = (
�̂i − zγ/2

√
κ̂�i,�i , �̂i + zγ/2

√
κ̂�i,�i

)
,

where κ̂�i,�i denotes the ith diagonal element of Kn(�̂)−1 for i = 1, . . . , k+1 and
zγ/2 is the quantile 1 − γ /2 of the standard normal distribution. The asymptotic
normality is also useful for testing goodness of fit of the exp-G distribution and
for comparing this distribution with some of its special submodels using one of the
three well-known asymptotically equivalent test statistics—namely, the likelihood
ratio (LR) statistic, Rao (SR) and Wald (W ) statistics.

4.1 Modified profile likelihood estimator

Since λ is a parameter added to some distribution, it can be seen as a nuisance
parameter. With this in mind, we will advance a modified profile estimator for θ .
From the last subsection, we have that

∂	

∂θ
= U∗(θ) − λ

∂G(x; θ)

∂θ
,

with

E

(
∂	

∂θ

)
= 0.

Therefore, if ∂G(x; θ)/∂θ ∂G(x; θ)/∂θ , that belongs to R, does not vanish for
all values in some open neighbourhood of the true value of θ , let

λ̆ =
{
∂G(x; θ)

∂θ
∂G(x; θ)

∂θ

}−1 ∂G(x; θ)

∂θ U∗(θ),

with

∂λ̆

∂θ
= −2

{
∂G(x; θ)

∂θ
∂G(x; θ)

∂θ

}−2{
∂2G(x; θ)

∂θ ∂θ
∂G(x; θ)

∂θ

}
∂G(x; θ)

∂θ U∗(θ)

+
{
∂G(x; θ)

∂θ
∂G(x; θ)

∂θ

}−1{
∂2G(x; θ)

∂θ ∂θ U∗(θ) + ∂G(x; θ)

∂θ
∂U∗(θ)

∂θ

}
,

where ∂2G(x; θ)/∂θ∂θ stands for the row vector containing the diagonal ele-
ments of the Hessian matrix of G, ∂2G(x; θ)/∂θ ∂θ, and ∂U∗(θ)/∂θ stands for
the column vector (∂U∗

1 (θ)/∂θ1, . . . , ∂U∗
k (θ)/∂θk)

.
We, therefore, obtain the modified profile likelihood function:

	̆ = 	̆(θ) = log λ̆ − log(1 − e−λ̆) + logg(x; θ) − λ̆G(x; θ).
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The modified profile estimator for θ can be obtained by maximizing 	̆. Let V

be the estimating equation given by

V (θ) = ∂	̆

∂θ
= 1

λ̆

∂λ̆

∂θ
− 1

eλ̆ − 1

∂λ̆

∂θ
+ U∗(θ) − ∂λ̆

∂θ
G(x; θ) − λ̆

∂G(x; θ)

∂θ
;

one may also obtain the profile likelihood estimator by solving the equation
Vn(θ) = ∑n

i=1 V (i)(θ) = 0.

4.2 Interest case λ = 0

We now discuss estimation and inference when λ = 0. It is very important to dis-
cuss this case because we are interested in testing the hypotheses H0 :λ = 0 versus
H1 :λ �= 0, that is, to test if the exp-G fit is significantly better than the G fit. The
next result plays a important role in this paper.

Theorem 4.1. Let Fλ(·) and fλ(·) be the c.d.f. and p.d.f. defined by (2.2) and (2.3),
respectively. The following conditions are true:

(i) If G is continuous, then Fλ → G uniformly when λ → 0;
(ii) fλ → g uniformly when λ → 0, consequently, 	n(λ, θ) → 	∗

n(θ), where 	∗
n(θ)

is the log-likelihood associated to G;
(iii) ∂	/∂λ → 1/2 − G(x; θ) and ∂	/∂θ → U∗(θ), when λ → 0;
(iv) κλ,λ → 1/12, κθ,θ → ∫

∂U∗(θ)/∂θ ∂θ dG and κλ,θ → −(1/2,1/2,1/2),
when λ → 0, with

∫
∂U∗(θ)/∂θ ∂θ dG being the information matrix with

respect to G;
(v) If G is regular and (λ0, θ0) ∈ �, then

√
n{(λ̂, θ̂) − (λ0, θ


0 )} d→ Np+1(0q+1,K(λ0, θ0)

−1);
(vi) If G is regular and (λ0, θ0) ∈ �, then the likelihood ratio, Wald and Score

statistics have null asymptotic distribution χ2
q , where q is the number of pa-

rameters estimated in the alternative hypothesis minus the number of param-
eters estimated in the null hypothesis.

5 The exp-Weibull distribution

We now move to the exp-G class of distributions. When G is the c.d.f. of the
Weibull distribution, we will call this class of distributions by exp-Weibull. More
precisely, to obtain the exp-Weibull distribution, we put in (2.2) the c.d.f. of the
Weibull distribution G(x) = 1 − exp{−(x/β)α}, where β > 0, α > 0 and x > 0.
Therefore, the c.d.f. of the exp-Weibull distribution given by

F(x) = 1 − exp{−λ(1 − e−(x/β)α )}
1 − e−λ

, x > 0.
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From the general expressions (2.3) and (2.5) we obtain that the p.d.f. and hazard
functions are given by

f (x) = λαβ−α

1 − e−λ
xα−1 exp

{−λ
(
1 − e−(x/β)α ) − (x/β)α

}
, x > 0, (5.1)

and

h(x) = λαβ−αxα−1e−(x/β)α

1 − exp{−λe−(x/β)α } , x > 0,

respectively.
We now illustrate the flexibility of this class of distributions by presenting

some graphics of both the p.d.f. and hazard functions. Figure 1 shows the plots

Figure 1 Graphics of the p.d.f. of the exp-Weibull distribution for some values of the parameters.
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Figure 2 Graphics of the hazard function of the exp-Weibull distribution for some values of the
parameters.

of the p.d.f. of the exp-Weibull distribution for some values of α and β , and for
λ = −5,−1,0,1,5,∞. We note that when the value of λ increases the p.d.f. be-
comes more ‘peaked.’ Figure 2 contains the plots of the hazard function of the exp-
Weibull distribution for different values of α and β and λ = −5,−1,0,1,5,∞. We
note that the behaviour of the hazard function of the Weibull distribution is close
to the behaviour of the graphics with λ = 1.0, and as the value of λ increases, the
behaviour of the hazard function of the exp-Weibull becomes very different from
the behaviour of the hazard function of the Weibull distribution, showing that as
the value of λ gets larger the exp-Weibull “moves away” from the Weibull distri-
bution, and gets closer to the Dirac mass at zero, as remarked on the end of the last
section.
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Order statistics and moments

The p.d.f. of the ith order statistic of a random sample from the exp-W(λ,β,α)

distribution is given by

fi:n(x) = λαβ−αxα−1 exp{−λ(1 − e−(x/β)α ) − (x/β)α}
B(i, n − i + 1)(1 − e−λ)n

× {
1 − e−λ(1−e−(x/β)α )}i−1{

e−λ(1−e−(x/β)α ) − e−λ}n−i
, x > 0.

We will now obtain series representation for the moments of the exp-Weibull
distribution and of the order statistics. To this end, let X be a random variable
following a exp-Weibull distribution with parameters β > 0, α > 0 and λ > 0.
From now on we will use the notation X ∼ exp-Weibull(λ,β,α) to indicate this
fact.

We have that the probability weighted moment of a random variable Y follow-
ing a Weibull distribution with parameter vector θ = (β,α) can be written as
E{Y rG(Y ; θ)j } = βr

∫ 1
0 (− logu)r/α(1 − u)j du. Therefore, from (3.7) it follows

that the r th moment of X is

E(Xr) = λβr

1 − e−λ

∞∑
k=0

(−λ)k

k!
∫ 1

0
(1 − u)k(− logu)r/α du. (5.2)

We now give an alternative expression to (5.2) more simply. The r th moment of
X is

E(Xr) =
∫ ∞

0
xrf (x) dx

=
∫ ∞

0

λαβ−α

1 − e−λ
xr+α−1 exp

{−λ
(
1 − e−(x/β)α ) − (x/β)α

}
dx.

Now, expanding exp{λe−(x/β)α } in Taylor’s series, we get

E(Xr) = λe−λ

1 − e−λ

∞∑
k=0

λk

k!
∫ ∞

0
xrαβ−αxα−1e−{(k+1)1/αx/β}α dx

= λe−λ

1 − e−λ

∞∑
k=0

λkE(Y r
k )

(k + 1)! ,

where Yk follows the Weibull distribution with parameters (k + 1)1/α/β and α,
and the interchange between the series and integral being possible due to Fubini’s
theorem together with the fact that we are dealing with the positive integrand.
Hence, we have that the r th moment of a exp-Weibull distribution can be written
as

E(Xr) = λβr �(r/α + 1)

eλ − 1

∞∑
k=0

λk

k!(k + 1)r/α+1 . (5.3)



98 W. Barreto-Souza and A. B. Simas

Figure 3 Skewness and kurtosis of the exp-Weibull distribution for some values of the parameters.

Figure 3 shows skewness and kurtosis of the exp-Weibull distribution, obtained
from application of the formula of the moments above, for β = 0.5 and some
values of α as a function of λ. We now note from (5.3) that all moments of the
exp-Weibull distribution tend to zero as λ increases to infinity, which is a very re-
markable fact. So, as we can note from Figure 3, as λ increases, the skewness tends
to zero, as well as the kurtosis, one more time reflecting the expected behaviour of
the limiting distribution as λ → ∞.

An expression for the r th moment of the ith order statistic of the exp-Weibull
distribution, say, Xi:n, follows from (3.8) and (5.3):

E(Xr
i:n) = λβr�(r/α + 1)

B(i, n − i + 1)(1 − e−λ)n

×
∞∑
l=0

i−1∑
j=0

n−i∑
k=0

(−1)n+j−k−i

(
i − 1

j

)(
n − i

k

)
(5.4)

× e−λ(n+j−i+1) {λ(j + k + 1)}l
l!(l + 1)r/α+1 .

Expressions (5.2) and (5.4) show the importance of the expansions given in Sec-
tion 3.5. Furthermore, result (5.3) shows that alternative expressions to (3.7) can
be obtained depending on the G distribution.

Order statistics and moments of the exp-Fréchet distribution

Here, we use the reciprocal property of the exp-G distributions to obtain expres-
sions for the moments and order statistics of the exp-Fréchet distribution.

Let Y ∼ exp-Fr(λ,β,α) and Yi:n be the ith order statistics from a random sam-
ple, of size n, of the exp-Fréchet distribution. From formulae (5.3) and (5.4), we
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have that the moments of Y and Yi:n are

E(Y r) = −λ
�(1 − r/α)

βr(e−λ − 1)

∞∑
k=0

(−λ)k

k!(k + 1)1−r/α

and

E(Xr
i:n) = −λ�(1 − r/α)

βrB(i, n − i + 1)(1 − eλ)n

×
∞∑
l=0

i−1∑
j=0

n−i∑
k=0

(−1)n+j−k−i

(
i − 1

j

)(
n − i

k

)

× eλ(n+j−i+1) {−λ(j + k + 1)}l
l!(l + 1)1−r/α

,

respectively, for r < α.

Score function and information matrix

Let θ = (λ,β,α)T be the parameter vector and X random variable with
exp-Weibull(λ,β,α) distribution. The log-density 	 = 	(θ) for the random vari-
able X with observed value x is given by

	 = −α logβ + log(αλ) −
(

x

β

)α

− λ
{
1 − e−(x/β)α}

− log(1 − e−λ) + (α − 1) logx, x > 0.

The score function is given by

∂l

∂λ
= −1 + e−(x/β)α + 1

1 − eλ
+ 1

λ
,

∂l

∂β
= αβ−1

[
−1 +

(
x

β

)α{
1 + λe−(x/β)α}]

,

∂l

∂α
= 1

α
+ log(x) − log(β) −

(
x

β

)α

log
(

x

β

){
1 + λe−(x/β)α}

.

From the regularity conditions one obtains the following closed-form expres-
sions:

E
[
e−(X/β)α ] = 1 − 1

1 − eλ
− 1

λ
,

E

[(
X

β

)α{
1 + λe−(X/β)α}] = 1

and

E

[(
X

β

)α

log
(

X

β

){
1 + λe−(X/β)α}] = 1

α
− log(β) + E{log(X)}.
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For interval estimation and hypothesis tests on the model parameters, we require
the information matrix. We will, therefore, use some of the expressions above to
obtain the Fisher’s information matrix. The 3 × 3 unit information matrix K =
K((λ,β,α)T ) is

K =
⎛
⎝ κλ,λ κλ,β κλ,α

κλ,β κβ,β κβ,α

κλ,α κβ,α κα,α

⎞
⎠ ,

whose elements are

κλ,λ = λ−2 − eλ

(−1 + eλ)
2 , κλ,β = α

βλ

[
E

{(
X

β

)α}
− 1

]
,

κλ,α = 1

λ

[
E

{(
X

β

)α

log
(

X

β

)}
− 1

α
+ log(β) − E{log(X)}

]
,

κβ,β = α

β3

[
1 − αλE

{
e−(X/β)α

(
X

β

)2α}]
,

κβ,α = α

[
λE

{
e−(X/β)α

(
X

β

)2α

log
(

X

β

)}
− 1

α
+ log(β) − E{log(X)}

]

and

κα,α = 1

α2 + E

[(
X

β

)α

log
(

X

β

)2{
1 − λe−(X/β)α

(
X

β

)α

+ λe−(X/β)α
}]

.

These elements of the information matrix depend on some expectations that can
be easily obtained through numerical integration.

6 The exp-beta distribution

Let Y be a random variable following standard beta distribution with parameters
a > 0 and b > 0. The c.d.f. of Y is given by G(x; (a, b)) = Ix(a, b), where
Ix(a, b) = B(a, b)−1 ∫ x

0 ta−1(1 − t)b−1 dt denotes the incomplete beta function
and B(a, b) = ∫ 1

0 ta−1(1 − t)b−1 dt is the beta function. The exp-beta distribution
is introduced by taking G as being the c.d.f. of Y in (2.2). We will denote a random
variable X with exp-beta distribution by X ∼ exp-beta(λ, a, b).

The p.d.f. and c.d.f. of the exp-beta distribution are given by

f (x) = λ

B(a, b)(1 − e−λ)
xa−1(1 − x)b−1e−λIx(a,b), x ∈ (0,1),

and

F(x) = 1 − e−λIx(a,b)

1 − e−λ
, x ∈ (0,1),
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Figure 4 Graphics of the p.d.f. of the exp-beta distribution for some values of the parameters.

respectively.
Figure 4 shows the plots of the p.d.f. of the exp-beta distribution for some

values of a and b, and for λ = −∞,−10,−3,0,3,10,∞. Observe that for the
exp-beta(λ,2,1) distribution, the density of the beta(2,1) distribution is very close
to a straight line, whereas the densities of the exp-beta(λ,2,1) distributions may
assume various shapes, such as unimodal, and strictly increasing.

Figure 5 shows skewness and kurtosis of the exp-beta distribution for a = 2 and
some values of b as a function of λ.

Score function and information matrix

Let X be a random variable with exp-beta(λ, a, b) distribution and θ = (λ,β,α)T

be the parameter vector, with λ �= 0. The log-density 	 = 	(θ) for the random
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Figure 5 Skewness and kurtosis of the exp-beta distribution for some values of the parameters.

variable X with observed value x is given by

	 = logλ − logB(a, b) − log(1 − e−λ) + (a − 1) logx

+ (b − 1) log(1 − x) − λIx(a, b)

for x ∈ (0,1).
The score function is given by

∂l

∂λ
= 1

λ
− 1

eλ − 1
− Ix(a, b),

∂l

∂a
= −�(a) + �(a + b) + logx − λ

∂Ix(a, b)

∂a
,

∂l

∂b
= −�(b) + �(a + b) + log(1 − x) − λ

∂Ix(a, b)

∂b
,

where �(y) = d log�(y)/dy.
Under the usual regularity conditions, the expected value of the score function

vanishes. Hence, we obtain

E{IX(a, b)} = 1

λ
− 1

eλ − 1
,

E

{
∂IX(a, b)

∂a

}
= λ−1{�(a + b) − �(a) + E(logX)}

and

E

{
∂IX(a, b)

∂b

}
= λ−1[�(a + b) − �(b) + E{log(1 − X)}].
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The Fisher’s information matrix K = K((λ, a, b)T ) is

K =
⎛
⎝κλ,λ κλ,a κλ,b

κλ,a κa,a κa,b

κλ,b κa,b κb,b

⎞
⎠ ,

whose elements are

κλ,λ = λ−2 − eλ

(−1 + eλ)
2 , κλ,a = λ−1{�(a + b) − �(a) + E(logX)},

κλ,b = λ−1[�(a + b) − �(b) + E{log(1 − X)}],

κa,a = � ′(a) − � ′(a + b) + λE

{
∂2IX(a, b)

∂a2

}
,

κa,b = � ′(b) − � ′(a + b) + λE

{
∂2IX(a, b)

∂b2

}

and

κb,b = −� ′(a + b) + λE

{
∂2IX(a, b)

∂a ∂b

}
.

These elements of the information matrix depend on some expectations that can
be easily obtained through numerical integration.

7 Application

Our aim in this section is to motivate the use of the class exp-G of distributions by
showing a successful application to one real data set. We here will fit exp-Weibull
distribution to the data set given by Birnbaum and Saunders (1969) on the fatigue
life of 6061-T6 aluminium coupons cut parallel to the direction of rolling and
oscillated at 18 cycles per second. The data set consists of 101 observations with
maximum stress per cycle 31,000 psi. The data are as follows: 70, 90, 96, 97, 99,
100, 103, 104, 104, 105, 107, 108, 108, 108, 109, 109, 112, 112, 113, 114, 114,
114, 116, 119, 120, 120, 120, 121, 121, 123, 124, 124, 124, 124, 124, 128, 128,
129, 129, 130, 130, 130, 131, 131, 131, 131, 131, 132, 132, 132, 133, 134, 134,
134, 134, 136, 136, 137, 138, 138, 138, 139, 139, 141, 141, 142, 142, 142, 142,
142, 142, 144, 144, 145, 146, 148, 148, 149, 151, 151, 152, 155, 156, 157, 157,
157, 157, 158, 159, 162, 163, 163, 164, 166, 166, 168, 170, 174, 201, 212.

The MLEs and the maximized log-likelihood determined by fitting the exp-
Weibull and Weibull distributions are

β̂ = 55.670932, λ̂ = −41.645738,

α̂ = 1.642486, 	̂exp-Weibull = −454.3272
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Figure 6 Empirical density and fitted exp-Weibull and Weibull densities for the Birnbaum and
Saunders’s (1969) data set.

and

β̂ = 143.3150, α̂ = 5.9790, 	̂Weibull = −459.0999,

respectively.
We test the null hypothesis H0 : Weibull model against the alternative hypothe-

sis H1 : exp-Weibullmodel. The LR statistic is 9.5453 and the p-value = 2 × 10−3.
Hence, for any usual significance level, we reject the null model (Weibull) in favour
of the alternative exp-Weibull model. In Figure 6 are displayed the empirical den-
sity, fitted exp-Weibull and Weibull densities. Hence, we see that the exp-Weibull
distribution yields a better fit than the Weibull distribution.

8 Conclusion

We defined a family of distributions that provides a rather general and flexible
framework for statistical analysis. It also provides a rather flexible mechanism for
fitting a wide spectrum of real world data sets. Several properties of this class
of distributions were obtained, such as the Kullback–Leibler divergence between
G and exp-G distributions, characterization based on Shannon entropy, moments,
order statistics, estimation of the parameters and inference.

With this, we moved to two special distributions, the exp-Weibull and exp-beta
distributions, which were studied with some details. The article was motivated by
a successful application to fatigue life data.
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Appendix

In this appendix we prove Propositions 3.1 and 3.3, and Theorem 4.1.

Proof of Proposition 3.1

The case λ = 0 will not be treated since X0 = X, and thus the result is trivial.
(i) and (ii) follow directly from equation (2.2).
For (iii) suppose that λ > 0, the calculation being analogous for λ < 0. Then,

exp{−λG(x − ε)} − exp{−λG(x)}
(1 − e−λ){G(x) − G(x − ε)}

= 1

(1 − e−λ){G(x) − G(x − ε)}
∫ G(x)

G(x−ε)
λe−λx dx (A.1)

≤ λ

1 − e−λ
exp{−λG(x − ε)}.

A similar computation shows that

exp{−λG(x − ε)} − exp{−λG(x)}
(1 − e−λ){G(x) − G(x − ε)} ≥ λ

1 − e−λ
exp{−λG(x)}.

Therefore, if x is a continuous point of G, we have that

1

1 − e−λ
lim
ε→0
ε>0

exp{−λG(x − ε)} − exp{−λG(x)}
G(x) − G(x − ε)

= λ

1 − e−λ
exp{−λG(x)}.

Nevertheless, if x is a discontinuity point of G, we have that

1

1 − e−λ
lim
ε→0
ε>0

exp{−λG(x − ε)} − exp{−λG(x)}
G(x) − G(x − ε)

= exp{−λG(x−)} − exp{−λG(x)}
(1 − e−λ){G(x) − G(x−)} .

Suppose that G is discontinuous at the points {x1, . . .}, and let Gc be the part of G

with continuity points (the sum of the continuous and singular parts of G), then it
is easy to observe that

FG
λ (x) = Fλ(Gc(x)) +

∞∑
i=1

1{xi≤x}
exp{−λG(xi−1)} − exp{−λG(xi)}

1 − e−λ
,
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where 1A(x) is the indicator function of the set A. We now have that∫
(−∞,x]

1

1 − e−λ
lim
ε→0
ε>0

exp{−λG(x − ε)} − exp{−λG(x)}
G(x) − G(x − ε)

dG(x)

=
∫
(−∞,x]

λ

1 − e−λ
exp{−λGc(x)}dGc(x)

+
∞∑
i=1

1{xi≤x}
exp{−λG(xi−1)} − exp{−λG(xi)}

1 − e−λ

= 1 − exp{−λGc(x)}
1 − e−λ

+
∞∑
i=1

1{xi≤x}
exp{−λG(xi−1)} − exp{−λG(xi)}

1 − e−λ
,

which concludes the proof of (iii). The proof of (iv) is a simple application of (iii),
and to prove (v), one uses (iii) and the inequality in equation (A.1), for λ > 0, and
a similar inequality for λ < 0.

Proof of Proposition 3.3

Let z(·) be a p.d.f. which satisfies the constraints (C1) and (C2). The Kullback–
Leibler divergence between z and f is

DKL(z ‖ f ) =
∫

R

z log
(

z

f

)
dx.

With this, we follow Cover and Thomas (1991) and obtain

0 ≤ DKL(z ‖ f ) =
∫

R

z log z dx −
∫

R

z logf dx

= −HS(z) −
∫

R

z logf dx.

With the definition of f and based on the constraints (C1) and (C2), it is easy to
see that∫

R

z logf dx = −1 + λ

eλ − 1
+ log

(
λ

1 − e−λ

)
+ E{logg(G−1(U ; θ))}

=
∫

R

f logf dx = −HS(f ),

where U is defined as before. With this, we have

HS(z) ≤ HS(f ),

with equality if and only if z(x) = f (x) Lebesgue—almost everywhere, thus prov-
ing the uniqueness.
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Proof of Theorem 4.1

(i) It is well known from real analysis that if fn is a sequence of bounded and right-
continuous functions that converge in all points for a continuous function, then
this convergence is uniform. Therefore, since Fλ satisfies the above conditions and
converges for G, which is a continuous function, the proof of (i) is completed.

(ii)–(iv) The proofs are easily checked.
(v) For (λ0, θ0) ∈ �, with λ0 ∈ R \ {0}, the result follows from Proposition 3.2

and Theorem 6.5.1 from Lehmann and Casella (2003). For λ0 = 0, we have to use
the results in (ii)–(iv) to adapt the proof given in Lehmann and Casella (2003) to
our case. We begin by showing that

√
nλ̂

d→ N(0,12),

when n → ∞. The following lemma will be useful in this proof.

Lemma A.1. Let f : [a, b) → R (b can be ∞). If f admits n derivatives to right
around the point a, then

f (x) = f (a) + f (1)(a)(x − a) + · · · + f (n)(a)

n! (x̃ − a)n,

where f (k) represents the kth derivative of f to the right and x̃ ∈ (a, x).

The proof in the above lemma is similar to the usual proof, but replacing the
derivative by the derivative from the right. It is clear that the same result holds for
the derivative from the left.

Applying the lemma to the log-likelihood with respect to p.d.f. f (x;λ) =
λe−λx/(1 − e−λ), that is, G(x; θ) = x, it follows that

	′(λ̂) = 	′(0) + λ̂	′′(0) + 1

2
λ̂2	′′′(λ̃)

= n

2
−

n∑
j=1

xj − n

12
λ̂ + 1

2
λ̂2	′′′(λ̃),

where 	′′′(λ̃) = −1
6 λ̃−3 − d3(eλ̃ − 1)−1/dλ̃.

By supposition, 	′(λ̂) = 0, thus,

√
nλ̂ = n−1/2 n/2 − ∑n

j=1 xj

12−1 − (2n)−1λ̂	′′′(λ̃)
.

As n−1λ̂	′′′(λ̃) → 0 in probability and n−1/2(n/2 − ∑n
j=1 xj )

d→ N(0,1), when

n → ∞, then
√

nλ̂ converges in distribution to a normal distribution with mean 0
and variance 12.



108 W. Barreto-Souza and A. B. Simas

The rest of the proof is analogous to the one given in Lehmann, where one may
use the results in (ii)–(iv) to ensure that all the arguments hold true.

(vi) It follows from asymptotic normality of �̂; see Lehmann and Romano
(2008) for more details.
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