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Comment on Article by Hoff

Genevera I. Allen∗

1 Introduction

This paper introduces and develops the array normal distribution by extending the
matrix-variate normal to the tensor array setting using the Tucker product. Methods
for maximum likelihood and Bayesian estimation of separable covariances are given.
These contributions are noteworthy as statisticians are encountering increasing num-
bers of multi-dimensional data sets and methods are needed to model and analyze this
array data. Tensor data is especially common in areas of bio-medical imaging, such
as neuroimaging and microscopy. With functional magnetic resonance imaging, for ex-
ample, three-dimensional images of the brain are taken every two to three seconds for
many subjects. Often, the dimension of the location variables (voxels) measures in the
hundred thousands and the time points measure in the thousands, forming an ultra
high-dimensional array. Methods for understanding and modeling these large tensors
are certainly needed, and the introduction of the array normal is an important first step
in this process.

2 Separable Means

In some cases, having separable means as well as covariances may be useful for tensor
data. This may be especially true when no sets of variables along each of the dimensions
can be considered independent instances or repeated measures. Then, summing over
repeated measures to estimate a mean matrix or mean array is infeasible. Allen and
Tibshirani (2010b) modeled separable means for a single instance of a matrix-variate
normal data matrix, giving the mean-restricted matrix normal distribution. A similar
extension can be employed for the array normal by modeling a separate mean vector
for each dimension.

Let Y be the observed array data, Y ∈ <m1×...×mK , and let M be the mean matrix
M ∈ <m1×...×mK . Decompose M =

∑K
k=1 Mk where Mk = 1m1 ◦ . . . ◦ 1mk−1 ◦µk ◦

1mk+1 ◦ . . . ◦ 1mK
, with µk ∈ <mk , the mean vector of the kth dimension of Y. One

can define the mean-restricted array normal as a simple extension of the array normal
with the general mean matrix replaced by the structured mean, M =

∑K
k=1 Mk. The

separable factor means provide a nice analog to the separable covariances of the array
normal.

These separable mean parameters can be estimated in a step-wise procedure. (Note
that as in the article by Hoff and in other work on the matrix-variate normal (Du-
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tilleul 1999; Allen and Tibshirani 2010b), the means are estimated assuming identity
covariances. Thus, mean parameters and covariance parameters are estimated in two
stages.) Let m(−k) =

∏
k′ 6=k mk′ , and recall that X(k) denotes the matricized array that

is of dimension mk ×m(−k). Then, beginning with X(1) = Y, the following procedure
repeated for each dimension, k, yields the mean MLEs: (i) Let µ̂k be the row mean of
the matrix X(k)

(k), (ii) define M̂k = 1m1 ◦ . . . ◦ 1mk−1 ◦µ̂k ◦ 1mk+1 ◦ . . . ◦ 1mK
, and (iii)

set X(k+1) = X(k)−M̂k. The overall mean matrix is M̂ =
∑K

k=1 M̂k and the centered
array is X(K+1). Note that the individual means, µ̂k, are only unique up to an additive
constant, and hence the order in which they are estimated is unimportant. The overall
mean matrix, M̂, is unique, however, and is the maximum likelihood estimate. This can
be seen by taking partial derivatives of the log-likelihood of the mean-restricted array
normal with respect to the separable means, µk.

Modeling separable means for the array normal can be thought of as fitting a multi-
factor ANOVA model in which there is only one replicate for each factor combination.
This relationship may then be exploited to conduct inference on the presence of these
factor level means. Further connections between this mean-restricted array normal
with and without non-identity separable covariance structures and multi-factor ANOVA
models should be investigated.

3 Regularizing Separable Tensor Concentration Matrices

The author presents methods for maximum likelihood and Bayesian estimation of the
separable covariances of the array normal. Estimation of these covariances through
direct penalized maximum likelihood estimation by placing penalties on the inverse co-
variance or concentration matrices may also be of interest. Encouraging sparsity in the
concentration matrices for example, is related to covariance selection (Dempster 1972)
and estimating Gaussian graphical models (Meinshausen and Buhlmann 2006). Penal-
ized maximum likelihood estimation of concentration matrices has been well studied
for the multivariate normal (Yuan and Lin 2007; Friedman et al. 2007; Rothman et al.
2008) and recently for the matrix-variate normal (Allen and Tibshirani 2010b). Results
from the latter can be easily extended to the framework of the array normal distribution
introduced in this paper.

Assume that X denotes the centered array, X = Y−M̂, and consider the following
penalized array normal log-likelihood, denoted by `p:

`p(X |Σ-1
1, . . .Σ-1

K) ∝
K∑

k=1

m

2mk
log|Σ-1

k | − 1
2
||X×Σ−1/2 ||2F −

K∑

k=1

λkPk(Σ-1
k). (1)

Here, λk are penalty parameters and Pk() are matrix-convex penalties, Pk() : <mk×mk →
<, that is, Pk() are matrix norms or convex functions of matrix norms. Some exam-
ples discussed in Allen and Tibshirani (2010b) are Pk(Σ-1

k) =
∑

i

∑
i′ |Σ-1

k(i, i′)| or
Pk(Σ-1

k) =
∑

i

∑
i′(Σ

-1
k(i, i′))2 = tr(Σ−2

k ) = ||Σ-1
k ||2F , corresponding to L1 and L2

norm penalties.
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If we define Σ-1
(−k) = Σ-1

1⊗ . . . ⊗Σ-1
k−1⊗Σ-1

k+1⊗ . . . ⊗Σ-1
K , then notice that

the middle term of the penalized log-likelihood, `p, can be written in terms of Σ-1
k:

||X×Σ−1/2 ||2F = tr
(
Σ-1

k X(k) Σ-1
(−k) X

T
(k)

)
.

From this, it is easy to see that `p is concave in each Σ-1
k with the other concentration

matrices fixed. Thus, an iterative block-wise maximization strategy may be employed
that increases the penalized likelihood at each iteration and converges (Tseng 2001).
This is similar to the approach outlined by Hoff for un-penalized covariance estimation.

At each step of this iterative estimation algorithm, one must solve the following
subgradient equation:

∂`p

∂ Σ-1
k

= Σk −mk

m
X(k) Σ-1

(−k) X
T
(k)−∇Pk(Σ-1

k)
2λkmk

m
= 0. (2)

Here, ∇Pk(Σ-1
k) is the subgradient of Pk() with respect to Σ-1

k. For the L1 penalty,
∇Pk(Σ-1

k) = Γ(Σ-1
k) where Γ(i, i′) = sign(Σ-1

k(i, i′)) if Σ-1
k(i, i′) 6= 0 or ∈ [−1, 1]

otherwise. This subgradient equation can be solved by applying the graphical lasso
algorithm (Friedman et al. 2007) to the second term with the penalty given by the coef-
ficient of the third term. For the L2 penalty, ∇Pk(Σ-1

k) = 2Σ-1
k, yielding an eigenvalue

problem. The solution for Σ-1
k has the same eigenvalues as that of the second term of

the gradient equation while the eigenvalues are regularized versions of the eigenvalues of
the second term. For the matrix-variate normal with Frobenius norm penalties, Allen
and Tibshirani (2010b) found an analytical solution for the concentration matrices that
is a function of the singular value decomposition of the data matrix and forms the global
solution to the penalized log-likelihood. The proof of the global nature of this solution
relies on the uniqueness of the singular value decomposition. Given this, I conjecture
that one can obtain a solution for the concentration matrices of the Frobenius norm
penalized array normal that is a function of the Tucker decomposition of the array data
(Tucker 1964, 1966). As the Tucker decomposition is not unique, however, this solution
is unlikely to yield the global maximum of the penalized log-likelihood.

Regularizing the separable concentration matrices of the array normal presents many
advantages. First, the L1 penalty estimates network structures for variables along each
dimension. Putting these together, one can estimate a Kronecker graph structure to
represent and understand the relationships between elements in the array. As the L2

penalized estimates have the same eigenvectors as the array maximum likelihood es-
timates described in the article, these estimates can be used to estimate non-singular
covariances when the tensor is rank deficient. While I have presented a framework for
regularizing separable tensor concentration matrices with convex penalties, this can also
be cast as a Bayesian estimation problem with Wishart priors.

4 Conditional Distributions

Hoff provides results on conditional distributions for the array normal in Proposition
3.2 similar to the conditional distribution results for the matrix-variate normal given
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in Allen and Tibshirani (2010b). These results are noteworthy and have numerous
implications beyond the brief discussion provided in the article. The main advantage
gained by calculating conditional distributions in this manner is computational, as they
can also be calculated by vectorizing the array and applying the multivariate normal
conditional distribution formulas. The separable covariances allow one to split these
calculations along each dimension of the array, thus substantially reducing the order of
computations. By using properties of the Schur complement, the computations can be
reduced further, and the complexity depends on the minimum of the number of observed
or number of missing elements per row of each X(k) (Allen and Tibshirani 2010a).

These computationally efficient algorithms are needed with high-dimensional ten-
sors for numerous items including missing data imputation and cross-validation. For
Bayesian missing data imputation, one can use Gibbs samplers as outlined by Hoff and
also by Allen and Tibshirani (2010a). For imputing the missing values to their condi-
tional means, an alternating conditional expectations approach can be employed (Allen
and Tibshirani 2010b). These conditional distributions are also important for cross-
validation and can be used to assess the fit of certain covariance structures or to select
penalty parameters. To perform cross-validation, a small fraction of elements can be
deleted from the array and imputed; then, the prediction error of these deleted elements
can be calculated for several folds. Following the reduction in computations given by
using Schur complements, one can remove elements in the array according to a Latin
hypercube sampling scheme that keeps the computational complexity fixed despite the
dimensionality. This may be especially useful for assessing the fit of high-dimensional
array normal models.

5 Conclusion

As multi-dimensional data with possible correlations among the variables of each di-
mension is becoming more prevalent, the introduction of the array normal distribution
is an important contribution. Further development of the theoretical properties, alter-
native parametrization and estimation schemes, and strategies for efficient computation,
manipulation and visualization of the array normal are needed. Thus, Hoff’s work has
paved the way for many open research questions related to modeling tensor data.
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