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Abstract. This paper describes a new statistical analysis strategy to problems
of cytogenetic dosimetry involving ordinal polythomous responses. Models
relating the multivariate response to dose take the data ordinality into account
and are analysed in a fully Bayesian fashion in the application here consid-
ered. In particular, these models are compared in order to select the best one
for purposes of drawing inferences of interest and dose prediction is naturally
addressed by its practical importance. This work was motivated by an in vitro
experimental study on radiation exposure of human blood cell cultures, pre-
viously analysed in the literature by other methods, but its interest holds in
many other applications of the biological and environmental field involving
data sets yielded from the same type of assays for genetic damage.

1 Introduction

Cytogenetic dosimetry is a field of the dose-response studies dealing with the re-
lationship between the level of exposure to radiation and some measure of ge-
netic aberration, wherein a special interest is devoted to the calibration problem
towards drawing inferences on unknown exposure doses for given observed re-
sponses. Bender et al. (1988) provide a comprehensive discussion of this topic
and a general review of the statistical calibration problem can be found in Osborn
(1991).

In this paper we confine ourselves to in vitro studies in which human blood
samples are exposed to a range of doses of a given agent, and a polytomous re-
sponse related to genetic aberrations is recorded for each dose. Specifically, we
take the experimental study of radiosensitivity described in Ochi-Lohnmann et al.
(1996) and Madruga et al. (1996) as an illustration of alternative procedures we
propose in order to analyse data sets involving ordinal categorical responses in the
framework of cytogenetic dosimetry problems. These problems are relevant in ap-
plications, namely, related to ecotoxicological studies and biomonitoring of human
populations such as referred to in Fenech (2000).
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Such experimental study involved lymphocytes cultures obtained from a few
individuals belonging to three groups to be compared in terms of chromosomal
susceptibility to ionizing radiation. One of them consisted of untreated cancer pa-
tients with basocellular carcinoma and the remaining ones are two control groups
consisting of healthy subjects differing from each other in terms of age. The car-
cinoma group was made up of three patients (ages 47, 67 and 68 years old). The
first control group consisted of four healthy young individuals (ages between 20
to 30 years old), and the second control group of two healthy old individuals (ages
between 40 to 50 years old). Blood samples of each individual were divided into
8 lots and irradiated in a 60Co source with doses of 0, 20, 50, 100, 200, 300, 400
and 500 cGy (at an average dose rate of 1 Gy/min).

Some of these samples were previously subject to a cytokinesis-block micronu-
cleus assay with cytochalasin-B originating cells that completed only one nuclear
division (binucleated cells). The data here considered refer to frequencies of cells
displaying zero, one and two or more micronuclei out of the total of cells for ev-
ery individual exposed to each radiation dose. These micronuclei, resulting from
chromosome break or loss or whole chromosome that fail to incorporate the main
nuclei during the mitosis process, express the DNA damage induced spontaneously
or by radiation. Since genetic alterations are associated with the development of
cancer, the quantification of lesions occurring in the cells such as these micronuclei
may serve as an indicator of carcinogenic risk. For details on the cytokinesis-block
micronucleus technique and its efficiency and sensitivity to detect DNA damage
see, for example, Fenech (2000).

The same type of data was also obtained for (mononucleated) cells that did not
undergo the aforementioned cellular division process in order to compare their
susceptibility to radiation with that of binucleated cells. For convenience we re-
produce the complete data set in Table 5 in the Appendix.

Madruga et al. (1996) based their analysis upon a Dirichlet posterior distribution
for the original parameters of a multinomial model for the cell frequency vector
that corresponds to a log-Dirichlet distribution of the second kind for the ordinary
(baseline) logits. The latter is then approximated by a bivariate Normal distribu-
tion after Aitchison and Shen (1980). The nonlinear predictor relating these logits
to dose levels they consider with no further comparative analysis is fitted by clas-
sical methods. Kottas et al. (2002), taking just a subset of the same data, use a lin-
ear relationship between the ordinary logits and log-dose and perform a Bayesian
analysis based on a noninformative prior for the parameters of this linear predictor.
The ensuing results are compared with those associated with a fully nonparametric
analysis on cumulative probabilities based on Dirichlet processes.

This paper aims at developing a fully Bayesian analysis of the whole data set,
with no concession to a hybrid approach and without falling into the theoretical
and computational complexities of a nonparametric approach. Calibration models
on parametric functions that allow for the data ordinal nature are considered and
compared towards selecting the best one for purposes of drawing inferences of
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interest. Further analytic examination of selected models is taken in order to com-
pare the three groups, what enables to get a more parsimonious overall model. The
selected calibration model for each group is used to predict dose levels for given
further observed frequencies.

The layout of the paper is as follows. Section 2 introduces the statistical mod-
elling of this cytogenetic dosimetry problem. In Section 3 a Bayesian analysis of
the illustrative data set is described, with presentation and discussion of the results
obtained. Section 4 is devoted to a summary and further comments on the approach
followed in this work.

2 Statistical modelling

Focusing on the data set previously described, for each radiation dose di , i =
1,2, . . . , k (k = 8), which ni cells were exposed to, the observable response vec-
tor is denoted by Yi = (Yi2, Yi1, Yi0), where Yi2 is the number of cells with two
or more micronuclei, Yi1 is the number of cells with one micronucleus and Yi0
is the number of cells with no micronucleus. Denoting the probability associated
to the j th category under the ith dose by θij , for each dose we define the vector
π i = (θi2, θi1, θi0) satisfying

∑2
j=0 θij ≡ 1′π i = 1. The probability model consid-

ered is a product-multinomial family, with probability function

f (y1, y2, . . . , yk|{ni,π i}) =
k∏

i=1

ni !
2∏

j=0

θij
yij

yij ! , (2.1)

where
∑2

j=0 yij = ni.

The ith trinomial probability function, taking response category ordering into
account, can be factored into a product of two binomial distributions, the marginal
distribution for Yi2 and the conditional distribution for Yi1 given ni − Yi2,

f (yi2, yi1|ni,π i) = f (yi2|ni, θi2)f
(
yi1|ni − yi2, θi1/(θi1 + θi0)

)
. (2.2)

On reparametrizing these two binomial distributions to the corresponding ordi-
nary logits, one obtains the so-called continuation-ratio logits

Li1 ≡ ln
(

θi2

θi1 + θi0

)
, Li2 ≡ ln

(
θi1

θi0

)
, (2.3)

that contrast each category with a grouping of categories from lower levels of the
response ordinal scale. The formulae (2.1)–(2.3) extend to the case of more than 3
response categories (e.g., Agresti, 2002).

One may contemplate other link functions for the (theoretical) proportions of
the two binomial components of the probability model. For instance, if an asym-
metric link such as the complementary log-log (or extremit) function was to be
considered, one would get transformations of the proportions of cells with fewer
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than two micronuclei and the proportions of cells with none micronucleus within
those with fewer than two micronuclei,

Ei1 = ln{− ln(θi1 + θi0)}, Ei2 = ln
{
− ln

(
θi0

θi1 + θi0

)}
. (2.4)

Dependence of π i on the radiation dose is expressed through modelling the
continuation-ratio logits (or the corresponding alternative link functions). The
structural models here considered were chosen taking into account the empirical
calibration curves and comparative purposes towards the selection of the “best”
model in order to draw the inferences of interest. These models include a sim-
ple linear, quadratic and two nonlinear structures on {Lij ≡ Lj(di, δj )}, j = 1,2;
i = 1, . . . , k, where di denotes the ith dose and δj the parameter vectors of each
structural model,

Lj(di, δj ) = αj + βjdi, (2.5)

Lj(di, δj ) = αj + βjdi + γjd
2
i , (2.6)

Lj(di, δj ) = αj

βj + di

, (2.7)

Lj(di, δj ) = γj + αj

βj + di

. (2.8)

The predictor functional structure of these models has often been used in the
dose-response problem literature, even though applied to other probability models
or parametric functions (see Madruga et al., 1994).

The statistical model for the observed data is expressed by

f ({yi}|{ni, di}, {δj }) =
k∏

i=1

{(
ni

yi2

)
eyi2L1(di;δ1)

(1 + eL1(di;δ1))ni

(2.9)

×
(

ni − yi2
yi1

)
eyi1L2(di;δ2)

(1 + eL2(di;δ2))ni−yi2

}
.

Due to absence of specific prior information on any model parameters, we
adopted independent Normal distributions for each component of δj , j = 1,2, cen-
tered on 0 and with a large variance (equal to 106). The analysis of this Bayesian
model allows us to compare the diverse dose-response structures and draw para-
metric inferences of interest, as described in the following section.

When it is intended to predict an unknown dose which an individual with known
response vector was exposed to, the sampling model (2.9) that was selected pre-
viously is augmented with the distributional factor corresponding to this further
data. Denoting the additional response vector by Y0 = (Y0j , j = 0,1,2), with
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∑2
j=0 Y0j = n0, and its unknown dose by d0, the statistical model to be consid-

ered is

f ({yi}, y0|{ni, di}, n0, d0, {δj })

=
k∏

i=1

{f (yi2|ni, di, δ1)f (yi1|ni − yi2, di, δ2)} (2.10)

× f (y02|n0, d0; δ1)f (y01|n0 − y02, d0, δ2).

The associated prior includes a further factor concerning the prior distribution
assigned to the parameter of interest d0. Here we used a flat Normal distribution
centered on the average of the observed doses. It must be truncated from negative
values when deemed necessary.

3 Bayesian analysis of the data set

Based upon the statistical model described in Section 2, the analytical objectives
include model selection for each group and cell type, parameter estimation for the
chosen model for each setting group comparison under the same model and, above
all, dose prediction for future individuals.

The complexity of the Bayesian models previously described demands resorting
to Markov Chain Monte Carlo (MCMC) methods so as to obtain the posterior den-
sity for the respective parameters by simulation. For each model considered, the
convergence and autocorrelation analysis by the usual methods (Gilks et al., 1996)
of the simulated chain allowed us to retain a MCMC sample of size 10,000 by tak-
ing every 5th iteration of the sequence, after removing 5000 burn-in iterations. For
reasons that have to do with the chain convergence, the analysis of the linear and
quadratic models started with a previous standardization of the dose levels and
with appropriate flat Normal priors centered on 0 for the associated parameters.
The MCMC analysis was implemented in WinBugs (Lunn et al., 2000). Conver-
gence diagnostics and determination of highest posterior density (HPD) credible
intervals were carried out via BOA software (Smith, 2007).

Comparison of models was carried out by assessment of their goodness of fit
and complexity through some measures as follows: deviance information crite-
rion (DIC) (Spiegelhalter et al., 2002) and Carlin-Louis’ version of Bayesian in-
formation criterion (BIC) (Carlin and Louis, 2000). The more refined approxi-
mation of BIC due to Raftery et al. (2007) was also considered, but its results
(not shown) did not cause any change in the model ordering. Moreover, the pos-
terior mean of the Pearson parametric function (PF) was obtained under appro-
priated transformation from the simulated values for δj , j = 1,2. Notice that
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Table 1 Comparison of continuation-ratio logit models based on posterior mean of Pearson func-
tion (PF), BICCL and DIC

Mononucleated cells Binucleated cells

Group Model PF BICCL DIC PF BICCL DIC

Basocellular Linear 386 554 511 184 344 311
carcinoma Quadratic 193 357 293 135 288 238

Nonlinear I 195 329 286 114 241 207
Nonlinear II 183 341 275 99 244 192

Healthy young Linear 1101 1396 1352 284 463 428
Quadratic 264 481 414 135 298 245

Nonlinear I 250 429 384 82 221 186
Nonlinear II 85 264 196 83 242 188

Healthy older Linear 314 452 411 131 264 232
Quadratic 61 233 171 37 185 137

Nonlinear I 111 258 217 25 154 122
Nonlinear II 72 242 178 16 162 113

PF = ∑8
i=1

∑2
j=0

(yij−niθij )2

niθij
, where the elements of π i are written as function

of δj ’s according to formula (2.9).
Table 1 displays the results obtained for the logistic models (2.5)–(2.8). The

model which fits “best,” as defined by each measure, is underlined in Table 1. The
emphasis here placed on logit-based models is due to the fact that they showed
a better behaviour than the corresponding models based upon the complementary
log-log function (the respective results are omitted for the sake of space).

According to the criteria used, the best model depends on the group of subjects
and type of cells. The nonlinear II model (2.8) may be taken as our choice for the
carcinoma group, regardless of the cell type, as well as for mononucleated cells of
the young healthy group and binucleated cells of the older healthy group. Note that
in some cases BIC tends to penalize it more than DIC does in favour of the simpler
nonlinear model. For binucleated cells of the young healthy group the nonlinear
II model appears to be a little worse than its simpler counterpart, whereas the
quadratic model presents the best performance for mononucleated cells related to
the older healthy group.

Figure 1 portrays calibration curves for the three groups, drawn from the poste-
rior means of δj , j = 1,2, parameters wherein the symbol ◦ represents the values
of the empirical continuation-ratio logits, for the binucleated cells (the others are
not shown for reasons of space saving). They show the fitting superiority in general
of the nonlinear models over the quadratic one. The exception occurs for mononu-
cleated cells of the older healthy group (figures left out for the above reasons).

The dose-response curves computed from the posterior means of {θij }, denoted
by {θ̄ij }, for the selected model for each group (according to the criteria pointed
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Figure 1 Observed and fitted continuation-ratio logits, Li1 (left) and Li2 (right), of binucleated
cells for basocellular carcinoma (top), young healthy (middle) and older healthy (bottom) subjects.

above) are displayed in Figure 2. As expected, the estimated proportions of dam-
aged (unaffected) cells tend to increase (decrease) in general with the dose levels.
A noticeable exception is the case of the older healthy group for mononucleated
cells, as a consequence of using the quadratic model. From a given high dose level
the decrease of {θ̄i0} is reversed, in correspondence with an opposite monotony
behaviour of {θ̄i1}, as well as of {θ̄i2}, though this latter feature is not captured
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Figure 2 Posterior expected proportions of mono- (left) and binucleated (right) cells with none
(top), one (middle) and two or more (bottom) micronuclei adjusted for each group, according to
selected model (NL II: carcinoma + YH-mono + OH-bi; NL I: YH-bi; Quad: OH-mono).

over the dosage range of Figure 2. This unsatisfactory behaviour disappears if for
the case at issue we adopt the nonlinear II model (the second best one in the class
considered), in that the curves will follow a predictable and very similar pattern to
the other two groups (results not shown for the sake of space). This illustrates how
a very good model in light of observed data may lead to unwise extrapolations.
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The curves concerning binucleated cells already show noticeable differences
among the three groups over the range of high doses. The most pronounced de-
crease (increase) of {θ̄i0} ({θ̄i2}) belongs to healthy young subjects. As opposed to
Madruga et al. (1996), the curves for both {θ̄i0} and {θ̄i2} concerning both groups
of healthy subjects are distinct. The sharpest descent of {θ̄i0} belongs to the healthy
young group, which displays a similar ascent for {θ̄i2} as that for the carcinoma pa-
tients up to the highest observed dose. From here this latter group shows a more
marked increase in agreement with findings of other studies (see, e.g., Fenech,
2002) wherein the same type of micronucleus assays has shown that individuals
who develop some types of cancer and their relatives exhibit elevated sensitivity
to the DNA-damaging effects of ionising radiation.

Table 2 displays parameter estimates regarding the model chosen by the criteria
of Table 1 for each group × cell type setting. We may add that fitting the non-
linear II model for binucleated cells of the young healthy group, the 95% HPD
credible intervals for the parameters γ1([−0.405,1.052]) and γ2([−0.275,0.337])
suggest that the nested model without these parameters can be a better alternative
in accordance with the model comparison results in Table 1.

The nonlinear II model can still be reduced in light of the data by elimination of
just one parameter γj for the group of carcinoma patients irrespective of the cell
type (γ1 = 0) and for binucleated cells of the older healthy subjects (γ2 = 0). The
evidence of γ2, actually related to an ordinary logit [recall (2.3)] being statistically
significant for mononucleated cells of the carcinoma and young healthy subjects
points out against the choice of the nonlinear I model by Madruga et al. (1996),
reinforcing the comparative outcomes in Table 1.

Comparisons among the three groups can be made by integrating the corre-
sponding product-trinomial distributions when parameterized by the same kind of
structural model. For instance, for binucleated cells there is evidence that carci-
noma and young healthy groups share the same parameters γ1 and α1. An analo-
gous conclusion regarding γ2, α2 and β2 holds within the two healthy groups. See
Table 3.

Once we have selected a dose-response model in light of the experimental cali-
bration data, we can use it towards estimation of unknown doses which blood cells
of further individuals had been exposed to. With illustrative purposes we consider
two new individuals by each group whose responses concerning binucleated cells
are displayed in Table 4. The results were obtained by using the nonlinear model
that was selected previously for each group.

The dose estimation is relatively precise a posteriori for the first three subjects
whose data suggest their blood cells would have been exposed to moderate doses.
There is evidence that the remaining ones would have had their cells submitted to
higher doses, possibly beyond the larger dose used in the calibration experiment,
what accounts for the fact that their HPD credible intervals tend to be substantially
wider. This was obviously expected on the grounds that dose prediction for the
latter cases correspond to an extrapolation. The higher are the doses implied by
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Table 2 Posterior estimates for selected model parameters

Mononucleated cells Binucleated cells

Group Parameter Mean S.D. 95% HPD CI Mean S.D. 95% HPD CI

(Nonlinear II model) (Nonlinear II model)
Basal α1 −3437 568.4 (−4554, −2358) −2240 532.7 (−3315, −1276)

cellular α2 −1081 143.6 (−1370, −819.4) −285.8 67.44 (−421.7, −173.4)
carcinoma β1 436.8 52.27 (333.2, 536.8) 365.9 66.77 (238.8, 498.2)

β2 218.7 23.86 (174.4, 266.9) 80.74 19.91 (45.68, 119.8)
γ1 0.281 0.438 (−0.537, 1.173) 0.636 0.447 (−0.212, 1.528)
γ2 −0.698 0.177 (−1.032, −0.347) −0.600 0.135 (−0.849, −0.332)

(Nonlinear II model) (Nonlinear I model)
Healthy α1 −2066 368.6 (−2814, −1406) −1220 45.02 (−1313, −1137)

young α2 −501.9 33.17 (−567.8, −438.3) −567.3 19.52 (−605.3, −529.2)
β1 290.6 41.54 (211.4, 371.9) 197.1 13.6 (170.5, 223.5)
β2 88.14 6.323 (76.01, 100.6) 133.7 7.261 (119.2, 147.6)
γ1 −0.862 0.357 (−1.532, −0.144) – – –
γ2 −1.398 0.068 (−1.529, −1.263) – – –

(Quadratic model) (Nonlinear II model)
Healthy α1 −7.036 0.144 (−7.326, −6.761) −515.1 192.5 (−900.1, −229.6)

older α2 −4.988 0.054 (−5.095, −4.884) −587.9 149.2 (−885.5, −335.6)
β1 0.011 0.0012 (0.009, 0.014) 118.7 44.24 (48.31, 207.7)
β2 0.012 0.0005 (0.011, 0.013) 166.1 36.43 (102.7, 240.1)
γ1 −9 × 10−6 2 × 10−6 (−1 × 10−5, −5 × 10−6) −1.267 0.282 (−1.764, −0.698)
γ2 −1 × 10−5 9 × 10−7 (−2 × 10−5, −1 × 10−5) 0.018 0.204 (−0.368, 0.420)
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Table 3 Posterior interval estimates for comparison among group parameters for binucleated cells
concerning nonlinear II model

Parameter 95% HPD CI Parameter 95% HPD CI Evidence

γ C
1 − γ HY

1 (−0.476, 1.148) γ C
2 − γ HY

2 (−0.953, −0.299) γ C
1 = γ HY

1 �= γ HO
1

γ C
1 − γ HO

1 (0.998, 2.803) γ C
2 − γ HO

2 (−1.037, −0.204) γ C
2 �= γ HY

2 = γ HO
2

γ HY
1 − γ HO

1 (0.794, 2.333) γ HY
2 − γ HO

2 (−0.406, 0.412)

αC
1 − αHY

1 (−1662, 113.0) αC
2 − αHY

2 (117.9, 497.2) αC
1 = αHY

1 �= αHO
1

αC
1 − αHO

1 (−2772, −790.6) αC
2 − αHO

2 (42.5, 595.8) αC
2 �= αHY

2 = αHO
2

αHY
1 − αHO

1 (−1678, −346.3) αHY
2 − αHO

2 (−272.4, 291.1)

βC
1 − βHY

1 (19.20, 247.90) βC
2 − βHY

2 (−102.07, −11.00) βC
1 �= βHY

1 �= βHO
1

βC
1 − βHO

1 (112.00, 383.61) βC
2 − βHO

2 (−157.90, −17.60) βC
2 �= βHY

2 = βHO
2

βHY
1 − βHO

1 (9.60, 221.56) βHY
2 − βHO

2 (−99.50, 35.00)

Table 4 Dose posterior estimates for the calibration problem under the
chosen nonlinear models for binucleated cells of two subjects per group

Posterior dose estimates

Observed responses Mean S.D. 95% HPD CI

y
(1)
0C = (76,240,1186) 232.8 17.58 (198.7, 267.5)

y
(1)
0HY = (176,401,1930) 252.2 10.95 (230.3, 273.2)

y
(1)
0HO = (72,241,890) 255.7 21.44 (214.3, 298.2)

y
(2)
0C = (270,451,1083) 606.6 47.8 (520.7, 701.8)

y
(2)
0HY = (362,725,1329) 582.8 26.43 (532.1, 635.3)

y
(2)
0HO = (160,319,660) 727.4 138.3 (515.0, 996.5)

the observed proportions, the larger is the predictive variability and wider are the
credible intervals for the predicted dose. This is what one would obtain had we
taken the more extreme cases exemplified in Madruga et al. (1996).

4 Concluding remarks

This paper offers a new modelling approach to problems of cytogenetic dosimetry
involving ordinal polytomous responses based on an appealing factorization of the
product-multinomial probability function into binomial factors related to appro-
priate ratios of category probabilities. This allows us to contemplate several types
of models for functions of these conditional probabilities, such as logits, probits
and extremits, that take the data ordinal nature into account. In the application here
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revisited, involving the cytokinesis-block micronucleus assay, nonlinear paramet-
ric models in continuation-ratio logits have played an important role, namely, in
assessing their fit and reduction and performing inverse prediction, in particular,
outperforming the alternative use of cumulative logits.

Of course distinct models might be entertained. In a preliminary study, spec-
ification of a cubic spline structure with a knot succeeded for some settings in
terms of aforementioned model comparison criteria. Specifically, these new mod-
els behaved better than the nonlinear parametric models for binucleated cells of
carcinoma and young healthy groups. Also, other asymmetric functions of those
conditional probabilities can still be addressed with the purposes of fit comparison
and possible simplification of the predictor form.

The analysis of the model followed a fully Bayesian route based on usual non-
informative priors for the model predictor parameters, on the grounds that prior
information was unavailable. It enabled us to make additional inferences and get
some distinguishing outcomes from those concerning a hybrid analysis of the il-
lustrative data set previously performed by Madruga et al. (1996). We believe that
in such dosimetry problems there may be experts with prior beliefs on the original
category probabilities, which may be elicited and accommodated in some conve-
nient prior distribution (e.g., Dirichlet). In such cases, it may be possible to convert
this to the corresponding prior for the predictor parameters through the Bedrick et
al. (1996) approach, following a procedure analogous to that used by Paulino et al.
(2003) for binary data.

A more careful analysis of the data set suggests that the probabilistic model
product-multinomial considered in (2.1), and also used by the previous authors
(Madruga et al., 1996 and Kottas et al., 2002), may not be the best model for these
data. Since several blood samples were taken from the same individual, the as-
sumption of independence among the vectors of responses can be questionable. In
this case, a random effect model could be considered with the goal to add a depen-
dence structure between the responses. However, this would require unravelling
the counts for each individual, but it was not possible to obtain this additional
information.

The kind of analysis performed and the aforementioned suggestions are use-
ful for many other applications of the cytokinesis-block micronucleus technique,
yielding data of a similar nature, among which we emphasize radiation sensitivity
testing both for cancer risk assessment and optimisation of radiotherapy, testing
of new pharmaceuticals and agrichemicals, problems in ecotoxicology and nutri-
tion and biomonitoring of human populations (see Fenech, 2000, and references
therein).
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Appendix: Data set table

Table 5 Observed frequencies for mono and binucleated cells

Mononucleated Binucleated

Dose yi0 yi1 yi2 yi0 yi1 yi2

Patients with basal cellular carcinoma
0 20,442 68 6 1492 13 6

20 25,183 96 14 1478 45 4
50 27,614 362 81 1504 150 35

100 27,845 392 30 1305 125 13
200 13,378 527 72 1231 203 38
300 6359 398 74 1156 289 111
400 6234 531 148 1038 305 126
500 3920 449 180 1001 392 222

Healthy young subjects
0 51,237 28 7 2341 31 1

20 23,891 81 28 2611 45 6
50 26,688 172 32 1849 117 25

100 25,916 465 56 1811 189 47
200 23,482 926 141 2204 325 82
300 8523 681 140 1734 501 207
400 9808 799 204 1621 523 254
500 7684 842 288 1005 456 285

Healthy older subjects
0 15,551 114 12 920 31 2

20 13,953 96 20 989 41 8
50 16,163 180 18 933 56 14

100 13,319 291 38 939 114 32
200 6411 333 52 794 176 67
300 6699 366 75 683 209 59
400 4311 409 105 742 256 107
500 4689 370 152 771 327 143
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