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Hierarchical Bayesian nonparametric mixture
models for clustering with variable relevance

determination

Christopher Yau∗ and Chris Holmes†

Abstract. We propose a hierarchical Bayesian nonparametric mixture model for
clustering when some of the covariates are assumed to be of varying relevance to
the clustering problem. This can be thought of as an issue in variable selection
for unsupervised learning. We demonstrate that by defining a hierarchical pop-
ulation based nonparametric prior on the cluster locations scaled by the inverse
covariance matrices of the likelihood we arrive at a ‘sparsity prior’ representation
which admits a conditionally conjugate prior. This allows us to perform full Gibbs
sampling to obtain posterior distributions over parameters of interest including an
explicit measure of each covariate’s relevance and a distribution over the number
of potential clusters present in the data. This also allows for individual cluster
specific variable selection. We demonstrate improved inference on a number of
canonical problems.

Keywords: Bayesian mixture models, Bayesian nonparametric priors, variable se-
lection, unsupervised learning

1 Introduction

As information becomes cheaper to capture there is increased interest in statistical ap-
proaches that can uncover structure in high-dimensional data sets. Such exploratory
discovery driven analyses are common place in important fields such as genomics and e-
commerce. One of the most widely used analysis tools in these situations is provided by
clustering algorithms which seek to group together similar observations, where “similar-
ity” is defined by some metric. Hierarchical, partition based and model based clustering
are the three most common clustering methods, for an overview see Hastie et al. (2009).
The general trend of decreasing cost associated with measurements means that often
studies are not targeted at specific variables known a priori to be relevant to group
discrimination and hence many of the gathered variables are likely to be irrelevant from
a clustering perspective.

In this paper we investigate fully probabilistic Bayesian nonparametric mixture
model priors designed for such situations. Under our prior we model the relevance of
each covariate by a scale-standardised distribution on cluster locations in each covariate.
We show that by placing a prior which encourages shrinkage on the locations towards a
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common mean we can effectively prune out irrelevant dimensions and characterise the
relative relevance of those remaining.

Variable selection has a substantial literature within supervised learning, for exam-
ple see Hastie et al. (2009) and Claeskens and Hjort (2008) for an overview of various
approaches. An important special case of variable selection in the Bayesian literature
is provided by the so called Automatic Relevance Determination (ARD) first described
in MacKay (1995) and Neal (1996) and popularised in nonlinear pattern recognition
by Tipping (2001). ARD priors provide a continuous measure of the relevance of each
variable in a supervised learning problem and it is in this spirit that we proceed. Some-
what surprisingly in unsupervised learning there has been far fewer papers on variable
selection perhaps due to the objective measure being harder to quantify. However no-
table work in this field exists and we mention Friedman and Meulman (2004); Law et al.
(2004) and Hoff (2006). In the machine learning community, Pan and Shen (2007) inves-
tigated Lasso type penalties in a maximum penalised likelihood approach whereas Dy
and Broadly (2004) investigated a within to between cluster variance approach using a
stepwise subset selection algorithm. In the Bayesian literature, we note the work of Kim
et al. (2006) and Tadesse et al. (2005) who consider both parametric and nonparametric
Bayesian mixture models with a hard variable selection point mass prior. Raftery and
Dean (2006) consider relevance via a stepwise variable selection approach choosing both
the number of variables, the number of clusters and the form of the covariance matrices
according to the Bayesian Information Criterion; with extensions and comparisons pro-
vided in Maugis et al. (2009). In this paper we have sought to generalise some of these
approaches to a fully Bayesian nonparametric approach with implicit sparsity priors on
the relevant variables which allows for cluster specific variable selection. While neces-
sitating Markov chain Monte Carlo our approach provides a continuous (probability)
measure on covariate relevance.

In the next section we review model based clustering and the hierarchical prior we
recommend. We then show how this can be extended to situations when the number
of clusters is unknown. In Section 4 we present results on a number of simulated and
real data sets. Section 5 provides a brief conclusion. All of the code used is written in
MATLAB and is available at: https://sites.google.com/site/mixlasso/.

2 Model based clustering

We consider data X ∈ Rp and a data set {xi}n
i=1 of n observations which we suppose

arises from a mixture model with K ∈ N components

π(xi) =
K∑

k=1

wkf(xi; θk),

where wk are non-negative mixing weights,
∑

k wk = 1, and f(·) are mixture densi-
ties with parameters θk. For example, for the Gaussian case we have θk = {µk, Σk}
for location parameters µk = {µk1, . . . , µkp} and p-by-p variance-covariance matrix Σk.
Throughout this paper we will restrict ourselves to the Gaussian mixture case though
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the extension to, say Student mixtures, is straightforward using scaled-mixture repre-
sentations (Andrews and Mallows 1974).

It is useful to define a latent indicator variable zi for each datum that conditionally
assigns xi to one and only one component

π(xi|zi = k) = f(xi; θk)

and clearly π(zi = k) = wk. Bayesian modelling proceeds by characterizing uncertainty
in parameter values via prior probability distributions. In our case this involves pri-
ors over the mixture weights, cluster locations, cluster covariances and perhaps also
the number of clusters; whereas in non-Bayesian methods these quantities are esti-
mated according to some loss function. Inference for mixture models has been exten-
sively described in Titterington et al. (1985) and more recently in the Bayesian context
by Frühwirth-Schnatter (2006) as well with extensions by Fraley and Raftery (2002);
Richardson and Green (1997) and Jasra et al. (2005).

In this report we consider the case where some of the dimensions of X ∈ Rp are
not relevant to the clustering problem, that is, where the mixtures heavily “overlap” in
certain co-ordinate directions. It will help to illustrate our approach by first considering
the simplest situation with K = 2 Gaussian mixtures and a common diagonal covariance
matrix.

2.1 A simple example for K-component mixtures

To motivate our approach we shall first consider a two-component mixture model and
assume also that the mixture components share a common diagonal covariance matrix
Σ1 = Σ2 = Σ = diag{σ2

1 , . . . , σ2
p}; the more general case is considered later on but it is

instructive to begin with this. Recall that our motivation is to explore variable selec-
tion models, or rather measures of covariate relevance. With this aim it is interesting
to compare with the analogous problem of variable selection in discriminant analysis
within supervised learning which involves models of π(zi|xi) with both zi and K known
and data sets {zi, xi}n

i=1. In one sense, model-based clustering is simply discriminant
analysis whereby all of the zi group labels are missing. With this in mind, as noted by
Fisher (1936) the natural unit of measurement for separability of clusters is given by the
standardised distance ((µ1j −µ2j)/σj)2, which is a function of the L2 distance between
cluster centres standardised by the variance of the measurements around each cluster.
From this criterion Fisher went on to derive what we now know of as Linear Discrimi-
nant Analysis (LDA), one of the most popular pattern recognition models used today.

Taking Fisher’s standpoint we can consider (µ1j − µ2j)/
√

σ2
j as a primitive on which

we wish to express prior beliefs. That is, for covariates which are irrelevant to the clus-
tering, i.e. directions which are uninformative for π(zi|xi), we expect (µ1j − µ2j)/

√
σ2

j

to be small (in absolute value) and vice versa for influential covariates.

So we aim to provide a prior which encodes these beliefs, which lead us to the
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following K-component hierarchical Bayesian Gaussian mixture model,

xi|zi = k, µ,Φ ∼ N(µk, Φ), i = 1, . . . , n, (1)

Φ = diag(σ2
1 , . . . , σ2

p), (2)

µ1,j , . . . , µK,j |λj ,Φ ∼
K∏

k=1

N(θj , σ
2
j λj), j = 1, . . . , p, (3)

θj ∼ N(0,∞), j = 1, . . . , p, (4)
λj ∼ Ga(c, d), j = 1, . . . , p, (5)

σ2
j ∼ IG(r, s), j = 1, . . . , p, (6)

d ∼ Ga(g, h), (7)

where N(·), Ga(·) and IG(·) denote the Normal, Gamma and Inverse-Gamma distri-
butions respectively. Note that we have not yet defined the prior distribution on the
mixture weights w - we shall discuss this later. The important point is in (3) where we
see that the cluster locations in each dimension, {µ1,j , . . . , µK,j}, follow an exchange-
able distribution which shrinks towards a common mean θj in each direction. It can
then be seen that this hierarchy induces the following conditional distributions on the
scale-standardised locations in each covariate

(µsj − µtj)/
√

2σ2
j ∼ N(0, λj)

and moreover by taking, λj ∼ Ga(c = 1, d = η) this then induces the marginal density

(µsj − µtj)/
√

2σ2
j ∼ DE(η, θj)

where DE(η, θ) denotes the double-exponential distribution with shape parameter η
centred at θj . It is well known that the double exponential density, due to its relatively
high kurtosis, has the tendency to shrink small values to zero while performing little
shrinkage on larger values. There is also a direct correspondence between the Bayesian
MAP estimate using the double-exponential prior and the LASSO penalized likelihood
approach, which is known to induce sparse solutions. This setting of independent priors
on the prior variances of lower-level parameters is also reminiscent of the ARD methods
used in regression.

Hence, the above hierarchical model implies a marginal prior on the primitive (µsj−
µtj)/

√
2σ2

j which shrinks the cluster means towards a common location in a way
that encourages sparsity. This was exactly our intention. Such a model should then
have the tendency to prune out “irrelevant” variables by shrinking the group means
{µ1j , . . . , µKj} towards a common value θj . Moreover by examining the marginal pos-
terior distribution of π(λj |x) we should gain an understanding of the relative relevance
of each covariate.

An important point is that the shrinkage parameters λj ’s do not enter into the
likelihood of the data. That is, x is conditionally independent of {λ1, . . . , λp} given
{µ, Φ}. This feature allows for automatic relevance determination in the covariates as
shown next.
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2.2 Relationship to existing methods

One key difference between our proposal and previous reported Bayesian methods is
that we do not specify the variable selection model within the likelihood. For instance,
in Tadesse et al. (2005) they define the model via,

π(xi|zi = k) = N(xiI(γ)|µkI(γ),ΣI(γ))N(xiI(γc)|µkI(γc), ΣI(γc))

where I(γ) indexes those variables currently selected in the model and I(γc) the com-
plementary set which are not included. This model implies independence between the
relevant and irrelevant variables, which is perhaps often difficult to justify.

In the approach of Raftery and Dean (2006) they factorise the joint density as

π(xi|zi = k) = π(xiI(γ)|zi)π(xiI(γc)|xiI(γ))π(xiI(γcc)|xiI(γc), xiI(γ)) (8)

where γc are a set of potential variables to possibly be included within the model and
γcc are variables excluded from consideration of inclusion. The advantage of (8) is that
you no longer have to assume independence between the variables. However one is then
left with the task of modelling each factor of the joint distribution on the rhs of (8).

Here we leave the likelihood unaltered but consider the posterior marginal distribu-
tion of π(λj |x) as a measure on the relevance of the jth covariate. In fact it quantifies the
distribution of the variance parameter of the scale-standardised distribution of cluster
centres

(µij − µkj)/
√

2σ2
j ∼ N(0, λj),

which we believe is an intuitive measure of the relevance. This is akin to a Bayesian
ANOVA on the standardised cluster locations.

2.3 Non-diagonal, non-identical covariance matrices

The assumption of a common, diagonal covariance structure limits the practicality of
the model. In order to incorporate cluster-specific, full covariance structure, we can
incorporate an additional layer into the hierarchy as follows,

xi|zi = k, µ, Σ ∼ N(µk, Σk), i = 1, . . . , n, (9)
Σk ∼ IW(γ, Φ), k = 1, . . . , K, (10)

Φ = diag{σ2
1 , . . . , σ2

p}, (11)

where IW(·) denotes the Inverse-Wishart distribution and other layers in the hierarchy
are similar to those in Section 2.2. The key feature of this modification is that the
primitive on which we are expressing prior beliefs is preserved, (µsj−µtj)/

√
2σ2

j , where

the scaling is by σ2
j which now describes an average variance across clusters in that

variable. However, the likelihood now involves a full cluster-specific, covariance matrix,
whose prior distribution is an Inverse-Wishart distribution with a scale matrix given by
the variable-specific variances {σ2

1 , . . . , σ2
p}.
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2.4 Inference on the number of clusters

We have so far assumed that the number of distinct clusters and hence the number
components in the mixture model (K) is known. This is not typically the case and the
determination of the number of clusters is often also of interest. In Raftery and Dean
(2006) and Maugis et al. (2009) this problem is tackled as a model selection problem
using the Bayesian Information Criterion (BIC) as a measure to choose between finite
mixture models involving differing number of components. An alternative approach to
fitting mixture models with an unknown number of components uses stochastic processes
that permit the creation and destruction of mixture components such as the reversible-
jump Markov Chain Monte Carlo by Richardson and Green (1997) or the continuous-
time Markov birth-death processes by Stephens (2000). Our chosen method is closer
to the Bayesian nonparametric approach of Tadesse et al. (2005) who define mixture
distributions with a countably infinite number of components implemented using a
Dirichlet process prior (Antoniak 1974; Ferguson 1973) on the mixture proportions.

A number of Monte Carlo samplers are available for efficient posterior simulation
with Dirichlet Process Mixture models, which can be roughly divided into two categories:
marginal methods in which the Dirichlet Process is analytically integrated out (Escobar
1994; Escobar and West 1995; MacEachern 1998; Neal 2000; Jain and Neal 2000; Green
and Richardson 2001) and conditional methods utilising the stick-breaking representa-
tion due to Sethuraman (1994) in which the parameters of the Dirichlet Process prior
are explicitly imputed (Ishwaran and James 2001; Walker 2007; Papaspiliopoulos and
Roberts 2008; Kalli et al. 2011).

We impose the following hierarchical structure on the latent allocation variables z
and mixture weights w which utilises the auxiliary variable construction proposed by
Walker (2007)

π(zi = k|w, ui) ∝ I(k : wk > ui), i = 1, . . . , n, (12)
ui ∼ U(0, 1), (13)
vk ∼ Be(1, α), (14)

w1 = v1, wk = v1

k−1∏

j=1

(1− vj), k > 1, (15)

α ∼ Ga(a, b). (16)

where Be(·) and U(·) denote the Beta and Uniform distributions respectively. Equations
(14-16) specify the Dirichlet Process prior on the mixture weights w with concentration
parameter α. Walker (2007) noted that the density

fw,µ,Σ(x) =
∞∑

k=1

wkN(x;µk,Σk),

can be written as the marginal of the joint density,

fw,µ,Σ(x, u) =
∞∑

k=1

I(wk > u)N(x; µk, Σk).



C. Yau and C. Holmes 335

Crucially, given the auxiliary variable u, the set Au = {k : wk > u} is finite, hence the
likelihood can be written as a summation over a finite number of terms

fw,µ,Σ(x|u) =
1∑

k∈Au
wk

∑

k∈Au

N(x; µk, Σk).

Consequently, for posterior updating of the latent allocation variable zi, given the aux-
iliary variable ui it is only necessary to consider a finite number of allocations rather
than the infinite number that would be required. Walker (2007) showed that in order to
update all allocation variables, it is only necessary to simulate K∗ mixture components
(vk, µk,Σk) such that

∑K∗

k=1 wk > 1 −mini{ui} (simulating any additional component
parameters from the prior if necessary).

2.5 Conditional distributions and Gibbs sampling

One immediate advantage of this particular hierarchical model is that the conditional
distributions all have standard form and hence allow for a full Gibbs sampling strat-
egy. Fairly simple inspection of the hierarchical model reveals the following conditional
distributions:

π(zi = k|xi, ui, w, µ, Σ) =
N(xi; µk, Σk)∑

j:wj>ui
N(xi;µj , Σj)

, (17)

ui|zi = k, w ∼ U(0, wk), (18)

vk|α, z ∼ Be


1 + nk, α + n−

k−1∑

j=1

nj


 , (19)

µk|· ∼ N
(
Vk(Σ−1

k xk + Φ−1Λ−1θ), Vk

)
, k = 1, . . . , K, (20)

Σk|· ∼ IW

(
γ + nk, Φ +

∑

i:zi=k

(xi − µk)(xi − µk)′
)

, k = 1, . . . , K,

(21)

where nk =
∑n

i=1 I(zi = k), xk =
∑

i:zi=k xi and Vk = (nkΣ−1
k + Φ−1Λ−1)−1.

λj |· ∼ GIG

(
c− 1

2
K ′,

1
2σ2

j

∑

k:nk>0

(µjk − θj)2, 2d

)
, (22)

σ2
j |· ∼ GIG

(
r +

1
2
K ′(γ − 1), 2t +

1
λj

∑

k:nk>0

(µjk − θj)2,
∑

k:nk>0

[Σ−1
k ]jj

)
, (23)

d|· ∼ Ga


g + p, h +

p∑

j=1

λj


 , (24)
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where K ′ =
∑K

k=1 I(nk > 0) is the number of mixture components to which data has
been assigned and GIG(·) is the Generalized Inverse Gaussian distribution of the form,

GIG(x; a, b, c) ∝ xa−1 exp
(
−1

2

[
b

x
+ cx

])
.

We update the concentration parameter α using the mixtures of Gamma method of
Escobar and West (1995).

Finally, we introduce two label-switching moves, as given in Papaspiliopoulos and
Roberts (2008), since the augmentation of w in our model makes the components in the
infinite mixture weakly identifiable. The first label-switching move proposes to switch
the labels of two randomly chosen components i and j with acceptance probability
min(1, (wj/wi)ni−nj ) whilst the second move proposes to swap the labels of two adja-
cent components j and j + 1 (and their corresponding stick-breaking variables vj and
vj+1) with acceptance probability min(1, (1 − vj+1)nj /(1 − vj)nj+1). These moves are
complementary with the former having high acceptance probability of switching labels
of components with similar weights whilst the latter has high probability of switching
very unequal clusters.

Note, that in the updates of the parameters (λ, σ2, d), a summation over all mix-
ture components is required. In our model, there are a countably infinite number of
components, however, finite computation is possible since we only need to sum over
the mixture components that are associated with data as the effect of the non-realised
mixture components is integrated out. For instance,

π(λj , {µj,k}k/∈Ak
|d, σ2

j , {µj,k}k∈Ak
) ∝ π(λj |d)

∏

k∈Ak

f(µjk; θj , σ
2
j λj)

∏

k/∈Ak

f(µjk; θj , σ
2
j λj)

(25)

where the set Ak = {k : nk > 0} and f(x; µ, σ2) is the probability density function of the
Normal distribution of the random variable x with mean µ and variance σ2. Integrating
out the µ’s from mixture components to which no data is associated,

π(λj |d, σ2
j , {µj,k}k∈Ak

) ∝ π(λj |d)
∏

k∈Ak

f(µjk; θj , σ
2
j λj)

∏

k/∈Ak

∫
f(µjk; θj , σ

2
j λj)dµjk,

(26)

since
∫

f(µjk; θj , σ
2
j λj)dµjk = 1 then

π(λj |d, σ2
j , {µj,k}k∈Ak

) ∝ π(λj |d)
∏

k∈Ak

f(µjk; θj , σ
2
j λj). (27)

2.6 Cluster-specific variable relevance determination

An extension of our model may be obtained by allowing each cluster to possess its own
set of variances λkj for the jth variable’s relevance in the kth cluster. This construction
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allows us to identify if a particular variable segregates one cluster from the others;
similar motivation for cluster specific variable selection can be found in Friedman and
Meulman (2004). The hierarchical model is specified as follows:

µkj |λkj ,Φ ∼
K∏

k=1

N(θj , σ
2
j λkj), j = 1, . . . , p, (28)

λkj ∼ Ga(1, dj), j = 1, . . . , p, (29)
dj ∼ IG(g, h), j = 1, . . . , p. (30)

This leads to a prior distribution on the primitive (µsj − µtj)/
√

2σ2
j of the form

N(θj , λsj + λtj).

3 Examples

In all the example we applied our method to the datasets obtaining 11,000 MCMC
samples and discarding the first 1,000 as burn-in and thinning by every 10 samples. For
the larger simulated datasets, average run-times for each data set was approximately
45-60 minutes per dataset using a MATLAB-based implementation. Run-times vary
due to variations in the number of realised mixture components during the MCMC run.
We initialised using label assignments from a 50-component Gaussian Mixture Model
fitted using a standard maximum likelihood-based expectation-maximization approach.

3.1 Simulation Study

Data. Eighty simulated data sets were generated based on the seven scenarios generated
by Maugis et al. (2009) and an eighth scenario which is a replica of scenario 6 but
with non-identical noise covariances. Each dataset consists of 2,000 data points x

(1,2)
i

from a mixture of four Gaussian distributions N(µk, I2) with µ1 = (−2,−2)′, µ2 =
(−2, 2)′, µ3 = −µ2 and µ4 = −µ1 with mixture proportions w = (0.3, 0.2, 0.3, 0.2). Eight
irrelevant variables were appended and simulated according to x

(3,...,10)
i = β′x(1,2)

i + εi,
εi ∼ N(0, Σzi) (see Table 1 for details).

Results. Figure 1 shows that, for each dataset, our method was able to identify
the number of clusters in the data by assigning non-negligible mixture weights to four
components. Posterior means for the mixture weights for each of the eighty datasets
were close to the actual simulation values of (0.3, 0.3, 0.2, 0.2). The relevant clustering
variables were also identified in all scenarios with these having significantly larger values
of λ than the irrelevant non-clustering variables as anticipated.

We note that although our method does not explicitly model the relationships be-
tween variables it is possible to distinguish between independent clustering variables
that are directly related to the clustering and related clustering variables which are in-
dependent of the clustering given the independent clustering variables. This is achieved
by the examining the noise variances σ2 associated with each clustering variable. In
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Scenario Regression Coefficients Covariance
1. β = 08 Σ = I8

2. β = 08 Σ = 0.5I8

3. β = ([2, 0]′, 07) Σ = I8

4. β = ([0.5, 0]′, [0, 1]′, 06) Σ = I8

5. β = (β1, 04) Σ = diag(I2, 0.5I2, I4)
6. β = (β1, β2, 02) Σ = diag(I2, 0.5I4, I2)
7. β = (β1, β2, β3) Σ = diag(I2, 0.5I4, I2)
8. β = (β1, β2, β3) Σ1 = diag(I2, 0.5I4, I2)

Σ2 = diag(I2, 0.15I4, I2)
Σ3 = diag(I2, 0.35I4, I2)
Σ4 = diag(I2, 0.25I4, I2)

Table 1: Simulation models. Scenarios 1-7 are derived from Maugis et al. (2009)
whilst Scenario 8 is a replica of Scenario 7 but using non-identical noise covari-
ance matrices for each mixture component. The regression parameters used were
β1 = ((0.5, 0)′, (0, 1)′, (2, 0)′, (0, 3)′), β2 = ((2, 0.5)′, (0.5, 1)′), β3 = ((2, 0)′, (0, 3)′). The
notation 0n denotes an n element row of zeroes.

scenarios 3-8, the related variables have comparatively higher variance than the inde-
pendent clustering variables. Furthermore, it is interesting to note that by examining
the posterior mean correlation matrix of the cluster with the highest posterior mean
mixture weight, the correlations between variables can also be observed.

As a consequence we are able to qualitatively identify the two independent clustering
variables and our overall analysis compares favourably with that in the original study
by Maugis et al. (2009) and is much improved compared to the method of Raftery and
Dean (2006) which tends to select both relevant and irrelevant clustering variables. We
note that for this simulated example the data generating process follows the structure of
the model proposed in Maugis et al. (2009), that is, they have the true model contained
under their prior.

3.2 Cluster-specific variable relevance determination

Data. We simulated 1, 000 p-dimensional normally distributed random vectors for each
of the three simulation scenarios described in Table 2 according to, xi|zi = k, µ, Σ ∼
N(µk, Σk). The cluster assignments zi were drawn from a multinomial distribution with
parameters w and the covariance matrix for each cluster was randomly drawn from an
Inverse-Wishart distribution Σk ∼ IW(p + 1, Ip) where Ip denotes the p × p identity
matrix.

Scenario (a) depicts a case where the first three variables are relevant to all three
clusters in the data. In scenario (b) each of the first three variables is responsible for
differentiating one cluster from the others whilst scenario (c) uses 4 clustering variables
where variables 1-3 are responsible for one cluster each and variable 4 is associated with
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Figure 1: Variable selection for eight simulated scenarios. Top row - posterior mean
estimates of mixture weights for ten datasets generated for each of the eight simula-
tion scenarios. In all instances our method was able to estimate the correct number of
clusters (4) and the mixture weights (0.3, 0.3, 0.2, 0.2). Second row - Posterior mean
estimates of the log λ for the clustering variables (+) and the related variables (×) are
high whilst the irrelevant clustering variables (◦) have low values indicating that the
means in this coordinate direction, for all clusters, are being shrunk towards a common
value. Variables selected using the method of Raftery and Dean (2006) are shown us-
ing asterisks (¤). Third row - posterior mean estimates of the quantity, σ2

j /γj , which
describes the variance associated with measurements of the j-th variable. For the clus-
tering variables, the variance associated with the directly relevant clustering variables
is found to be lower than that associated with related clustering variables. Bottom row
- heatmaps showing example correlation matrices for cluster 1 estimated from each sce-
nario. The correlation structure correctly identifies the relationships between variables
used in the simulation of the data.

two clusters. Figure 2 depicts data for Scenario (c) where we can clearly see that one
cluster can be clearly segregated from the others using variables 1-3 whilst variable 4
separates two clusters from the others.
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Scenario (a) (b) (c)
p 10 10 10
K 3 3 5
w [1/3, 1/3, 1/3] [1/3, 1/3, 1/3] [1/5, 1/5, 1/5, 1/5, 1/5]
µ µ1 = [−3, 3,−3, 07] µ1 = [3, 09] µ1 = [−3, 09]

µ2 = [0, 0, 0, 07] µ2 = [0, 3, 08] µ2 = [0, 3, 08]
µ3 = [3,−3, 3, 07] µ3 = [0, 0, 3, 07] µ3 = [0, 0,−3, 07]

µ4 = [0, 0, 0, 3, 06]
µ5 = [0, 0, 0,−3, 06]

Table 2: Cluster-specific variable importance simulation parameters.
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Figure 2: A simulated dataset for cluster-specific variable selection.

Results. Figure 3 shows the analysis of these three datasets using the cluster-specific
variable relevance determination variant of our model. In all three scenarios, the poste-
rior estimates of the mixture weights indicate that the number of clusters was correctly



C. Yau and C. Holmes 341

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

Cluster

w
(a)

1 2 3
0

0.2

0.4

0.6

0.8

1

1

2
3

45 67 89 10

12
3

45 67 89 10

1
2

3

45 67 89 10

Cluster

λ

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

Cluster

(b)

1 2 3
0

0.2

0.4

0.6

0.8

1

2
3

45 67 89 10

1

2

3

45 67 89 10

12

3

45 67 89 10

Cluster

1 2 3 4 5 6 7 8 9 10

0

0.1

0.2

0.3

0.4

0.5

Cluster

(c)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

2
3

4

5 67 89 10
1

2

3

4

5 67 89 10
12

3

4

5 67 89 10
12

3

4

5 67 89 10
123

4

5 67 89 10

Cluster

Figure 3: Cluster-specific variable selection on three simulated datasets. Top row -
Posterior means (with 5% and 95% quantiles) for the mixture weights w. The correct
number of clusters (3, 3 and 5) are identified by our method in each instance. Bottom
row - Posterior means of λ are shown for each cluster and the numbers indicate the
corresponding variable.

identified with 3, 3 and 5 clusters having significant weights respectively. An examina-
tion of the variances λjk for each cluster shows that our cluster-specific variable relevance
determination method is able to identify that, in scenario (a), the clustering variables
1-3 all play a part in the identification of the three clusters. In scenario (b), whilst all of
the variables 1-3 are shown to be useful for clustering, compared to variables 4-10, each
cluster has one λ value that shows greater importance over the other two. For scenario
(c), the variables 1-3 are each associated with clusters 1-3 respectively, whilst the fourth
variable is important for clustering of all five classes but particularly associated with
the fourth and fifth clusters.

3.3 Real Data Examples

Data. We analysed the Leptograpus Crabs and Iris datasets. The Crabs data contains
four classes with fifty data points in each class and measurements for five variables. The
Iris data has a three-class structure with fifty data points in each class and consists of
measurements for four variables. For both datasets, we also appended three additional
irrelevant variables simulated from a standard normal distribution.

Results. For the Crabs data, we computed the principal components on the stan-
dardised data and clustered in the principal component space. Clustering in the original
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Figure 4: Crabs data (including three irrelevant variables) in standardized original and
principal component coordinate space.

coordinate space led to high sensitivity to initialisation as the variables are highly corre-
lated and the data lie in an extremely thin, elongated region in the original coordinate
space. This near-collinearity is revealed by principal component analysis which esti-
mates the variances as 4.8048, 1.2764, 1.0541, 0.6583, 0.1488, 0.0449, 0.0110 and 0.0017
of each of the principal components (see Figure 4) and the first principal component lies
in the direction [0.4509, 0.4276, 0.4521, 0.4500, 0.4502, 0.0265,−0.0208,−0.0550]′. The
principal components 2-4 correspond to variation in the added irrelevant variables.

Figure 5 shows that, when clustering using the principal components, the four clus-
ters were found to have significant weight. The principal components 5 and 6 were
found to be of particular importance to clustering, but no principal component was
particularly associated with any single cluster. If we plot the data in these coordinates
only the four clusters can be observed. If we assigned each data point to the cluster
with maximum posterior probability then we obtain 15 classification errors. Note that
since we are using the principal components, the variable selection is performed not on
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the original variables but on a linear combination of those variables.
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Figure 5: Cluster-specific variable selection on the Crabs dataset. (a) Posterior means
(with 5% and 95% quantiles) for the mixture weights w, (b) Posterior estimates of the
cluster-specific variance parameters λ and (c) the data with the true classification shown
in colored circles and the classification given by our method by numbers.

For the Iris data, our method identified the three underlying classes and indicated
that variables 3 (petal length) and 4 (petal width) to be of particular importance. An
examination of the data in the space spanned by these variables shows that the three
classes can be distinguished based on these two variables alone.

3.4 Cancer Data Analysis

We examined a cancer dataset containing Illumina SNP-CGH microarray measure-
ments for 80 patients with B-cell chronic lymphocytic leukaemia (B-CLL) (Figure 7(a))
(Knight et al. (2011)). Each array is comprised of 1,022,726 SNP-CGH probe mea-
surements that measure relative genome-wide DNA copy number abundance. Patterns
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Figure 6: Cluster-specific variable selection on the Iris dataset. (a) Posterior means
(with 5% and 95% quantiles) for the mixture weights w, (b) Posterior estimates of the
cluster-specific variance parameters λ and (c) the data with the true classification shown
in colored circles and the classification given by our method by numbers.

of genome-wide gain and loss of DNA copy number can provide important prognostic
markers for disease type and severity and it is our interest to find distinct genetic sub-
types of B-CLL associated with certain clinical outcomes. We applied our clustering
method, assuming cluster-specific but diagonal covariances, and used cluster-specific
variable relevance determination to identify potential genetic sub-types of B-CLL in
our sample dataset. Due to the considerable dimensionality of the problem, we reduced
to a summarised set of 9,953 summary measurements by taking averages over 100 probe
windows.

Figure 7(b) shows ten clusters identified by our method that have non-negligible mix-
ture weights. Although the significance of a number of these clusters must be verified
for clinical significance, three of these clusters correspond to three well-established mu-
tation types involving deletions of the long arm on chromosome 11 (cluster 2), trisomy
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12 (an additional chromosome 12) (cluster 6) and loss of the short arm of chromosome
17 (cluster 3) (Döhner et al. (2000)). A fourth cluster (8) indicates potential significance
of genomic aberrations of chromosomes 4, 16, 17, 18, 19 and 20 although it is beyond
the remit of this study to validate the potential prognostic value of this genetic sub-
type. Figure 7(c) shows that our cluster-specific variable determination automatically
highlights the relevant genetic regions for each of these sub-groups.

4 Discussion

We have derived a Bayesian hierarchical nonparametric mixture model approach appli-
cable to situations where there is a priori uncertainty as to the relevance of the measured
variables to the clustering problem. The hierarchical structure provides a flexible frame-
work in which to build prior beliefs on primitives which capture the notion of sparsity;
namely standardised differences of cluster locations. Such models can accommodate
cluster specific variable relevance, while the nonparametric prior allows us to treat the
number of mixtures as unknown.

Extensions to component distributions, other than the Normal or Student-t, for
inference in problems involving mixed data types may be possible but are beyond the
scope of this paper. In the spirit of the model presented here, the extension would
rely on it being possible to parameterise the component distributions in terms of a
location and then to provide a hierarchical structure to impose a shrinkage-type prior
on the difference in locations between clusters. The details of the implementation would
depend on the choice of component distributions being used and alternative data models
may lack the conjugacy properties that have enabled us to use efficient Gibbs sampling
strategies for computational inference here.

One point noted by the referees as a principle assumption of our model is that
clusters are defined on differences in location. Although this scenario covers many
applications there may be circumstances in which clusters have a common location but
differ in shape. Figure 8(a) shows a simulated ten-dimensional dataset generated from
a three-component Normal mixture model (equal weights) in which only the first two
variables are relevant to the clustering. Two components share a common location but
have different covariances whilst the third is well-separated. Data for the remaining
variables were generated from a unit normal. Applying our method to data of this type,
the variance parameter λ on the means µ indicates that the first variable is of relevance
to the clustering as expected but no indication of the importance of the second variable
is provided. However, inspection of the posterior distribution of the scale variables σ2

does reveal some further information about the importance of the second variable since
the σ2 scale differs for the second clustering variable compared to the non-clustering
variables. One could envisage the use of a more explicit hierarchical model structure that
performs shrinkage (toward a common value) on the variance-covariance components of
variables irrelevant to the cluster structure. This will be an interesting avenue for future
investigation.

A further area for development is the modelling of the individual component den-
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sities particularly in a high-dimensional context. In our cancer analysis example, for
computational reasons, we restricted the covariances to be of diagonal form but more
robust covariance modelling could be developed using dimension reduction techniques.
As noted by one referee, model misspecification could lead to the appearance of spuri-
ous clusters and the differences in means between these spurious clusters could produce
misleading evidence for variable importance. It is of benefit here that our measure
of variable importance is continuous and allows us to qualitatively rank variables of
importance. In our cancer example, it is clear that across the genome there are loci
which do have values of λ which suggest some importance but which are likely due to
over-clustering. However, this was not overly problematic since the differences in means
associated with the clusters and loci of greatest interest (the known CLL sub-types)
were much greater than any variations in means between clusters at irrelevant loci.
Nonetheless, in more noisy datasets, a more flexible covariance model may be required.

Finally, a general issue that we have not directly addressed is the issue of designing
well-mixing MCMC samplers that are able to fully explore the posterior parameter
space. In this paper, we have taken advantage of the conjugacy within our model
in order to find conditional distributions from which a Gibbs Sampler for posterior
inference can be derived. Alternative samplers for Dirichlet process mixture models
that employ more flexible split-merge moves have been previously proposed by Jain
and Neal (2000) and Green and Richardson (2001) and these can also be integrated
with tempering techniques as in Kim et al. (2006) in order to avoid the local modes in
which Gibbs Samplers have the propensity to become trapped. However, it should be
noted that in actual applications, the computational burden of more elaborate sampling
techniques may be prohibitive when applied to very large, high-dimensional data sets
and a more practical strategy would be to forego the full exploration of the parameter
space and to focus only on a high probability region with a Gibbs sampler in conjunction
with good initialisation. One of the techniques we have used in our analysis is to initialise
from a heavily over fitted initial mixture model with many more components than we
might expect to exist. Hence the emphasis is then on pruning out and merging clusters
rather than cluster creation which is difficult without explicit split moves.
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Figure 7: Clustering of chronic lymphoblastoid leukemia data. (a) Original data
(red/green - low/high signal intensity), (b) clustered data and (c) variable relevance
for clusters 2, 3, 6, and 8. The clusters 2, 3 and 6 correspond to known B-CLL genetic
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Figure 8: Mixture models based on cluster covariances. (a) Data (from the first two
dimensions) of three components with common mean but differing covariances. (b)
Posterior distribution of the mixture weights estimated from the data. (c) Posterior
distribution of the variance relevance parameters log λ. (d) Posterior distribution of the
scale parameters σ2.
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