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BY DONG CHEN, PETER HALL1 AND HANS-GEORG MÜLLER2

University of California, Davis, University of California, Davis and
University of Melbourne, and University of California, Davis

Fully nonparametric methods for regression from functional data have
poor accuracy from a statistical viewpoint, reflecting the fact that their con-
vergence rates are slower than nonparametric rates for the estimation of high-
dimensional functions. This difficulty has led to an emphasis on the so-called
functional linear model, which is much more flexible than common linear
models in finite dimension, but nevertheless imposes structural constraints on
the relationship between predictors and responses. Recent advances have ex-
tended the linear approach by using it in conjunction with link functions, and
by considering multiple indices, but the flexibility of this technique is still
limited. For example, the link may be modeled parametrically or on a grid
only, or may be constrained by an assumption such as monotonicity; multiple
indices have been modeled by making finite-dimensional assumptions. In this
paper we introduce a new technique for estimating the link function nonpara-
metrically, and we suggest an approach to multi-index modeling using adap-
tively defined linear projections of functional data. We show that our methods
enable prediction with polynomial convergence rates. The finite sample per-
formance of our methods is studied in simulations, and is illustrated by an
application to a functional regression problem.

1. Introduction. When explanatory variables are functions, rather than vec-
tors, the problems of nonparametric regression and prediction are intrinsically dif-
ficult from a statistical viewpoint. In particular, convergence rates can be slower
than the inverse of any polynomial in sample size, and so relatively large sam-
ples may be needed in order to ensure adequate performance. Fully nonparametric
methods have been studied recently in functional data regression and related prob-
lems (see, e.g., [11, 12] and [8]). The slow convergence rates associated with these
unstructured nonparametric approaches provide motivation for seeking nonpara-
metric approaches that exploit a greater amount of structure in the data and are
therefore expected to have better properties from a statistical perspective.
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Advances in this direction include those made in [1, 9, 10, 14] and [17], where
both parametric and nonparametric link functions were introduced in order to con-
nect the response to a linear functional model in the explanatory variables. How-
ever, the flexibility of available link-function models is still rather limited. For
example, although nonparametric link functions were considered in [17], the ap-
proaches considered there are restricted by the assumption of monotonicity, where
the corresponding “Generalized Functional Linear Model” approach is based on a
semiparametric quasi-likelihood based estimating equation, which includes known
or unknown link and variance functions. In contrast, we are aiming here at models
with one or several nonparametric link functions, ignoring possible heteroscedas-
ticity of the errors. Our approach provides an alternative to the related methods
in [2], where single-index functional regression models with general nonparamet-
ric link functions are considered that may be chosen nonmonotonically and with-
out shape constraints. The main differences are that our methodology includes the
multi-index case, does not anchor the true parameter on a prespecified sieve, and
that we provide a detailed theoretical analysis of a direct kernel-based estimation
scheme that culminates in a convergence result that establishes a polynomial rate
of convergence.

Beyond demonstrating that our approach enables prediction with polynomial ac-
curacy, we also include generalizations to iteratively fitted multiple index models,
founded on a sequence of linear regressions. Here we borrow ideas from dimen-
sion reduction in models that involve high-dimensional, but not functional, data.
When the link function is nonparametric, the intercept term in functional linear
regression loses its relevance because it is incorporated into the link. The slope
function is still potentially of interest, but the viewpoint taken in this paper is pre-
dominately one of prediction rather than slope estimation, and in particular our
theory focuses directly on the prediction problem. We refer to the papers by [4, 5]
and [7] for further discussion of these objectives in the context of the functional
linear model.

We introduce our model and estimation methodology in Section 2. Theoretical
results regarding the polynomial convergence rate are discussed in Section 3, while
algorithmic details are described in Section 4, which also includes an illustration
of the proposed methods with an application to spectral data. Simulation results
are reported in Section 5. Detailed assumptions and proofs can be found in the
Appendix.

2. Model and methodology.

2.1. Model. Suppose we observe data pairs (X1, Y1), . . . , (Xn,Yn), indepen-
dent and identically distributed as (X,Y ), where X is a random function defined
on a compact interval I and Y is a scalar. We anticipate that (X,Y ) is generated as

Y = g(X) + error,(2.1)
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where g is a smooth functional and the error has zero mean, finite variance and is
uncorrelated with X. The model at (2.1) admits many interpretations and general-
izations, where, for instance, X is a multivariate rather than univariate function. For
example, X might be (Z,Z′), where Z is a univariate function and Z′ its derivative.
To simplify the developments, we shall focus on problems where X is a univariate
function of a single variable. Models and methodology in more general settings
are readily developed from the single-variable case. Our approach is described in
detail for situations where the trajectories of functional predictors can be assumed
to be fully observed, for example, due to smoothness such as for the Tecator data
which we analyze with the proposed methods in Section 4.2; it can be extended
to cases with densely and regularly measured trajectories, where measurements
may be subject to i.i.d. noise with finite fourth-order moments. This extension re-
quires sufficiently dense measurement designs, such that smoothness assumptions
coupled with suitable smoothing methods lead to sufficiently fast uniform rates of
convergence when pre-smoothing the data to generate smooth trajectories. Such an
extension will not be feasible for functional data for which only sparse and noisy
measurements are available.

The case where g, in (2.1), is a general functional, even a very smooth func-
tional, can have serious drawbacks from the viewpoint of practical function es-
timation, since the problem of estimating such a g is inherently difficult from a
statistical viewpoint. In particular, convergence rates of estimators in this case are
generally slower than the inverse of any polynomial in sample size. Therefore,
unless the data set is very large, it can be particularly difficult to estimate g ef-
fectively. In this respect the commonly assumed functional linear model, where
g(x) = α + ∫

I βx, α is a scalar and β is a regression parameter function, offers
substantial advantages, for example, polynomial convergence rates and even, on
occasion, root-n consistency. However, the linear-model assumption is often too
restrictive in practical applications.

An alternative approach is to place the linear model inside a link function, for
example, defining

g(x) = g1

(
α +

∫
I
βx

)
,(2.2)

although this, too, is restrictive unless we select the link in a very adaptive manner.
We suggest choosing the link function g1 nonparametrically. In this case the inter-
cept parameter, α, in (2.2) is superfluous; it can be replaced by zero, and its effect
incorporated into g1. Therefore we actually fit the model

g(x) = g1

(∫
I
βx

)
,(2.3)

where g1 is subject only to smoothness conditions, and to ensure identifiability, we
require a condition on the “scale” of β , which we choose as

∫
I β2 = 1. The sign of

β can be determined arbitrarily.
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2.2. Methodology. We estimate the parameter function β and the link func-
tion g1 in the model at (2.3), using least squares in conjunction with local-
constant or local-linear smoothing as follows. To obtain g1, we will use a scat-
terplot smoother which we implement as local-constant or local-linear weighted
least squares smoothing. Given a parameter function β , the scatterplot targeting
the nonparametric regression g1(z) = E(Y | ∫I βX = z) consists of the data pairs
(
∫

I βXi,Yi)i=1,...,n. Omitting the predictor Xj when predicting the response at∫
I βXj , averaging least squares smoothers constructed for predicting at the ob-

served predictor levels Xj are then obtained by choosing intercept parameters ζj

and slope parameters ϑj to minimize

∑∑
i,j : i �=j

(Yi − ζj )
2K

{
h−1

∫
I
β(Xi − Xj)

}
or

(2.4) ∑∑
i,j : i �=j

{
Yi −

(
ζj + ϑj

∫
I
βXi

)}2

K

{
h−1

∫
I
β(Xi − Xj)

}
,

in the local-constant and local-linear cases, respectively, where K is a kernel func-
tion and h is a bandwidth.

Defining Kij = K{h−1 ∫
I β(Xi −Xj)}, X̄j = (

∑
i : i �=j XiKij )/

∑
i : i �=j Kij and

Ȳj = (
∑

i : i �=j YiKij )/
∑

i : i �=j Kij , one finds that the minimia of (2.4), for any
given β , are

∑∑
i,j : i �=j

(Yi − Ȳj )
2Kij or

∑∑
i,j : i �=j

{
Yi − Ȳj − ϑ̂j

∫
I
β(Xi − X̄j )

}2

Kij .(2.5)

The minimizers ζ̂j are given by ζ̂j = ζ̂j (β) = Ȳj in the local-constant case and in
the local-linear case minimizers ζ̂j and ϑ̂j are given by

ζ̂j (β) = Ȳj − ϑ̂j (β)

∫
I
βX̄j ,

(2.6)

ϑ̂j (β) =
∑

i : i �=j {
∫

I β(Xi − X̄j )}(Yi − Ȳj )Kij∑
i : i �=j {

∫
I β(Xi − X̄j )}2Kij

, 1 ≤ j ≤ n.

Summarizing, the criteria at (2.4) are based on averaging local-constant and local-
linear fits to g1(

∫
I βx) at x = Xj , averaging over Xj , where the respective fits are

computed from the data X1, . . . ,Xn, excluding Xj . The resulting approximations
to g1(

∫
I βXj), for a given β , are Ȳj and Ȳj + ϑ̂j (β)

∫
I β(Xj − X̄j ), respectively,

with ϑ̂j (β) given by (2.6).
It remains to specify our final estimates. We estimate β by conventional least

squares, aiming to minimize the sum of squared differences between Yj and the
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just-mentioned approximations:

S(β) =
n∑

j=1

(
Yj − Ȳj (β)

)2 or

(2.7)

S(β) =
n∑

j=1

{
Yj − Ȳj (β) − ϑ̂j (β)

∫
I
β(Xj − X̄j )

}2

,

subject to
∫

I β2 = 1 and with ϑ̂j (β) as in (2.6). This problem is most conveniently
solved by expanding β = ∑

1≤k≤r bkψk , where ψ1,ψ2, . . . is an orthonormal basis
and r denotes a frequency cut-off, choosing the generalized Fourier coefficients bk

to minimize S(β). This gives estimators b̂1, . . . , b̂r of b1, . . . , br , respectively, and
from those we may compute our estimator of β:

β̂ =
r∑

k=1

b̂kψk subject to
r∑

k=1

b̂2
k = 1.(2.8)

The basis ψ1,ψ2, . . . can be chosen as a fixed basis such as one of various
orthonormal polynomial systems or the Fourier basis, or could be another sequence
altogether, chosen for computational convenience. We note that it does not matter
for the validity of our results whether the basis functions are fixed or random.
Therefore the basis can be chosen as estimated eigenfunction basis, as long as
the estimated eigenfunctions are orthonormal. We note that irrespective of how
it is constructed, the selected basis needs to be such that condition (3.4) below
is satisfied for the generalized Fourier coefficients of β , while the additionally
needed conditions (3.5), (3.6) depend only on properties of β and X but not on
the choice of the basis. The condition at (3.4) requires a polynomial decay rate
(of arbitrary order) for the tail sums of the Fourier coefficients of β , which is
slightly stronger than the convergence of the tail sums to 0 that is implied by the
square integrability of β . Since we do not assume prior knowledge about β , no
particular basis is preferable in this regard a priori. In any case, the theory applies
if (3.4) holds for the selected basis. In practice, one would choose a basis based
on how well the representation of β works in typical applications. We found the
choice of estimated eigenfunctions for representing β particularly convenient for
our applications and our implementation is therefore using this basis.

We note that the criteria at (2.4) are not directly comparable with those at (2.7),
not least because in (2.4) we are fitting g1 locally and in (2.7) we are fitting β

globally. Reflecting these two different contexts, each residual squared error in
both criteria in (2.4) has a local kernel weight, whereas each residual squared error
in the criteria in (2.7) has a constant weight.

Having computed β̂ , we estimate the univariate function g1(u) by conventional
local-constant or local-linear regression on the pairs (

∫
I β̂Xi, Yi), for 1 ≤ i ≤ n. In
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particular, in the local-constant case we take

ĝ1(u) =
{

n∑
i=1

YiKi(u)

}/{
n∑

i=1

Ki(u)

}
,(2.9)

where Ki(u) = K{h−1(
∫

I β̂Xi − u)}; in the local-linear setting we choose ζ = ζ̂

and ϑ = ϑ̂ , both of which can also be viewed as functions of u, to minimize∑
i{Yi − (ζ + ϑ

∫
I β̂Xi)}2Ki(u), and then put ĝ1(u) = ζ̂ + ϑ̂u. Several aspects

of this algorithm can be modified to improve its performance. For example, noting
that the ratio on the right-hand side of (2.6) will likely be unstable if the denomina-
tor is based on a relatively small number of terms, we might restrict the sum over j

in either formula in (2.5) to values of that index for which
∑

i : i �=j Kij ≥ λ, where
λ > 0 denotes a sufficiently large threshold, and repeat this restriction in the case
of (2.7). Problems caused by a too-small denominator can be especially serious in
the case of functional data, since sample sizes there are typically relatively small.

If we take the view that the problem of interest is that of estimating g for the pur-
pose of prediction, and that estimating β and g1 in their own right is of relatively
minor interest, then standard cross-validation can be used to choose simultane-
ously the smoothing parameters h and r . In Section 3 we adopt the perspective of
prediction, and show that in that context the estimator ĝ approximates g at a rate
that is polynomially fast as a function of sample size.

2.3. Multiple index models. The model at (2.3) can be generalized by taking
g1 to be a p-variate function

g(x) = g1

(∫
I
β1x, . . . ,

∫
I
βpx

)
,

∫
I
β2

j = 1 for 1 ≤ j ≤ p.(2.10)

However, given the relatively small sample sizes often encountered in functional
data analysis, focusing on the function at (2.10), with p ≥ 2, will often lead to
estimators with high variability. An alternative, p-component functional multiple
index model, such as

g(x) = g1

(∫
I
β1x

)
+ · · · + gp

(∫
I
βpx

)
,(2.11)

is arguably more attractive. This class of models has been considered by [15], who
referred to them as “Functional Adaptive Models.” The approach of James and
Silverman was restricted to the parametric case by requiring the functional pre-
dictors xi as well as the link functions gj to be elements of a finite-dimensional
spline space, excluding nonparametric (infinite-dimensional) link and predictor
functions. Such a fully parametric framework allows the use of a likelihood-based
approach to fitting these models, establishing identifiability by extending previous
results for the vector case [6].
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Since our main goal is prediction and not model identification, we are not pri-
marily concerned with identifiability issues and do not emphasize specific identi-
fiability conditions for the models we consider. The models at (2.10) and (2.11) in
fact are not identifiable without further restrictions. To appreciate why, note that
the order of the components on the right-hand side of (2.10), or of the functions on
the right-hand side of (2.11), could be permuted without affecting the model. This
problem does not arise for conventional multivariate or additive models, where the
arguments of the functions are predetermined as the components of the explanatory
variable x. While this difficulty can be overcome in a variety of ways, using a re-
cursive additive model is attractive on both statistical and computational grounds.
We now give background for that approach.

It is not uncommon in statistics to pragmatically alter a difficult problem to one
that is simpler. Indeed, the introduction of additive models is typically motivated in
that manner. Thus, we could generalize the problem of estimating a link function g,
and a slope function β , in (2.1), subject only to smoothness conditions, to that of
estimating the intrinsically simpler functions defined at (2.11). Alternatively, and
more appropriately from the perspective of general inference, we would seek to
estimate g in (2.10) not because we felt that those functions were identical to g

in (2.1), but because they were relatively accessible approximations to g. Taking
this view of the problem of estimating, or rather, approximating, the function g

in (2.1), and accepting that the p-additive function at (2.11) is more likely to be
practicable in functional data analysis than the p-variate function at (2.10), we
suggest fitting the g in (2.11) recursively, for steadily increasing values of p. This
“backfitting” approach borrows an idea from projection pursuit regression, to use
recursive, low-dimensional, projection-based approximations.

In particular, taking g0
1 = g0 where g0 denotes the true value of g at (2.1), we

choose the function g1 of a single variable, and the function β1, to minimize, in
the case j = 1, the expected value

E

{
g0

j (X) − gj

(∫
I
βjX

)}2

subject to
∫

I
β2

j = 1.(2.12)

More generally, if we have calculated βj−1 and gj−1, and previously defined
g0

j−1(x), then we may define g0
j by g0

j (x) = g0
j−1(x) − gj−1(

∫
I βj−1X) and

choose gj and βj to minimize the quantity at (2.12).
In the next section we shall show how to calculate estimators ĝj and β̂j of gj

and βj , respectively, for j ≥ 1. Note that we do not claim to consistently estimate
g, in (2.1), unless that function has exactly the form at (2.3) (in which case our esti-
mator is ĝ = ĝ1, defined in Section 2.2). Instead we suggest developing consistent
estimators of successive approximations to g(x), that is, of

g1

(∫
I
β1x

)
, g1

(∫
I
β1x

)
+ g2

(∫
I
β2x

)
,

(2.13)

g1

(∫
I
β1x

)
+ g2

(∫
I
β2x

)
+ g3

(∫
I
β3x

)
, . . . .
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2.4. Estimation in functional multiple index models. Here we generalize the
methodology in Section 2.2 so that it permits estimation of the functions g1, g2, . . .

in (2.12). Assume we are fitting a p-index model. The recursive fitting proce-
dure means once we have estimators β̂j and ĝj , for 1 ≤ j ≤ k − 1 < p, of
the functions βj and gj defined in the paragraph containing (2.12), we take
Yi(k) = Yi − ĝ1(Xi) − · · · − ĝk−1(Xi), and use the methodology in Section 2.2
but with Yi(k) replacing Yi , obtaining an estimator β̂ , on this occasion actually an
estimator β̂k of βk , and an estimator ĝ, which is really an estimator ĝk of gk . The
quantity ĝ1(

∫
I β̂1x) + · · · + ĝp(

∫
I β̂px) is our estimate of the p-index model from

the recursive fitting procedure.
A further refinement that leads to smaller prediction errors is backfitting, which

uses the recursive fits described above as a starting point. Once these fits are ob-
tained, further updates are obtained iteratively by revisiting and updating one index
after another, presuming that the remaining p − 1 indexes are fixed. The iterative
updating of individual indices is itself iterated until indices change only little. This
is implemented in a similar way as described in [6] for a traditional multiple index
model with monotone link functions. Denoting the estimates obtained from the
initial recursive fitting procedure by ĝ0

1(
∫

I β̂0
1x) + · · · + ĝ0

p(
∫

I β̂0
px), then for the

dth iteration, iterating also through the increasing sequence k = 1,2, . . . , p, one
uses

Yd
i (k) = Yi − ∑

j<k

ĝd
j

(∫
I
β̂d

j Xi

)
− ∑

j>k

ĝd−1
j

(∫
I
β̂d−1

j Xi

)
(2.14)

to replace Yi for fitting ĝd
k (

∫
I β̂d

k x). The iterative backfitting procedure is stopped
once the relative differences between β̂d−1

1 and β̂d
1 fall below a prespecified thresh-

old or a maximum number of iterations is reached.

3. Polynomial convergence rate. The main result in this section establishes
that, if the linear model is linked to the response variable as in (2.3), if a Hölder
smoothness condition on the link function g1 is assumed, and if we ask of the
generalized Fourier expansion β = ∑

k≥1 bkψk that it converges polynomially fast
at a sufficiently rapid rate, then the predictor ĝ converges to g at a polynomial
rate. That property distinguishes the approach suggested in this paper from fully
nonparametric methods that impose only smoothness conditions on the function g,
in (2.1), but have much slower convergence rates for the predictor. We give explicit
theory only in the local-constant case, since, as argued at the end of Section 2.2,
that approach is particularly appropriate when dealing with functional data. The
local-linear setting can be treated similarly.



1728 D. CHEN, P. HALL AND H.-G. MÜLLER

We assume that independent and identically distributed data pairs (Xi, Yi) are
generated by the model discussed in Section 2:

Yi = g(Xi) + εi , where the Xi’s are square-integrable random func-
tions supported on the compact interval I , g is a real-valued func-
tional given by g(x) = g1(

∫
I β0x), g1 is a real-valued function of a

single variable, β0 enjoys the property
∫

I β02 = 1 and denotes the
true value of the square-integrable function β, and the errors εi are
independent of the Xi’s and of one another, and have zero mean.

(3.1)

The only assumption we make of g1 is that it is bounded and smooth:

g1 is bounded and satisfies a Hölder continuity condition: |g1(u) −
g1(v)| ≤ D1|u − v|a1 for all u and v, where a1,D1 > 0.

(3.2)

The assumption that g1 is bounded can be relaxed. For example, if the functions
Xi are bounded with probability 1, then

∫
I β0Xi is uniformly bounded, and so

the distribution of the response variables Yi depends only on the values that g1
takes on a particular compact interval. We can extend g1 from that interval to the
whole real line in such a way that the extended version of g1 is bounded and has
a bounded derivative. More generally, if sup1≤i≤n ‖Xi‖ grows at rate O(nη), for
all η > 0, where ‖X‖ denotes the L2 norm of X (e.g., this condition holds if X is
a Gaussian process), and if sup|x|≤u |g1(x)| grows at no faster than a polynomial
rate as u diverges, then only minor modifications of our proof of the theorem are
required to establish Theorem 3.1.

Let X have the common distribution of the random functions Xi in the model
at (3.1). We ask that ‖X‖ have at least a small, fractional moment, and that all
moments of the error distribution be finite. In particular:

E(‖X‖η) < ∞ for some η > 0, and E(|ε|m) ≤ (D2m)a2m for all
integers m ≥ 1, where a2,D2 denote positive constants.

(3.3)

The condition E|ε|m ≤ (D2m)a2m is satisfied by distributions the tails of which de-
crease at rate at least exp(−C1x

C2), for constants C1,C2 > 0, provided we choose
a2 > 1/C2. In particular, the condition is satisfied by exponential and Gaussian
distributions, and also, in the case C2 < 1, by many distributions that do not have
finite moment generating functions.

Write f (· | β) for the probability density of
∫

I βX. Given an orthonormal basis
ψ1,ψ2, . . . for the class L2(I) of square-integrable functions on I , express a gen-
eral function β ∈ L2(I) with

∫
I β2 = 1 as β = ∑

k≥1 bkψk , where
∑

k≥1 b2
k = 1.

For constants a3, a4,B,D3,D4,D5 > 0, we shall assume that:
∞∑

k=r+1

b2
k ≤ D3(1 + r)−B for all r ≥ 1,(3.4)

sup
β∈B;x

f (x | β) < ∞,(3.5)
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sup
β∈B

P

{
f

(∫
I
βX − u|β

)
≤ D4δ

a3 for all |u| ≤ δ

}
≤ D5δ

a4,(3.6)

where (3.6) holds for all sufficiently small δ > 0. Condition (3.4) is standard; it
asks that the generalized Fourier coefficients of β decay at least polynomially
fast, in a weak sense. To appreciate the motivation for (3.5) and (3.6), observe
that if X is a Gaussian process for which the covariance operator has eigenvalues
θ1 ≥ θ2 ≥ · · · ≥ 0 and respective eigenfunctions φ1, φ2, . . . , then f (· | β) is the
N(a, ς2) density, where a = ∫

I βE(X), ς2 = ∑
k≥1 θkb

2
k and bk = ∫

I βφk . Then
(3.6) is obtained by using well-known tail bounds for the Gaussian distribution
function � with standard Gaussian density φ. It follows that (3.5) and (3.6) hold
whenever 0 < a4 ≤ a3 < ∞ and B is a class of functions β for which

∑
k≥1 θkb

2
k is

bounded away from zero and infinity, and for which
∑

k≥1 b2
k = 1. Our use of the

principal component basis in this example serves only to show the reasonableness
of conditions (3.5) and (3.6), which of course do not depend on choice of basis. It
does not imply that the basis ψ1,ψ2, . . . should be identical to φ1, φ2, . . . .

Of the kernel K and bandwidth h we ask that:

K is nonnegative and symmetric, has support equal to a compact
interval, decreases to zero as a polynomial at the ends of its support,
and has a bounded derivative; and h ∼ D6n

−C as n → ∞, where
C,D6 > 0.

(3.7)

Define β̂ to be the minimizer of S(β) = ∑
j (Yj − Ȳj )

2 [the first quantity in (2.7),
corresponding to local-constant estimation] over functions β = ∑

1≤k≤r bkψk ,
constrained by

∑
1≤k≤r b2

k = 1, for which (3.5) and (3.6) hold and supk≥1 |bk| ≤
D7, with D7 > D3 [the latter as in (3.4)], and where

r denotes the integer part of D8n
D , for constants D,D8 > 0.(3.8)

This is the procedure for constructing ĝ suggested in the argument leading to (2.8),
in the local-constant case.

THEOREM 3.1. If (3.1)–(3.8) hold, if B in (3.4) is sufficiently large, and if C

and D in (3.7) and (3.8) are sufficiently small (all three constants depending only
on a1, . . . , a4), then there exists a constant c > 0 such that, as n → ∞,

n−1
n∑

j=1

{g(Xj ) − ĝ(Xj )}2 = Op(n−c).(3.9)

The proof is in the Appendix. It is possible to extend Theorem 3.1 to the recur-
sive additive model case formulated in Section 2.4, although the argument there
is significantly longer. As explained earlier, for the case of Gaussian predictors X,
the choices a1 = 1, a2 = 1, a3 = 1, a4 = 1 are possible and then by choosing the
other constants judiciously, observing the various constraints, one finds that one
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may obtain the rate of convergence in (3.9) for c with c < 1/4. We do not pursue
here the question of the optimality of this rate of convergence. An assumption that
has been made throughout is that the predictor trajectories are fully observed. This
is an idealized situation. It is possible to weaken this assumption, assuming that
the trajectories are sampled on a dense grid of points so that integrals such as those
appearing in (2.12) can be closely approximated.

4. Algorithmic implementation and data illustration.

4.1. Description of the algorithm.

Step 1. Estimating β . We assumed that h, r and the basis {ψ1, . . . ,ψr} (we
used eigenbasis in our implementation) in (2.8) and (2.9) were given. We set β̂ =∑r

k=1 b̂kψk , and the coefficients b̂1, . . . , b̂r were estimated by minimizing (2.7).
Those Yj with

∑
i : i �=j Kij < λ were dropped from the minimization (we chose

λ = 0.1). Letting ξik = ∫
ψkxi and writing S(β) in (2.7) in terms of b1, . . . , br ,

S(b1, . . . , br) = 1

n

n∑
j=1

(
Yj − ∑

i �=j

wijYi

)2

(4.1)

for the local-constant case, where

wij (b1, . . . , br , h) = K(h−1 ∑r
k=1 bk(ξik − ξjk))∑

l �=j K(h−1 ∑r
k=1 bk(ξlk − ξjk))

are the terms related to b1, . . . , br . For the local-linear case, S(b1, . . . , br) is more
complicated, with similar subsequent steps.

We note that (b1, . . . , br , h) are not identifiable without constraints, since
wij (b1, . . . , br , h) = wij (cb1, . . . , cbr , ch) for any constant c. Meanwhile, if K

is symmetric, wij (b1, . . . , br , h) = wij (−b1, . . . ,−br, h). There are at least two
ways to ensure algorithmic identifiability. In a first approach, given h, one may find
(b1, . . . , br) by minimizing (4.1), subject to the constraints

∑r
k=1 b2

k = 1 and b1 >

0 (or bk > 0 for some bk �= 0 if b1 = 0). A second option is to find (b1, . . . , br) that
minimizes (4.1) near a suitable starting point (c1, . . . , cr), satisfying

∑r
k=1 c2

k = 1
and c1 > 0, and then to rescale the solution to ( b1√∑

k b2
k

, . . . , br√∑
k b2

k

, h√∑
k b2

k

). The

second option is simpler since the unconstrained minimization is easier to achieve.
However, if one wishes to specify h, the constraint

∑r
k=1 b2

k = 1 needs to be en-
forced in the minimization step. In the simulations, we found that both options led
to virtually the same solution for a well-chosen bandwidth h.

The minimization step is a nonlinear least squares problem, which can be im-
plemented through the optimization package in MATLAB. It is important to secure
a good starting point for the minimization. We obtained a default starting point by
searching along each dimension separately. Starting with the first dimension, we
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located a minimum along S(b1), as defined in (4.1), along a grid of values of b1 in
the interval [0,1]. After obtaining the minimizer x1, we continued to search along
the second dimension using values S(x1, b2), where b2 varies on a grid within
[−1,1]. This approach was then iterated as necessary and provided the starting
point.

Step 2. Selecting r and h. Here r is the number of eigenfunctions used in (2.8)
and h is the kernel bandwidth. We employed 10-fold cross-validation to evaluate
each pair (h, r). Each of 10 subgroups of curves denoted by V1, . . . , V10 was used
as a validation set, one at a time, while the remaining data were used as the training
set. For given (h, r), we found β̂ as described in step 1 and computed S(r, h) =

1∑
k #Vk

∑10
k=1 Sk , where Sk(r, h) = ∑

j∈Vk
(Yj − Ŷj )

2 and Ŷj = ĝ1(
∫

β̂Xj ), using
local-constant or local-linear method as described in the paragraph containing (2.9)
and assuming only Yi in the training set are known. We then found the minimizers
of S(r, h), which were the selected values for r and h.

Step 3. Backfitting step. By default, we fitted a single-index functional regres-
sion model, which meant that predictions ĝ(

∫
β̂xi) were obtained via (2.5) using

the optimal (h, r) chosen in step 2 and the corresponding estimated β in step 1. For
fitting a p-index functional regression model, the fits obtained in an initial single-
index step gave only ĝ0

1(
∫

β̂0
1xi) in (2.13). We then replaced Yi by Yi − ĝ0

1(
∫

β̂0
1xi)

and repeated steps 1 and 2 to find ĝ0
2(

∫
β̂0

2xi). This procedure was iterated until p

indices were obtained. This only gives us the initial estimate of the p-index model.
Then for the dth iteration and the increasing sequence k = 1, . . . , p, we used Yd

i (k)

defined in (2.14) to fit ĝd
k (

∫
β̂d

k x). The iteration stops once ‖β̂d−1
1 − β̂d

1 ‖L2 < 0.01
or 10 iterations are reached.

4.2. Illustration for spectrometric data. We applied the proposed model to
spectrometric data that can be found at http://lib.stat.cmu.edu/datasets/tecator. We
used only part of the data with data selection performed in the same way as in
[3] and [12]. These data were obtained for 215 pieces of meat, for each of which
one observes a spectrometric curve Xi , corresponding to an absorbance spectrum
measured at 100 wavelengths. These spectrometric curves are depicted in Figure 1.
The fat content of each sample was determined by an analytic method and recorded
as a scalar response Yi . One is interested in predicting the fat content of each
sample directly from the spectrometric curve.

In a preprocessing step, we removed 11 outliers. We also normalized each spec-
trometric curve by subtracting its area under the curve,

∫
Xi(t) dt , because we

found that the first eigenfunction of the spectral curves is almost flat and its eigen-
value is much larger than the others, but the corresponding fitted coefficient b̂1 in
(2.8) is close to 0. This normalization step reduced the leave-one-curve-out pre-
diction error by more than 30%. The first four estimated eigenfunctions for the
normalized curves are plotted in Figure 2.

http://lib.stat.cmu.edu/datasets/tecator
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FIG. 1. Sample of 204 absorbance spectra for meat specimens.

To fit the functional single-index model, we used 10-fold cross-validation to
choose the number r of included eigenfunctions in the representation (2.8) and the
bandwidth for the Epanechnikov kernel, obtaining 4 and 0.0687 for these choices.
Using the local-linear method described in (2.5) and (2.7), we then estimated the
regression parameter function β1 and the link function g1. These function esti-
mates are shown in the upper panel of Figure 3. The average leave-one-curve-out

FIG. 2. The first four estimated eigenfunctions of the normalized absorbance spectra.
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FIG. 3. The estimated regression parameter functions and link functions. Left two panels: the es-
timated regression parameter functions β̂1 and β̂2 for the first and second index, respectively; right
two panels: the estimated link functions ĝ1 and ĝ2 for the first and second index, respectively.

squared prediction error for the proposed single-index model is 3.51, while fitting
a Generalized Functional Linear Model (GFLM) led to a prediction error of 4.99,
showing substantial improvement for the proposed model.

We further applied the backfitting procedure described in Section 2.4 to check
whether a multiple index functional model is more appropriate for these data than
a single-index model. The average leave-one-curve-out squared prediction errors
were found to be 2.39 for the model with two indices and 2.42 for three indices.
The estimated regression parameter functions β̂2 and link function ĝ2 are also dis-
played in Figure 3. The plot of β̂1 suggests that the small bump around wavelength
930 is an important indicator of the fat content level. We note that β̂2 has simi-
lar shape as β̂1 except for differences around wavelength 975, where it is positive.
The model with two indices emerges as the best choice for prediction and improves
more than 50% upon the GFLM and more than 30% upon the single-index model
in terms of prediction error.

5. Simulation study.

5.1. Simulations for single-index models. We studied the finite sample perfor-
mance of five single-index models (2.3). Samples of balanced functional data con-
sisting of N = 50/200/800 predictor trajectories and a scalar response were gen-
erated and each predictor function was sampled through 50 equidistantly spaced
measurements in [0,1]. The predictor functions were generated as

Xi(t) = μ(t) +
4∑

k=1

ξikφk(t), i = 1, . . . ,N,
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where μ(t) = t , φ1(t) = 1√
2

sin(2πt), φ2(t) = 1√
2

cos(2πt), φ3(t) = 1√
2

sin(4πt),

φ4(t) = 1√
2

cos(4πt), and ξik are i.i.d. N(0, λk) with λ1 = 1, λ2 = 1
2 , λ3 = 1

4 ,

λ4 = 1
8 . Responses Yi were obtained as:

Model (i): Yi = cos(
∫ 1

0 βXi) + εi (nonmonotone link);
Model (ii): Yi = (

∫ 1
0 βXi)

2 + εi (nonmonotone link);
Model (iii): Yi = ∫ 1

0 βXi + εi (functional linear model; trivially, a monotone
link);

Model (iv): Yi ∼ Poisson{exp(2 + ∫ 1
0 βXi)} (functional generalized Poisson

model; a monotone link with heteroscedastic noise);
Model (v): Yi ∼ Binomial(1, 1

2 cos(2
∫ 1

0 βXi) + 1
2) (functional generalized Bi-

nomial model; a nonmonotone link with heteroscedastic noise);

where β = 1√
3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4 in all models. In models (i)–(iii),

errors εi were simulated as i.i.d. Gaussian noise with mean 0 and var(ε) =
R var{g(

∫
βX)}. Here R is a measure of the signal-to-noise ratio, with values cho-

sen as R = 0.1 and R = 0.5.
We compared the proposed model with the generalized functional linear re-

gression model (GFLM) with unknown link and variance function [17], which is
a single-index model. In the simulations, we implemented the proposed model
using the local-constant method defined in (2.4) (details can be found in Sec-
tion 4.1). Prediction outcomes were quantified by root average squared errors
RASE = { 1

N

∑
i{Ŷi − g(

∫
βXi)}2}1/2, where Ŷi is our estimate of g(

∫
βXi) de-

fined in the paragraph containing (2.5), plugging in β̂ and always leaving Yi out
of the sample when calculating Ŷi . We also quantified the error of the estimated
regression parameter function by root squared error RSE(β̂) = {∫ (β̂ − β)2}1/2.
Average values of RASE and RSE obtained from 100 Monte Carlo runs were then
used to evaluate the procedures.

The results in Tables 1 and 2 indicate that the proposed method works clearly
better than GFLM for models (i), (ii) and (v), where the link function is nonmono-
tone. For model (iii), the performance of the two methods was found to be similar.
In this example, the effect of the monotone link function (here it is linear) would
have been expected to favor the GFLM, but this may be counteracted by the fact
that the GFLM fits an unnecessarily complex model in the case of homogeneous
errors, as it also includes a nonparametric variance function estimation step. In
model (iv), where the link is monotone and the noise is heteroscedastic, the GFLM
not unexpectedly performs better, as it is able to target the heteroscedastic errors,
improving efficiency of the estimates. Overall, it emerges that the proposed method
is clearly preferable in situations where the link function is nonmonotone.

5.2. Simulations for multiple index models. We simulated data for five mul-
tiple index models, using the same processes and settings as described in Sec-
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TABLE 1
Simulation results for single-index models (i)–(iii). “FSIR” denotes the proposed functional
single-index regression and “GFLM” denotes the generalized functional linear model [17]

FSIR GFLM

R = 0.1 R = 0.5 R = 0.1 R = 0.5

Model N RASE RSE RASE RSE RASE RSE RASE RSE

(i) 50 0.0464 0.0204 0.1096 0.1225 0.1299 0.1488 0.1546 0.2335
200 0.0279 0.0052 0.0557 0.0195 0.0442 0.0109 0.0709 0.0818
800 0.0156 0.0024 0.0315 0.0041 0.0288 0.0025 0.0402 0.0049

(ii) 50 0.1334 0.0304 0.3071 0.2240 0.1914 0.1423 0.3329 0.3407
200 0.0731 0.0065 0.1549 0.0223 0.1058 0.0150 0.1838 0.0840
800 0.0399 0.0025 0.0844 0.0047 0.0702 0.0028 0.0970 0.0053

(iii) 50 0.0970 0.0341 0.2562 0.1705 0.1024 0.0546 0.2378 0.1819
200 0.0486 0.0078 0.1122 0.0332 0.0463 0.0068 0.1030 0.0204
800 0.0226 0.0030 0.0526 0.0083 0.0237 0.0026 0.0558 0.0071

tion 5.1. Three of the models [(vi)–(viii)] contain two indices and two models
[(ix)–(x)] contain three indices, as follows:

Model (vi): Yi = cos(
∫ 1

0 β1Xi) + 0.5 sin(
∫ 1

0 β2Xi) + εi (two nonmonotone link
functions), where β1 = 1√

3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4, and β2 = 1√

3
φ1 − 1√

3
φ2 −

1√
6
φ3 + 1√

6
φ4;

Model (vii): Yi = ∫ 1
0 β1Xi + exp(0.5

∫ 1
0 β2Xi) + εi (two monotone link func-

tions), where β1 = 1√
3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4 and β2 = 1√

3
φ1 − 1√

3
φ2 −

1√
6
φ3 + 1√

6
φ4;

TABLE 2
Simulation results for single-index models (iv) and (v)

FSIR GFLM

Model N RASE RSE RASE RSE

(iv) 50 1.798 0.0767 1.632 0.0639
200 1.207 0.0214 1.064 0.0137
800 0.8117 0.0071 0.6880 0.0045

(v) 50 0.2324 0.4023 0.2060 0.4333
200 0.1222 0.0850 0.1400 0.2866
800 0.0612 0.0140 0.0629 0.0728



1736 D. CHEN, P. HALL AND H.-G. MÜLLER

Model (viii): Yi = ∫ 1
0 β1Xi + 0.5(

∫ 1
0 β2Xi)

2 + εi (one nonmonotone link and
one monotone link), where β1 = 1√

3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4 and β2 = 1√

3
φ1 −

1√
3
φ2 − 1√

6
φ3 + 1√

6
φ4;

Model (ix): Yi = ∫ 1
0 β1Xi + exp(0.5

∫ 1
0 β2Xi) + 0.5(

∫ 1
0 β1Xi)

2 + εi (three link
functions), where β1 = 1√

3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4, β2 = 1√

3
φ1 − 1√

3
φ2 −

1√
6
φ3 + 1√

6
φ4 and β3 = − 1√

3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4;

Model (x): Yi = ∫ 1
0 β1Xi + 0.5(

∫ 1
0 β1Xi)

2 + 0.25(
∫ 1

0 β1Xi)
3 + εi (three link

functions), where β1 = 1√
3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4, β2 = 1√

3
φ1 − 1√

3
φ2 −

1√
6
φ3 + 1√

6
φ4 and β3 = − 1√

3
φ1 + 1√

3
φ2 + 1√

6
φ3 + 1√

6
φ4.

We compared the results from the recursive fitting procedure and the backfitting
procedure in terms of root average squared errors

RASEk =
{

1

N

∑
i

{
k∑

j=1

ĝj

(∫
β̂jXi

)
−

p∑
j=1

gj

(∫
βjXi

)}2}1/2

for a p-index model when fitting the first k indices. It is of interest to include cases
k < p (not fitting a sufficient number of indices) and k > p (overfitting the number
of indices) and to determine whether the best results are obtained for the correct
number of indices, which would suggest choosing the number of indices by fitting
various numbers of indices and choosing the number according to the model with
the best fit. Here ĝj and β̂j are estimated using both recursive and backfitting
procedures. Accordingly, if the underlying model, selected from models (vi)–(x),
contains p indices, we calculated the values for RASEk for k = 1, . . . , p + 1.

As one can see from the results in Tables 3, 4 and 5, the recursive fitting pro-
cedure often does not identify the right number of indexes and for nearly all fits
produces larger RASE values, as compared to the iterative backfitting procedure.
The iterative backfitting method thus emerges as the preferred method.

APPENDIX: PROOF OF THEOREM 3.1

We describe the details of the proof by breaking it up into several steps.

Step 1. Upper bound on mean summed squared error. Define γj =
g(Xj ) = g1(

∫
I β0Xj) and

γ̄j =
( ∑

i : i �=j

γiKij

)/ ∑
i : i �=j

Kij , ε̄j =
( ∑

i : i �=j

εiKij

)/ ∑
i : i �=j

Kij .(A.1)



FUNCTIONAL REGRESSION WITH NONPARAMETRIC LINK 1737

TABLE 3
Simulation results for multiple index model (vi)–(viii) with two underlying indices. RASER

k ,
k = 1,2,3, stands for root average errors using the recursive fitting procedure and k indexes and

RASEI
k for the same errors obtained when using the iterative backfitting procedure. Shown are

average results based on 100 Monte Carlo runs

Model N R RASER
1 RASER

2 RASER
3 RASEI

1 RASEI
2 RASEI

3

(vi) 50 0.1 0.2975 0.1960 0.1872 0.2975 0.1209 0.1483
200 0.1 0.3003 0.1357 0.1059 0.3003 0.0645 0.0854
50 0.5 0.3206 0.2683 0.2797 0.3206 0.2048 0.2810

200 0.5 0.3051 0.1778 0.1754 0.3051 0.1235 0.1427

(vii) 50 0.1 0.2107 0.2076 0.2144 0.2107 0.1991 0.2312
200 0.1 0.1311 0.1131 0.1372 0.1311 0.1070 0.1247
50 0.5 0.4238 0.3937 0.4592 0.4238 0.3786 0.4335

200 0.5 0.2507 0.2329 0.2719 0.2507 0.2267 0.2848

(viii) 50 0.1 0.4463 0.3184 0.3317 0.4463 0.2310 0.2817
200 0.1 0.4061 0.1496 0.1594 0.4061 0.1016 0.1279
50 0.5 0.4818 0.4872 0.5327 0.4818 0.4632 0.4698

200 0.5 0.4304 0.2502 0.2910 0.4304 0.2107 0.2412

To express their dependence on β , through Kij = Kij (β), we shall write γ̄j , ε̄j and
Ȳj as γ̄ (β), ε̄j (β) and Ȳj (β), respectively. In this notation, S(β) = S0 + S1(β) +
S2(β) + 2S3(β), where S0 = ∑

1≤j≤n ε2
j and does not depend on β ,

S1(β) =
n∑

j=1

{γj − Ȳj (β)}2, S2(β) =
n∑

j=1

{γj − γ̄j (β)}εj ,

(A.2)

S3(β) =
n∑

j=1

ε̄j (β)εj .

TABLE 4
Recursive fitting results for models (ix) and (x) with three indices

Model N R RASER
1 RASER

2 RASER
3 RASER

4

(ix) 50 0.1 0.5107 0.3417 0.3518 0.3772
200 0.1 0.4791 0.2196 0.2132 0.2183

50 0.5 0.5453 0.4810 0.5104 0.5297
200 0.5 0.5161 0.3324 0.3329 0.3504

(x) 50 0.1 0.5107 0.3417 0.3518 0.3772
200 0.1 0.4792 0.2327 0.2264 0.2316

50 0.5 0.6631 0.6461 0.6111 0.6418
200 0.5 0.5161 0.3224 0.3329 0.3504
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TABLE 5
Iterative backfitting results for models (ix) and (x) with three indices

Model N R RASEI
1 RASEI

2 RASEI
3 RASEI

4

(ix) 50 0.1 0.5107 0.3272 0.3009 0.3395
200 0.1 0.4791 0.2084 0.1422 0.1988

50 0.5 0.5453 0.5372 0.5518 0.6095
200 0.5 0.5161 0.3350 0.3137 0.3980

(x) 50 0.1 0.5107 0.3501 0.3106 0.3495
200 0.1 0.4792 0.2063 0.1808 0.1860

50 0.5 0.6631 0.6291 0.5825 0.6476
200 0.5 0.5161 0.3372 0.3129 0.3248

Furthermore, S1(β) = S4(β) − 2S5(β) + S6(β), where

S4(β) =
n∑

j=1

{γj − γ̄j (β)}2, S5(β) =
n∑

j=1

{γj − γ̄j (β)}ε̄j (β),

(A.3)

S6(β) =
n∑

j=1

ε̄j (β)2,

with notations as in (A.1).
Let B1 = B1(n) denote a class of functions β , and suppose we can prove that

sup
β∈B1

|Sk(β)| = Op(λn) for k = 2,3,5,6,(A.4)

where λn denotes a sequence of positive constants. Then,

S1(β̂) = S(β̂) − {S0 + S2(β̂) + 2S3(β̂)}
≤ S(β0) − {S0 + S2(β̂) + 2S3(β̂)}
= S1(β

0) + S2(β
0) + 2S3(β

0) − {S2(β̂) + 2S3(β̂)}
(A.5)

= S4(β
0) − 2S5(β

0) + S6(β
0) + S2(β

0)

+ 2S3(β
0) − {S2(β̂) + 2S3(β̂)}

= S4(β
0) + Op(λn),

where the inequality follows from the fact that β = β̂ minimizes S(β), the final
identity follows from (A.4) provided that β0 and β̂ are both in B1(n), and all other
identities in this string hold true generally.

Without loss of generality, the support of K is contained in the interval [−1,1]
[see (3.7)]. If in addition |g1(u) − g1(v)| ≤ D1|u − v|a1 for all u and v [see (3.2)],
then |γj − γ̄j (β

0)| ≤ D1h
a1 for all j , and therefore

S4(β
0) ≤ n(D1h

a1)2.(A.6)
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Together, (A.5) and (A.6) imply that

n∑
j=1

{g(Xj ) − ĝ(Xj )}2 = Op(λn + nh2a1).(A.7)

Step 2. Decomposition of each set Sk(β) into two parts. Let X = {X1, . . . ,

Xn} denote the set of explanatory variables, and for each β ∈ B1 let J = J (β) ⊆
J 0 ≡ {1, . . . , n} denote a random set which satisfies

P [#{J 0 \ J (β)} > 2D5nha4 for some β ∈ B1] → 0(A.8)

as n → ∞, where a4 is as in (3.6). (The set J will be X -measurable.) Define
SJ

k (β), for 2 ≤ k ≤ 6, to be the version of Sk(β) that arises if, in the definitions at
(2.1) and (2.2), we replace summation over 1 ≤ j ≤ n by summation over j ∈ J .
Since g is bounded, and all moments of the error variables εi are finite [see (3.3)],
then sup1≤i≤n |Yi | = Op(nη) with probability 1, for all η > 0. Therefore, in view
of (A.8),

max
k=1,...,6

sup
β∈B1

|Sk(β) − SJ
k (β)| = Op(n1+ηha4) for all η > 0.(A.9)

Step 3. Determining J for which (A.8) holds. Define Tj (β) = ∑
i : i �=j Kij ,

recall that f (· | β) denotes the probability density of
∫

I βX, and put

αj (β) = h

∫
K(u)f

(∫
I
βXj − hu | β

)
du.

Then,

E{Tj (β) | Xj } = αj (β),

var{Tj (β) | Xj } ≤ (n − 1)h

∫
K(u)2f

(∫
I
βXj − hu | β

)
du

≤ n(supK)αj (β).

Moreover, 0 ≤ Kij ≤ supK . Therefore by Bernstein’s inequality, if 0 < c1 < 1,

P {Tj (β) ≤ (1 − c1)nαj (β) | Xj }
= P {nαj (β) − Tj (β) ≥ c1nαj (β) | Xj }

(A.10)

≤ exp
[
− {c1nαj (β)}2/2

(supK){nαj (β) + (1/3)c1nαj (β)}
]

= exp
{
− c2

1nαj (β)

2(supK)(1 + (1/3)c1)

}
.
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Hence, defining J (β) to be the set of all integers j such that αj (β) ≥ n−c2h, where
0 < c2 < 1; and putting C2 = c2

1/{2(supK)(1 + 1
3c1)}; we obtain

sup
j∈J (β)

P {Tj (β) ≤ (1 − c1)nαj (β) | Xj } ≤ exp(−C2n
1−c2h).

Therefore, since J (β) contains no more than n elements, then

P {Tj (β) ≤ (1 − c1)nαj (β) for some j ∈ J (β) and some β ∈ B1}
≤ n(#B1) exp(−C2n

1−c2h).

Hence, provided

#B1 = O{n−C3−1 exp(C2n
1−c2h)}(A.11)

for some C3 > 0, we have

P {Tj (β) > (1 − c1)nαj (β) for all j ∈ J (β) and all β ∈ B1} → 1.(A.12)

Note, too, that if a3 and a4 are as in (3.6), if K is supported on [−1,1], and if

(supK)−1n−c2 ≤ D4h
a3,(A.13)

then

#{J 0 \ J (β)} =
n∑

j=1

I {αj (β) < n−c2h}

=
n∑

j=1

I

{∫
I
K(u)f

(∫
I
βXj − hu | β

)
du < n−c2

}

≤
n∑

j=1

Ij ,

where

Ij = Ij (β) = I

{
sup
|u|≤h

f

(∫
I
βXj − u | β

)
< D4h

a3

}
.

The random variables I1, . . . , In are independent and identically distributed, and,
in view of (3.6), π(β) ≡ P {Ij (β) = 1} ≤ D5h

a4 . Therefore, by Bernstein’s in-
equality,

P

{
n∑

j=1

Ij (β) > 2D5h
a4

}
≤ P

[
n∑

j=1

{Ij (β) − π(β)} > D5h
a4

]

≤ exp
[
− (D5h

a4)2/2

nπ(β){1 − π(β)} + (1/3)D5ha4

]

≤ exp(−3D5nha4/8).
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Hence, provided

#B1 = o{exp(3D5nha4/8)},(A.14)

result (A.8) holds.

Step 4. Bound for EX {SJ
k (β)2m} for k = 2,3,5,6 and integers m ≥ 1.

Write EX for expectation conditional on X , let Q = Q(β) denote the infi-
mum of

∑
i : i �=j Kij over all j ∈ J , and put σ 2 = E(ε2). Defining Lij =

Kij/(
∑

i1 : i1 �=j Ki1j ), taking m ≥ 1 to be an integer, and using Rosenthal’s inequal-
ity, we deduce that for a constant A(m) depending only on m,

EX (ε̄2m
j ) ≤ A(m)

{
σ 2m

( ∑
i : i �=j

L2
ij

)m

+ E(ε2m)
∑

i : i �=j

L2m
ij

}
(A.15)

≤ A(m)
{
(σ 2Q−1 supK)m + E(ε2m)Q−(2m−1)(supK)2m−1}

.

Therefore,

EX {SJ
6 (β)2m}

≤
{ ∑

j∈J (β)

(EX |ε̄j |2m)1/(2m)

}2m

(A.16)

≤ A(m)n2m{
(σ 2Q−1 supK)m + E(ε2m)Q−(2m−1)(supK)2m−1}

.

Moreover, if |g| ≤ C1, then SJ
4 (β) ≤ n(2C1)

2, and so, since SJ
5 (β)2 ≤ SJ

4 (β) ×
SJ

6 (β), then

EX {SJ
5 (β)2m} ≤ SJ

4 (β)m{EX SJ
6 (β)2m}1/2

(A.17)
≤ {n(2C1)

2}m{EX SJ
6 (β)2m}1/2.

More simply, if |g| ≤ C1, then SJ
4 (β) ≤ n(2C1)

2 and
∑

j |γj − γ̄j (β)|2m ≤
n(2C1)

2m, both uniformly in β . Therefore,

EX {SJ
2 (β)2m} ≤ A(m)

[
{σ 2SJ

4 (β)}m + E(ε2m)
∑

j∈J (β)

|γj − γ̄j (β)|2m

]
(A.18)

≤ A(m)(2C1)
2m{(nσ 2)m + nE(ε2m)}.

Recall that the support of K is contained in the interval [−1,1]. Let N1 de-
note the maximum, over values j ∈ J , of the number of indices k such that
| ∫I β(Xj − Xk)| ≤ h. Then, the series

∑
i : i �=j Kij has, for each j , at most N1

nonzero terms. Array the values of
∫

I βXj , for j ∈ J , on the real line, and group
them into consecutive blocks of indices j , each block (except for the last rem-
nant block) containing just N1 values. Index these blocks, from left to right along
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the line, from 1 to N2, where N2 equals �(#J )/N1� or �(#J )/N1� + 1 and �x�
denotes the integer part of x. Choose one point

∫
I βXj from each even-indexed

block, and remove those points from the respective blocks; and repeat this un-
til all the points are removed from all the blocks. Record, for each pass through
the N2 blocks, the removed sequence j1, . . . , jν of indices. (On the first pass, ν

will equal �N2/2� or �N2/2� + 1, but on later passes, ν may be reduced in size.)
Now repeat this for odd-indexed blocks. Denote by jk1, . . . , jkMk

, for 1 ≤ k ≤ N

say, the different sequences j1, . . . , jν that are obtained in this way. The set of all
such sequences represents a (disjoint) partition of the integers in J , and in par-
ticular, M1 + · · · + MN = n. By construction, for each k the random variables
εjk1 ε̄jk1, . . . , εjkMk

ε̄jkMk
are independent, conditional on X ; the random integers N

and M1, . . . ,MN are measurable in the sigma-field generated by X ; N ≤ 2N1; and
maxk Mk ≤ �(#J )/(2N1)� + 1.

Since

∑
j∈J (β)

εj ε̄j =
N∑

k=1

(εjk1 ε̄jk1 + · · · + εjkMk
ε̄jkMk

),

then, for any integer m ≥ 1 and an absolute constant A(m) ≥ 1, depending only
on m,

EX {SJ
3 (β)2m}

= EX

{( ∑
j∈J (β)

εj ε̄j

)2m}

≤
(

N∑
k=1

[EX {|εjk1 ε̄jk1 + · · · + εjkMk
ε̄jkMk

|2m}]1/(2m)

)2m

≤ A(m)

(
N∑

k=1

[{
Mk∑
�=1

EX (ε2
jk�

ε̄2
jk�

)

}m

+
Mk∑
�=1

EX (|εjk�
ε̄jk�

|2m)

]1/(2m))2m

≤ A(m)N2m

× max
1≤k≤N

[
σ 2m

{
Mk max

1≤�≤Mk

EX (ε̄2
jk�

)
}m + Eε2mMk max

1≤�≤Mk

EX (|ε̄jk�
|2m)

]
.

Therefore, by (A.15),

EX {SJ
3 (β)2m}
≤ A(m)2N2m

{
(σ 2Q−1 supK)m max

1≤k≤N
Mm

k(A.19)

+ E(ε2m)Q−(2m−1)(supK)2m−1 max
1≤k≤N

Mk

}
.
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The constant A(m) in these bounds can be taken equal to (Am/ logm)m, where
A > 1 denotes an absolute constant [13, 16]. From this property, and results (A.16),
(A.17), (A.18) and (A.19), and recalling that N ≤ 2N1 and Mk ≤ (n/2N1)+ 1, we
deduce that for a constant C4 > 1,∑

k=2,3,5,6

EX {SJ
k (β)2m}

≤ (m/ logm)m/2(C4n)2m{
Q−m/2 + E(ε2m)Q(1/2)−m}

(A.20)

+ (m/ logm)2mCm
4 {(nN1/Q)m + E(ε2m)n(N1/Q)2m−1}.

The contributions to the left-hand side from SJ
3 and SJ

5 dominate, and so the right-
hand side represents, in effect, EX {SJ

3 (β)2m} + EX {SJ
5 (β)2m}.

Step 5. Upper bounds for N1 and Q−1. Let T
[1]
j (β) denote the version of

Tj (β) in the special case where K ≡ 1 on [−1,1] and K = 0 elsewhere, and write

α
[1]
j (β) = h

∫
|u|≤1 f (

∫
I βXj − hu | β)du, representing the corresponding version

of αj (β). In this notation, N1 = N1(β) equals the maximum, over j , of the values

of T
[1]
j (β) for j ∈ J (β). The argument leading to (A.10) now gives

P
{
T

[1]
j (β) > (1 + c1)nα

[1]
j (β) | Xj

}
= P

{
T

[1]
j (β) − nα

[1]
j (β) ≥ c1nα

[1]
j (β) | Xj

}

≤ exp
[
− {c1nα

[1]
j (β)}2/2

nα
[1]
j (β) + (1/3)c1nα

[1]
j (β)

]
= exp

{
− c2

1nα
[1]
j (β)

2(1 + (1/3)c1)

}
.

The analogue of (A.12) in this setting is, assuming that (A.11) holds:

P
{
T

[1]
j (β) ≤ (1 + c1)nα

[1]
j (β) for all j and all β ∈ B1

} → 1.(A.21)

Since α
[1]
j (β) ≤ h supf (· | β), then, using (3.5), we deduce from (A.21) that for a

constant C5 > 0,

P {N1(β) ≤ C5nh for all β ∈ B1} → 1.(A.22)

Observe, too, that

Q(β)−1 =
{

inf
j∈J (β)

Tj (β)
}−1 ≤

{
(1 − c1) inf

j∈J (β)
nαj (β)

}−1

(A.23)
≤ (1 − c1)

−1nc2−1h−1,

where the first identity is just the definition of Q; the second, in view of (A.12),
holds uniformly in β ∈ B1, with probability converging to 1 as n → ∞; and the
third is a consequence of the definition of J (β) as the set of j for which αj (β) ≥
n−c2h.
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Step 6. Proof of uniform convergence to zero of n−1SJ
k (β) for k = 2,3,5,6.

Incorporating the bounds at (A.21) and (A.22) into (A.20), and taking m to diverge
polynomially fast in n, we deduce that, for constants C6,C7 > 1, and with proba-
bility converging to 1 as n → ∞,

s(m,n) ≡ sup
β∈B1

∑
k=2,3,5,6

EX {SJ
k (β)2m}

≤ (m/ logm)m/2(C6n)2m{
(nc2−1/h)m/2 + E(ε2m)(nc2−1/h)m−(1/2)}

+ (m/ logm)2mCm
6

{
nm(c2+1) + E(ε2m)n(2m−1)c2+1}

(A.24)

≤ (C7n)2m{(mnc2−1/h)m/2 + (m2a2nc2−1/h)m}
+ (C7n

2)m
{
(m2nc2−1)m + (m2(a2+1)n2c2−2)m

}
,

where, to obtain the last inequality, we used the bound E|ε|m ≤ (D2m)a2m in (3.3).
Choose c2, and further positive constants C8,C9, c3, c4, c5, such that

c2 + 2c3 max(1, a2) + c5 < 1 and 0 < c4 < c5.(A.25)

Take m equal to the integer part of nc3 and

C8n
−c5 ≤ h ≤ C9n

−c4 .(A.26)

The constant c2 ∈ (0,1) was introduced immediately below (A.10), and, up to
(A.25), was subject only to the conditions (A.13) and 0 < c2 < 1. For any given
a3 and c2, no matter how small the latter, we can ensure that (A.13) holds merely
by taking c5 (and thence c4), in (A.26), sufficiently small. Since the results below
continue to hold no matter how small we choose c5 (and c4), then we can be sure
that (A.13) is satisfied.

It follows from (A.24)–(A.26) that, with probability converging to 1 as n → ∞,

s(m,n) ≤ (C7n)2m{
(nc2+c3+c5−1)m + (nc2+2a1c3+c5−1)m

+ (nc2+2c3−1)m + (n2{c2+c3(a2+1)+c2−1})m
}

≤ 4(C7n
c6+1)m,

where c6 = max{c2 + c3 + c5, c2 + 2a1c3 + c5, c2 + 2c3, c2 + c3(a2 + 1) +
c2} < 1. Therefore, if 0 < c7 < 1 − c6 and we put c8 = (1 − c6 − c7)/2 > 0, then,
by Markov’s inequality,

P

{
n−1 sup

β∈B1

∑
k=2,3,5,6

|SJ
k (β)| > n−c8 | X

}
≤ 16m(#B1)s(m,n)n−2m(1−c8)

(A.27)
≤ 4(#B1)(16C7n

−c7)m,

where the inequalities hold with probability converging to 1 as n → ∞. Hence,
provided that

(#B1)(16C7n
−c7)m → 0,(A.28)
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the left-hand side of (A.27) converges in probability to zero as n → ∞. It follows
that the unconditional form of that probability also converges to zero, and hence
that

P
{
n−1 sup

β∈B1

max
k=2,3,5,6

|SJ
k (β)| > n−c8

}
→ 0.(A.29)

Step 7. Completion. From (A.9) and (A.29) we deduce that, for all η > 0,

n−1 sup
β∈B1

max
k=2,3,5,6

|Sk(β)| = Op(nηha4 + n−c8) = Op(nη−c4 + n−c8),(A.30)

where we used (A.26) to derive the final identity. Therefore, (A.4) holds with λn =
n1−c9 for any c9 ∈ (0,max(c4, c8)). Hence we may use this value of λn in (A.7),
establishing that

n−1
n∑

j=1

{g(Xj ) − ĝ(Xj )}2 = Op(n−c),(A.31)

with c = min(c9,2a1c4), where the estimator β̂ used to define ĝ is obtained by
minimizing S(β) = ∑

j (Yj − Ȳj )
2 [the first quantity in (2.7)] over β ∈ B1. [We

used (A.26) to simplify the term in h2a1 in (A.7).]
During the proof above we imposed on the class B1 the assumption that β0 ∈ B1

[see the discussion following (A.5)], and also three conditions—(A.11), (A.14) and
(A.28)—on the size of the class. The latter three conditions hold if

#B1 = O{exp(nc10)},(A.32)

provided 0 < c10 < min(1 − c2 − c5,1 − a4c5, c3). (Recall from Step 6 that m

equals the integer part of nc3 .) By choosing c5 smaller if necessary we can ensure
that the upper bound here is strictly positive, and so c10 > 0.

Let 0 < c11 < c10 and c12 > 0, define r = r(n) to be the integer part of nc11 , and
let D3 be as in (3.4). Let r be as stipulated in (3.8), and write B2 for the class of
functions β = ∑

1≤k≤r bkψk such that each |bk| ≤ D3 for 1 ≤ k ≤ r . Let B3 be the
set of elements of B2 for which each bk , for 1 ≤ k ≤ r , is an integer multiple of
n−c12 . The number of elements of B3 is bounded above by a constant multiple of

(2D3n
c12)r ≤ exp(const. nc11 logn) = o{exp(nc10)}.(A.33)

Put B1 = B3 ∪ {β0}. Then (A.32) follows from (A.33).
The following three properties hold: (a) The lattice on which B3 is based can

be made arbitrarily fine in a polynomial sense, by choosing c12 sufficiently large;
(b) E‖X‖η < ∞ for some η > 0 [see (3.3)]; and (c) K has a bounded derivative
[see (3.7)]. Given β = ∑

1≤k≤r bkψk ∈ B2, let βapprox = ∑
1≤k≤r b

approx
k ψk be the

element of B2 defined by taking b
approx
k to be the lattice value nearest to bk , for

1 ≤ k ≤ r . Define S(n) to equal the maximum, over 1 ≤ i, j ≤ n, of ‖Xi − Xj‖.
Property (b) implies that Sn = Op(nc13) for some c13 > 0. Using this property, and
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(a) and (c), it can be proved, by taking c12 sufficiently large, that for any given
c14 > 0,

sup
β∈B2

max
1≤i,j≤n

|Kij (β) − Kij (β
approx)|

= Op

{
S(n)h−1 sup

β∈B2

‖β − βapprox‖
}

(A.34)

= Op(n−c14).

From this result and the other properties of K in (3.7) it can be shown that (A.31)
continues to hold if β̂ in the definition of ĝ is replaced by the minimizer of S(β) =∑

j (Yj − Ȳj )
2 over β ∈ B4 = B2 ∪ {β0}.

Call this result (R).
The desired result (3.9) follows from (R), except that the set B4 contains β0 as

an unusual, adjoined element. Hence there is, in theory, a possibility that β̂ = β0;
this could not happen if we were to restrict β̂ to elements of B2, as required when
defining the estimator ĝ in (3.9). To appreciate that this does not cause any diffi-
culty, let β1 = ∑

1≤k≤r b0
kψk denote the approximation to β0 obtained by dropping

all but the first r terms in the expansion β0 = ∑
k≥1 b0

kψk . The argument leading to
(A.34) can be used to prove that, for c14 > 0 chosen arbitrarily large, there exists a
value of B = B(c14), in the second part of (3.4), such that

max
1≤i,j≤n

|Kij (β
0) − Kij (β

1)| = Op{S(n)h−1‖β0 − β1‖} = Op(n−c14).

Arguing as before, this leads to the conclusion that β0 can be dropped from B4
without damaging result (R).
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