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We derive the precise asymptotic distributional behavior of Gaussian
variational approximate estimators of the parameters in a single-predictor
Poisson mixed model. These results are the deepest yet obtained concerning
the statistical properties of a variational approximation method. Moreover,
they give rise to asymptotically valid statistical inference. A simulation study
demonstrates that Gaussian variational approximate confidence intervals pos-
sess good to excellent coverage properties, and have a similar precision to
their exact likelihood counterparts.

1. Introduction. Variational approximation methods are enjoying an increas-
ing amount of development and use in statistical problems. This raises questions
regarding their statistical properties, such as consistency of point estimators and
validity of statistical inference. We make significant inroads into answering such
questions via thorough theoretical treatment of one of the simplest nontrivial set-
tings for which variational approximation is beneficial: the Poisson mixed model
with a single predictor variable and random intercept. We call this the simple Pois-
son mixed model.

The model treated here is also treated in [7], but there attention is confined to
bounds and rates of convergence. We improve upon their results by obtaining the
asymptotic distributions of the estimators. The results reveal that the estimators
are asymptotically normal, have negligible bias and that their variances decay at
least as fast as m !, where m is the number of groups. For the slope parameter, the
faster (mn)~! rate is obtained, where n is the number of repeated measures.

An important practical ramification of our theory is asymptotically valid sta-
tistical inference for the model parameters. In particular, a form of studentization
leads to theoretically justifiable confidence intervals for all model parameters. Un-
like those based on the exact likelihood, all Gaussian variational approximate point
estimates and confidence intervals can be computed without the need for numer-
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ical integration. Simulation results reveal that the confidence intervals have good
to excellent coverage and have about the same length as exact likelihood-based
intervals.

Variational approximation methodology is now a major research area within
computer science; see, for example, Chapter 10 of [3]. It is beginning to have
a presence in statistics as well (e.g., [10, 14]). A summary of the topic from a
statistical perspective is given in [13]. Late 2008 saw the first beta release of
a software library, Infer.NET [12], for facilitation of variational approximate in-
ference. A high proportion of variational approximation methodology is framed
within Bayesian hierarchical structures and offers itself as a faster alternative to
Markov chain Monte Carlo methods. The chief driving force is applications where
speed is at a premium and some accuracy can be sacrificed. Examples of such
applications are cluster analysis of gene-expression data [17], fitting spatial mod-
els to neuroimage data [6], image segmentation [4] and genome-wide association
analysis [8]. Other recent developments in approximate Bayesian inference include
approximate Bayesian computing (e.g., [2]), expectation propagation (e.g., [11]),
integrated nested Laplace approximation (e.g., [16]) and sequential Monte Carlo
(e.g., [5D).

As explained in [3] and [13], there are many types of variational approxi-
mations. The most popular is variational Bayes (also known as mean field ap-
proximation), which relies on product restrictions applied to the joint posterior
densities of a Bayesian model. The present article is concerned with Gaussian
variational approximation in frequentist models containing random effects. There
are numerous models of this general type. One of their hallmarks is the difficulty
of exact likelihood-based inference for the model parameters due to presence of
nonanalytic integrals. Generalized linear mixed models (e.g., Chapter 7 of [9])
form a large class of models for handling within-group correlation when the re-
sponse variable is non-Gaussian. The simple Poisson mixed model lies within this
class. From a theoretical standpoint, the simple Poisson mixed model is attractive
because it possesses the computational challenges that motivate Gaussian varia-
tional approximation—exact likelihood-based inference requires quadrature—but
its simplicity makes it amenable to deep theoretical treatment. We take advantage
of this simplicity to derive the asymptotic distribution of the Gaussian variational
approximate estimators, although the derivations are still quite intricate and in-
volved. These results represent the deepest statistical theory yet obtained for a
variational approximation method.

Moreover, for the first time, asymptotically valid inference for a variational ap-
proximation method is manifest. Our theorem reveals that each estimator is asymp-
totically normal, centered on the true parameter value and with a Studentizable
variance. Replacement of the unknown quantities by consistent estimators results
in asymptotically valid confidence intervals and Wald hypothesis tests. A simula-
tion study shows that Gaussian variational approximate confidence intervals pos-
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sess good to excellent coverage properties, especially in the case of the slope pa-
rameter.

Section 2 describes the simple Poisson mixed model and Gaussian variational
approximation. An asymptotic normality theorem is presented in Section 3. In Sec-
tion 4 we discuss the implications for valid inference and perform some numerical
evaluations. Section 5 contains the proof of the theorem.

2. Gaussian variational approximation for the simple Poisson mixed
model. The simple Poisson mixed model that we study here is identical to that
treated in [7]. Section 2 of that paper provides a detailed description of the model
and the genesis of Gaussian variational approximation for estimation of the model
parameters. Here we give just a rudimentary account of the model and estimation
strategy.

The simple Poisson mixed model is

(2.1)  Y;j|X;j, U; independent Poisson with mean exp(ﬂg + ,B(I)Xij + U;),
(2.2)  U; independent N (0, (c2)?).

The X;; and U;, for 1 <i <m and 1 < j < n, are totally independent random
variables, with the X;;’s distributed as X. We observe values of (X;j, ¥;;), 1 <
i <m, 1< j <n, while the U; are unobserved latent variables. See, for example,
Chapter 7 and Section 14.3 of [9] for further details on this model and its use in
longitudinal data analysis. In applications it is typically the case that m > n.

Let B = (8o, B1) be the vector of fixed effects parameters. The conditional log-
likelihood of (B, o'2) is the logarithm of the joint probability mass function of the
Y;;’s, given the X;;’s, as a function of the parameters

m

(B0 =3 Wy o+ FiXi)) — log(¥yh) — ™ 7 log(2r?)
i=1j=1
(2.3)

")
+Zlogf exp{Z(Y u — ePotPiXijTuy 557 du.

Maximum likelihood estimation is hindered by the presence of m intractable inte-
grals in (2.3). However, the ith of these integrals can be written as

1/2 D)2/
foo eXp{Z(Y u — efothiXijtuy }e A/DG—pi)?/ /m
oo i e/ w—pi)* /3 /—zn,\

j=1
n Bo-tBLX i (72 ([ji_ﬂi)z
_ . . ..~. + l+l .
_mEUf[exp{g(YuUl—e" o Fﬁ*TH’



VALID GAUSSIAN VARIATIONAL APPROXIMATE INFERENCE 2505

where, for1 <i <m, E 0, denotes expectation with respect to the random variable
U; ~ N (i, »;) with A; > 0. Jensen’s inequality then produces the lower bound
no 0 (- )
log Eg, [exp{ Y (YU — ot PXitlny . =Ly Wi i)

N2 .
s 20 2\

n - ~ Uz (0 _M')Z
Xij+0; i~ Mi
ZEU"{Z(Y""["_""S”'QI T £

j=1
which is tractable. Standard manipulations then lead to
(2.4) U(B.o*) = L(B. 0% p.X)
for all vectors w = (41, ..., ) and A = (A1, ..., A;), Where

LB, 0% 1, L)
m n

=YD {Yij(Bo+ BiXij + i) — PO rPXITHIARZ _og(y; 1))
i=1j=1
(2.5

m he . m 1 &
_EIOg(G )+§_F§(Mi+)‘i)

+ =) “log(A)
i=1

| =

is a Gaussian variational approximation to £(B, '%). The vectors u and A are vari-
ational parameters and should be chosen to make £(8, o2, u, A) as close as pos-
sible to £(f, 02). In view of (2.4) the Gaussian variational approximate maximum
likelihood estimators are naturally defined to be

(ﬁ, %) = (B, %) component of argmax £(8, o2, I, A).
- B.o2 1,

3. Asymptotic normality results. Consider random variables (X;;, Y;;, U;)
satisfying (2.1) and (2.2). Put

n n
Yie=)_Y;; and B;=)_exp(Bo+ BiXij),
i=1 =1

and consider the following decompositions of the exact log-likelihood and its
Gaussian variational approximation:

€(B, 0% =to(B,0%) + £1(B,5%) + DATA,
€8, 0% 1, x) =Lo(B, o) + €2(B, 02, ., 1) + DATA,



2506 HALL, PHAM, WAND AND WANG

where
m n 1
to(B.0*) =33 Yij(fo+piXij) — Jmloga?,
i=1j=1
3.1 "
o 1 55
t1(B,o%) = Zlog{/ exp(Y,-.u — Bje" — —0"“u )du},
i=1 - 2
m 1
&R, 0% p ) = Z{Mz‘Y,‘. — B eXP(Mi + Eki)}
i=1
(3.2) ’

1 5 m 5 1 m
=50 2 2 + 5 ) logh,
i=1 i=1

and DATA denotes a quantity depending on the Y;; alone, and not on 8 or o2. Note
that

£B,0%) = n/}axXE(ﬂ, o2, w,A) =£y(B,0%) + n;a;«ﬁz(ﬂ, o2, 1)

Our upcoming theorem relies on the following assumptions:

(A1) the moment generating function of X, ¢ (t) = E{exp(¢X)}, is well defined
on the whole real line;

(A2) the mapping that takes B to ¢’(B)/¢(B) is invertible;

(A3) in some neighborhood of BY (the true value of By), (d2/dp?)log¢(B)
does not vanish;

(A4) m = m(n) diverges to infinity with n, such that n/m — 0 as n — o0;

(A5) foraconstant C >0, m = O(n€) as m and n diverge.

Define
2 exp(=(0)"/2 — Byl (BY)
¢ (B (BY) — ¢/ (B2

The precise asymptotic behavior of Eo, E 1 and &7 is conveyed by:

(3.3)

THEOREM 3.1. Assume that conditions (A1)—(AS5) hold. Then
(3.4) Bo—By=m " ENo+o0,(n"! +m1?),
where the random variable Ny is normal N (0, (6%)°);

(3.5) Bi =B = mm)” 2Ny +0p{n =2 + (mn)~'/2),
where the random variable Ny is normal N (0, 12); and
(3.6) 32— (0 =m VENy +op(n +m 1),

where the random variable Ny is normal N (0, 2{(02)0}2).
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REMARK. All three Gaussian variational approximate estimators have asymp-
totically normal distributions with asymptotically negligible bias. The estimators
30 and &2 have variances of size m~!, as m and n diverge in such a manner that
n/m — 0. The estimator E 1 has variance of size (mn)~!. Hence, the estimator E 1

is distinctly more accurate than either Eo or 2

, since it converges to the respective
true parameter value at a strictly faster rate. For the estimator f, increasing both

m and n reduces variance. However, in the cases of the estimators B¢ or 52, only
an increase in m reduces variance.

4. Asymptotically valid inference. Theorem 3.1 reveals that EO, E | and G2
are each asymptotically normal with means corresponding to the true parameter
values. The variances depend on known functions of the parameters and d)(,B?),

¢>.’ (,H?) and ¢” (,B?). Since the latter three quantities can be estimated unbiasedly
via
¢(B) = — Z Zexp(x,,ﬁo
l—l j=1

o —

(B =— Z Z Xijexp(Xi;B1)

t—lj 1

and

</>”(ﬂ?) =— Z Z X7, exp(Xi;B1).

l—l j=1

we can consistently estimate the asymptotic variances for inferential procedures
such as confidence intervals and Wald hypothesis tests. For example, the quantity
2 appearing in the expression for the asymptotic variance of /81 can be consis-
tently estimated by

2 exp( Az/z ﬂo)(b(ﬂ])
¢”(ﬁ )¢(ﬁ ) — /(B 5(80)

Approximate 100(1 — o) % confidence intervals for ﬂo, ﬂ | and (o

~ 1 G2 1 72
éO:I:CD(l—Ea) —, ﬂlifb(1—§a> and

m mn

1 /2
ind)(l — —a)@z =,
2 m

where @ denotes the N (0, 1) distribution function. These confidence intervals are
asymptotically valid since they involve studentization based on consistent estima-
tors of all unknown quantities.

2)O are

4.1
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We ran a simulation study to evaluate the coverage properties of the Gaus-
sian variational approximate confidence intervals (4.1). The true parameter vector
(;38, ﬂ?, (6)9) was allowed to vary over

{(—=0.3,0.2,0.5), (2.2, —0.1,0.16),
(1.2,04,0.1), (0.02,1.3,1), (—0.3,0.2,0.1)},

and the distribution of the X;; was taken to be either N (0, 1) or Uniform(—1, 1),
the uniform distribution over the interval (—1, 1). The number groups m varied
over 100, 200, ..., 1,000 with n fixed at m /10 throughout the study. For each of
the ten possible combinations of true parameter vector and X;; distribution, and
sample size pairs, we generated 1,000 samples and computed 95% confidence in-
tervals based on (4.1).

Figure 1 shows the actual coverage percentages for the nominally 95% confi-
dence intervals. In the case of ,B?, the actual and nominal percentages are seen to
have very good agreement, even for (m, n) = (100, 10). This is also the case for
,38 for the first four true parameter vectors. For the fifth one, which has a rela-
tively low amount of within-subject correlation, the asymptotics take a bit longer
to become apparent, and we see that m > 400 is required to get the actual coverage
above 90%, that is, within 5% of the nominal level. For (02)0, a similar comment
applies, but with m > 800. The superior coverage of the /8? confidence intervals is
in keeping with the faster convergence rate apparent from Theorem 3.1.

Lastly, we ran a smaller simulation study to check whether or not the lengths
of the Gaussian variational approximate confidence intervals are compromised in
achieving the good coverage apparent in Figure 1. For each of the same settings
used to produce that figure we generated 100 samples and computed the exact
likelihood-based confidence intervals using adaptive Gauss—Hermite quadrature
(via the R language [15] package 1me4 [1]). In almost every case, the Gaussian
variational approximate confidence intervals were slightly shorter than their exact
counterparts. This reassuring result indicates that the good coverage performance
is not accompanied by a decrease in precision.

5. Proof of Theorem 3.1. The proof Theorem 3.1 requires some additional
notation, as well as several stages of asymptotic approximation. This section pro-
vides full details, beginning with definitions of the necessary notation.

5.1. Notation. Recall that ,38 , ,8? and (02)° denote the true values of param-
eters and that B, B and 52 denote their respective Gaussian variational approxi-
mate estimators.

The proofs use “O)” notation, for k =1, ..., 11, as defined in Table 1.
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TABLE 1
Definitions of the Oy notation used in the proofs

Notation Meaning

Oq) Op(mil/z-i—n*l)

0 Opm™" +n72)

03 0 ne—1/2)y, uniformly in 1 <i <m, foreach e >0

0w O (n®~"), uniformly in | <i < m, for each & > 0

0 O (n*~G/2), uniformly in 1 <i < m, for each & > 0

O) Op(m='+ nt=G/2)) uniformly in 1 <i <m, for each & > 0
0(7) Op{(m_1 + n_z)ng_(l/z)}, uniformly in 1 <i <m, for each ¢ > 0
Og) OP{(m_l/2 + n_1)3n€}, uniformly in 1 <i < m, for each ¢ > 0
O(9) Op{(mn)_l/2 +ne= G/, uniformly in 1 <i <m, foreach ¢ >0
010y Op{(m~1/2 +n=5/2)n®}, uniformly in 1 <i < m, for each & > 0
O 01,{(m7]/2n*1 + nfz)ne}, uniformly in 1 <i <m, foreach ¢ >0

5.2. Formulae for estimators. First we give, in (5.1)—(5.5) below, the results
of equating to zero the derivatives of £o(8, o) + (B, o2, A, w) with respect to
Bo, B1, o2, A; and ;, respectively:

m

1~
5.1) > i~ Biewo(@+ 57 )| =0

i=1

m n . R lA N
52 Y > X;,-{Yij — exp(ﬁo + i+ =M + B X,;,-)} =0,

i=1j=1 2
1 & -
(5.3) — N + 7} =52,
m: -
(5.4) A= Biexp(@i +4k) —@H ' =0,  1<i=<m,
(5.5) Y;e — Biexp(i; + %Ez) -@H ' =0, 1<i<m.

These are the analogs of the likelihood equations in the conventional approach to
inference.

The next step is to put (5.1), (5.2) and (5.5) into more accessible form, in (5.6),
(5.11) and (5.12), respectively. Adding (5.5) over 1 <i < m and subtracting the
result from (5.1) we deduce that

(5.6) > i =0.
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Defining

1 m n
A= 2 Xijl¥y —exp(By + B Xij + Up)
i=1j=1

we deduce that (5.2) is equivalent to

1 m n
A+ exp(ﬁg)% 3 Xijexp(Ui + BYXi))
i=1j=1

6.7
S
—exp(Bo)— > Y Xij exp(gi + Eii + ,BIXij) =0.
M2y
Define &;, n; and ¢; by, respectively,
1 n
(5.8) — D Xijexp(BXij) = ¢'(B)) exp(&),
j=1
1 < —~ ~
(5.9) — 2 Xijexp(BiXij) =¢'(B1) exp(ny),
j=1

SO DN . _ _
eXP(ﬁo R+ 5&-); S fexp(B1Xi) — $(BD)
=1

=exp(B) + U;) [(ﬁ (BI{1 — exp(&)}
(5.10)

1 n
+ - D (Yijexp(—fy — Up) - ¢(ﬁ?)}}

j=1
D ]~
—(@n)" .

With probability converging to 1 as n — oo the definitions at (5.8)—(5.10) are
valid simultaneously for all 1 <i < m, because the variables &;, n; and ¢; so de-
fined converge to zero, uniformly in 1 <i < m, in probability. See (5.30), (5.31)
and (5.25) below for approximations to &;, n; and ¢;; indeed, those formulae
quickly imply that each of &;, n; and ¢; equals O(3).

Without loss of generality, ¢’(¢) is bounded away from zero in a neighborhood
of ,B?. Indeed, if the latter property does not hold, simply add a constant to the
random variable X to ensure that ¢’ (ﬂ?) # 0. We assume that /3(1) is in the just-
mentioned neighborhood, and we consider only realizations for which g; is also
in the neighborhood. (The latter property holds true with probability converging
to 1 as n — o0.) The definition of ¢; at (5.10) can be justified using the fact that
i < Yie, as shown in Theorem 2 of [7].
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In this notation we can write (5.7) as

1 m
A+ ¢’(ﬂ?)a > exp(B) + Ui + &)
(5.11) =l

PP ~ 1
=¢<§1>;Zexp Bo+ i + ki +
i=1

and write (5.5) as

(5.12) exp(Bo + i + 34:)$ (B1) = exp(B) + Ui + &) (BY).
Substituting (5.12) into (5.11) we obtain

1 m
Aexp(—BNo (B! + ¢’<ﬂ?>¢<ﬂ?)—7 > exp(U; + &)
(5.13) =1
—~ —~ 1 r
= ¢/<§1>¢<§1>—1; > exp(U; + ni + &).

i=l

5.3. Approximate formulae for U; and %i. The formulae are given at (5.16)
and (5.18), respectively. To derive them, note that (5.5) implies that

(1+ 0@3))$(BY) exp(By + Uy)
— (1 + 03)¢(B)) exp(B) + i + 1) — (5> ™' fi; =0.
Here we have used the fact that, by [7],
(5.14) Bo—B)=0uw,  Bi—B)=0q).
and that by (1.3), max<j<; |X;| = Op(n®) for all € > 0. Therefore,
(5.15) (14 0@) exp(Ui) = (1+ O@)) exp(@i + §Ai) + (&) ™' i,

where ¢ = ¢(8Y) exp(BY). The result maxj<;j<m |Ui| = Op,{(logn)!/?} follows
from properties of extrema of Gaussian variables and the fact that m = O (n©)
for a constant C > 0. Moreover, by Theorem 2 of [7], 0 < Zi < QZ. Therefore
(5.15) implies that maxj<;<p |E,~| = Op{(log n)'/2}. [Note that, for any constant

C > 0, exp{—C(logn)!/?} = n*C(log”)fl/z, which is of larger order than n~¢ for
each ¢ > 0.] Hence, by (5.15),

(1+ 0@)) exp(Ui) = (1 + O3) exp(@i + 34:).
and so, taking logarithms,

(5.16) Ui =i + 5k + 0g3).
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Formula (5.4) and property (5.14) entail
517 k)~ = (1+ 03)¢(BY) exp(@i + 52 + fg) — (na>) ™" =0.
Using (5.16) to substitute U; + O3 for Ei + %Zl in (5.17) we deduce from that
result that
(na) ™" = (14 0))p (BY) exp(U; + B)) + (ng*) ™!

= (14 03¢ (B)) exp(U; + 7).
where to obtain the second identity we again used the fact that

max |U;| = Op{(logn)l/z}-
1<i<m

Therefore,
i = (14 03)){nd (BY) exp(U; + )}~

= (n¢(B)) exp(Ui + BN}~ + O¢s),
where Os) is as defined in Table 1. To obtain the second identity in (5.18) we used
the fact that max; <; <, exp(—U;) = O (n®) for all € > 0.

(5.18)

5.4. Initial approximations to EO — ,88 and E 1— ,8?. These approximations are
given at (5.19), (5.21) and (5.29), and lead to central limit theorems for E 1 — ,3?,
E 0— ,38 and 52 — (62)°, respectively. To derive the approximations, write y (81) =
5’ BB 1)~ ! and note that, defining O(y) as in Table 1, we have

y(B) =vB) + B =By B + 0,081 — BYID
=y (B) + {1+ 0,m™ 2 41" H)B1 — By (BY).
[Here we have used (5.14).] Therefore, by (5.13) and for each ¢ > 0,
1 m
Aexp(—FDB BN " + v (B)— D exp(Ui +&)
i=1

=y (BY) + {1+ 0p(m ™% + 0~} (B1 — By (BD)]

1
X > exp(Ui + ni + &).
i=1
That is,

~ 1 n
(B1 — ﬂ?))/(ﬁ?); > exp(U; + i + &)
i=1

1 m
(5.19) =y (B)— Y- exp(Up{exp(&) — exp(n; + )
i=1

+ Aexp(—BNo (B + 0.
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Taking logarithms of both sides of (5.12) we obtain
(5.20) log{® (B1)/¢(B))} = B) — Bo+ Ui + & — Bi — 3,

which, on adding over i and dividing by m, implies that
~ 0 0 = 1 & 1
log{e(B1) /¢ (B} =By — Bo+ - SNUi+&—ai - E&i :
i=1
which in turn gives

. . 1 R
Bo— B =—Br — BV () + ;;(Ui T 5&-) + 0w

~ 1
(5.21) == =By B+ — 3 (Ui + )

i=1

1 —1
- {2n¢(ﬂ?) exp(ﬁg - 5(02)0)} + 0.

where we used (5.18) to substitute for X,- and (5.6) to eliminate i£; from the right-
hand side, and employed (5.14) to bound (E 1—B ?)2. Note too that E{exp(—U,;)} =
exp(%(az)o); a term involving E{exp(—U;)} arises from ) ; Zi via (5.18).

5.5. Approximation to ¢;. The approximation is given at (5.25). First we
derive an expansion, at (5.22) below, of Ei' Reflecting (5.16), define the ran-

dom variable & by fi; = U; — 1%; + &. Then, by (5.16), § = O3). Define too
Blok = ZJ- Xf‘j exp(,88+,B?X,-j) fork=0,1,2,and A; = Yie — Bioo exp(U;); and let
Fi denote the sigma-field generated by U; and X;1, ..., Xj,. Then E(A; | ;) =0
and

Bi = {1+ Bo— o+ 5(Bo— $3)*} Biy

+{B1 = B+ (Bo — B (B1 — BB

+ %(El — BB + 0),

uniformly in 1 <i <m for each ¢ > 0, where O(g) is as in Table 1. Therefore,
Yie — Biexp(U; +6i)
=Yie = [{14Bo = By + 1(Bo — F)*} Biy
+{B1 — 87 + (Bo — B (B1 — B BYy
+3(B1 - BB

x exp(U;)(1 + & + %8,2 + O(s5)) +n0g),
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where Os) is as in Table 1. Therefore, defining
%i = {Bo— B+ L(Bo— BD*BY + (B — BY + (Bo — BY(B1 — B BY,
+3(B1— BB,
we see that the left-hand side of (5.5) equals
Yie — Biexp(U; + &) — () ' s
=A; — BzQO exp(Ui)((S,' + %512 + 0(5))
— xi exp(U) (1 + 8 + 387 + Os))
— @) Ui = $hi +8) +nOg)
=A; — {xiexpUp) + @7 (Ui — $1i)}
= 8i{(Bfy + xi) exp(Up) + @)
— %51'2(3?0 + xi)exp(U;) +n0Os) +n0gs.
Hence, (5.5) implies that
5+ 182 (B + xi) exp(U)
i ~ Y% ~
2" (Bjp + xi) exp(Up) + (@)~
A= xiexp(Un) — @)~ (Ui = %i/2)
(B + xi) exp(Ui) + @) ~!

+ Oy + Oy,
which implies that
A; — xiexp(U;)
" (BY + x) exp(Uy)
= {nexp(B¢ (BN}~ {A; exp(=Uy) — xi} + O
= (nexp(BNP (BN} Arexp(—Uy) — (Bo — BY) — (B1 — BYy (BY) + Oqwy.

Here we have defined Oy is as in Table 1 and have used the fact that n~! BIQO =
exp(B)d (BY) + O@) and

n~'BY = exp(B))¢' (BY) + Oy = exp(BHo By (BY) + O3).
Therefore,

O

=)
Il
i~

i — 3k +6;
=U; + {nexp(BNd (BN} ' A exp(=Uy)
— (Bo— B — (B1 — BV (B)) + O
=U; — U+ {nexp(B¢ (B} ' Ai exp(—Ui) + Oqw),

(5.22)
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where to obtain the second identity we used (5.18) to place Zi irEo the remaip\der,
and to obtain the third identity we used (5.21) to show that B¢ — ,38 + (B1 —

,B?)y/ (,B?) =U+ O4). Here we have used the property, deducible from (5.10),
(5.16) and (5.18), that §; = O3y and ¢ = O4).
The next step is to substitute the right-hand side of (5.22) for i;, and the right-

hand side of (5.18) for Zi, in (5.10), and derive an expansion, at (5.25) below, of ;.
We obtain

_ 1z —~ ~
[1+ {nexp(B) (BN} ' Ajexp(=U;) — 1 > {exp(B1Xij) — (B}

=1
1 1
— —$(8Y) (;i + 5@,-2) £ 3 (T exp(— — Un — 48]
=1

—exp(—B) — U @*n)~'U; + Os),
whence
1
o5+ 56%)
12 1z A ~
= >y exp(—B8 — Ui) — (BY)} — - > {exp(B1Xij) — d(BD)}
j=1 j=1
(5.23) — lnexp(B)P (BN} ' Asexp(—U;) — U]
1 & ~ ~
x > {exp(B1Xij) — ¢ (BD)}
=1
—exp(—B) — U @*n) " 'Ui + Os).

However, defining

1 n
(5.24) Dix(b) = — 3 _{X;exp(bXij) — ¢ (1)} = 03
j=1

fork=0,1,2,and A; = Yie — By exp(U;), we see that

Y {Yijexp(—Bg — Ui — (B} — Y _{exp(B1Xij) — $(B1))

j=1 Jj=1
= > Yijexp(—BS — Up) — o (B}
j=l1
—n{Dio(BY) + (B1 — BYYDi1(BY)} + O3
= Ajexp(—B0 — Up) — n(§1 — BODi(B)) + 03).
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and so, by (5.23),
oB (G + 18P
=n""exp(—B) — UD[A{1 — o (B) ' Dio(B)} — 63 ' Ui]
— (B1 = BOD(B)) + UDio(B)) + Os).
Therefore,
(B =n""exp(—B) — UD[A{1 — o (B) ' Dio(B)} — @5 ' Ui
(5.25) — (B1 — B)Di1 (BY) + UDig(BY)

— 398D exp(—B0 — U A + Ogs).
Result (5.25), and the fact that n/m — 0 as n — oo, imply that

1 & 1 exp(—BY)
¢(ﬁ?)aizzlvizi=—mnw—2)0°;wexp< Ui)
——¢<ﬁ1>— ZU{n—lexm By — UNAY
(5.26) =l

+o0,(n™h
_ ! exp{l(az)o — ,60} <1 + l(02)0> +o,(n7h
n 2 0 2 b '
Here we have used the fact that E{Ul.2 exp(—U;)} = exp(%(o2)0)(02)0(1 +(02)Y).

5.6. Initial approxzmanon o o2 — (o2)Y. Starting from (5.20), using (5.21)
to substitute for ,30 - ,30, using (5.18) to substitute for % and defining U =

IS Uiand ¢ =m~'Y; ¢;, we obtain
fi = Ui + & — 34 —log(¢(B1)/¢ (B))} — (Bo — BY)
=Ui+& — 30 — (B1— By (B) — (Bo — BY) + O
=U; + & — {2ng (B) exp(U; + )} ™' = (U + 1)
+ {216 (B)) exp(85 — 3@} + Oge)-
Hence, squaring both sides of (5.27) and adding,

1 m

—Z Z(U,+¢, U-2¢)?

i=1

(5.27)

(5.28) — {mng (B exp(BN} ' Y exp(~Up(U; + & — U —¢)

i=1
+ O)-
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Combining (5.3), (5.18), (5.25) and (5.28) we deduce that

~2 1 = % ~2
GP=—> " i+0a)
m.z

(5.29) = (02" + % YU +6—U -0 - (0%
i=1

+ {mp(ﬁ?) exp(ﬁg — %(02)0)} (14 @) + 0.

5.7. Approximations to &; and n;. 'The approximations are given at (5.30) and
(5.31), respectively, and are derived as follows. Note the definition of D;;(b) at
(5.24). In that notation, observing that n/m — 0 and recalling (5.14), it can be
deduced from (5.8) and (5.9) that, uniformly in 1 <i <m,

(5300 & =¢'(B) ' Di(B)) — ' B) T Dit(B)Y + Os),
ni =¢'(B) " [Di1 (BY)
(5.31) + (B1 = BO{D(B) — &' (B 19" (BYY Dit (B))]
— N’ BHTI DA (B + Os).
Result (5.30) is derived by writing (5.8) as
(5.32) o' (BT D (B)) =exp(&) — 1 =& + 1£72 + 0,(1& ),
and then inverting the expansion. [The result maxi<; <y [§;| = 0,(1), in fact O(3),

used in this argument, is readily derived.] To obtain (5.31), note that the analog of
(5.32) in that case is

(5.33) ¢/ (B 'Dit(B1) =exp(n;) — L =ni + 507 + 0, (Inil).
and that, uniformly in 1 <i <m,
¢'(B1) "' Din(B1)
= {¢'(BY)) + (B1 — B (BY) + O} !
< {Di1(B)) + (B1 — B D (BY) + Oy}
(5.34) =¢'(B) 1= B1— B B¢ (BD)
< {Di1(B)) + (B1 — B Din (B} + O
=¢'(B) ' D (B)) + (B1 — B){Di2(B)) — ¢'(B)) ' ¢ (B)) Din (B))]
+ Omy.

Result (5.31) follows from (5.33) and (5.34) on inverting the expansion at
(5.33).
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5.8. Another approximation to E 1— ,3?, and final approximations to EO — ,38

and o> — (6%)?. Next we use the expansions (5.30), (5.31) and (5.25) of &, n;
and ¢; to refine the approximations derived in Section 2.3. The results are given
in (5.41), (5.42) and (5.46) in the cases of Bo — BJ, B1 — BY and 02 — (2)°,
respectively.

It can be deduced from (5.31) and (5.25) that

1 1
(5.35) — D _exp(Ui+ i +6) = exp(5(02)0> +00).

i=l

By (5.30), (5.31) and (5.25),

1 m
— >_expUp){exp(&) — exp(ni + &)
i=1
1 1, )
= ZCXP(Ui)[fi —ni— &+ 5{5,- — (i + &) }} + O¢s)
(5.36) =l
1 1
=—= ZGXP(Ui){Ci + - (2nigi + Z,-z)} + 05
m 2

+ 0,(1B1 — BYIn=1/2).
Defining O(v) as at Table 1 we deduce from (5.25) that
1 “ 1 0\—2 1 < 0 2
— ;exp(m)a A — ;eXp(—Mo — UpA;
(5.37) + 0,{(mn)" 2} + Os)
=—2n) "9 (B)) " exp(—By) + 0o,

where we have used the fact that n/m — 0 and, since Y;,, conditional on F;, has
a Poisson distribution with mean BIQO exp(U;), then

Ef{exp(—U;)A?} = E[exp(—U){Yie — E(Yie | F)}?]
= E{exp(~U;) var(Y;s | Fi)}
= E{exp(—U;) By exp(U;)}
= E(BYy) =nexp(B)o (BY).
Similarly,

1 m 1 m

— > expUie? = (B 2— Y exp(—28) — U A + O

mi mn=4

(5.38) o 0
=n""¢(B]) exp(—By) + O).
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Moreover, since by (5.31) and (5.25),
ni =¢' (B DB+ 0wy, &i=o (B 'n exp(—B) — U A + Oy,
and for k > 0,
E{exp(U;) Dix(BY)) exp(—U;) Aj} = E{Dix(B)) E(A; | Fi)} =0,
then

1 m
(5.39) — > expUiiti = Ocs).

i=1
Together, (5.36), (5.37), (5.38) and (5.39) imply that
1 m
— 2_expUD{exp(&) — exp(ni + &)
i=1
=2n) "B exp(—By) — 2n) o (B)) ' exp(—B()
+ 0(9) + OP(lé\l _ ﬂ?lns—(l/Z))
=00+ 0,(1B1 — B In*~1/?).

Combining (5.19), (5.35) and (5.40), and noting that A = O,{(mn)~1/?} and
n/m — 0, we deduce that

(5.41) Bi— B =0).
Together, (5.21) and (5.41) imply that

(5.40)

(5.42) Bo—Bl=U+¢—con™ +o,(m™"2+nh),
where
co= {20 (BY) exp(B) — 1 (@)} .

Result (3.4) of Theorem 3.1 is a direct consequence of (5.42) and the property

m

- 1
{=——3 Uiln(@*) exp(U; + f)g (B}~
i=1
1
(543) = S®B) T E( exp(—fy = UnAi}? + o, ()
= con_1 + op(n_l).
Results (5.25) and (5.41), and the property
E{exp(—2U;) A} = E{BYyexp(—U)} = nexp(B) + 3 (@) (BY),



VALID GAUSSIAN VARIATIONAL APPROXIMATE INFERENCE

imply that

1 & 1

w25 =0T Y (26— 2UDAT +0p(1)
(5.44) =n‘1¢(ﬁ?)‘le><p{%(02)° _ /38} +op(n)

=2c01f1 —|—0p(n71).

By (5.26),

l iU{ — _l¢(ﬁ0)—lexp<l(02)0 _ IBO><1 + 1(0_2)0>

m = e n 1 2 0 2
(5.45)

+op(n~ ! ).
Together, (5.43)—(5.45) give

—Z{(U +4-U-0%— (04"

i=1

] m
Z(UiZ—(O’Z) +EZ§12
i i=1

2 -
+ =D Uik =208+ 0,p(m™ )

- %g(Uf — (0% +2n" g —2n" o2+ (1))
+o0,(m™ Y2+ 071
= %é(Uﬁ — (@)% = 2n7ep(1 4 (0H)°)
+op(m~12 407t
Hence, by (5.29),
(5.46) 62— (0 = ;f( U? — (01 +o0,m™ "2 +n7").

i=1

Result (3.6) of Theorem 3.1 is a direct consequence of (5.46).

2521

5.9. Final approximation to E 1— ,B?. Our first step is to sharpen the expansion
of (5.5) at (5.15); see (5.50), which leads to (5.55), the principal analog of (5.15).
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Recall that

n
A =Yie —exp(B) +UD) Y exp(BY X))
=1
(5.47) ’
=Yie— exp(U,-)BiOO.
Also, in view of (5.41) and (5.42),
Bi =exp(Bo) >_ exp(B1Xij)

=1
— 1 ~ 1 ~
- exp(ﬂ8){1 + Bo— B+~ (Bo— B + ~(Bo — 58>3}
n ~ 1 ~
x {1+ B X+ 5B - 23|
=1
X exp(,B?Xij) + Op(m_zn +m 322 LT 0t
n —~ 1 ~
—exp(A) Y {1 +Bo— )+ 5 Bo— A7

j=1
1~

+ 2 Bo— Ao’ + (B = )Xy
+ 31— B0 + Bo— BB — DX fexp(BIXip
0 (=1 4 =)
- {1 +(Bo— BY) + %@) — B+ é@) - ﬂ8)3}3?o
0+ Bo— BB~ BOBY + 5B — DB+ 0o,

where O(j) is defined in Table 1. Hence, recalling that §; = E,- + %Z, — Ui, we
see that, for each ¢ > 0, we have, uniformly in 1 <i <n,

Yie — Biexp(s; + Ui)
=VYie — Bioo exp(é; + U;)
(5.48) —[{(Bo— B + 3(Bo— B)* + +(Bo — B3’} BYy
+ {1+ (Bo— BDYB1 — DI B + 5(B1 — B)* Y]
x exp(d; + U;) + Oq1o).
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Combining (5.47) and (5.48) we obtain
Yie — Biexp(8; + Uj)
= A; — exp(Up)({fexp(8;) — 1} B}
+[{(Bo = BY) + 5 (Bo — BY)?
+5(Bo— B’} Bly
+ {1+ (Bo— BD}B1 — B)BY,
+3(B1 — BB exp(8))
+ Oq0)-
Therefore, (5.5) implies that
@H ' = A; — exp(Uy) (fexp(8;) — 1} B
+[{(Bo— B + 3 (Bo — B3
+5(Bo— B’} By
+ {1+ (Bo — BDYB1 — BB,
+3(B1 — B B ] exp(8))
+ 00,
or equivalently,
exp(U;) ({exp(8:) — 1} By
+exp(8)[{(Bo — BY) + 5(Bo — B)* + £(Bo — B} BY
+{1+ Bo—BDYB1 — BB + 5(B1 — B BY))
+ @76 + Ui - %Zl) = A; + Oqo)-

(5.49)

Substituting the far right-hand side of (5.18) for Zi in (5.49) we deduce that
exp(8:) — 1 +exp(8){(Bo — B3) + 5(Bo — B’ + (B1 — B (B} / Biy))
(5.50)  +{8*Bjpexp(Un}~" (8 + Uy)
= {B{exp(Up)} ™' A; + Oq).
where O(11) is as defined in Table 1. Result (5.50) implies that

(5.51) 8i + 387 Gin+ §8,Gis = Gi + Oq,
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where, putting
Gii=1+(Bo—B)) +3Bo— B>+ (B1 — B))(Bi1/By)
+ {8 Bjpexp(Up) ',
we define G;, Gjz and G;3 by G;3G;1 =1,
(5.53) GinGi1 =1+ (Bo— B)) + (B1 — B (Bi1/Byy),
GiGi1 = {Bjpexp(Un} ' A; — {8 By exp(U)} ' U
—{(Bo— B3) + 3(Bo— B> + (B1 — B)(B}/Bip)}-
Solving (5.51) for §; we deduce that, for each ¢ > 0,
(5.55) 8 =Gi —1GnG? — (LGi3 — 1GH)GI + 0y,

(5.52)

(5.54)

uniformly in 1 <i <n.Now, G;{, G;» and G;3 each equal 1+ 0,,(m_1/2 +nth.
Therefore, $Gi3 — 3G% = —% + 0,(m~Y/? + n®~1). Using (5.52), (5.53) and
(5.54) we deduce that

Gin=1—{G*Blyexp(Up)} ' + 0,(m™" +n°7%), Gi=H; + Oy,
where
H; = [{Byexp(Up)} ™' A; — (67 Bjyyexp(Un)} ' U
(5.56) —{(Bo— B+ 3Bo— BD* + (B1 — BOBY /B ]
x [1—(Bo— ) — (B1 — B))(Bi1/Bfy) — (67 By exp(Ui)} 1.

Note too that G, Hl-2 = Hi2 +0, (m=12pe=1 4 =2y, Combining the results from
(5.55) down we see that

(5.57) § = H; — SH? + Y H? + Oqy).
Note that, as a — 0, exp(a — %az + %a3) —1=ua+ 0(a*) as a — 0. This property,
(5.57) and the fact that Hi4 =0, (n®~2) imply that
(5.58) exp(d;) — 1= H; + Oqy.
The formula immediately preceding (5.19) is equivalent to
B _ . 1 m
{14 0,0m™ 2+ 0"y (B)B1 — B)— Y exp(Ui + i + &)
iz
(5.59) = Aexp(—Be (B!
1 m
0 . . . .
+ (B )n_1 Z{CXP(&) —exp(ni + &i)}exp(Ui).

i=l
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Since n; and ¢; both equal O3y [see (5.25) and (5.31)], and m~! Yo exp(Up) =
E{exp(Up} +op(1) = exp{(az)O/Z} +0p(1), then (5.59) implies that

{1+ 0,(D}y' (B)(B1 — B expl(0%)°/2}
(5.60) = Aexp(—Np (B!

1 m
+ v (BY)— D _lexp(E) — exp(ni + &)} exp(Un).
i=1
Formulae (5.8) and (5.9) are together equivalent to

1 n
(5.61) ¢ (B)){exp(&) — 1) = - > {Xijexp(BYXij) — ¢ (BD)}.

j=1

~ 1 & ~ ~
(5.62) ¢'(Blexp(ni) — 1} = - Y {Xijexp(B1Xij) — ¢'(B1)}.

j=1
Result (5.62) implies that, for each ¢ > 0,

{¢'(B)) + Op(@ — B DHexp(ni) — 1}
1 & ~ _
= - D (Xijexp(BYXij) = ¢' (B} + Op(1B1 — B in""/2),
j=1
uniformly in 1 <i < n. Therefore, since n; = O3, [see (5.31)], then

1 n
&' (BD{exp(ni) — 1} = - Y {Xijexp(B{Xij) — ¢’ (BD)}
j=1
+0,(1B1 — BYIn* =172,
which in company with (5.62) implies that

¢ (B {exp(n;) — exp(&)) = 0[)(@ — BOne= /),

uniformly in 1 <7 < n. Hence, since n; = O3) and ¢ = O3 [see (5.25) and
(5.3D)],

exp(&;) —exp(n; + &) = {exp(&;) — exp(n;)} exp(¢;)
+exp(&){1 —exp(&i)}

=exp(&){l —exp(&)}
+0,(1B1 — Bt~ 1/2),

(5.63)
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uniformly in i. Combining (5.60) and (5.63) we deduce that
~ 1
(14 0,0}y B E1 — B exp| 50>}
(5.64) = Aexp(—ANe(B)) !
1 m
+ v (BY)— > _exp(& + Un{l —exp(z)).
i=1
Next we return to (5.10), which we write equivalently as

~ 1~ ~ ~
o (B){1 —exp(&i)} = exp(Bo — B + 80~ > {exp(B1Xij) — ¢ (B1)}

j=1
1 n
(5.65) — = D ijexp(—fg — Un) — ¢ (D)}
j=1
+ @)~ i exp(— ) — Un).
So that we might replace E 1 by ﬂ? on the right-hand side of (5.65), we observe
that
2 (exp(BiXij) = ¢(B0} = 3 {exp(BiXij) — 6 (A1)
=1 =1
(5.66) ’ =
+ 0,(1B1 — BYIn= /D).

Combining (5.64)—(5.66) we obtain
- 1
{1+ 0,0y (B B1 — ﬁ?)exp{;oz)o}
= Aexp(—BN (B
B 1 &

2 (8% o ;"«XP(&' +U;)

(5.67)
— 12
x [GXP(ﬁo — B+ %) > {exp(BYXij) — d(B))
j=1
1 n
-~ > exp(—B3 — Up) — ¢ (D))
j=1

+(@*n) "' i exp(— B — U»}.
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(Recall that y = ¢’¢p~!, and so y /¢ = ¢’ 2.)
Since exp(&) — 1= Di1(B))¢'(B)) ™" [see (5.8)] and Bo — By = O, (m~'/? +
n~1) [see (5.42)], then

- ZCXP(& + Ui )GXP(,BO — Bo + i ) Z{eXp(ﬂl Xij) — ¢ ()

/ 1

~ 1 ~
= {1 +(Bo— B + 5Bo - ﬁ8)2}% Y exp(&; +8; + Ui Dio(BY))

i=1
(5.68) +0,(m™3? 4 n73)
—~ 1 ~
_ {1 +Bo— A+ —(ﬁo—ﬁg)z}
x — Zexp(a + UD{1 + Din (B¢ (B)) "1 Dio(B))

i=1

+ 0p(m™% +n7?).

Likewise,

1 1 <
- Zexp@i + U~ Z{Yﬁ exp(—B) — U;) — ¢ (B)))

(5.69) =— Zexp(U {1+ Din(B)e' (B}

i=1
x {n~'Ajexp(=B) — Ui) + Dio(B)))
and, since ; it; = 0 [see (5.6)],

1 m
;Zexp(&w,-)( n) "' i exp(— B —

— BB

(5.70) = exp(— /so)A2 Z{1+Dll<ﬁ?)¢> BH A

= exp(—B)¢’ (ﬂl)_ ZDn(ﬁl)M,

_ Op(m_l/zn_3/2).
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Combining (5.67)—(5.70) we see that
a0\ 2 0 1 2,0
(1 +0,(D) BBy —ﬂ1>exp{5<o ) }
= Aexp(—BHo (B!
¢'(BY)

+
o (B))?

L+ Bo— B + ~(Bo— B
i 5 o137

1 m
(5.71) x > exp(8i + U{1 + Din (B¢’ (B) " Dio(BY)

i=1
1 m
— eXp(—ﬂ(?); S {1+ DB (BH "
i=1
X {n 1 A+ exp(BY+ U,-)Diow?)}]

+ OP(m_l/Zn_1 + n_3).

Using the fact that E(A; | ;) =0 and D,-l(,B?) = Og3) it can be proved that,
for all € > 0,

1 m
— > exp(—FDIL + D (B9 (B)) 1A

i=1

(5.72) | om
= exp(—f)— 3 Ai+ Op(m™"n 7).
i=1
Also,
—BHe' (B 1 &
A= Aexp(-pp (AN - T ¢fg§§’; L
i=1
1
(5.73) = (B exp(—f) >

v ¢'(BY) 0, 20
Xij — —Ly;; — X +Up).
ng{ 1=y | e+ A0 )

Moreover, using (5.42) and the fact that D,-O(,B?) = 03 and E{Dio(ﬁ?) |U;} =0,
it can be shown that

~ 12
(Bo— ﬂ8>g > exp(U {1+ Di1(B))¢’ (B~} Dio(BY)
i=1

(5.74) = op{(m—1/2_|_n—1) . (m—l/zna—u/z))}

= 0,(m™2nt7).
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Combining (5.71)—(5.74) we deduce that
—~ 1
{1+ 0,(D}Y' (BYB1 — ﬁ?)epr(oz)‘)}
VAR _ .
A S izzlexp(ua{expm -1
x {1+ Dij1(B))¢’ (B~} Dio(BY)
+ OP(m_l/zng_1 +n7d).

(5.75)

Using (5.58) to substitute for exp(§;) — 1 in (5.75), and noting that D;x (,3?) =
Oy for k =0, 1, we deduce from (5.75) that

- 1
(140, BB — BY) exp{5<oz>0}

(5.76) 0
, (B 12, e—1 | e—(5/2)
=A+— Y (H)+ O0p(m™"n""" +n )
»(BY)
where H = (Hy, ..., Hy,), H; is as defined at (5.56), and, given a sequence of
random variables K = (Ky, ..., K,;), we put

1 m
Y (K)=— expUnKill + Dir(B))¢' (B1) ™"} Dio(BY)-

i=1
Note again that |Di0(,3?)| = O(3), and the dominant term on the right-hand side of
formula (5.56) for H; is {BZQO exp(U;j)} "' A;. Moreover, |§0 — ,88| =0, m~172 +
n~h) [see (5.42)], [B1 — BY = Op{(mn) =12 4+ n* =G/} [see (5.41)],
(@*Blyexp(Un) " = (n(0®)°¢(BY) exp(B) + U}~ + 0,(n*~ /)
and
BBy =4 (BB + 0.
Combining these properties we deduce that (5.76) continues to hold if, on the
right-hand side, ¥ (H) is replaced by ¥ (H') where H' = (H{, ..., H,,)) and H/ =
HY —H® — HY with
H{" = {Byexp(Un} ™" A1 = (Bo — B3) — {n(@™) ¢ (B exp(Un} 1,
H? = (G*BYexp(Up}~'U;
and

HY = (Bo— B + 5(Bo— B + (B1 — BDS (B)) /6 (B}



2530 HALL, PHAM, WAND AND WANG

(Note that HI-G) does not depend on i.) It can be proved from the properties E(A; |
F;) =0and |Djo(B))| = O, that, with H) denoting (Hl(j), .. HY), we have

(5.77) lﬁ(H“)) _ 0,,(m‘1/2 _1)

More simply, since E(U; | X;1, ..., Xin) =0, then

y(H?) = Z(AZB> U1+ D (B¢ (B "1 Dio(B))

(5.78)
= 0,(m™?n73%),

Furthermore, writing 1 = (1,...,1), an n-vector, and noting that the prop-
erties E{Dix () | Ui} = 0, var{Dix(B)) | Ui} = O(n™") and Efexp(Up)} =
exp(5(c$)?) imply that

Y (1) = Zexpw){lw,l(ﬁ])qs (B} Dio(BY)

i=1

1 m
=¢'(B))"! — > exp(Ui) Din (BYDio(BY) + 0, (m~"2n=112%)

i=1
1
— g 28N (B) ! — $(BY) exp(§<az>°>
+ OP(m_]/zn_]/2 +n73%);
we obtain

_ 1 ;
W(HO) = [ Bo— B + 3 Bo— 07 + 1 - BO10 B/ 5D W

1 1
{;[¢/(2ﬂ?)¢’(ﬂ?)‘l - ¢(ﬂ?)1exp(§(o—2>0)
(5.79) + 0, 2n= 12 +n—3/2)}

- 1 - _
x| Bo— B+ 3 Bo— B + Br— 8D B9 8D |
= OP(m_l/zn_l).

To obtain the last line here we used (3.4) of Theorem 3.1, already proved in Sec-
tion 5.8 above.
Combining (5.77)—(5.79), and noting that the function ¥ is linear, so that

y(H) =y (HY) —y(H?) -y (HD),
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we deduce that
(5.80) {1+0,(D}Y (B)(B1 — B exp(5(aH)°) = A" + 0, {(mn) ™1 + 02}

Furthermore, the random variable A’, defined at (5.73), is asymptotically normally
distributed with zero mean and variance

exp(—28)) ¢'(BY)
mn E<{X“ T 080

2
} E[E{Y11 — E(Y11 | X11, UDY? | X11, Ul])

/¢ 0 2
— ()™ GXP(—Zﬁg)E[{Xu - %} exp(B) + 80X 11 + Uo]
1

1 7¢R0\ 2
= (mn)—l eXp(E(UZ)O — IBS)E[{X“ —_ Z((gig)) } CXp(ﬂ?Xl])i|

= (mn)~'y'(B))* exp{(0?)°}7?,

where 72 is as at (3.3). Result (3.5) of the Theorem 3.1 is implied by this property
and (5.80).
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