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VON NEUMANN ENTROPY PENALIZATION AND LOW-RANK
MATRIX ESTIMATION

BY VLADIMIR KOLTCHINSKII1
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We study a problem of estimation of a Hermitian nonnegatively definite
matrix ρ of unit trace (e.g., a density matrix of a quantum system) based on
n i.i.d. measurements (X1, Y1), . . . , (Xn,Yn), where

Yj = tr(ρXj ) + ξj , j = 1, . . . , n,

{Xj } being random i.i.d. Hermitian matrices and {ξj } being i.i.d. random
variables with E(ξj |Xj ) = 0. The estimator

ρ̂ε := arg min
S∈S

[
n−1

n∑
j=1

(
Yj − tr(SXj )

)2 + ε tr(S logS)

]

is considered, where S is the set of all nonnegatively definite Hermitian
m × m matrices of trace 1. The goal is to derive oracle inequalities show-
ing how the estimation error depends on the accuracy of approximation of
the unknown state ρ by low-rank matrices.

1. Introduction. Let Mm(C) be the set of all m × m matrices with com-
plex entries. In what follows, tr(S) denotes the trace of S ∈ Mm(C), and S∗ de-
notes its adjoint matrix. Let Hm(C) be the set of all Hermitian m × m matri-
ces, and let S := {S ∈ Hm(C) :S ≥ 0, tr(S) = 1} be the set of all nonnegatively
definite Hermitian matrices of trace 1. The matrices from the set S can be in-
terpreted, for instance, as density matrices, describing the states of a quantum
system. Let X ∈ Hm(C) be a matrix (an observable) with spectral representa-
tion X = ∑m

j=1 λjPj , where λj are the eigenvalues of X and Pj are its spec-
tral projectors. Then a measurement of X in a state ρ ∈ S would result in out-
comes λj with probabilities tr(ρPj ) and its expectation is EρX = tr(ρX). Let
X1, . . . ,Xn ∈ Hm(C) be given matrices (observables), and let ρ ∈ S be an un-
known state of the system. An important problem in quantum state tomography is
to estimate ρ based on the observations (Xj ,Yj ), j = 1, . . . , n, where Y1, . . . , Yn

are outcomes of measurements of the observables X1, . . . ,Xn for the system iden-
tically prepared n times in the state ρ. In other words, the unknown state ρ of the
system is to be learned from a set of linear measurements in a number of “direc-
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tions” Xj, j = 1, . . . , n [see Artiles, Gill and Guţă (2005) for a general discussion
of statistical problems in quantum state tomography]. In what follows, it is as-
sumed that the design variables X1, . . . ,Xn are also random; specifically, they are
i.i.d. Hermitian m × m matrices with distribution �. In this case, the observations
(X1, Y1), . . . , (Xn,Yn) are i.i.d., and they satisfy the following model:

Yj = tr(ρXj ) + ξj , j = 1, . . . , n,

ξj , j = 1, . . . , n, being i.i.d. random variables with E(ξj |Xj) = 0, j = 1, . . . , n.
A typical choice of the design variables already discussed in the literature

[see Gross et al. (2010), Gross (2011)] can be described as follows. The linear
space of matrices Mm(C) can be equipped with the Hilbert–Schmidt inner prod-
uct, 〈A,B〉 := tr(AB∗). Let Ei, i = 1, . . . ,m2, be an orthonormal basis of Mm(C)

consisting of Hermitian matrices Ei . Let Xj, j = 1, . . . , n, be i.i.d. random vari-
ables sampled from a distribution � on the set {E1, . . . ,Em2}. We will refer to this
model as sampling from an orthonormal basis. Most often, the uniform distribu-
tion � that assigns probability m−2 to each basis matrix Ei is used. Note that in
this case E|〈A,X〉|2 = m−2‖A‖2

2, where ‖ · ‖2 := 〈·, ·〉1/2 is the Hilbert–Schmidt
(or the Frobenius) norm.

The following simple example is related to the problems of matrix completion
extensively discussed in the recent literature; see, for example, Candès and Recht
(2009), Candès and Tao (2010) and references therein. More precisely, it deals
with a version of matrix completion for Hermitian matrices; see Gross (2011).

EXAMPLE 1 (Matrix completion). Let {ei : i = 1, . . . ,m} be the canonical ba-
sis of C

m. Then the set of Hermitian matrices {Ejk : 1 ≤ j, k ≤ m}, where

Ejj := ej ⊗ ej , j = 1, . . . ,m, Ejk := 1√
2
(ej ⊗ ek + ek ⊗ ej ),

Ekj := i√
2
(ej ⊗ ek − ek ⊗ ej ), j, k = 1, . . . ,m, j < k,

forms an orthonormal basis of Hm(C). Here, and in what follows, ⊗ denotes the
tensor product of vectors or matrices. For j < k, the Fourier coefficients of a Her-
mitian matrix ρ in this basis are equal to the real and imaginary parts of the entries
ρkj , j < k of matrix ρ multiplied by

√
2; for j = k, they are just the diagonal

entries of ρ that are real. If now � is the uniform distribution in this basis, then
E|〈A,X〉|2 = m−2‖A‖2

2. Sampling from this distribution is equivalent to sampling
at random real and imaginary parts of the entries of matrix ρ.

Another example was studied by Gross et al. (2010) and by Gross (2011). It is
more directly related to the problems of quantum state tomography.

EXAMPLE 2 (Pauli basis). Let m = 2k . Consider the Pauli basis in the space
of 2 × 2 matrices M2(C): Wi := 1√

2
σi , where

σ1 :=
(

0 1
1 0

)
, σ2 :=

(
0 −i

i 0

)
, σ3 :=

(
1 0
0 −1

)
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and

σ4 :=
(

1 0
0 1

)
are the Pauli matrices (they are both Hermitian and unitary). The Pauli basis
in M2(C) can be extended to a basis in the space of m × m matrices Mm(C).
These matrices define linear transformations acting in the linear space C

m = C
2k

[i.e., the k-fold tensor product of spaces C
2 : C2k = (C2)⊗k]. Then the Pauli ba-

sis in the space of matrices M2k (C) consists of all tensor products Wi1 ⊗ · · · ⊗
Wik , (i1, . . . , ik) ∈ {1,2,3,4}k . As before, X1, . . . ,Xn are i.i.d. random variables
sampled from this basis. Essentially, this is a standard measurement model for
a k qubit system frequently used in quantum information, in particular, in quan-
tum state and quantum process tomography; see Nielsen and Chuang (2000), Sec-
tion 8.4.2.

EXAMPLE 3 (Sub-Gaussian design). Another interesting class of examples
includes sub-Gaussian design matrices X such that 〈A,X〉 is a sub-Gaussian ran-
dom variable for each A ∈ Hm(C). (Recall that a random variable η is called sub-
Gaussian with parameter σ iff, for all λ ∈ R, Eeλη ≤ eλ2σ 2/2.) These examples
are, probably, of less interest in applications to quantum state tomography, but
this is an important model, closely related to randomized designs in compressed
sensing, for which one can use powerful tools developed in the high-dimensional
probability. For instance, one can consider the Gaussian design, where X is a
symmetric random matrix with real entries such that {Xij : 1 ≤ i ≤ j ≤ m} are
independent centered normal random variables with EX2

ii = 1, i = 1, . . . ,m, and
EX2

ij = 1
2 , i < j . Alternatively, one can consider the Rademacher design assuming

that Xii = εii, i = 1, . . . ,m and Xij = 1√
2
εij , i < j , where {εij : 1 ≤ i ≤ j ≤ m}

are i.i.d. Rademacher random variables (i.e., random variables taking values +1
or −1 with probability 1/2 each). In both cases, E|〈A,X〉|2 = ‖A‖2

2,A ∈ Mm(C)

(such random matrices X will be called isotropic) and 〈A,X〉 is a sub-Gaussian
random variable whose sub-Gaussian parameter is equal to ‖A‖2 (up to a con-
stant).

The problems of this nature belong to a rapidly growing area of low rank ma-
trix recovery. The most popular methods developed so far are based on nuclear
norm regularization. In what follows, the Euclidean norm in the space C

m will
be denoted by | · |, and the inner product will be denoted by 〈·, ·〉 (with a lit-
tle abuse of notation, since it has been already used for the Hilbert–Schmidt in-
ner product between matrices). We will denote by ‖ · ‖p , p ≥ 1, the Schatten p-
norm of matrices in Mm(C) (and, if needed, in other matrix spaces). Specifically,
‖A‖p := (

∑m
j=1 λ

p
k (|A|))1/p, where |A| := (A∗A)1/2 and, for a Hermitian matrix

B , λk(B), k = 1, . . . ,m, are the eigenvalues of B (usually arranged in the decreas-
ing order). In particular, ‖ · ‖1 is the usual nuclear norm and ‖ · ‖2 is the Hilbert–
Schmidt norm. We will use the notation ‖ · ‖ for the operator norm. Given a design
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distribution �, we will write

‖A‖2
L2(�) :=

∫
〈A,x〉2�(dx) = E〈A,X〉2, A ∈ Mm(C),

where X is sampled from �. We will often use the corresponding L2(�)-distance
between matrices that represents the prediction error in statistical problems in
question.

In the noiseless case (i.e., when ξj ≡ 0), the following estimator of ρ has been
extensively studied, especially, in the case of matrix completion problems [see
Candès and Recht (2009), Candès and Tao (2010), Gross (2011), Recht (2011)
and references therein]:

ρ̂ := arg min{‖S‖1 :S ∈ Mm(C), 〈S,Xj 〉 = Yj , j = 1, . . . , n}.
Under so-called “low coherence assumptions” on the target matrix ρ, it was shown
that, with a high probability, ρ̂ = ρ provided that the number n of observations is
sufficiently large. Namely, up to logarithmic factors and constants, it should be of
the order mr , where r is the rank of the target matrix ρ.

In the noisy case, the following penalized least squares estimator, which is akin
to the LASSO used in sparse regression, was proposed and studied [see, e.g.,
Candès and Plan (2011), Rohde and Tsybakov (2011), Koltchinskii (2011) and
references therein]:

ρ̂ε := arg min
S∈Mm(C)

[
n−1

n∑
j=1

(
Yj − tr(SXj )

)2 + ε‖S‖1

]
,(1.1)

where ε is a regularization parameter. Candès and Plan (2011) have also stud-
ied an estimator based on nuclear norm minimization subject to linear constraints
that resembles the Dantzig selector; Rohde and Tsybakov (2011) suggested es-
timators based on nonconvex penalties involving Schatten “p-norms” for p < 1;
Koltchinskii, Lounici and Tsybakov (2011) studied a modification of nuclear norm
penalized least squares estimator that requires the precise knowledge of the design
distribution.

We will study the following estimator of the unknown state ρ defined as a solu-
tion of a penalized empirical risk minimization problem:

ρ̂ε := arg min
S∈S

[
n−1

n∑
j=1

(
Yj − tr(SXj )

)2 + ε tr(S logS)

]
,(1.2)

where ε > 0 is a regularization parameter. The penalty term is based on the func-
tional tr(S logS) = −E (S), where E (S) is the von Neumann entropy of state S.
Thus the method considered in this paper is based on a trade-off between fitting
the model by the least squares in the class of all density matrices and maximiz-
ing the entropy of the state. Note that optimization problem (1.2) is convex [this
is based on convexity of the penalty term that follows from the concavity of von
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Neumann entropy; see Nielsen and Chuang (2000)]. It is also easy to see that the
solution ρ̂ε of (1.2) is always a full rank matrix; see the proof of Proposition 3.
Nevertheless, it will be shown that when the target matrix ρ is nearly low rank, ρ̂ε

is also well approximated by low rank matrices and the error ‖ρ̂ε − ρ‖2
L2(�) can

be controlled in terms of the “approximate rank” of ρ.
One can also consider a version of optimization problem (1.2) that is further

constrained to a closed convex subset D ⊂ S of density matrices containing the
target matrix ρ. The analysis of such problems is exactly the same as in the case
when D = S , considered in the paper, and the results are also the same (subject
to straightforward modifications). In particular, when D is the set of all diagonal
matrices with nonnegative diagonal entries summable to 1, and the design matrices
Xj are also diagonal, this allows one to deduce the results on sparse recovery in
convex hulls of finite dictionaries via entropy penalization that are akin to what
was obtained earlier by Koltchinskii (2009).

2. An overview of main results. The results of this paper include oracle in-
equalities for the L2(�)-error of the empirical solution ρ̂ε . They will be stated in
a general form in Sections 5 and 6. Here we formulate them only in two of the
special examples outlined in the Introduction: random sampling from an orthonor-
mal basis and sub-Gaussian isotropic design (such as Gaussian or Rademacher).
Assume, for simplicity, that the noise {ξj } is a sequence of i.i.d. N(0, σ 2

ξ ) random
variables independent of (X1, . . . ,Xn) (a Gaussian noise).

In what follows, we write f (S) := ∑m
j=1 f (λj )(φj ⊗ φj ) for any Hermitian

matrix S with spectral representation S = ∑m
j=1 λj (φj ⊗ φj ) and any function f

defined on a set that contains the spectrum of S.
First, we consider the case of sampling from an orthonormal basis {E1, . . . ,

Em2} of Mm(C) (that consists of Hermitian matrices). Let us call the distribution
� in {E1, . . . ,Em2} nearly uniform iff there exist constants c1, c2 > 0 such that
max1≤j≤m2 �({Ej }) ≤ c1m

−2 and ‖A‖2
L2(�) ≥ c2m

−2‖A‖2
2,A ∈ Hm(C). Clearly,

both the matrix completion design (Example 1) and sampling from the Pauli basis
(Example 2) are special cases of sampling from such nearly uniform distributions,
so the next result does apply to these two examples.

Let t > 0 be fixed, and denote tm := t + log(2m), τn := t + log log2(2n).

To simplify the bounds, assume that log log2 n ≤ log(2m) (so, τn ≤ tm), that n ≥
mtm log2 m, and, finally, that σξ ≥ m−1/2. The last condition just means that the
variance of the noise is not “too small” which allows one to suppress “exponential
tail terms” in Bernstein-type inequalities used in the derivation of the bounds.

Recall that ρ ∈ S .

THEOREM 1. Suppose that X is sampled at random from a nearly uniform
distribution �. Then there exists a constant C > 0 such that, for all ε ∈ [0,1], with
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probability at least 1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�) ≤ C

[
ε

(
‖logρ‖ ∧ log

(
m

ε

))
∨ σξ

√
tm

nm

]
.(2.1)

In addition, for all sufficiently large D > 0, there exists a constant C > 0 such that,

for ε := Dσξ

√
tm
mn

, with probability at least 1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�) ≤ inf

S∈S

[
2‖S − ρ‖2

L2(�) + Cσ 2
ξ

rank(S)mtm log2(mn)

n

]
.(2.2)

Theorem 1 follows from the results of Section 5 (see Theorems 3 and 4, the
remark after Theorem 4 and Corollary 1). A simple consequence of Theorem 1 is
the following bound:

‖ρ̂ε − ρ‖2
L2(�) ≤ C

[
σξ

√
tm

mn
log(mn) ∧ σ 2

ξ

rank(ρ)mtm log2(mn)

n

]

that holds with probability at least 1− e−t and with some C > 0 for ε = Dσξ

√
tm
mn

.
It follows by substituting S = ρ in bound (2.2) and combining it with (2.1).

Next we consider the case of sub-Gaussian isotropic design for which
‖A‖L2(�) = ‖A‖2,A ∈ Mm(C). To simplify the bounds, we assume again that
the noise is Gaussian.

THEOREM 2. Suppose X is a sub-Gaussian isotropic matrix. There exist con-
stants C > 0, c > 0 such that the following holds. Under the assumptions that
τn ≤ cn and tm ≤ n, for all ε ∈ [0,1], with probability at least 1 − e−t

‖ρ̂ε − ρ‖2
L2(�) ≤ C

(
ε

(
‖logρ‖ ∧ log

m

ε

)
∨ σξ

√
mtm

n
(2.3)

∨ (
σξ ∨ √

m
)√m(τn logn ∨ tm)

n

)
.

Moreover, there exists a constant c > 0 and, for all sufficiently large D > 0, a con-

stant C > 0 such that, for ε := Dσξ

√
mtm
n

, with probability at least 1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�)

≤ inf
S∈S

[
2‖S − ρ‖2

L2(�)(2.4)

+ C

(
σ 2

ξ rank(S)mtm log2(mn)

n
∨ m(τn logn ∨ tm)

n

)]
.
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This theorem follows from the results of Section 6 (see Theorems 5, 6 and
Corollary 3). As it was the case with Theorem 1, one can easily derive from The-
orem 2 [by substituting S = ρ in (2.4) and combining it with (2.3)] the following

inequality that holds, for ε := Dσξ

√
mtm
n

, with probability at least 1−e−t and with
some C > 0:

‖ρ̂ε − ρ‖2
L2(�)

≤ C

[(
σξ

√
mtm

n
log

m

ε
∧ σ 2

ξ rank(ρ)mtm log2(mn)

n

)
∨ m(τn logn ∨ tm)

n

]
.

Note that the first bounds of Theorems 1 and 2 [bounds (2.1) and (2.3)] hold
for all ε ≥ 0, even in the case of unpenalized least squares estimator with ε = 0.
The random error parts of these bounds are (up to logarithmic factors) of the or-
der n−1/2 as n → ∞. Bounds (2.2) and (2.4) are based on more subtle analysis
taking into account the ranks of oracles S approximating the true density matrix
ρ. In these bounds, the size of the L2(�)-error ‖ρ̂ε − ρ‖2

L2(�) is determined by

a trade-off between the approximation error ‖S − ρ‖2
L2(�) of an oracle S and the

random error. In the case of bounds (2.2) and (2.4), the last error is of the order
σ 2

ξ rank(S)m

n
(up to logarithmic factors), and it depends on the rank of the oracle S.

In particular, taking S = ρ, we can conclude that ‖ρ̂ε − ρ‖2
L2(�) is bounded by

σ 2
ξ rank(ρ)m

n
(up to constants and logarithmic factors). This means that von Neu-

mann entropy penalization mimics oracles that know precisely which low rank
matrices approximate ρ well and can estimate ρ by estimating a “small” number
of parameters needed to describe such oracles. This is comparable with recent re-
sults for nuclear norm penalization. For instance, Candès and Plan (2011) obtained
low-rank oracle inequalities for the Frobenius norm under sub-Gaussian-type as-
sumptions; Rohde and Tsybakov (2011) proved low-rank bounds for the empirical
prediction error; Koltchinskii, Lounici and Tsybakov (2011) obtained bounds of
the same flavor as in Theorems 1, 2, but for a modification of nuclear norm pe-
nalized least squares estimator in the case of known design distribution; Negahban
and Wainwright (2010) proved similar inequalities for a version of nuclear penal-
ization method with further constraints on the �∞-norm of the matrix. Depending
on the values of σξ ,m,n and other characteristics of the problem more “rough”
bounds, (2.1) and (2.3) might become even sharper than more “subtle” bounds
(2.2) and (2.4) [see Rohde and Tsybakov (2011) for a discussion of a similar phe-
nomenon]. Thus the rate of convergence of the L2(�)-error to zero in a particular
asymptotic scenario (when certain characteristics are large) is determined by the
bounds of both types.

Theorems 1, 2 and other results of a similar nature will follow as corollaries
from more general oracle inequalities that we establish under broader assumptions
on the design distributions and on the noise. To prove these results, we need several
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tools from the empirical processes and random matrices theory, such as noncom-
mutative Bernstein-type inequalities and generic chaining bounds for empirical
processes. We will discuss these results in Section 3 (as well as some properties
of noncommutative Kullback–Leibler, Hellinger and other distances between den-
sity matrices). We will then study approximation error bounds for the solution
of von Neumann entropy penalized true risk minimization problem (Section 4)
and, finally, in Sections 5 and 6, derive main results of the paper concerning ran-
dom error bounds for the empirical solution ρ̂ε . More precisely, we bound the
squared L2(�)-distance ‖ρ̂ε − S‖2

L2(�) and symmetrized Kullback–Leibler dis-
tance K(ρ̂ε;S) from ρ̂ε to an arbitrary “oracle” S ∈ S and derive oracle inequali-
ties for the squared L2(�)-error ‖ρ̂ε −ρ‖2

L2(�) of the empirical solution ρ̂ε . These
results are first established for oracles S of full rank and expressed in terms of cer-
tain characteristics of the operator logS [which is, essentially, a subgradient of the
von Neumann entropy penalty used in (1.2)]. Using simple techniques discussed in
Section 4, we then develop the bounds for low-rank oracles S (such as the bounds
of Theorems 1 and 2) and also obtain oracle inequalities for so-called “Gibbs ora-
cles.”

Recently, several authors obtained minimax lower bounds on the errors of low-
rank matrix recovery, in particular, in matrix completion problems; see Rohde and
Tsybakov (2011), Negahban and Wainwright (2010), Koltchinskii, Lounici and
Tsybakov (2011) and references therein. Although it was not our goal in this paper,
it would not be hard to extend these results to the framework of low-rank density
matrix estimation showing the optimality (up to logarithmic factors) of the main
terms of our L2(�)-error bounds.

It is worth mentioning that the results of Sections 4, 5 provide a way to bound
the error of estimator ρ̂ε not only in the L2(�)-distance, but also in other statis-
tically important distances such as noncommutative Kullback–Leibler, Hellinger
and nuclear norm distances.2 For instance, under the assumptions of Theorem 2,
the following bound for the Kullback–Leibler distance holds with probability at
least 1 − e−t :

K(ρ‖ρ̂ε) := Eρ(logρ − log ρ̂ε)
(2.5)

≤ C

ε

[
σ 2

ξ rank(ρ)mtm log2(mn)

n
∨ m(τn logn ∨ tm)

n

]

for ε := Dσξ

√
mtm
n

. In the case of sampling from a nearly uniform distribution in
an orthonormal basis (as in Theorem 1), it is easy to derive from Theorem 4 of Sec-
tion 5 (using also some bounds from the proofs of Proposition 4 and Corollary 1)

2A possibility to control Kullback–Leibler and Hellinger distances can be viewed as an advantage
of von Neumann entropy penalization method.
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the following bound on the squared Hellinger distance between ρ̂ε and ρ:

H 2(ρ̂ε;ρ) ≤ Cσξ

rank(ρ)m3/2t
1/2
m log2(mn)√
n

that holds with probability at least 1 − e−t for ε = Dσξ

√
tm
mn

.

3. Preliminaries: Distances in S , empirical processes and exponential in-
equalities for random matrices.

Noncommutative Kullback–Leibler and other distances. We will use noncom-
mutative extensions of classical distances between probability distributions such as
Kullback–Leibler and Hellinger distances. These extensions are common in quan-
tum information theory; see Nielsen and Chuang (2000). In particular, we will use
the symmetrized Kullback–Leibler distance between two states S1, S2 ∈ S defined
as

K(S1;S2) := ES1(logS1 − logS2) + ES2(logS2 − logS1)

= tr
(
(S1 − S2)(logS1 − logS2)

)
.

We will also use a noncommutative version of Hellinger distance defined as fol-

lows. For any two states S1, S2 ∈ S , let F(S1, S2) := tr
√

S
1/2
1 S2S

1/2
1 . This quan-

tity is called the fidelity of states S1, S2; see, for example, Nielsen and Chuang
(2000), page 409. Then a natural definition of the squared Hellinger distance is
H 2(S1, S2) := 2(1 − F(S1, S2)). A remarkable property of this distance is that

H 2(S1, S2) = supH 2({pi}; {qi}) = sup
∑
i

(√
pi − √

qi

)2
,

where the supremum is taken over all POVMs {Ei} (positive operator valued mea-
sures)3 and pi := tr(S1Ei), qi := tr(S2Ei). Thus the quantum Hellinger distance
is just the largest “classical” Hellinger distance between the probability distri-
butions {pi}, {qi} of a “measurement” {Ei} in the states S1, S2; see Nielsen and
Chuang (2000), page 412. The same property also holds for two other impor-
tant “distances,” the trace distance ‖S1 − S2‖1 and the Kullback–Leibler distance
K(S1;S2); see, for example, Klauck et al. (2007). These properties immediately
imply an extension of classical inequalities for these distances:

‖S1 − S2‖2
1 ≤ H 2(S1, S2) ≤ K(S1;S2).

They also imply the following simple proposition used below. It shows that, if
two matrices S1, S2 are close in the Hellinger distance and one of them (say, S2)

3In the discrete case, a positive operator valued measure is a set {Ei} of Hermitian nonnegatively
definite matrices such that

∑
i Ei = I .
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is “approximately low rank” in the sense that there exists a subspace L ⊂ C
m of

small dimension such that ‖PL⊥S2PL⊥‖1 is small, then another matrix S1 is also
“approximately low rank” with the same “support” L.4

PROPOSITION 1. For all subspaces L ⊂ C
m and all S1, S2 ∈ S ,

‖PLS1PL‖1 ≤ 2‖PLS2PL‖1 + 2H 2(S1, S2).

PROOF. Indeed, take an orthonormal basis {e1, . . . , em} in C
m such that L =

l.s.({e1, . . . , ek}). Let pj := 〈S1ej , ej 〉 = tr(S1(ej ⊗ ej )) and qj := 〈S2ej , ej 〉 =
tr(S2(ej ⊗ ej )). Then

H 2(S1, S2) ≥
m∑

j=1

(√
pj − √

qj

)2 ≥
k∑

j=1

(√
pj − √

qj

)2

=
k∑

j=1

pj +
k∑

j=1

qj − 2
k∑

j=1

√
pj

√
qj ,

which implies (using that 2
√

ab ≤ a/2 + 2b)

‖PLS1PL‖1 =
k∑

j=1

pi ≤ 2
k∑

j=1

√
pj

√
qj −

k∑
j=1

qj + H 2(S1, S2)

≤ 1

2

k∑
j=1

pj +
k∑

j=1

qj + H 2(S1, S2)

= 1

2
‖PLS1PL‖1 + ‖PLS2PL‖1 + H 2(S1, S2),

and the result follows. �

Empirical processes bounds. We will use several inequalities for empirical
processes indexed by a class of measurable functions F defined on an arbitrary
measurable space (S, A). Let X,X1, . . . ,Xn be i.i.d. random variables in (S, A)

with common distribution P . If F is uniformly bounded by a number U , then
Bousquet’s version of the famous Talagrand concentration inequality for empirical
processes implies that, for all t > 0, with probability at least 1 − e−t ,

sup
f ∈F

∣∣∣∣∣n−1
n∑

j=1

f (Xj ) − Ef (X)

∣∣∣∣∣
≤ 2

[
E sup

f ∈F

∣∣∣∣∣n−1
n∑

j=1

f (Xj ) − Ef (X)

∣∣∣∣∣ + σ

√
t

n
+ U

t

n

]
,

4Here and in what follows PL denotes the orthogonal projection onto L and L⊥ denotes the
orthogonal complement of L.
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where σ 2 := supf ∈F VarP (f (X)). We will also need a version of this bound for
function classes that are not necessarily uniformly bounded. Such a bound was
recently proved by Adamczak (2008). Recall that, for a convex increasing function
ψ with ψ(0) = 0,

‖f ‖ψ := inf
{
C > 0 :

∫
S
ψ

( |f |
C

)
dP ≤ 1

}
;

see van der Vaart and Wellner (1996), page 95. If ψ(u) = up,u ≥ 0, for some
p ≥ 1, the corresponding ψ-norm is just the Lp-norm. Other important choices
are functions ψα(t) = etα − 1, t ≥ 0, α ≥ 1, especially, ψ2 that is related to sub-
Gaussian tails of f and ψ1 that is related to subexponential tails. Let F(x) ≥
supf ∈F |f (x)|, x ∈ S, be an envelope of the class. It follows from Theorem 4 of
Adamczak (2008) that there exists a constant K > 0 such that for all t > 0 with
probability at least 1 − e−t

sup
f ∈F

∣∣∣∣∣n−1
n∑

j=1

f (Xj ) − Ef (X)

∣∣∣∣∣
≤ K

[
E sup

f ∈F

∣∣∣∣∣n−1
n∑

j=1

f (Xj ) − Ef (X)

∣∣∣∣∣ + σ

√
t

n
+

∥∥∥ max
1≤j≤n

|F(Xj )|
∥∥∥
ψ1

t

n

]
.

In addition to this, we will need bounds on empirical processes indexed by the
class of “squares” {f 2 :f ∈ F } for a given function class F . A usual approach
to this problem is based on combining a symmetrization inequality with Tala-
grand’s comparison (contraction) inequality for Rademacher sums; see, for exam-
ple, Ledoux and Talagrand (1991), Section 4.5. This, however, would require the
class F to be uniformly bounded by a relatively small constant U > 0, which is not
sufficient in the case of sub-Gaussian design considered in the last section. A more
subtle approach has been developed in the recent years by Klartag and Mendel-
son (2005) and Mendelson (2010), and it is based on generic chaining bounds.
Talagrand’s generic chaining complexity [see Talagrand (2005)] of a metric space
(T , d) is defined as follows. An admissible sequence {�n}n≥0 is an increasing se-
quence of partitions of T (i.e., each next partition is a refinement of the previous
one) such that card(�0) = 1 and card(�n) ≤ 22n

, n ≥ 1. For t ∈ T , �n(t) denotes
the unique subset in �n that contains t . For a set A ⊂ T , D(A) denotes its diame-
ter. Then, define the generic chaining complexity γ2(T ;d) as

γ2(T ;d) := inf{�n}n≥0
sup
t∈T

∑
n≥0

2n/2D(�n(t)),

where the inf is taken over all admissible sequences of partitions.
The generic chaining complexities were used by Talagrand (2005) to character-

ize the size of the expected sup-norms of Gaussian processes. Similar quantities
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can be also used to control the size of empirical processes indexed by a func-
tion class F . It is natural to define γ2(F ;L2(P )), that is, γ2(F ;d), where d is the
L2(P )-distance. Some other distances are also useful, for instance, the ψ2-distance
associated with the probability space (S, A,P ). The generic chaining complex-
ity that corresponds to the ψ2-distance will be denoted by γ2(F ;ψ2). Mendelson
(2010) proved the following deep result. Suppose that F is a symmetric clas; that
is, f ∈ F implies −f ∈ F , and Pf = Ef (X) = 0, f ∈ F . Then, for some univer-
sal constant K > 0,

E sup
f ∈F

∣∣∣∣∣n−1
n∑

j=1

f 2(Xj ) − Ef 2(X)

∣∣∣∣∣ ≤ K

[
sup
f ∈F

‖f ‖ψ1

γ2(F ;ψ2)√
n

∨ γ 2
2 (F ;ψ2)

n

]
.

Noncommutative Bernstein-type inequalities. We will need an operator ver-
sion of Bernstein’s inequality which is due to Ahlswede and Winter (2002) and
which has been already successfully used in the low rank recovery problems by
Gross et al. (2010), Gross (2011), Recht (2011). Assume that X,X1, . . . ,Xn are
i.i.d. random Hermitian m × m matrices with EX = 0 and σ 2

X := ‖EX2‖. The fol-
lowing bound is an easy consequence of a Bernstein-type inequality of Ahlswede
and Winter (2002): for all t > 0, with probability at least 1 − e−t

∥∥∥∥X1 + · · · + Xn

n

∥∥∥∥ ≤ 2

(
σX

√
t + log(2m)

n
∨ U

t + log(2m)

n

)
.(3.1)

Moreover, it is possible to replace the L∞-bound U on ‖X‖ in the above inequality
by bounds on the weaker ψα-norms; see also Koltchinskii (2011). Namely, suppose
that, for α ≥ 1 and for some constant U

(α)
X , U

(α)
X ≥ max(‖‖X‖‖ψα ,2E

1/2‖X‖2).

PROPOSITION 2. Let α ≥ 1. There exists a constant C > 0 such that, for all
t > 0, with probability at least 1 − e−t∥∥∥∥X1 + · · · + Xn

n

∥∥∥∥
(3.2)

≤ C

(
σX

√
t + log(2m)

n
∨ U

(α)
X

(
log

U
(α)
X

σX

)1/α t + log(2m)

n

)
.

PROOF. Similarly to the proof of (3.1) discussed in the literature [Ahlswede
and Winter (2002), Gross (2011)], we follow the standard derivation of classical
Bernstein’s inequality, and we use the well-known Golden–Thompson inequal-
ity5 [see, e.g., Simon (1979), page 94]: for arbitrary A,B ∈ Hm(C), tr(eA+B) ≤
tr(eAeB). Let Yn := X1 +· · ·+Xn. Note that ‖Yn‖ < t if and only if −tIm < Yn <

5See Oliveira (2010), Tropp (2011), Koltchinskii (2011) for other approaches that do not rely on
the Golden–Thompson inequality.
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tIm (here and in what follows A < B means that B − A is positively definite).
Therefore,

P{‖Yn‖ ≥ t} ≤ P{Yn �< tIm} + P{Yn �> −tIm}.(3.3)

The following bounds are straightforward by simple matrix algebra:

P{Yn �< tIm} = P{eλYn �< eλtIm} ≤ P{tr(eλYn) ≥ eλt } ≤ e−λt
E tr(eλYn).(3.4)

To bound the expected value in the right-hand side, we use independence of ran-
dom variables X1, . . . ,Xn and the Golden–Thompson inequality.

E tr(eλYn) = E tr(eλYn−1+λXn) ≤ E tr(eλYn−1eλXn) = tr(E(eλYn−1eλXn))

= tr(EeλYn−1EeλXn) ≤ E tr(eλYn−1)‖EeλXn‖.
Since E tr(eλX1) = tr(EeλX1) ≤ m‖EeλX‖, it is easy to conclude by induction that

E tr(eλYn) ≤ m‖EeλX‖n.(3.5)

It remains to bound the norm ‖EeλX‖. To this end, we use Taylor’s expansion and
the condition EX = 0 to get

EeλX = Im + Eλ2X2
[

1

2! + λX

3! + λ2X2

4! + · · ·
]

≤ Im + λ2
EX2

[
1

2! + λ‖X‖
3! + λ2‖X‖2

4! + · · ·
]

= Im + λ2
EX2

[
eλ‖X‖ − 1 − λ‖X‖

λ2‖X‖2

]
.

Therefore, for all τ > 0,

‖EeλX‖ ≤ 1 + λ2
∥∥∥∥EX2

[
eλ‖X‖ − 1 − λ‖X‖

λ2‖X‖2

]∥∥∥∥
≤ 1 + λ2‖EX2‖

[
eλτ − 1 − λτ

λ2τ 2

]

+ λ2
E‖X‖2

[
eλ‖X‖ − 1 − λ‖X‖

λ2‖X‖2

]
I (‖X‖ ≥ τ).

Let M := 2(log 2)1/αU
(α)
X , and assume that λ ≤ 1/M . Then

E‖X‖2
[
eλ‖X‖ − 1 − λ‖X‖

λ2‖X‖2

]
I (‖X‖ ≥ τ) ≤ M2

E
1/2e2‖X‖/M

P
1/2{‖X‖ ≥ τ }.

Since, for α ≥ 1, M = 2(log 2)1/αU
(α)
X ≥ 2‖‖X‖‖ψ1 [see van der Vaart and

Wellner (1996), page 95], we have Ee2‖X‖/M ≤ 2 and also P{‖X‖ ≥ τ } ≤
exp{−2α log 2( τ

M
)α}. As a result, we get the following bound:

‖EeλX‖ ≤ 1 + λ2σ 2
X

[
eλτ − 1 − λτ

λ2τ 2

]
+ 21/2λ2M2 exp

{
−2α−1 log 2

(
τ

M

)α}
.
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Let τ := M 21/α−1

(log 2)1/α log1/α M2

σ 2
X

, and suppose that λ satisfies the condition λτ ≤ 1.

Then the following bound holds with some constant C1 > 0:

‖EeλX‖ ≤ 1 + C1λ
2σ 2

X ≤ exp{C1λ
2σ 2

X}.
Thus, we proved that there exist constants C1,C2 > 0 such that, for all λ satisfying
the condition

λU
(α)
X

(
log

U
(α)
X

σX

)1/α

≤ C2,(3.6)

we have ‖EeλX‖ ≤ exp{C1λ
2σ 2

X}. This can be combined with (3.3), (3.4) and (3.5)
to get

P{‖Yn‖ ≥ t} ≤ 2m exp{−λt + C1λ
2nσ 2

X}.
It remains now to minimize the last bound with respect to all λ satisfying (3.6) to
get that, for some constant K > 0,

P{‖Yn‖ ≥ t} ≤ 2m exp
{
− 1

K

t2

nσ 2
X + tU

(α)
X log1/α(U

(α)
X /σX)

}
,

which immediately implies (3.2). �

Note that, in the limit α → ∞, inequality (3.2) coincides with (3.1) (up to a
constant).

4. Approximation error. A natural first step in the analysis of the problem is
to study its version with the true risk instead of the empirical risk. The true risk
with respect to the quadratic loss is equal to E(Y − 〈S,X〉)2 = E〈S − ρ,X〉2 +
Eξ2, where we used the assumption that E(ξ |X) = 0. Thus, the penalized true risk
minimization problem becomes

ρε := arg min
S∈S

L(S), L(S) := E〈S − ρ,X〉2 + ε tr(S logS),(4.1)

and the goal is to study the error of approximation of ρ by ρε depending on the
value of regularization parameter ε > 0. The next proposition shows that if there
exists an oracle S ∈ S that provides a good approximation of the target matrix ρ

in a sense that ‖S − ρ‖L2(�) is small, then ρε belongs to an L2(�)-ball around
S of small enough radius that can be controlled in terms of the operator norm
‖logS‖ or in terms of more subtle characteristics of the oracle S. It also provides
upper bounds on the Kullback–Leibler distance K(ρε;S) to the oracle and on the
approximation error ‖ρε − ρ‖L2(�). We will first obtain such bounds for an arbi-
trary oracle S ∈ S of full rank expressed in terms of the operator norm ‖logS‖
of its logarithm. For simplicity, we assume that ‖logS‖ = +∞ in the case when
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rank(S) < m (and logS is not defined). Note, however, that tr(S logS) is well de-
fined and finite even in the case when rank(S) < m. To obtain more subtle bounds
with approximation error of the order O(ε2) instead of O(ε), we introduce and
use the following quantity:

a(W) := a�(W) := aX(W)

:= sup
{〈W,U〉 :U ∈ Hm(C), tr(U) = 0,‖U‖L2(�) = 1

}
,

which will be called the alignment coefficient of W . This is a straightforward ex-
tension of similar quantities in the commutative case [Koltchinskii (2009)]. Note
that, for all constants c,

a(W + cIm) = a(W)(4.2)

(since 〈Im,U〉 = 0 for all U of zero trace). In addition, we have

acX(W) = 1

|c|aX(W), c �= 0.(4.3)

Let {Ei : i = 1, . . . ,m2} be an orthonormal basis of Mm(C) consisting of
Hermitian matrices, and let K := (〈Ej ,Ek〉L2(�))

m2

j,k=1 be the Gram matrix of

the functions {〈Ej , ·〉 : j = 1, . . . ,m2} in the space L2(�). Clearly, the mapping

J : Mm(C) �→ �m2

2 (C),

JU = (〈U,Ej 〉 : j = 1, . . . ,m2), U ∈ Mm(C),

is an isometry. If now we define K̄ : Mm(C) �→ Mm(C) as K̄ := J−1KJ , then we
also have K̄1/2 = J−1K1/2J, K̄−1/2 = J−1K−1/2J . As a consequence, for any

matrix U = ∑m2

j=1 ujEj ,

‖U‖2
L2(�) =

m2∑
j,k=1

〈Ej ,Ek〉L2(�)uj ūk = 〈Ku,u〉�2 = ‖K1/2u‖2
�2

= ‖K̄1/2U‖2
2,

and it is not hard to conclude that a(W) ≤ ‖K̄−1/2W‖2. Moreover, in view of (4.2),
for an arbitrary scalar c, a(W) ≤ ‖K̄−1/2(W + cIm)‖2. This shows that the size of
a(W) depends on how W is “aligned” with the eigenspaces of the Gram matrix K.
In a special case when, for all A, ‖A‖L2(�) = ‖A‖2, the functions {〈Ej , ·〉 : j =
1, . . . ,m2} form an orthonormal system in L2(�), and K is the identity matrix. In
this case, we simply have the bound a(W) ≤ infc ‖W + cIm‖2.

PROPOSITION 3. For all S ∈ S ,

‖ρε − ρ‖2
L2(�) + ‖ρε − S‖2

L2(�) + εK(ρε;S) ≤ ‖S − ρ‖2
L2(�) + 2ε‖logS‖.

Moreover, for all S ∈ S ,

‖ρε − S‖2
L2(�) + 2εK(ρε;S) ≤ 2‖S − ρ‖2

L2(�) + ε2a2(logS)
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and

‖ρε − ρ‖2
L2(�) ≤ inf

S∈S

[
‖S − ρ‖2

L2(�) + ε2

4
a2(logS)

]
.

For a differentiable mapping g from an open subset G ⊂ Mm(C) into Mm(C),
denote by Dg(A;H) its differential at a matrix A ∈ G in the direction H ∈
Mm(C), that is, g(A + H) = g(A) + Dg(A;H) + o(‖H‖) as ‖H‖ → 0 and
Dg(A;H) is linear with respect to H . The following lemma is a simple corol-
lary of Theorem V.3.3 in Bhatia (1997):

LEMMA 1. Let f be a function continuously differentiable in an open inter-
val I ⊂ R. Suppose that A is a Hermitian matrix whose spectrum belongs to I .
Then the mapping B �→ g(B) := tr(f (B)) is differentiable at A and Dg(A;H) =
tr(f ′(A)H).

PROOF OF PROPOSITION 3. It is easy to see that the solution ρε of problem
(4.1) is a full rank matrix. To prove this, assume that rank(ρε) < m. Let ρ̃ :=
(1 − δ)ρε + δIm, where Im is the m×m identity matrix. Then, for small enough δ,
ρ̃ is a full rank matrix and it is straightforward to show that the penalized risk
L(ρ̃) is strictly smaller than L(ρε) (for some small δ > 0). It is also easy to check
that, for any S ∈ S of full rank, the differential of the functional L in the direction
ν ∈ Mm(C) is equal to

DL(S;ν) = 2E〈S − ρ,X〉〈ν,X〉 + ε tr
(
ν(logS + Im)

)
.

This follows from the fact that the first term of the functional L is differentiable
since it is quadratic. The differentiability of the penalty term is based on Lemma 1
[it is enough to apply this lemma to the function f (u) = u logu]. Since ρε is the
minimal point of L in S , we can conclude that, for an arbitrary S ∈ S , DL(ρε;S −
ρε) ≥ 0. This implies that DL(S;S − ρε) − DL(ρε;S − ρε) ≤ DL(S;S − ρε),

which, by a simple algebra, becomes

2‖S − ρε‖2
L2(�) + εK(S;ρε)

(4.4)
≤ 2〈S − ρ,S − ρε〉L2(�) + ε〈S − ρε, logS〉.

Taking into account that

2〈S − ρ,S − ρε〉L2(�) = ‖ρε − S‖2
L2(�) + ‖S − ρ‖2

L2(�) − ‖ρε − ρ‖L2(�),

(4.4) can be rewritten as

‖ρε − ρ‖2
L2(�) + ‖ρε − S‖2

L2(�) + εK(S;ρε)
(4.5)

≤ ‖S − ρ‖2
L2(�) + ε〈S − ρε, logS〉.
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The first inequality of the proposition immediately follows from (4.5) since

|〈S − ρε, logS〉| ≤ ‖logS‖‖S − ρε‖1 ≤ 2‖logS‖.
To prove the remaining bounds, note that by the definition of alignment coefficient

ε|〈S − ρε, logS〉| ≤ εa(logS)‖ρε − S‖L2(�),

and, using an elementary bound

εa(logS)‖ρε − S‖L2(�) ≤ ε2a2(logS)

2α2 + α2

2
‖ρε − S‖2

L2(�)

for α = 1 and α = √
2, it is easy to complete the proof. �

A consequence of Proposition 3 is that ‖ρε −ρ‖2
L2(�) ≤ ε2

4 a2(logρ)∧ε‖logρ‖.
We will now provide versions of approximation error bounds for special types

of oracles S ∈ S .

Low-rank oracles. First we show how to adapt the bounds of Proposition 3
expressed in terms of the alignment coefficient a(logS) for a full rank matrix S (for
which logS is well defined) to the case when S is an oracle of a small rank r < m.
For a subspace L of C

m, denote �(L) := sup‖A‖L2(�)≤1‖PLAPL‖2. Suppose that

S ∈ S is a matrix of rank r . To be specific, let S = ∑r
j=1 γj (ej ⊗ ej ), where γj

are positive eigenvalues of S, and {e1, . . . , em} is an orthonormal basis of C
m. Let

L be the linear span of the vectors e1, . . . , er .

PROPOSITION 4. There exists a numerical constant C > 0 such that, for all
ε > 0,

‖ρε −ρ‖2
L2(�) ≤ (‖S −ρ‖L2(�) +CE

1/2‖X‖2ε
)2 +Cε2�2(L)r log2

(
1+ m

ε ∧ 1

)
.

PROOF. Note that, for all matrices W of rank r “supported” in the space L in
the sense that W = PLWPL, we have

a(W) ≤ sup
‖U‖L2(�)≤1

〈W,U〉 = sup
‖U‖L2(�)≤1

〈W,PLUPL〉 ≤ �(L)‖W‖2.

For δ ∈ (0,1), consider Sδ := (1 − δ)S + δ Im

m
. Then, using the fact that a(W +

cIm) = a(W), we get

logSδ =
r∑

j=1

(
log

(
(1 − δ)γj + δ/m

) − log(δ/m)
)
(ej ⊗ ej ) + log(δ/m)Im
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and

a(logSδ) = a

(
r∑

j=1

(
log

(
(1 − δ)γj + δ/m

) − log(δ/m)
)
(ej ⊗ ej )

)

≤ �(L)

∥∥∥∥∥
r∑

j=1

(
log

(
(1 − δ)γj + δ/m

) − log(δ/m)
)
(ej ⊗ ej )

∥∥∥∥∥
2

≤ �(L)

(
r∑

j=1

log2
(

1 + mγj

δ

))1/2

≤ �(L)
√

r log
(

1 + m‖S‖
δ

)
.

Note also that ‖S − Sδ‖2
L2(�) = δ2‖S − Im/m‖2

L2(�) ≤ 4δ2
E‖X‖2, since

‖S − Im/m‖2
L2(�) ≤ 2(E〈S,X〉2 + E〈Im/m,X〉2)

≤ 2(‖S‖2
1E‖X‖2 + ‖Im/m‖2

1E‖X‖2)

≤ 4E‖X‖2.

Thus, it easily follows from the last bound of Proposition 3 that

‖ρε − ρ‖2
L2(�) ≤ ‖Sδ − ρ‖2

L2(�) + (ε2/4)a2(logSδ)

≤ (‖S − ρ‖L2(�) + ‖Sδ − S‖L2(�)

)2

+ (ε2/4)�2(L)r log2
(

1 + m

δ

)
.

Taking δ = ε ∧ 1 and using the bound on ‖S − Sδ‖L2(�), this yields the claim of
the proposition. �

Note that if {Ei, i = 1, . . . ,m2} is an orthonormal basis of Mm(C) consisting of
Hermitian matrices and X is uniformly distributed in {Ei, i = 1, . . . ,m2}, then, for
all Hermitian A, ‖A‖2

L2(�) = m−2‖A‖2
2. Therefore �(L) ≤ sup‖A‖L2(�)≤1‖A‖2 =

sup‖A‖2≤m‖A‖2 = m. Also, in this case ‖X‖ ≤ ‖X‖2 = 1. Thus, Proposition 4
yields

‖ρε − ρ‖2
L2(�) ≤ (‖S − ρ‖L2(�) + Cε

)2 + Cm2rε2 log2
(

1 + m

ε ∧ 1

)
.

Gibbs oracles. Let H be a Hermitian matrix (“a Hamiltonian”) and let β > 0.
Consider the following density matrix (a “Gibbs oracle”): ρH,β := e−βH

tr(e−βH )
. For

simplicity, assume in what follows that β = 1 (in fact, one can always replace H

by βH ) and denote ρH := e−H

tr(e−H )
. Let γ1 ≤ γ2 ≤ · · · ≤ γm be the eigenvalues of H

and e1, . . . , em be the corresponding eigenvectors. Let Lr = l.s.({e1, . . . , er}) and

H≤r :=
r∑

j=1

γj (ej ⊗ ej ), H>r :=
m∑

j=r+1

γj (ej ⊗ ej ).
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It is easy to see that

‖PL⊥
r
ρHPL⊥

r
‖1 =

∑
k≥r+1 e−γk∑
k≥1 e−γk

=: δr(H).

Denote δ̃r (H) := max1≤k≤m E
1/2〈Xek, ek〉2δr(H). Under reasonable conditions

on the spectrum of H , the quantity δ̃r (H) decreases fast enough when r increases.
Thus, ρH can be well approximated by low rank matrices.

The next statement follows immediately from Proposition 3. Here the unknown
density matrix ρ is approximated by a Gibbs model with an arbitrary Hamiltonian.
The error is controlled in terms of the L2(�)-distance between ρ and the oracle
ρH and also in terms of the alignment coefficient a(H≤r ) for a “low-rank part”
H≤r of the Hamiltonian H and the quantity δr(H).

PROPOSITION 5. For all Hermitian nonnegatively definite matrices H and for
all ε > 0,

‖ρε − ρ‖2
L2(�) ≤ (‖ρH − ρ‖L2(�) + 2δ̃r (H)

)2 + a2(H≤r )ε
2.

PROOF. We will use the last bound of Proposition 3 with S = ρH≤r . Note that

a(logρH≤r ) = a
(−H≤r − log tr(e−H≤r )Im

) = a(H≤r ).

Therefore, we have ‖ρε − ρ‖2
L2(�) ≤ ‖ρH≤r − ρ‖2

L2(�) + (ε2/4)a2(H≤r ). In addi-
tion to this,

‖ρH − ρH≤r ‖L2(�) =
∥∥∥∥
∑m

k=1 e−γk (ek ⊗ ek)∑m
k=1 e−γk

−
∑r

k=1 e−γk (ek ⊗ ek)∑r
k=1 e−γk

∥∥∥∥
L2(�)

,

which can be easily bounded from above by

2δr(H) max
1≤k≤m

‖ek ⊗ ek‖L2(�) = 2δr(H) max
1≤k≤m

E
1/2〈Xek, ek〉2 = 2δ̃r (H).

The result follows immediately. �

5. Random error bounds and oracle inequalities. We now turn to the anal-
ysis of random error of the estimator ρ̂ε . We obtain upper bounds on the L2(�)

and Kullback–Leibler distances of this estimator to an arbitrary oracle S ∈ S of
full rank, and, as a consequence, oracle inequalities for the empirical solution ρ̂ε .
The size of both errors ‖ρ̂ε − S‖2

L2(�) and K(ρ̂ε;S) will be controlled in terms

of the squared L2(�)-distance ‖S − ρ‖2
L2(�) from the oracle to the target density

matrix ρ and also in terms of such characteristics of the oracle as the norm ‖logS‖
or the alignment coefficient a(logS) that have been already used in the approxi-
mation error bounds of the previous section (see Proposition 3). However, in the
case of the random error, we also need some additional quantities that describe
the properties of the design distribution � and of the noise ξ . These quantities
are explicitly involved in the statements of the results below which makes them
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somewhat complicated. At the same time, it is easy to control these quantities in
concrete examples and to derive in special cases the bounds that are easier to un-
derstand.

Assumptions on the design distribution. In this section, it will be assumed that
X is a random Hermitian m × m matrix and that, for some constants 0 < U ≤ U2,
‖X‖ ≤ U and ‖X‖2 ≤ U2. We will denote σ 2

X := ‖EX2‖, σ 2
X⊗X := ‖E(X ⊗ X −

E(X ⊗ X))2‖.6

Let L ⊂ C
m be a subspace of dimension r ≤ m, and let PL : Mm(C) �→ Mm(C),

PLx := x − PL⊥xPL⊥ . We will use the following quantity:

β(L) := sup
A∈Hm(C),‖A‖L2(�)≤1

‖PLA‖L2(�).

Note that ‖PLA‖2 ≤ ‖A‖2 [for a proof, choose a basis {e1, . . . , em} of C
m

such that L = l.s.(e1, . . . , er) and represent A, PLA in this basis]. If, for all A,
K1‖A‖2 ≤ ‖A‖L2(�) ≤ K2‖A‖2, then β(L) ≤ K2/K1. In particular, if K1 = K2,
then β(L) = 1 (which is the case, for instance, when X is sampled at random from
an orthonormal basis).

Assumptions on the noise. Let (X1, Y1), . . . , (Xn,Yn) be i.i.d. copies of
(X,Y ). Denote ξ := Y − tr(ρX). Then ξ1, . . . , ξn are i.i.d. copies of ξ . Recall
also that E(ξ |X) = 0 and assume that P a.s. E(ξ2|X) ≤ σ 2

ξ , where σ 2
ξ ≥ 0 is a

constant. We will further assume that the noise is uniformly bounded by a constant
cξ > 0 : |ξ | ≤ cξ .

Given t > 0, denote tm := t + log(2m), τn := t + log log2(2n) and

εn,m := (σξσX ∨ σX⊗X)

√
tm

n
∨ cξU

tm

n
.

We will start with a simple result akin to the first bound of Proposition 3.

THEOREM 3. There exists a constant C > 0 such that, for all S ∈ S and for
all ε ≥ 0, with probability at least 1 − e−t

‖ρ̂ε − S‖2
L2(�)

≤ ‖S − ρ‖2
L2(�)

(5.1)

+ C

[
ε(‖logS‖ ∧ log�) ∨ ‖S − ρ‖L2(�)U

√
tm

n

∨ (σξσX ∨ σX⊗X)

√
tm

n
∨ (cξU ∨ U2

2 )
tm

n

]

6In this section, the notation A ⊗ B means the tensor product of the matrices A,B viewed as
vectors of the Euclidean space (Mm(C), 〈·, ·〉) : (A ⊗ B)V = A〈B,V 〉,V ∈ Mm(C).
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and

‖ρ̂ε − ρ‖2
L2(�) ≤ ‖S − ρ‖2

L2(�)

+ C

[
ε(‖logS‖ ∧ log�) ∨ ‖S − ρ‖L2(�)U

√
tm

n
(5.2)

∨ (σξσX ∨ σX⊗X)

√
tm

n
∨ (cξU ∨ U2

2 )
tm

n

]
,

where � := mE
1/2‖X‖2√

ε
∨ m. In particular,

‖ρ̂ε − ρ‖2
L2(�)

(5.3)

≤ C

[
ε(‖logρ‖ ∧ log�) ∨ (σξσX ∨ σX⊗X)

√
tm

n
∨ (cξU ∨ U2

2 )
tm

n

]
.

Note that this result holds for all ε ≥ 0, including the case of ε = 0 that corre-
sponds to the least squares estimator over the set S of all density matrices. The
approximation error term ‖logS‖ε in the bounds of Theorem 3 is of the order
O(ε) (as in the first bound of Proposition 3) and the random error terms are, up to
logarithmic factors, of the order O( 1√

n
) with respect to the sample size n.

The next result provides a more subtle oracle inequality in spirit of the second
and third bounds of Proposition 3. In this oracle inequality, the approximation error
term due to von Neumann entropy penalization is a2(logS)ε2 (as in Proposition 3),
so it is of the order O(ε2). Note that it is assumed implicitly that a2(logS) < +∞,
that is, that S is of full rank and the matrix logS is well defined. The random error
terms are of the order O(n−1) as n → ∞ (up to logarithmic factors) with an ex-

ception of the term σξσX‖PL⊥SPL⊥‖1

√
tm
n

, which depends on how well the oracle
S is approximated by low rank matrices. If ‖PL⊥SPL⊥‖1 is small, say of the order
n−1/2 for a subspace L of a small dimension r , this term becomes comparable to
other terms in the bound, or even smaller. The inequalities hold only for the val-
ues of regularization parameter ε above certain threshold. The first bound shows
that if there is an oracle S ∈ S such that: (a) it is “well aligned,” that is, a(logS)

is small; (b) there exists a subspace L of small dimension r such that the oracle
matrix S is “almost supported” in L, that is, ‖PL⊥SPL⊥‖1 is small and (c) S pro-
vides a good approximation of the density matrix ρ, that is, ‖S −ρ‖2

L2(�) is small,
then the empirical solution ρ̂ε will be in the intersection of the L2(�)-ball and
the Kullback–Leibler “ball” of small enough radii around the oracle S. The sec-
ond bound is an oracle inequality showing how the L2(�)-error ‖ρ̂ε − ρ‖2

L2(�)

depends on the properties of the oracle S.
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THEOREM 4. There exist numerical constants C > 0,D > 0 such that the
following holds. For all t > 0, for all ε ≥ Dεn,m, for all subspaces L ⊂ C

m with
dim(L) := r and for all S ∈ S , with probability at least 1 − e−t ,

‖ρ̂ε − S‖2
L2(�) + ε

4
K(ρ̂ε;S)

≤ 2‖S − ρ‖2
L2(�)

(5.4)

+ C

[
a2(logS)ε2 ∨ σ 2

ξ β2(L)
mr + τn

n

∨ σξσX‖PL⊥SPL⊥‖1

√
tm

n
∨ cξU

τn ∨ tm

n
∨ U2

2
tm

n

]

and

‖ρ̂ε − ρ‖2
L2(�)

≤ ‖S − ρ‖2
L2(�)

(5.5)

+ C

[
a2(logS)ε2 ∨ ‖S − ρ‖L2(�)U

√
tm

n
∨ σ 2

ξ β2(L)
mr + τn

n

∨ σξσX‖PL⊥SPL⊥‖1

√
tm

n
∨ cξU

τn ∨ tm

n
∨ U2

2
tm

n

]
.

REMARK. In the case when the noise is not necessarily bounded, but ‖ξ‖ψ1 <

+∞ (e.g., Gaussian noise), the results still hold with the following simple modifi-
cations. In bounds (5.1), (5.2), (5.3) and in the definition of εn,m, the term cξU

tm
n

is to be replaced by ‖ξ‖ψ1U log(
‖ξ‖ψ1

σξ

U
σX

) tm
n

. In the bounds of Theorem 4, the term

cξU
τn∨tm

n
is to be replaced by ‖ξ‖ψ1U

τn logn
n

∨ ‖ξ‖ψ1U log(
‖ξ‖ψ1

σξ

U
σX

) tm
n

. For such
an unbounded noise, one should replace in the proofs of Theorems 3 and 4 the
noncommutative Bernstein inequality of Ahlswede and Winter by the bound of
Proposition 2. One should also use a version of concentration inequality for em-
pirical processes by Adamczak (2008) instead of the usual version of Talagrand
for bounded function classes; see Section 3.

We will provide a detailed proof of Theorem 4. The proof of Theorem 3 is its
simplified version, and it will be skipped. Throughout the proofs below, C,C1, . . .

are numerical constants whose values might be different in different places.

PROOF OF THEOREM 4. Denote

Ln(S) := n−1
n∑

j=1

(
Yj − tr(SXj )

)2 + ε tr(S logS).
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For any S ∈ S of full rank and any direction ν ∈ Mm(C), we have

DLn(S;ν) = 2n−1
n∑

j=1

(〈S,Xj 〉 − Yj )〈ν,Xj 〉 + ε tr
(
ν(logS + Im)

)
.

By necessary conditions of extrema in the convex optimization problem (1.2),
DLn(ρ̂

ε; ρ̂ε − S) ≤ 0, which implies

DL(ρ̂ε; ρ̂ε − S) − DL(S; ρ̂ε − S)
(5.6)

≤ −DL(S; ρ̂ε − S) + DL(ρ̂ε; ρ̂ε − S) − DLn(ρ̂
ε; ρ̂ε − S).

By a simple algebra similar to what has been already used in the proof of Proposi-
tion 3 [see the derivation of (4.4), (4.5)], we get from (5.6) the following bound:

2‖ρ̂ε − S‖2
L2(�) + 2〈S − ρ, ρ̂ε − S〉L2(�) + εK(ρ̂ε;S)

= ‖ρ̂ε − S‖2
L2(�) + ‖ρ̂ε − ρ‖2

L2(�) − ‖S − ρ‖2
L2(�) + εK(ρ̂ε;S)

≤ εa(logS)‖ρ̂ε − S‖L2(�)

(5.7)

− 2

n

n∑
j=1

(〈ρ̂ε − S,Xj 〉2 − E〈ρ̂ε − S,X〉2)

+ 2

n

n∑
j=1

(〈S − ρ,Xj 〉〈ρ̂ε − S,Xj 〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉)

− 2

n

n∑
j=1

ξj 〈ρ̂ε − S,Xj 〉,

where we also used that ε|tr((ρ̂ε − S) logS)| ≤ εa(logS)‖ρ̂ε − S‖L2(�).

We need to bound the empirical processes in the right-hand side of bound (5.7).
We will do it in three steps by bounding each term separately [which leads to
different ingredients in bounds (5.4) and (5.5)]. The first two steps are based on
simple applications of a noncommutative Bernstein inequality (3.1); the third step
relies in addition on Talagrand’s concentration inequality and empirical processes
bounds.

Step 1. To bound the first term note that

1

n

n∑
j=1

(〈ρ̂ε − S,Xj 〉2 − E〈ρ̂ε − S,X〉2)

=
〈
(ρ̂ε − S) ⊗ (ρ̂ε − S),

1

n

n∑
j=1

(
(Xj ⊗ Xj) − E(X ⊗ X)

)〉
.
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Applying (3.1) to the sum of independent random matrices Xj ⊗ Xj − E(X ⊗ X),
we can claim that with probability at least 1 − e−t∣∣∣∣∣1

n

n∑
j=1

(〈ρ̂ε − S,Xj 〉2 − E〈ρ̂ε − S,X〉2)

∣∣∣∣∣
≤ ‖ρ̂ε − S‖2

1

∥∥∥∥∥1

n

n∑
j=1

(
(Xj ⊗ Xj) − E(X ⊗ X)

)∥∥∥∥∥
≤ 4

(
σX⊗X

√
t + log(2m2)

n
∨ U2

2
t + log(2m2)

n

)
‖ρ̂ε − S‖2

1

≤ 4σX⊗X

√
t + log(2m2)

n
‖ρ̂ε − S‖2

1 ∨ 16U2
2
t + log(2m2)

n
.

We also used the fact that ‖X ⊗ X‖ = ‖X‖2
2 ≤ U2

2 , ‖X ⊗ X − E(X ⊗ X)‖ ≤ 2U2
2

as well as the bounds ‖(ρ̂ε − S) ⊗ (ρ̂ε − S)‖1 = ‖ρ̂ε − S‖2
2 ≤ ‖ρ̂ε − S‖2

1 and
‖ρ̂ε − S‖1 ≤ 2.

Note that the term σX⊗X

√
tm
n

in the threshold εn,m originates in this step.
Step 2. The second term can be written as

1

n

n∑
j=1

(〈S − ρ,Xj 〉〈ρ̂ε − S,Xj 〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉)

=
〈
ρ̂ε − S,

1

n

n∑
j=1

(〈S − ρ,Xj 〉Xj − E〈S − ρ,X〉X)

〉

and bounded as follows: with probability at least 1 − e−t ,∣∣∣∣∣1

n

n∑
j=1

(〈S − ρ,Xj 〉〈ρ̂ε − S,Xj 〉 − E〈S − ρ,X〉〈ρ̂ε − S,X〉)
∣∣∣∣∣

≤ ‖ρ̂ε − S‖1

∥∥∥∥∥1

n

n∑
j=1

(〈S − ρ,Xj 〉Xj − E〈S − ρ,X〉X)

∥∥∥∥∥
≤ 2

∥∥∥∥∥1

n

n∑
j=1

(〈S − ρ,Xj 〉Xj − E〈S − ρ,X〉X)

∥∥∥∥∥
≤ 8U‖S − ρ‖L2(�)

√
t + log(2m)

n
∨ 8U2‖S − ρ‖1

t + log(2m)

n
.

Here we applied bound (3.1) to sums of independent random matrices Yj − EYj ,
where Yj = 〈S − ρ,Xj 〉〈ρ̂ε − S,Xj 〉 and also used simple bounds

‖ρ̂ε − S‖1 ≤ 2,
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‖E〈S − ρ,X〉2X2‖ ≤ U2‖S − ρ‖2
L2(�)

and

‖〈S − ρ,X〉X‖ ≤ U2‖S − ρ‖1.

The bound of this step is the origin of the terms ‖S − ρ‖L2(�)

√
tm
n

,U2 tm
n

in the
inequalities of the theorem.

Step 3. We turn now to bounding the third term in the right-hand side of (5.7).
It is easy to decompose it as follows:

1

n

n∑
j=1

ξj 〈ρ̂ε − S,Xj 〉 =
〈
PL⊥(ρ̂ε − S)PL⊥,

1

n

n∑
j=1

ξjPL⊥XjPL⊥

〉

(5.8)

+ 1

n

n∑
j=1

ξj 〈ρ̂ε − S, PLXj 〉.

Note that ∣∣∣∣∣
〈
PL⊥(ρ̂ε − S)PL⊥,

1

n

n∑
j=1

ξjPL⊥XjPL⊥

〉∣∣∣∣∣
≤ ‖PL⊥(ρ̂ε − S)PL⊥‖1

∥∥∥∥∥1

n

n∑
j=1

ξjPL⊥XjPL⊥

∥∥∥∥∥.
Applying bound (3.1) one more time, we have that with probability at least 1−e−t

∣∣∣∣∣
〈
PL⊥(ρ̂ε − S)PL⊥,

1

n

n∑
j=1

ξjPL⊥XjPL⊥

〉∣∣∣∣∣
≤ 2‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
t + log(2m)

n
∨ 2cξU

t + log(2m)

n

]
,

where we also used a simple bound ‖Eξ2(PL⊥XPL⊥)2‖ ≤ σ 2
ξ ‖EX2‖ = σ 2

ξ σ 2
X.

To bound the second term in the right-hand side of (5.8), denote

αn(δ) := sup
ρ1,ρ2∈S,‖ρ1−ρ2‖L2(�)≤δ

∣∣∣∣∣1

n

n∑
j=1

ξj 〈ρ1 − ρ2, PLXj 〉
∣∣∣∣∣.

Clearly, | 1
n

∑n
j=1 ξj 〈ρ̂ε − S, PLXj 〉| ≤ αn(‖ρ̂ε − S‖L2(�)). To control αn(δ), we

use Talagrand’s concentration inequality for empirical processes. It implies that,
for all δ > 0, with probability at least 1 − e−s ,

αn(δ) ≤ 2

[
Eαn(δ) + σξβ(L)δ

√
s

n
+ 4cξU

s

n

]
.(5.9)
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Here we used the facts that Eξ2〈ρ1 − ρ2, PLX〉2 ≤ σ 2
ξ β2(L)‖ρ1 − ρ2‖2

L2(�) and

|ξ〈ρ1 − ρ2, PLX〉| ≤ cξ‖ρ1 − ρ2‖1‖PLX‖
≤ 2cξ (‖X‖ + ‖PL⊥XPL⊥‖)
≤ 4cξ‖X‖ ≤ 4cξU.

We will make the bound on αn(δ) uniform in δ ∈ [Un−1,2U ]. To this end, we
apply bound (5.9) for δ = δj = 2−j+1U,j = 0,1, . . . , and with s = τn := t +
log log2(2n). The union bound and the monotonicity of αn(δ) with respect to δ

implies that with probability at least 1 − e−t for all δ ∈ [Un−1,2U ]

αn(δ) ≤ C

[
Eαn(δ) + σξβ(L)δ

√
τn

n
+ cξU

τn

n

]
,(5.10)

where C > 0 is a numerical constant. Now it remains to bound the expected
value Eαn(δ). Let e1, . . . , em be the orthonormal basis of C

m such that L =
l.s.{e1, . . . , er}. Denote Eij (x) the entries of the linear transformation x ∈ Mm(C)

in this basis. Clearly, the function 〈ρ1 − ρ2, PLx〉 belongs to the space L :=
l.s.{Eij : i ≤ r or j ≤ r} of dimension m2 − (m − r)2 = 2mr − r2. Therefore,

Eαn(δ) ≤ E sup
f ∈L,‖f ‖L2(�)≤β(L)δ

∣∣∣∣∣2

n

n∑
j=1

ξjf (Xj )

∣∣∣∣∣.
Using standard bounds for empirical processes indexed by finite-dimensional func-
tion classes, we get Eαn(δ) ≤ 2

√
2σξβ(L)δ

√
mr
n

. We can conclude that the follow-

ing bound on αn(δ) holds with probability at least 1 − e−t for all δ ∈ [Un−1,2U ]:

αn(δ) ≤ C

[
σξβ(L)δ

√
mr

n
+ σξβ(L)δ

√
τn

n
+ cξU

τn

n

]
.(5.11)

Note that since ‖ρ̂ε − S‖1 ≤ 2 and ‖X‖ ≤ U , we have ‖ρ̂ε − S‖2
L2(�) = E〈ρ̂ε −

S,X〉2 ≤ 4U2, so ‖ρ̂ε − S‖L2(�) ≤ 2U . As a result, with probability at least 1 −
e−t , we either have ‖ρ̂ε − S‖L2(�) < Un−1 or∣∣∣∣∣1

n

n∑
j=1

ξj 〈ρ̂ε − S, PLXj 〉
∣∣∣∣∣

≤ C

[
σξβ(L)‖ρ̂ε − S‖L2(�)

√
mr

n
+ σξβ(L)‖ρ̂ε − S‖L2(�)

√
τn

n
+ cξU

τn

n

]
.

In the first case, we still have∣∣∣∣∣1

n

n∑
j=1

ξj 〈ρ̂ε − S, PLXj 〉
∣∣∣∣∣ ≤ C

[
σξβ(L)

U

n

√
mr

n
+ σξβ(L)

U

n

√
τn

n
+ cξU

τn

n

]
.
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Let us assume in what follows that ‖ρ̂ε − S‖L2(�) ≥ Un−1 since another case is
even easier to handle.

The terms σ 2
ξ β2(L)mr+τn

n
, σξσX‖PL⊥SPL⊥‖1

√
tm
n

in the inequalities of the the-
orem have their origin in this step.

We now substitute the bounds of steps 1–3 in the right-hand side of (5.7) to get
the following inequality that holds with some constant C > 0 and with probability
at least 1 − 4e−t :

‖ρ̂ε − S‖2
L2(�) + ‖ρ̂ε − ρ‖2

L2(�) + εK(ρ̂ε;S)

≤ ‖S − ρ‖2
L2(�) + εa(logS)‖ρ̂ε − S‖L2(�)

+ 16σX⊗X

√
tm

n
‖ρ̂ε − S‖2

1 + 64U2
2
tm

n
(5.12)

+ 16U‖S − ρ‖L2(�)

√
tm

n
∨ 16U2 tm

n

+ 4‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
tm

n
∨ 2cξU

tm

n

]

+ C

[
σξβ(L)‖ρ̂ε − S‖L2(�)

√
mr + τn

n
∨ cξU

τn

n

]
.

Under the assumption ε ≥ Dεn,m with a sufficiently large constant D > 0, it is
easy to get that

16σX⊗X

√
tm

n
‖ρ̂ε − S‖2

1 ≤ ε

2
‖ρ̂ε − S‖2

1 ≤ ε

2
K(ρ̂ε;S).(5.13)

Also, by Proposition 1,

‖PL⊥(ρ̂ε − S)PL⊥‖1 ≤ ‖PL⊥ ρ̂εPL⊥‖1 + ‖PL⊥SPL⊥‖1

≤ 3‖PL⊥SPL⊥‖1 + 2K(ρ̂ε;S),

and, under the same assumption that ε ≥ Dεn,m with a sufficiently large constant
D > 0,

4‖PL⊥(ρ̂ε − S)PL⊥‖1

[
σξσX

√
tm

n
∨ 2cξU

tm

n

]

≤ C‖PL⊥SPL⊥‖1

[
σξσX

√
tm

n
∨ cξU

tm

n

]
(5.14)

+ ε

4
K(ρ̂ε;S).
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Combining bounds (5.13) and (5.14) with (5.12) yields

‖ρ̂ε − S‖2
L2(�) + ‖ρ̂ε − ρ‖2

L2(�) + ε

4
K(ρ̂ε;S)

≤ ‖S − ρ‖2
L2(�) + εa(logS)‖ρ̂ε − S‖L2(�)

(5.15)

+ C

[
‖ρ̂ε − S‖L2(�)σξβ(L)

√
mr + τn

n
∨ U‖S − ρ‖L2(�)

√
tm

n

∨ ‖PL⊥SPL⊥‖1σξσX

√
tm

n
∨ cξU

τn ∨ tm

n
∨ U2

2
tm

n

]

with some constant C > 0. It follows from the last inequality that

‖ρ̂ε − S‖2
L2(�) ≤ A‖ρ̂ε − S‖L2(�) + B − ε

4
K(ρ̂ε;S),(5.16)

where A := ε
2a(logS) + Cσξβ(L)

√
mr+τn

n
and

B := ‖S − ρ‖2
L2(�) − ‖ρ̂ε − ρ‖2

L2(�)

+ C

[
‖S − ρ‖L2(�)U

√
tm

n
∨ ‖PL⊥SPL⊥‖1σξσX

√
tm

n

∨ cξU
τn ∨ tm

n
∨ U2

2
tm

n

]
.

It is easy to check that

‖ρ̂ε − S‖2
L2(�) ≤

(A +
√

A2 + 4(B − (ε/4)K(ρ̂ε;S))

2

)2

≤
(
A +

√(
B − ε

4
K(ρ̂ε;S)

)
+

)2

.

If ε
4K(ρ̂ε;S) ≥ B, then ‖ρ̂ε − S‖2

L2(�) ≤ A2, which, in view of (5.16), implies

‖ρ̂ε − S‖2
L2(�) + ε

4
K(ρ̂ε;S) ≤ A2 + B.

Otherwise, we have ‖ρ̂ε − S‖2
L2(�) ≤ A2 + 2A

√
B + B − ε

4K(ρ̂ε;S), which im-
plies that

‖ρ̂ε − S‖2
L2(�) + ε

4
K(ρ̂ε;S) ≤ 3A2 + 3

2
B.
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Thus, the last bound holds in both cases, and, by the definitions of A and B and
elementary algebra, one can easily get that

‖ρ̂ε − S‖2
L2(�) + 3

2
‖ρ̂ε − ρ‖2

L2(�) + ε

4
K(ρ̂ε;S)

≤ 3

2
‖S − ρ‖2

L2(�)

(5.17)

+ C

[
a2(logS)ε2 ∨ ‖S − ρ‖L2(�)U

√
tm

n
∨ σ 2

ξ β2(L)
mr + τn

n

∨ σξσX‖PL⊥SPL⊥‖1

√
tm

n
∨ cξU

τn ∨ tm

n
∨ U2

2
tm

n

]
,

which holds with probability at least 1 − 4e−t and with a sufficiently large con-
stant C. To replace the probability 1 − 4e−t by 1 − e−t , it is enough to replace t

by t + log 4 and to adjust the values of constants C,D accordingly. Then, (5.17)
easily implies the bounds of the theorem. �

REMARK. Note that replacing in Step 1 of the proof rather simple bounds
based on the Ahlswede–Winter inequality by a more sophisticated argument based
on Talagrand’s generic chaining, one can obtain another version of the bounds
of Theorem 4 that might be stronger in certain applications. For instance, one
can use Theorem 3 in Aubrun (2009) [that relies on the results of Guédon et al.
(2008)] to obtain the following version of (5.5) that holds for ε ≥ Dεn,m with

εn,m = σξσX

√
tm
n

∨ cξU
tm
n

:

‖ρ̂ε − ρ‖2
L2(�)

≤ ‖S − ρ‖2
L2(�)

+ C

[
a2(logS)ε2 ∨ ‖S − ρ‖L2(�)U

√
tm

n
∨ σ 2

ξ β2(L)
mr + τn

n

∨ σξσX‖PL⊥SPL⊥‖1

√
tm

n
∨ cξU

τn ∨ tm

n
∨ U2 t + log5 m logn

n

]
.

This could be better than (5.5) since there is no term σX⊗X

√
tm
n

in the new defini-

tion of εn,m and also because U2 t+log5 m logn
n

could be smaller than U2
2

tm
n

when U

is much smaller than U2 (e.g., in the case of sampling from the Pauli basis, U2 = 1
and U = m−1/2).

EXAMPLE (Sampling from an orthonormal basis). Recall that in this case �

is the distribution in an orthonormal basis E1, . . . ,Em2 that consists of Hermi-
tian matrices. Since ‖X‖2 = 1, one can always assume that U2 = 1 and U ≤ 1.
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Denote πj := �({Ej }) and π̄m := max1≤j≤m2 πj . Then it is easy to check that
σ 2

X ≤ mπ̄m,σ 2
X⊗X ≤ π̄m. Indeed, for an orthonormal basis e1, . . . , em of C

m,

σ 2
X = ‖EX2‖ = sup

v∈Cm,|v|=1
E〈X2v, v〉

= sup
v∈Cm,|v|=1

E〈Xv,Xv〉 = sup
v∈Cm,|v|=1

E|Xv|2

= sup
v∈Cm,|v|=1

m∑
j=1

E|〈Xv, ej 〉|2 = sup
v∈Cm,|v|=1

m∑
j=1

m2∑
k=1

πk|〈Ek, v ⊗ ej 〉|2

≤ π̄m sup
v∈Cm,|v|=1

m∑
j=1

‖v ⊗ ej‖2
2 ≤ mπ̄m,

where we used Bessel’s inequality for the basis {E1, . . . ,Em2}. Similarly,

σ 2
X⊗X ≤ ‖E(X ⊗ X)2‖ = sup

‖V ‖2=1
E‖(X ⊗ X)V ‖2

2 = sup
‖V ‖2=1

E|〈X,V 〉|22‖X‖2
2

≤ sup
‖V ‖2=1

m2∑
k=1

πk|〈Ek,V 〉|22 ≤ π̄m sup
‖V ‖2=1

‖V ‖2
2 = π̄m,

where we used the fact that ‖X‖2 = 1 and, again, Bessel’s inequality. Note also
that ‖A‖2

L2(�) ≤ π̄m‖A‖2
2,A ∈ Mm(C).

In the case of a nearly uniform design already defined in Section 2, σ 2
X ≤ c1m

−1,
σ 2

X⊗X ≤ c1m
−2 and ‖A‖2

L2(�) ≤ c1m
−2‖A‖2

2. We also have that ‖A‖2
L2(�) ≥

c2m
−2‖A‖2

2,A ∈ Hm(C), which implies that the quantity β(L) involved in Theo-

rem 4 is bounded by
√

c1
c2

.
We can derive the following corollary of Theorem 4. To simplify its statement,

we will assume that, for some λ > 0,

log log2(2n) ≤ log(2m), σξ ≥ m−1/2,
(5.18)

cξU ≤ λ

(
σξ

√
n

mtm
∧ σ 2

ξ m log2(mn)

)
.

Essentially, it means that the variance σ 2
ξ of the noise is not too small,7 and the

constant cξ is not too large comparing with the variance, which makes it possible
to suppress the exponential tails in Bernstein-type inequalities. In this case, we can

take εn,m := σξ

√
tm
mn

, and let ε = Dεn,m for a sufficiently large constant D > 0.

7Using the remark after the proof of Theorem 4, one can drop the condition that σξ ≥ m−1/2;
however, some additional terms will be needed in the bound of Corollary 1.
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COROLLARY 1. Suppose that � is a nearly uniform distribution in a basis
{E1, . . . ,Em2} that consists of Hermitian matrices. There exists a numerical con-
stant C > 0 such that the following holds. For all t > 0, for all sufficiently large D

and for ε = Dεn,m, with probability at least 1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�) ≤ inf

S∈S

[
2‖S − ρ‖2

L2(�) + CD2σ 2
ξ

rank(S)mtm log2(mn)

n

]
.(5.19)

PROOF (SKETCH). We will use the second bound of Theorem 4. Note that
in the case under consideration �(L) ≤ m√

c2
.8 Suppose now that S ∈ S is an ar-

bitrary oracle of rank r . Then there exists a subspace L of dimension r such that
PL⊥SPL⊥ = 0. We will use bound (5.5) for Sδ := (1− δ)S + δ Im

m
, where δ = ε∧1,

as we did in the proof of Proposition 4. As in this proof, we have, for some constant
C1 > 0,

a(logSδ) ≤ m
√

r log
(

1 + m

δ

)
≤ C1m

√
r log(mn)

and ‖S − Sδ‖2
L2(�) ≤ 4δ2

E‖X‖2 ≤ 4δ2 ≤ 4ε2. Finally, note that

‖PL⊥SδPL⊥‖1 ≤ (1 − δ)‖PL⊥SPL⊥‖1 + δ‖PL⊥(Im/m)PL⊥‖1 ≤ δ ≤ ε.

Substituting these inequalities in (5.5) (with S replaced by Sδ), taking into account
the bounds on σX , σX⊗X and β(L) that hold in the case of nearly uniform design
and bounding ‖Sδ − ρ‖2

L2(�) in terms of ‖S − ρ‖2
L2(�) and ‖Sδ − S‖2

L2(�) (sim-
ilarly to what was done in the proof of Proposition 4), it is easy to derive (5.19)
from (5.5). �

Similarly, it is easy to obtain another corollary where the L2(�)-error of esti-
mator ρ̂ε is controlled in terms of Gibbs oracles. Recall the notation at the end of
Section 4, and also denote �r := ‖H≤r‖2

2 = ∑r
k=1 γ 2

k , and assume that �1 ≥ 1 and
also that (5.18) holds.

COROLLARY 2. There exists a numerical constant C > 0 such that the fol-
lowing holds. For all t > 0, for all sufficiently large D and for ε = Dεn,m, for all
Hermitian matrices H and for all r ≤ m, with probability at least 1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�) ≤ 2‖ρH − ρ‖2

L2(�)
(5.20)

+ C

[
σ 2

ξ (D2tm�r + r)m

n
∨ m−2δ2

r (H)

]
.

8Recall the definition of �(L) given before Proposition 4.
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REMARKS. Note that both the matrix completion design of Example 1 in the
Introduction and sampling from the Pauli basis (Example 2) are special cases of
nearly uniform design. In the case of matrix completion c1 = 2, c2 = 1 and U = 1.
In the case of sampling from the Pauli basis, c1 = c2 = 1 and it is easy to see that
U = m−1/2. Thus, in these two examples the statements of Corollaries 1 and 2
hold under assumption (5.18) with proper values of U .

Note also that the bounds of Theorems 3, 4 and Corollaries 1, 2 can be proved
in the case when the noise is unbounded, in particular, Gaussian; see the remark
after Theorem 4. This immediately leads to Theorem 1 stated in the Introduction.
To this end, it is enough to modify slightly conditions (5.18) by replacing cξ by
another quantity defined in terms of ‖ξ‖ψ1 , which, in the case of Gaussian noise,
is of the same order as σξ ; again, see the remark after Theorem 4. Then the bound
of Corollary 1 becomes the second bound of Theorem 1; the first bound follows
from Theorem 3.

6. Oracle inequalities: Sub-Gaussian design case. In this section, we turn
to the case of sub-Gaussian design matrices. More precisely, we assume that X is
a Hermitian random matrix with distribution � such that, for some constant b0 > 0
and for all Hermitian matrices A ∈ Mm(C), 〈A,X〉 is a sub-Gaussian random vari-
able with parameter b0‖A‖L2(�). This implies that EX = 0 and, for some constant
b1 > 0,

‖〈A,X〉‖ψ2 ≤ b1‖A‖L2(�), A ∈ Mm(C).(6.1)

In addition to this, assume that, for some constant b2 > 0,

‖A‖L2(�) = ‖〈A,X〉‖L2(�) ≤ b2‖A‖2, A ∈ Mm(C).(6.2)

A Hermitian random matrix X satisfying the above conditions will be called a
sub-Gaussian matrix. Moreover, if X also satisfies the condition

‖A‖2
L2(�) = E|〈A,X〉|2 = ‖A‖2

2, A ∈ Mm(C),(6.3)

then it will be called an isotropic sub-Gaussian matrix. As it was already men-
tioned in the Introduction, the last class of matrices includes such examples as
Gaussian and Rademacher design matrices. It easily follows from the basic prop-
erties of Orlicz norms [see, e.g., van der Vaart and Wellner (1996), page 95]
that for sub-Gaussian matrices ‖A‖Lp(�) = E

1/p|〈A,X〉|p ≤ cpb1b2‖A‖2
2 and

‖A‖ψ1 := ‖〈A,X〉‖ψ1 ≤ cb1b2‖A‖2,A ∈ Mm(C),p ≥ 1, with some numerical
constants cp > 0 and c > 0. The following fact is well known [see, e.g., Rudelson
and Vershynin (2010), Proposition 2.4].

PROPOSITION 6. Let X be a sub-Gaussian m × m matrix. Then there exists a
constant B > 0 such that ‖‖X‖‖ψ2 ≤ B

√
m.
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Below, we give oracle inequalities and random error bounds in the sub-Gaussian
design case. We will use the following notation. Given t > 0, let

tm := t + log(2m), τn := t + log log2(2n) and tn,m := τn logn ∨ tm.

In what follows, the noise satisfies the assumptions of the previous section except
the boundedness assumption. Instead, it is supposed that ‖ξ‖ψ2 < +∞. Denote

cξ := ‖ξ‖ψ2 log
‖ξ‖ψ2

σξ
and let

εn,m := σξ

√
mtm

n
∨ cξ

√
mtm

n
.

THEOREM 5. There exist constants C > 0, c > 0 such that the following
holds. For all t > 0 such that τn ≤ cn, for all S ∈ S and for all ε ∈ [0,1], with
probability at least 1 − e−t

‖ρ̂ε − S‖2
L2(�) ≤ 2‖S − ρ‖2

L2(�)

+ C

[
ε

(
‖logS‖ ∧ log

m

ε

)
∨ σξ

√
mtm

n
(6.4)

∨ mtm

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]

and

‖ρ̂ε − ρ‖2
L2(�) ≤ ‖S − ρ‖2

L2(�)

+ C

[
ε

(
‖logS‖ ∧ log

m

ε

)
∨ ‖S − ρ‖L2(�)

√
mtm

n
(6.5)

∨ σξ

√
mtm

n
∨ mtm

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]
.

In particular,

‖ρ̂ε − ρ‖2
L2(�) ≤ C

[
ε

(
‖logρ‖ ∧ log

m

ε

)
∨ σξ

√
mtm

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]
.

We now turn to more subtle oracle inequalities that take into account low-rank
properties of oracles S ∈ S .

THEOREM 6. There exist numerical constants C > 0,D > 0, c > 0 such that
the following holds. For all t > 0 such that τn ≤ cn, for all ε ≥ Dεn,m, for all
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subspaces L ⊂ C
m with dim(L) := r and for all S ∈ S , with probability at least

1 − e−t ,

‖ρ̂ε − S‖2
L2(�) + ε

4
K(ρ̂ε;S)

≤ 2‖S − ρ‖2
L2(�)

(6.6)

+ C

[
a2(logS)ε2 ∨ σ 2

ξ β2(L)
mr + τn

n

∨ σξ‖PL⊥SPL⊥‖1

√
mtm

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]

and

‖ρ̂ε − ρ‖2
L2(�)

≤ ‖S − ρ‖2
L2(�)

(6.7)

+ C

[
a2(logS)ε2 ∨ ‖S − ρ‖L2(�)

√
mtm

n
∨ σ 2

ξ

mr + τn

n

∨ σξ‖PL⊥SPL⊥‖1

√
mtm

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]
.

PROOF. It follows the lines of the proof of Theorem 4 very closely with only
minor modifications in steps 2,3 and with more substantial changes in Step 1,
where one has to control 1

n

∑n
j=1(〈ρ̂ε −S,Xj 〉2 −E〈ρ̂ε −S,X〉2). To this end, we

will study the empirical process

�n(δ) := sup
f ∈Fδ

∣∣∣∣∣n−1
n∑

j=1

(
f 2(Xj ) − Pf 2)∣∣∣∣∣,

where Fδ := {〈S1 − S2, ·〉 :S1, S2 ∈ S,‖S1 − S2‖L2(�) ≤ δ}. Clearly,∣∣∣∣∣1

n

n∑
j=1

(〈ρ̂ε − S,Xj 〉2 − E〈ρ̂ε − S,X〉2)

∣∣∣∣∣ ≤ �n

(‖ρ̂ε − S‖L2(�)

)
.

Our goal is to obtain an upper bound on �n(δ) uniformly in δ ∈ [(m/n)1/2,2b2].
First we use a version of Talagrand’s concentration inequality for empirical pro-
cesses indexed by unbounded functions due to Adamczak; see Section 3. It implies
that with some constant C > 0 and with probability at least 1 − e−t

�n(δ) ≤ 2E�n(δ) + Cδ2

√
t

n
+ C

mt logn

n
.(6.8)
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Here we used the following bounds on the uniform variance and on the envelope
of the function class F 2

δ : for the uniform variance, with some constant c > 0,

sup
f ∈Fδ

(Pf 4)1/2 = sup
S1,S2∈S,‖S1−S2‖L2(�)≤δ

‖S1 − S2‖2
L4(�) ≤ cδ2

by the equivalence properties of the norms in Orlicz spaces. For the envelope,

sup
f ∈Fδ

f 2(X) = sup
S1,S2∈S,‖S1−S2‖L2(�)≤δ

〈S1 − S2,X〉2 ≤ 4‖X‖2

and∥∥∥ max
1≤i≤n

sup
f ∈Fδ

f 2(Xi)
∥∥∥
ψ1

≤ c1‖‖X‖2‖ψ1 logn ≤ c2‖‖X‖‖2
ψ2

logn ≤ c3m logn

for some constants c1, c2, c3 > 0, where we used well-known inequalities for max-
ima of random variables in Orlicz spaces; see, for example, Lemma 2.2.2 in van der
Vaart and Wellner (1996).

To bound the expectation E�n(δ) we use a recent result by Mendelson (2010);
see Section 3.9 It gives

E�n(δ) ≤ c

[
sup
f ∈Fδ

‖f ‖ψ1

γ2(Fδ;ψ2)√
n

∨ γ 2
2 (Fδ;ψ2)

n

]
(6.9)

with some constant c > 0. It follows from (6.1) that the ψ1 and ψ2-norms of func-
tions from the class Fδ can be bounded from above by a constant times the L2(P )-
norm. As a result,

sup
f ∈Fδ

‖f ‖ψ1 ≤ cδ,(6.10)

and the following bound holds for Talagrand’s generic chaining complexities:

γ2(Fδ;ψ2) ≤ γ2
(

Fδ; c‖ · ‖L2(�)

)
,(6.11)

where c is a constant. Let G be a symmetric real-valued random matrix with inde-
pendent centered Gaussian entries {gij } on the diagonal and above, where Eg2

ii = 1
and Eg2

ij = 1
2 , i �= j . Under condition (6.2), E|〈S1,G〉− 〈S2,G〉|2 = ‖S1 −S2‖2

2 ≥
c1‖S1 − S2‖2

L2(�) for some constant c1, and it easily follows from Talagrand’s
generic chaining bound that, for some constant C > 0,

γ2
(

Fδ; c‖ · ‖L2(�)

) ≤ CE sup
S1,S2∈S,‖S1−S2‖L2(�)≤δ

|〈S1 − S2,G〉|
(6.12)

=: Cω(G; δ).

9In fact, an even earlier result by Klartag and Mendelson (2005) with the ψ2-diameter instead of
ψ1-diameter would suffice for our purposes.
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It follows from (6.9), (6.10), (6.11) and (6.12) that

E�n(δ) ≤ C

[
δ
ω(G; δ)√

n
∨ ω2(G; δ)

n

]
.(6.13)

By Proposition 6, we get

ω(G; δ) = E sup
S1,S2∈S,‖S1−S2‖L2(�)≤δ

|〈S1 − S2,G〉| ≤ E‖G‖ sup
S1,S2∈S

‖S1 − S2‖1

≤ 2E‖G‖ ≤ c
√

m.

Substituting this bound in (6.13) yields that, for some constant C > 0,

E�n(δ) ≤ C

[
δ

√
m

n
∨ m

n

]
,(6.14)

and combining (6.14) with (6.8) gives that with probability at least 1 − e−t

�n(δ) ≤ C

[
δ

√
m

n
∨ m

n
∨ δ2

√
t

n
∨ mt logn

n

]
.(6.15)

It is easy to make bound (6.15) uniform in δ ∈ [(m/n)1/2,2b2] by a simple dis-
cretization argument (as we did in Step 3 of the proof of Theorem 4). This leads to
the following result: with probability at least 1 − e−t , for all δ ∈ [(m/n)1/2,2b2],

�n(δ) ≤ C

[
δ

√
m

n
∨ m

n
∨ δ2

√
τn

n
∨ mτn logn

n

]
,(6.16)

where τn = t + log log2(2n). Thus, with the same probability and with a proper
choice of constant C > 0∣∣∣∣∣1

n

n∑
j=1

(〈ρ̂ε − S,Xj 〉2 − E〈ρ̂ε − S,X〉2)

∣∣∣∣∣
≤ C

[
‖ρ̂ε − S‖L2(�)

√
m

n
∨ m

n
∨ ‖ρ̂ε − S‖2

L2(�)

√
τn

n
∨ mτn logn

n

]

provided that ‖ρ̂ε − S‖L2(�) ∈ [(m/n)1/2,2b2].
The rest is a straightforward modification of the proof of Theorem 4. �

For simplicity, we state the next corollary (similar to Corollary 1) only in the
case of sub-Gaussian isotropic design. Recall that in this case ‖ · ‖L2(�) = ‖ · ‖2
and β(L) = 1.

COROLLARY 3. There exist numerical constants C > 0, c > 0 such that the
following holds. For all t > 0 such that τn ≤ cn, for all sufficiently large D > 0
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and for ε = Dεn,m, for all matrices S ∈ S of rank r , with probability at least
1 − e−t ,

‖ρ̂ε − ρ‖2
L2(�) ≤ 2‖S − ρ‖2

L2(�)

+ C

[
D2

(
σ 2

ξ

rmtm

n
∨ c2

ξ

rmt2
m

n2

)
log2(mn)(6.17)

∨ σ 2
ξ

τn

n
∨ (

cξ ∨ √
m

)√mtn,m

n

]
.

In a special case of Gaussian noise, the bounds of the above corollary can be
simplified since in this case cξ ≤ cσξ for some numerical constant c. In particular,
Theorem 5 and Corollary 3 immediately imply the bounds of Theorem 2 in the
Introduction (to this end, one just has to drop the terms in the bounds of Theorem 5
and Corollary 3 that are dominated by the main terms under the assumption that
the noise is Gaussian and other assumptions of Theorem 2).
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