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VARIATIONAL CHARACTERIZATION OF THE CRITICAL CURVE
FOR PINNING OF RANDOM POLYMERS

BY DIMITRIS CHELIOTIS1 AND FRANK DEN HOLLANDER

University of Athens and Leiden University

In this paper we look at the pinning of a directed polymer by a one-
dimensional linear interface carrying random charges. There are two phases,
localized and delocalized, depending on the inverse temperature and on the
disorder bias. Using quenched and annealed large deviation principles for the
empirical process of words drawn from a random letter sequence according to
a random renewal process [Birkner, Greven and den Hollander, Probab. The-
ory Related Fields 148 (2010) 403–456], we derive variational formulas for
the quenched, respectively, annealed critical curve separating the two phases.
These variational formulas are used to obtain a necessary and sufficient cri-
terion, stated in terms of relative entropies, for the two critical curves to be
different at a given inverse temperature, a property referred to as relevance of
the disorder. This criterion in turn is used to show that the regimes of relevant
and irrelevant disorder are separated by a unique inverse critical temperature.
Subsequently, upper and lower bounds are derived for the inverse critical tem-
perature, from which sufficient conditions under which it is strictly positive,
respectively, finite are obtained. The former condition is believed to be nec-
essary as well, a problem that we will address in a forthcoming paper.

Random pinning has been studied extensively in the literature. The present
paper opens up a window with a variational view. Our variational formulas
for the quenched and the annealed critical curve are new and provide valu-
able insight into the nature of the phase transition. Our results on the inverse
critical temperature drawn from these variational formulas are not new, but
they offer an alternative approach, that is, flexible enough to be extended to
other models of random polymers with disorder.

1. Introduction and main results.

1.1. Introduction.
I. Model. Let S = (Sn)n∈N0 be a Markov chain on a countable state space S in

which a given point is marked 0 (N0 = N ∪ {0}). Write P to denote the law of S

given S0 = 0 and E the corresponding expectation. Let K denote the distribution
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of the first return time of S to 0, that is,

K(n) := P(Sn = 0, Sm �= 0 ∀0 < m < n), n ∈ N.(1.1)

We will assume that
∑

n∈N K(n) = 1 (i.e., 0 is a recurrent state) and

lim
n→∞

logK(n)

logn
=−(1 + α) for some α ∈ [0,∞).(1.2)

Let ω = (ωk)k∈N0 be i.i.d. R-valued random variables with marginal distribu-

tion μ0. Write P = μ
⊗N0
0 to denote the law of ω, and E to denote the corresponding

expectation. We will assume that

M(λ) := E(eλω0) < ∞ ∀λ ∈ R,(1.3)

and that μ0 has mean 0 and variance 1.
Let β ∈ [0,∞) and h ∈ R, and for fixed ω define the law Pβ,h,ω

n on {0} × S n,
the set of n-steps paths in S starting from 0, by putting

dPβ,h,ω
n

dPn

((Sk)
n
k=0) :=

1

Z
β,h,ω
n

exp

[
n−1∑
k=0

(βωk − h)1{Sk=0}
]

1{Sn=0},(1.4)

where Pn is the projection of P onto {0}× S n. Here, β plays the role of the inverse
temperature, h the role of the disorder bias, while Z

β,h,ω
n is the normalizing parti-

tion sum. Note that k = 0 contributes to the sum, while k = n does not. Also note
that the path is tied to 0 at both ends. This is done for later convenience.

REMARK 1.1. Note that (1.2) implies p := gcd[supp(K)] = 1. If p ≥ 2, then
the model can be trivially restricted to pN, so there is no loss of generality. More-
over, if

∑
n∈N K(n) < 1, then the model can be reduced to the recurrent case by

a shift of h. Similarly, the restriction to μ0 with mean 0 and variance 1 can be
removed by a scaling of β and a shift of h.

REMARK 1.2. The key example of the above setting is the simple random
walk on Z, for which p = 2 and α = 1

2 (Spitzer [19], Section 1). In that case the
process (n, Sn)n∈N0 can be thought of as describing a directed polymer in N0 ×Z,
that is, pinned to the interface N0 × {0} by random charges βω − h; see Figure 1.
When the polymer hits the interface at time k, it picks up a reward exp[βωk − h],
which can be either >1 or <1, depending on the value of ωk . For h ≤ 0 the polymer
tends to intersect the interface with a positive frequency (“localization”), whereas
for h > 0 large enough it tends to wander away from the interface (“delocaliza-
tion”). Simple random walk on Z

2 corresponds to p = 2 and α = 0, while simple
random walk on Z

d , d ≥ 3, conditioned on returning to 0 corresponds to p = 2
and α = d

2 − 1 (Spitzer [19], Section 1).
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FIG. 1. A directed polymer sampling random charges at an interface.

II. Free energy and phase transition. The quenched free energy is defined as

f que(β,h) := lim
n→∞

1

n
logZβ,h,ω

n .(1.5)

Standard subadditivity arguments show that the limit exists ω-a.s. and in P-mean,
and is nonrandom; see, for example, Giacomin [11], Chapter 5, and den Hol-
lander [8], Chapter 11. Moreover, f que(β,h) ≥ 0 because Z

β,h,ω
n ≥ eβω0−hK(n),

n ∈ N, and limn→∞ 1
n

logK(n) = 0 by (1.2). The lower bound f que(β,h) = 0 is
attained when S visits the state 0 only rarely. This motivates the definition of two
quenched phases,

L := {(β,h) :f que(β,h) > 0},
(1.6)

D := {(β,h) :f que(β,h) = 0},
referred to as the localized phase, respectively, the delocalized phase.

Since h �→ f que(β,h) is nonincreasing for every β ∈ [0,∞), the two phases are
separated by a quenched critical curve

hque
c (β) := inf{h :f que(β,h) = 0}, β ∈ [0,∞),(1.7)

with L the region below the curve and D the region on and above. Since (β,h) �→
f que(β,h) is convex and D = {(β,h) :f que(β,h) ≤ 0} is a level set of f que, it fol-
lows that D is a convex set and h

que
c is a convex function. Since β = 0 corresponds

to a homopolymer, we have h
que
c (0) = 0; see Appendix A. It was shown in Alexan-

der and Sidoravicius [2] that h
que
c (β) > 0 for β ∈ (0,∞). Therefore we have the

qualitative picture drawn in Figure 2. We further remark that limβ→∞ h
que
c (β)/β

is finite if and only if supp(μ0) is bounded from above.
The mean value of the disorder is E(βω0−h) =−h. Thus, we see from Figure 2

that for the random pinning model localization may even occur for moderately neg-
ative mean values of the disorder, contrary to what happens for the homogeneous
pinning model, where localization occurs only for a strictly positive parameter; see
Appendix A. In other words, even a globally repulsive random interface can pin
the polymer: all that the polymer needs to do is to hit some positive values of the
disorder and avoid the negative values of the disorder.
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FIG. 2. Qualitative plot of β �→ h
que
c (β). The fine details of this curve are not known.

The annealed free energy is defined by

f ann(β,h) := lim
n→∞

1

n
log E(Zβ,h,ω

n ).(1.8)

Since

E(Zβ,h,ω
n ) = E

(
exp

[
n−1∑
k=0

[logM(β)− h]1{Sk=0}
]

1{Sn=0}
)
,(1.9)

we have that f ann(β,h) is the free energy of the homopolymer with parameter
logM(β) − h. The associated annealed critical curve

hann
c (β) := inf{h :f ann(β,h) = 0}, β ∈ [0,∞),(1.10)

therefore equals

hann
c (β) = logM(β).(1.11)

Since f que ≤ f ann, we have h
que
c ≤ hann

c .

DEFINITION 1.3. The disorder is said to be relevant for a given choice of K ,
μ0 and β when h

que
c (β) < hann

c (β), otherwise it is said to be irrelevant.

Note: In the physics literature, the term relevant disorder is reserved for the
situation where the disorder not only changes the critical value but also changes
the behavior of the free energy near the critical value. In the present paper we adopt
the more narrow definition above.

Our main focus in the present paper will be on deriving variational formulas
for h

que
c and hann

c , and on investigating under what conditions on K , μ0 and β the
disorder is relevant, respectively, irrelevant.
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1.2. Main results. This section contains three theorems and four corollaries,
all valid subject to (1.2) and (1.3). To state these we need some further notation.

I. Notation. Abbreviate

E := supp[μ0] ⊂ R.(1.12)

Let Ẽ := ⋃
k∈N Ek be the set of finite words consisting of letters drawn from E.

Let P(ẼN) denote the set of probability measures on infinite sentences, equipped
with the topology of weak convergence. Write θ̃ for the left-shift acting on ẼN,
and P inv(ẼN) for the set of probability measures that are invariant under θ̃ .

For Q ∈ P inv(ẼN), let π1,1Q ∈ P(E) denote the projection of Q onto the first
letter of the first word. Define the set

C :=
{
Q ∈ P inv(ẼN) :

∫
E
|x|d(π1,1Q)(x) < ∞

}
,(1.13)

and on this set the function

�(Q) :=
∫
E

x d(π1,1Q)(x), Q ∈ C.(1.14)

We also need two rate functions on P inv(ẼN), denoted by I ann and I que, which
will be defined in Section 2. These are the rate functions of the annealed and the
quenched large deviation principles that play a central role in the present paper,
and they satisfy I que ≥ I ann.

II. Theorems. With the above ingredients, we obtain the following characteri-
zation of the critical curves.

THEOREM 1.4. Fix μ0 and K . For all β ∈ [0,∞),

hque
c (β) = sup

Q∈C
[β�(Q) − I que(Q)],(1.15)

hann
c (β) = sup

Q∈C
[β�(Q) − I ann(Q)].(1.16)

We know that hann
c (β) = logM(β). However, the variational formula for

hann
c (β) will be important for the comparison with h

que
c (β).

Next, for β ∈ [0,∞) define the probability measures

dμβ(x) := 1

M(β)
eβx dμ0(x), x ∈ E,(1.17)

and

dqβ(x1, x2, . . . , xn) := K(n)dμβ(x1)dμ0(x2)× · · · × dμ0(xn),
(1.18)

n ∈ N, x1, x2, . . . , xn ∈ E.

Further, let Qβ := q⊗N

β ∈ P inv(ẼN). Then Q0 is the probability measure under
which the words are i.i.d., with length drawn from K and i.i.d. letters drawn
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FIG. 3. Uniqueness of the critical inverse temperature βc .

from μ0, while Qβ differs from Q0 in that the first letter of each word is drawn
from the tilted probability distribution μβ . We will see that Qβ is the unique max-
imizer of the supremum in (1.16) [note that Qβ ∈ C because of (1.3)]. This leads
to the following necessary and sufficient criterion for disorder relevance.

THEOREM 1.5. Fix μ0 and K . For all β ∈ [0,∞),

hque
c (β) < hann

c (β) ⇐⇒ I que(Qβ) > I ann(Qβ).(1.19)

What is appealing about (1.19) is that the gap between I que and I ann needs to
be established only for the measure Qβ , which has a simple and explicit form. We
will see that the supremum in (1.15) is attained, which is to be interpreted as saying
that there is a localization strategy at the quenched critical line.

Disorder relevance is monotone in β; see Figure 3.

THEOREM 1.6. For all μ0 and K there exists a βc = βc(μ0,K) ∈ [0,∞] such
that

hque
c (β)

{= hann
c (β), if β ∈ [0, βc],

< hann
c (β), if β ∈ (βc,∞).

(1.20)

III. Corollaries. From Theorems 1.4–1.6 we draw four corollaries. Abbreviate

χ := ∑
n∈N

[P(Sn = 0)]2, w := sup[supp(μ0)].(1.21)

COROLLARY 1.7. If α = 0, then βc =∞ for all μ0.

COROLLARY 1.8. If α ∈ (0,∞), then the following bounds hold:

(i) βc ≥ β∗
c with β∗

c = β∗
c (μ0,K) ∈ [0,∞] given by

β∗
c := 0 ∨ sup{β :M(2β)/M(β)2 < 1 + χ−1}.(1.22)
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(ii) βc ≤ β∗∗
c with β∗∗

c = β∗∗
c (μ0,K) ∈ (0,∞] given by

β∗∗
c := inf{β :h(μβ |μ0) > h(K)},(1.23)

where h(μβ |μ0) = ∫
E log(dμβ/dμ0)dμβ is the relative entropy of μβ w.r.t. μ0,

and h(K) := −∑
n∈N K(n) logK(n) is the entropy of K .

COROLLARY 1.9. If α ∈ (0,∞) and χ < ∞, then βc > 0 for all μ0.

COROLLARY 1.10. If α ∈ (0,∞), then βc < ∞ for all μ0 with μ0({w}) = 0
(which includes w =∞).

We close with a conjecture stating that the condition χ < ∞ in Corollary 1.9 is
not only sufficient for βc > 0 but also necessary. This conjecture will be addressed
in a forthcoming paper.

CONJECTURE 1.11. If α ∈ (0,∞) and χ =∞, then βc = 0 for all μ0.

1.3. Discussion.
I. What is known from the literature? Before discussing the results in Sec-

tion 1.2, we give a summary of what is known about the issue of relevant vs.
irrelevant disorder from the literature. This summary is drawn from the papers by
Alexander [1], Toninelli [20, 21], Giacomin and Toninelli [14], Derrida, Giacomin,
Lacoin and Toninelli [9], Alexander and Zygouras [3, 4], Giacomin, Lacoin and
Toninelli [12, 13] and Lacoin [18].

THEOREM 1.12. Suppose that condition (1.2) is strengthened to

K(n) = n−(1+α)L(n)
(1.24)

with α ∈ [0,∞) and L strictly positive and slowy varying at infinity.

Then:

(1) βc = 0 when α ∈ (1
2 ,∞).

(2) βc = 0 when α = 1
2 and limn→∞[logn]δ−1L2(n) = 0 for some δ > 0.

(3) βc > 0 when α = 1
2 and

∑
n∈N n−1[L(n)]−2 < ∞.

(4) βc > 0 when α ∈ (0, 1
2).

(5) βc =∞ when α = 0.

The results in Theorem 1.12 hold irrespective of the choice of μ0; see Re-
mark 1.13 below. Toninelli [21] proves that if logM(λ) ∼ Cλγ as λ → ∞ for
some C ∈ (0,∞) and γ ∈ (1,∞), then βc < ∞ irrespective of α ∈ (0,∞) and L.
Note that there is a small gap between cases (2) and (3) at the critical threshold
α = 1

2 .
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For the cases of relevant disorder, bounds on the gap between hann
c (β) and

h
que
c (β) have been derived in the above cited papers subject to (1.24). As β ↓ 0,

this gap decays like

hann
c (β) − hque

c (β) �
⎧⎪⎨⎪⎩

β2, if α ∈ (1,∞),

β2ψ(1/β), if α = 1,

β2α/(2α−1), if α ∈ (1
2 ,1

)(1.25)

for all choices of L, with ψ slowly varying and vanishing at infinity when L(∞) ∈
(0,∞).

Partial results are known for α = 1
2 . For instance, it is shown in Giacomin,

Lacoin and Toninelli [13] that, under the condition in Theorem 1.12(2), the gap
decays faster than any polynomial, namely, roughly like exp[−β−2/δ], β ↓ 0,
when L2(n) � [logn]1−δ , n → ∞. This implies that the disorder can at most
be marginally relevant, a situation where standard perturbative arguments do not
work.

REMARK 1.13. Some of the above mentioned results are proved for Gaussian
disorder only, and are claimed to be true for arbitrary disorder subject to (1.3). Full
proofs for arbitrary disorder are in [9, 13, 18, 21].

REMARK 1.14. The fact that α = 1
2 is critical for relevant vs. irrelevant dis-

order is in accordance with the so-called Harris criterion for disordered systems
(see Harris [17]): “Arbitrary weak disorder modifies the nature of a phase transi-
tion when the order of the phase transition in the nondisordered system is < 2.”
The order of the phase transition for the homopolymer, which is briefly described
in Appendix A, is < 2 precisely when α ∈ (1

2 ,∞) (see Giacomin [11], Chapter 2).
This link is emphasized in Toninelli [20].

II. What is new in the present paper? The main importance of our results in
Section 1.2 is that they open up a new window on the random pinning problem.
Whereas the results cited in Theorem 1.12 are derived with the help of a variety of
estimation techniques, like fractional moment estimates and trial choices of local-
ization strategies, Theorem 1.4 gives a variational characterization of the critical
curves, that is, new. (It is very rare indeed that critical curves for disordered sys-
tems allow for a direct variational representation.) Theorem 1.5 gives a necessary
and sufficient criterion for disorder relevance that, although not easy to handle,
at least is explicit and offers a different handle. Theorem 1.6 shows that unique-
ness of the inverse critical temperature is a direct consequence of this criterion,
while Corollaries 1.7–1.10 show that the criterion can be used to obtain important
information on the inverse critical temperature.

REMARK 1.15. Theorem 1.6 was proved in Giacomin, Lacoin and
Toninelli [13] with the help of the FKG-inequality.
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REMARK 1.16. Corollary 1.7 is the main result in Alexander and Zy-
gouras [4].

REMARK 1.17. Since (see Section 8)

lim
β↓0

M(2β)/M(β)2 = 1, lim
β→∞h(μβ |μ0) = log[1/μ0({w})],(1.26)

with the understanding that the second limit is ∞ when μ0({w}) = 0, Corollary 1.8
implies Corollaries 1.9 and 1.10. Corollary 1.10 was noted also in Alexander and
Zygouras [4].

REMARK 1.18. Note that χ = E(|I1 ∩ I2|) with I1, I2 two independent copies
of the set of return times of S [recall (1.1)]. Thus, according to Corollary 1.9 and
Conjecture 1.11, βc > 0 is expected to be equivalent to the renewal process of
joint return times to be recurrent. Note that 1/P(I1 ∩ I2 �= ∅) = 1 + χ−1 (see
Spitzer [19], Section 1), the quantity appearing in Corollary 1.8(i).

REMARK 1.19. If μ0 is Bernoulli(1/2) on {−1,1}, (1.26) gives that
limβ→∞ h(μβ |μ0) = log 2. For any α > 0, we can find a distribution K that sat-
isfies (1.2) and H(K) < log 2, and thus (1.23) implies that βc = βc(μ0,K) < ∞.
This shows that for α > 0, the condition μ0({w}) = 0 is not (!) necessary for
βc < ∞.

REMARK 1.20. As shown in Doney [10], subject to the condition of regular
variation in (1.24),

P(Sn = 0) ∼ Cα

n1−αL(n)
(1.27)

as n →∞ with Cα = (α/π) sin(απ) when α ∈ (0,1).

Hence the condition χ < ∞ in Corollary 1.9 is satisfied exactly for α ∈ (0, 1
2)

and L arbitrary, and for α = 1
2 and

∑
n∈N n−1[L(n)]−2 < ∞. This fits precisely

with cases (3) and (4) in Theorem 1.12.

REMARK 1.21. Corollary 1.8(ii) is essentially Corollary 3.2 in Toninelli [21],
where the condition for relevance, h(μβ |μ0) > h(K), is given in an equivalent
form (see equation (3.6) in [21]). Note that, by (1.2), h(K) < ∞ when α ∈ (0,∞).

1.4. Outline. In Section 2 we formulate the annealed and the quenched large
deviation principles (LDP) that are in Birkner, Greven and den Hollander [6],
which are the key tools in the present paper. In Section 3 we use these LDP’s to
prove Theorem 1.4. In Section 4 we compare the variational formulas for the two
critical curves and prove the criterion for disorder relevance stated in Theorem 1.5.
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FIG. 4. Cutting words out from a sequence of letters according to renewal times.

In Section 5 we reformulate this criterion to put it into a form, that is, more con-
venient for computations. In Section 6 we use the latter to prove Theorem 1.6. In
Sections 7–8 we prove Corollaries 1.7–1.10. Appendix A collects a few standard
facts about the homopolymer, while Appendix B provides the details of the proof
of a key lemma in Section 3 based on an approximation argument in [6].

2. Annealed and quenched LDP. In this section we recall the main results
from Birkner, Greven and den Hollander [6] that are needed in the present paper.
Section 2.1 introduces the relevant notation, while Sections 2.2 and 2.3 state the
relevant annealed and quenched LDP’s.

2.1. Notation. Let E be a Polish space, playing the role of an alphabet, that is,
a set of letters. Let Ẽ :=⋃

k∈N Ek be the set of finite words drawn from E, which
can be metrized to become a Polish space.

Fix μ0 ∈ P(E), and K ∈ P(N) satisfying (1.2). Let X = (Xk)k∈N0 be i.i.d. E-
valued random variables with marginal law μ0, and τ = (τi)i∈N i.i.d. N-valued
random variables with marginal law K . Assume that X and τ are independent, and
write P∗ to denote their joint law. Cut words out of the letter sequence X according
to τ (see Figure 4), that is, put

T0 := 0 and Ti := Ti−1 + τi, i ∈ N,(2.1)

and let

Y (i) := (XTi−1,XTi−1+1, . . . ,XTi−1), i ∈ N.(2.2)

Under the law P∗, Y = (Y (i))i∈N is an i.i.d. sequence of words with marginal dis-
tribution q0 on Ẽ given by

dq0(x1, . . . , xn)

:= P∗(Y (1) ∈ (dx1, . . . ,dxn)
)

(2.3)

= K(n)dμ0(x1)× · · · × dμ0(xn), n ∈ N, x1, . . . , xn ∈ E.

The reverse operation of cutting words out of a sequence of letters is glueing
words together into a sequence of letters. Formally, this is done by defining a con-
catenation map κ from ẼN to EN0 . This map induces in a natural way a map from

P(ẼN) to P(EN0), the sets of probability measures on ẼN and EN0 (endowed with
the topology of weak convergence). The concatenation q⊗N

0 ◦ κ−1 of q⊗N

0 equals

μ
N0
0 , as is evident from (2.3)
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2.2. Annealed LDP. Let P inv(ẼN) be the set of probability measures on
ẼN that are invariant under the left-shift θ̃ acting on ẼN. For N ∈ N, let
(Y (1), . . . , Y (N))per be the periodic extension of the N -tuple (Y (1), . . . , Y (N)) ∈ ẼN

to an element of ẼN, and define

RN := 1

N

N−1∑
i=0

δθ̃ i (Y (1),...,Y (N))per ∈ P inv(ẼN).(2.4)

This is the empirical process of N -tuples of words. The following annealed
LDP is standard; see, for example, Dembo and Zeitouni [7], Section 6.5. For
Q ∈ P inv(ẼN), let H(Q|q⊗N

0 ) be the specific relative entropy of Q w.r.t. q⊗N

0 de-
fined by

H(Q|q⊗N

0 ) := lim
N→∞

1

N
h(πNQ|πNq⊗N

0 ),(2.5)

where πNQ ∈ P(ẼN) denotes the projection of Q onto the first N words, h(·|·)
denotes relative entropy, and the limit is nondecreasing.

THEOREM 2.1. The family P∗(RN ∈ ·), N ∈ N, satisfies the LDP on P inv(ẼN)

with rate N and with rate function I ann given by

I ann(Q) := H(Q|q⊗N

0 ), Q ∈ P inv(ẼN).(2.6)

This rate function is lower semi-continuous, has compact level sets, has a unique
zero at q⊗N

0 , and is affine.

2.3. Quenched LDP. To formulate the quenched analog of Theorem 2.1, we
need some more notation. Let P inv(EN0) be the set of probability measures on
EN0 that are invariant under the left-shift θ acting on EN0 . For Q ∈ P inv(ẼN) such
that mQ := EQ(τ1) < ∞ (where EQ denotes expectation under the law Q and τ1
is the length of the first word), define

�Q := 1

mQ

EQ

(
τ1−1∑
k=0

δθkκ(Y )

)
∈ P inv(EN0).(2.7)

Think of �Q as the shift-invariant version of Q ◦ κ−1 obtained after randomiz-
ing the location of the origin. This randomization is necessary because a shift-
invariant Q in general does not give rise to a shift-invariant Q ◦ κ−1.

For tr ∈ N, let [·]tr : Ẽ →[Ẽ]tr =⋃tr
n=1 En denote the truncation map on words

defined by

y = (x1, . . . , xn) �→ [y]tr := (x1, . . . , xn∧tr), n ∈ N, x1, . . . , xn ∈ E,(2.8)

that is, [y]tr is the word of length ≤ tr obtained from the word y by dropping all
the letters with label > tr. This map induces in a natural way a map from ẼN to
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[Ẽ]Ntr , and from P inv(ẼN) to P inv([Ẽ]Ntr ). Note that if Q ∈ P inv(ẼN), then [Q]tr is
an element of the set

P inv,fin(ẼN) = {Q ∈ P inv(ẼN) :mQ < ∞}.(2.9)

THEOREM 2.2. (Birkner, Greven and den Hollander [6]) Assume (1.2). Then,
for μ

⊗N0
0 -a.s. all X, the family of (regular) conditional probability distributions

P∗(RN ∈ ·|X), N ∈ N, satisfies the LDP on P inv(ẼN) with rate N and with deter-
ministic rate function I que given by

I que(Q) :=
{

Ifin(Q), if Q ∈ P inv,fin(ẼN),

lim
tr→∞ Ifin([Q]tr), otherwise,(2.10)

where

Ifin(Q) := H(Q|q⊗N

0 ) + αmQH(�Q|μ⊗N0
0 ).(2.11)

This rate function is lower semi-continuous, has compact level sets, has a unique
zero at q⊗N

0 and is affine.

There is no closed form expression for I que(Q) when mQ =∞. For later refer-
ence we remark that, for all Q ∈ P inv(ẼN),

I ann(Q) = lim
tr→∞ I ann([Q]tr) = sup

tr∈N

I ann([Q]tr),
(2.12)

I que(Q) = lim
tr→∞ I que([Q]tr) = sup

tr∈N

I que([Q]tr)

as shown in [6], Lemma A.1. A remarkable aspect of (2.11) in relation to (2.6) is
that it quantifies the difference between I que and I ann. Note the explicit appearance
of the tail exponent α. Also note that I que = I ann when α = 0.

3. Variational formulas: Proof of Theorem 1.4. In Section 3.1 we
prove (1.16), the variational formula for the annealed critical curve. The proof
of (1.15) in Sections 3.2–3.4, the variational formula for the quenched critical
curve, is longer. In Section 3.2 we first give the proof for μ0 with finite support.
In Section 3.3 we extend the proof to μ0 satisfying (1.3). In Section 3.4 we prove
three technical lemmas that are needed in Section 3.3.

3.1. Proof of (1.16).

PROOF. Recall from (1.17) and (1.18) that Qβ = q⊗N

β , and from (1.11) that

hann
c (β) = logM(β). Below we show that for every Q ∈ P inv(ẼN),

β�(Q) − I ann(Q) = logM(β) −H(Q|Qβ).(3.1)
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Taking the supremum over Q, we arrive at (1.16). Note that the unique probability
measure that achieves the supremum in (3.1) is Qβ , which is an element of the
set C defined in (1.13) because of (1.3).

To get (3.1), note that H(Q|Qβ) is the limit as N → ∞ of [recall (1.17)
and (1.18)]

1

N

∫
ẼN

log
[

d(πNQ)

d(πNQβ)
(y1, . . . , yN)

]
d(πNQ)(y1, . . . , yN)

= 1

N

∫
ẼN

log
[

d(πNQ)

d(πNQ0)
(y1, . . . , yN)

× M(β)N

eβ[c(y1)+···+c(yN )]
]

d(πNQ)(y1, . . . , yN)(3.2)

= logM(β) + 1

N
h(πNQ|πNQ0)

− β
1

N

∫
ẼN

[c(y1) + · · · + c(yN)]d(πNQ)(y1, . . . , yN),

where, c(y) denotes the first letter of the word y. In the last line of (3.2), the limit as
N →∞ of the second quantity is H(Q|Q0) = I ann(Q), while the integral equals
N�(Q) by shift-invariance of Q. Thus, (3.1) follows. �

3.2. Proof of (1.15) for μ0 with finite support.

PROOF. The proof comes in three steps.
Step 1: An alternative way to compute the quenched free energy f que(β,h)

from (1.5) is through the radius of convergence zque(β,h) of the power series∑
n∈N

znZβ,h,ω
n ,(3.3)

because

zque(β,h) = e−f que(β,h).(3.4)

Write

Zβ,h,ω
n = ∑

N∈N

∑
0=k0<k1<···<kN=n

N∏
i=1

K(ki − ki−1)e
βωki−1−h

,(3.5)

so that, for z ∈ (0,∞), ∑
n∈N

znZβ,h,ω
n = ∑

N∈N

F
β,h,ω
N (z),(3.6)

where we abbreviate

F
β,h,ω
N (z) := ∑

0=k0<···<kN<∞

N∏
i=1

zki−ki−1K(ki − ki−1)e
βωki−1−h

.4(3.7)
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Step 2: We return to the setting of Section 2. The letter space is E, the word
space is Ẽ =⋃

k∈N Ek , the sequence of letters is ω = (ωk)k∈N0 , while the sequence
of renewal times is (Ti)i∈N0 = (ki)i∈N0 . Each interval Ii := [ki−1, ki) of integers
cuts out a word ωIi

:= (ωki−1, . . . ,ωki−1). Let

Rω
N = Rω

N((ki)
N
i=0) :=

1

N

N−1∑
i=0

δθ̃ i (ωI1 ,...,ωIN
)per(3.8)

denote the empirical process of N -tuples of words in ω cut out by the first N

renewals. Then we can rewrite F
β,h,ω
N (z) as

F
β,h,ω
N (z) = E

(
exp

[
N

∫
Ẽ

{
τ(y) log z + (

βc(y) − h
)}

d(π1R
ω
N)(y)

])
(3.9)

= e−NhE
(
exp[NmRω

N
log z +Nβ�(Rω

N)]),
where τ(y) and c(y) are the length, respectively, the first letter of the word y,
π1R

ω
N is the projection of Rω

N onto the first word, while mRω
N

and �(Rω
N) are

the average word length, respectively, the average first letter of the first word un-
der Rω

N .
To identify the radius of convergence of the series in the left-hand side of (3.6),

we apply the root test for the series in the right-hand side of (3.6) using the expres-
sion in (3.9). To that end, let

Sque(β; z) := lim sup
N→∞

1

N
log E

(
exp[NmRω

N
log z +Nβ�(Rω

N)]).(3.10)

Then

lim sup
N→∞

1

N
logF

β,h,ω
N (z) =−h+ Sque(β; z).(3.11)

We know from (3.4) and the nonnegativity of f que(β,h) that zque(β,h) ≤ 1, and
we are interested in knowing when it is < 1, respectively, = 1 [recall (1.6)]. Hence,
the sign of the right-hand side of (3.11) for z ↑ 1 will be important as the next
lemma shows.

LEMMA 3.1. For all β ∈ [0,∞) and h ∈ R,

Sque(β;1−) < h �⇒ f (β,h) = 0,
(3.12)

Sque(β;1−) > h �⇒ f (β,h) > 0.

PROOF. The first line holds because, by (3.11), −h+Sque(β;1−) < 0 implies
that the sums in (3.6) converge for |z| < 1, so that zque(β,h) ≥ 1, which gives
f que(β,h) ≤ 0. The second line holds because if −h+Sque(β;1−) > 0, then there
exists a z0 < 1 such that −h+Sque(β; z0) > 0, which implies that the sums in (3.6)
diverge for z = z0, so that zque(β,h) ≤ z0 < 1, which gives f que(β,h) > 0. �
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0
z

Sque(β; z)

h
que
c (β)

1

∞
�

�

FIG. 5. Qualitative plot of z �→ Sque(β; z).

Lemma 3.1 implies that

hque
c (β) = Sque(β;1−).(3.13)

The rest of the proof is devoted to computing Sque(β;1−).
Step 3: Since μ0 has finite support, Q �→ �(Q) is continuous. Therefore we

can apply Varadhan’s lemma to the expression in (3.10) for z = 1 using the LDP
of Theorem 2.2. This gives

Sque(β;1) = sup
Q∈P inv(ẼN)

[β�(Q) − I que(Q)].(3.14)

We would like to do the same for (3.10) with z < 1, and subsequently take the limit
z ↑ 1, to get (see Figure 5)

Sque(β;1−) = sup
Q∈P inv(ẼN)

[β�(Q) − I que(Q)].(3.15)

However, even though Q �→ �(Q) is continuous (because μ0 has finite support),
Q �→ mQ is only lower semicontinuous. Therefore we proceed by first showing
that the term NmRω

N
log z in (3.10) is harmless in the limit as z ↑ 1.

LEMMA 3.2. Sque(β;1−) = Sque(β;1) for all β ∈ [0,∞).

PROOF. Since Sque(β;1−) ≤ Sque(β;1), we need only prove the reverse in-
equality. The idea is to show that, for any Q ∈ P inv(ẼN) and in the limit as
N → ∞, Rω

N can be arbitrarily close to Q with probability ≈ exp[−NI que(Q)]
while mRω

N
remains bounded by a large constant. Therefore, letting N → ∞ fol-

lowed by z ↑ 1, we can remove the term NmRω
N

log z in (3.10). The details are
given in Appendix B. �

Combining Lemma 3.2 with (3.13) and (3.14), we obtain (1.15). �
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3.3. Proof of (1.15) for μ0 satisfying (1.3). The proof stays the same up
to (3.13). Henceforth write C = C(μ0) to exhibit the fact that the set C in (1.13)
depends on μ0 via its support E in (1.12), and define

A(β) := sup
Q∈C(μ0)

[β�(Q) − I que(Q)],(3.16)

which replaces the right-hand side of (3.15). We will show the following.

LEMMA 3.3. Sque(β;1−) = A(β) for all β ∈ (0,∞).

PROOF. The proof of the lemma is accomplished in four steps. Along the way
we use three technical lemmas, the proof of which is deferred to Section 3.4. Our
starting point is the validity of the claim for μ0 with finite support obtained in
Lemma 3.2. (Note that |E| < ∞ implies C = C(μ0) = P inv(ẼN).)

Step 1: Sque(β;1−) ≤ A(β) for all β ∈ (0,∞) when μ0 satisfies (1.3).

PROOF. We have Sque(β;1−) ≤ Sque(β;1). We will show that Sque(β;1) ≤
A(pβ)/p for all p > 1. Taking p ↓ 1 and using the continuity of A, proven in
Lemma 3.4 below, we get the claim.

For M > 0, let

�M(Q) :=
∫
E
(x ∧M)d(π1,1Q)(x).(3.17)

Then, for any p,q > 1 such that p−1 + q−1 = 1, we have

E
(
eNβ�(Rω

N)) = E
(
eβ

∑N
i=1 c(yi)1{c(yi )≤M}eβ

∑N
i=1 c(yi )1{c(yi )>M})

≤ [
E
(
epβ

∑N
i=1 c(yi )1{c(yi )≤M})]1/p[E(

eqβ
∑N

i=1 c(yi)1{c(yi )>M})]1/q(3.18)

≤ [
E
(
eNpβ�M(Rω

N))]1/p[E(
eqβ

∑N
i=1 c(yi)1{c(yi )>M})]1/q

,

where y1, . . . , yN are the N words determining Rω
N and c(yi) is the first letter of

the ith word. Hence
1

N
log E

(
eNβ�(Rω

N)) ≤ 1

p

1

N
log E

(
eNpβ�M(Rω

N))
(3.19)

+ 1

q

1

N
log E

(
eqβ

∑N
i=1 c(yi)1{c(yi )>M}).

Since Q �→ �M(Q) is upper semicontinuous, Varadhan’s lemma gives

lim sup
N→∞

1

N
log E

(
eNpβ�M(Rω

N))≤ sup
Q∈P inv(ẼN)

[pβ�M(Q) − I que(Q)].(3.20)

Clearly, Q’s with
∫
E(x ∧ 0)d(π1,1Q)(x) = −∞ do not contribute to the supre-

mum. Also, Q’s with
∫
E(x ∨ 0)d(π1,1Q)(x) = ∞ do not contribute, because for
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such Q we have I que(Q) = ∞, by Lemma 3.5 below, and �M(Q) < ∞. Since
�M ≤ �, we therefore have

sup
Q∈P inv(ẼN)

[pβ�M(Q) − I que(Q)] ≤ sup
Q∈C(μ0)

[pβ�(Q) − I que(Q)]
(3.21)

= A(pβ).

Next, we use the following observation. For any sequence � = (�N)N∈N of
positive random variables on a space with probability measure P, we have

lim sup
N→∞

1

N
log�N ≤ lim sup

N→∞
1

N
log E(�N) P-a.s.,(3.22)

by the first Borel–Cantelli lemma. Applying this to

�N := E
(
eqβ

∑N
i=1 c(yi )1{c(yi )>M})(3.23)

with E(�N) =
(∫

E
eqβx1{x>M} dμ0(x)

)N

=: (cM)N,

we get, after letting N →∞ in (3.19),

Sque(β;1) ≤ 1

p
A(pβ) + 1

q
log cM.(3.24)

By (1.3), we have cM < ∞ for all M > 0 and limM→∞ cM = 1. Hence
Sque(β;1) ≤ A(pβ)/p. �

Step 2: Sque(β;1−) ≥ A(β) for all β ∈ (0,∞) when μ0 has bounded support.

PROOF. In the estimates below, we abbreviate

Lω
N := NmRω

N
,(3.25)

the sum of the lengths of the first N words. The proof is based on a discretization
argument similar to the one used in [6], Section 8. For δ > 0 and x ∈ E, let 〈x〉δ :=
sup{kδ :k ∈ Z, kδ ≤ x}. The operation 〈·〉 extends to measures on E, Ẽ and ẼN in
the obvious way. Now, 〈Rω

N 〉δ satisfies the quenched LDP with rate function I
que
δ ,

the quenched rate function corresponding to the measure 〈μ0〉δ . Clearly,

E
(
eLω

N log z+Nβ�(Rω
N))≥ E

(
eLω

N log z+Nβ�(〈Rω
N 〉δ)),(3.26)

and so, by the results in Section 3.2, we have

Sque(β;1−) ≥ sup
Q∈C(〈μ0〉δ)

[β�(Q) − I
que
δ (Q)].(3.27)

For every Q ∈ C(μ0), we have

�(Q) = lim
δ↓0

�(〈Q〉δ), I que(Q) = lim
n→∞ I

que
δn

(〈Q〉δn),(3.28)
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where δn = 2−n. The first relation holds because �(〈Q〉δ) ≤ �(Q) ≤ �(〈Q〉δ)+δ,
the second relation uses Lemma 3.6(i) below. Hence the claim follows by picking
δ = δn in (3.27) and letting n →∞. �

Step 3: Sque(β;1−) ≥ A(β) for all β ∈ (0,∞) when μ0 satisfies (1.3) with
support bounded from below.

PROOF. For M > 0 and x ∈ E, let xM = x ∧ M . This truncation operation
acts on μ0 by moving the mass in (M,∞) to M , resulting in a measure μM

0 with

bounded support and with associated quenched rate function I que,M . Let R
ω,M
N be

the empirical process of N -tuples of words obtained from Rω
N defined in (2.4) after

replacing each letter x ∈ E by xM . We have

E
(
eLω

N log z+Nβ�(Rω
N))≥ E

(
eLω

N log z+Nβ�(R
ω,M
N )).(3.29)

Combined with the result in Step 2, this bound implies that

S(β;1−) ≥ sup
Q′∈C(μM

0 )

[β�(Q′)− I que,M(Q′)].(3.30)

For every Q ∈ C(μ0), we have

�(Q) = lim
M→∞�(QM) = lim

M→∞

∫
E
(x ∧M)d(π1,1Q)(x),

(3.31)
I que(Q) = lim

M→∞ I que,M(QM).

The first relation holds by dominated convergence, and the second relation uses
Lemma 3.6(ii) below. It follows from (3.31) that

lim sup
M→∞

sup
Q′∈C(μM

0 )

[β�(Q′)− I que,M(Q′)] ≥ β�(Q) − I que(Q)

(3.32)
∀Q ∈ C(μ0),

which combined with (3.30) yields

S(β;1−) ≥ β�(Q) − I que(Q) ∀Q ∈ C(μ0).(3.33)

Take the supremum over Q ∈ C(μ0) to get the claim. �

Step 4: Sque(β;1−) ≥ A(β) for all β ∈ (0,∞) when μ0 satisfies (1.3).

PROOF. For M > 0 and x ∈ E, let x−M = x ∨ (−M). This truncation opera-
tion acts on μ0 by moving the mass in (−∞,−M) to −M , resulting in a measure
μ−M

0 with support bounded from below and with associated quenched rate func-

tion I que,−M . Let R
ω,−M
N be the empirical process of N -tuples of words obtained

from Rω
N defined in (2.4) after replacing each letter x ∈ E by x−M .
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As in Step 1, for any p,q > 1 such that p−1 + q−1 = 1, we have

E
(
eLω

N log z+Nβ�(R
ω,−M
N ))

≤ E
(
eLω

N log z+Nβ�(Rω
N)e−β

∑N
i=1 c(yi )1{c(yi )<−M})(3.34)

≤ [
E
(
epLω

N log z+Npβ�(Rω
N))]1/p[E(

e−qβ
∑N

i=1 c(yi )1{c(yi )<−M})]1/q
,

and hence
1

N
log E

(
eLω

N log z+Nβ�(R
ω,−M
N ))

≤ 1

p

1

N
log E

(
epLω

N log z+Npβ�(Rω
N))(3.35)

+ 1

q

1

N
log E

(
e−qβ

∑N
i=1 c(yi )1{c(yi )<−M}).

Let N → ∞ followed by z ↑ 1. For the left-hand side, we have the lower bound
in Step 3, while the second term in the right-hand side can be handled as in (3.22–
3.24). Therefore, recalling (3.10) and writing p log z = log zp , we get

sup
Q∈C(μ−M

0 )

[β�(Q) − I que,−M(Q)] ≤ 1

p
Sque(pβ;1−)+ 1

q
logC−M

(3.36)
with C−M :=

∫
E

e−qβx1{x<−M} dμ0(x).

Letting M →∞ and using that limM→∞ C−M = 1 by (1.3), we arrive at
1

p
Sque(pβ,1−) ≥ lim sup

M→∞
sup

Q∈C(μ−M
0 )

[β�(Q) − I que,−M(Q)] ≥ A(β),(3.37)

where the last inequality is obtained via arguments similar to those follow-
ing (3.30), which require the use of Lemma 3.6(iii) below. Finally, let p ↓ 1, and
use the continuity of β �→ S(β;1−), proven in Lemma 3.4 below. �

This completes the proof of Lemma 3.3 and hence of Theorem 1.4. �

3.4. Technical lemmas. In the proof of Lemma 3.3 we used three technical
lemmas, which we prove in this section.

LEMMA 3.4. β �→ A(β) and β �→ Sque(β;1−) are finite and convex on
[0,∞) and, consequently, are continuous on (0,∞).

PROOF. For the first function, note that A(β) ≤ supQ∈C(μ0)
[β�(Q) −

I ann(Q)] ≤ logM(β) < ∞ by (1.3) and (3.1), and convexity follows from the
fact that A is a supremum of linear functions. For the second function, note that
Sque(β;1−) ≤ Sque(β;1) = A(β), and convexity follows from Hölder’s inequal-
ity. �
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LEMMA 3.5. If μ,ν ∈ P(R) satisfy h(μ|ν) < ∞ and
∫
E eλx dν(x) < ∞ for

some λ > 0, then
∫
E(x ∨ 0)dμ(x) < ∞.

PROOF. The claim follows from the inequality∫
E

f dμ ≤ h(μ|ν)+ log
∫
E

ef dν,(3.38)

which is valid for all bounded and measurable f (see Dembo and Zeitouni [7],
Lemma 6.2.13) and, by monotone convergence, extends to measurable f ≥ 0. Pick
f (x) = λ(x ∨ 0), x ∈ E. �

LEMMA 3.6. For every Q ∈ P inv(ẼN):

(i) limn→∞ I
que
δn

(〈Q〉δn) = I que(Q) with δn := 2−n;
(ii) limM→∞ I que,M(QM) = I que(Q);

(iii) limM→∞ I que,−M(Q−M) = I que(Q).

PROOF. (i) The proof proceeds by choosing an appropriate function I :
[0,1]→ R and proving that:

(a) I (0) = lim
δ↓0

I (δ);
(b) I (0) ≥ I (δ1) ≥ I (δ2)(3.39)

whenever δ2 = kδ1 ∈ (0,1) for some k ∈ N.

Recalling (2.10) and (2.11), we see that we need the following choices for I :

(1) I (δ) =
{

N−1h(〈πNQ〉δ|〈πNq⊗N

0 〉δ), δ > 0,

N−1h(πNQ|πNq⊗N

0 ), δ = 0,

(2) I (δ) =
{

H(〈Q〉δ|〈q⊗N

0 〉δ), δ > 0,

H(Q|q⊗N

0 ), δ = 0,
(3.40)

(3) I (δ) =
{

N−1h(〈πN�Q〉δ|〈πNμ
⊗N0
0 〉δ), δ > 0,

N−1h(πN�Q|πNμ
⊗N0
0 ), δ = 0,

(4) I (δ) =
{

H(〈�Q〉δ|〈μ⊗N0
0 〉δ), δ > 0,

H(�Q|μ⊗N0
0 ), δ = 0,

with N ∈ N. It is clear from the definition of specific relative entropy [recall 2.5)]
that if (a) and (b) hold for the choices (1) and (3), then they also hold for the
choices (2) and (4), respectively. We will not actually prove (a) and (b) for the
choices (1) and (3), but for the simpler choice

I (δ) =
{

h(〈μ〉δ|〈μ0〉δ), δ > 0,

h(μ|μ0), δ = 0.
(3.41)
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The proof will make it evident how to properly deal with (1) and (3).
Let B(R) be the set of real-valued, bounded and Borel measurable functions

on R and, for φ ∈ B(R) and δ > 0, let φδ be the function defined by φδ(x) :=
φ(〈x〉δ). As shown in Dembo and Zeitouni [7], Lemma 6.2.13, we have

h(〈μ〉δ|〈μ0〉δ) = sup
φ∈B(R)

{∫
R

φ d〈μ〉δ − log
∫

R

eφ d〈μ0〉δ
}

(3.42)

= sup
φ∈B(R)

{∫
R

φδ dμ− log
∫

R

eφδ dμ0

}
.

From this representation, property (b) follows for the choice in (3.41). Next, fix
any ε > 0 and take a φ such that

∫
R

φ dμ − log
∫
R

eφ dμ0 ≥ h(μ|μ0) − ε. Then,
since φδ converges pointwise to φ as δ ↓ 0, the bounded convergence theorem
together with (3.42) give

lim inf
δ↓0

h(〈μ〉δ|〈μ0〉δ) ≥ h(μ|μ0) − ε.(3.43)

Hence lim infδ↓0 I (δ) ≥ I (0) − ε. Since I (0) ≥ I (δ), property (a) follows after
letting ε ↓ 0.

Having thus convinced ourselves that (3.39) and (3.40) are true, we now know
that for any Q ∈ P inv(ẼN) the sequences

H(〈Q〉δn |〈q⊗N

0 〉δn), H(〈�Q〉δn |〈μ⊗N0
0 〉δn), n ∈ N,(3.44)

are increasing and converge to H(Q|q⊗N

0 ), respectively, H(�Q|μ⊗N0
0 ). This im-

plies the claim for Q with mQ < ∞ [recall (2.11)]. For Q with mQ = ∞ we use
that I que(Q) = suptr∈N I ([Q]tr) [recall (2.12)], to conclude that I

que
δn

(〈Q〉δn) is in-
creasing and converges to I que(Q).

(ii)–(iii) The proof is similar as for (i). �

4. Characterization of disorder relevance: Proof of Theorem 1.5.

PROOF. We will need the following lemma, the proof of which is postponed.

LEMMA 4.1. The supremum supQ∈C[β�(Q) − I que(Q)] is attained for all
β ∈ (0,∞).

Let Q∗ be a measure achieving the supremum in Lemma 4.1. Suppose that
h

que
c (β) = hann

c (β). Then

hque
c (β) = β�(Q∗)− I que(Q∗) ≤ β�(Q∗) − I ann(Q∗)

(4.1)
≤ β�(Qβ)− I ann(Qβ) = hann

c (β) = hque
c (β),

where the second equality uses that Qβ achieves the supremum in (1.16) [with
I ann(Qβ) < ∞], as shown by (3.1). It follows that both inequalities in (4.1) are
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equalities. However, since Qβ uniquely achieves the supremum in (1.16), we must
have Q∗ = Qβ and therefore I que(Qβ) = I ann(Qβ).

Conversely, suppose that I que(Qβ) = I ann(Qβ). Then

hque
c (β) ≥ [β�(Qβ)− I que(Qβ)] = [β�(Qβ) − I ann(Qβ)] = hann

c (β).(4.2)

Since h
que
c (β) ≤ hann

c (β), this proves that h
que
c (β) = hann

c (β). �

We now give the proof of Lemma 4.1.

PROOF. The proof is accomplished in three steps. The claims in Steps 1 and 2
are obvious when the support of μ0 is bounded from above, because then � is
bounded from above and upper semicontinuous. Thus, for these steps we may
assume that the support of μ0 is unbounded from above.

Step 1: The supremum can be restricted to the set C ∩{Q ∈ P inv(ẼN) : I que(Q) ≤
γ } for some γ < ∞.

PROOF. We first prove that

lim
a→∞ sup

Q∈C
�(Q)=a

[β�(Q) − I que(Q)] = −∞.(4.3)

To that end we estimate, for a ∈ (0,∞),

sup
Q∈C

�(Q)=a

[β�(Q) − I que(Q)] ≤ sup
Q∈C

�(Q)=a

[βa − h(π1,1Q|μ0)]

(4.4)
= sup

μ∈P(E)∫
E |x|dμ(x)<∞,

∫
E x dμ(x)=a

[βa − h(μ|μ0)],

where we use that I que(Q) ≥ I ann(Q) = H(Q|Q0) ≥ h(π1,1Q|μ0). The last
supremum is achieved by a measure μλ of the form dμλ(x) = M(λ)−1eλx dμ0(x),
x ∈ E, with λ such that

∫
E x dμλ(x) = a [recall (1.17)]. To see why, first note that

such a λ = λ(a) exists because (λ �→ ∫
E x dμλ(x)) is continuous with value 0 at

λ = 0 and limλ→∞
∫
E x dμλ(x) = sup[supp(μ0)] = w, where w =∞ by assump-

tion. Next note that, for any other measure μ with
∫
E x dμ(x) = a, we have

h(μ|μλ) = h(μ|μ0) − λa + logM(λ) = h(μ|μ0) − h(μλ|μ0),(4.5)

which shows that h(μ|μ0) ≥ h(μλ|μ0) with equality if and only if μ = μλ. Con-
sequently,

sup
μ∈P(E)∫

E |x|dμ(x)<∞,
∫
E x dμ(x)=a

[βa − h(μ|μ0)] = β

∫
E

x dμλ(x) − h(μλ|μ0)

(4.6)
=: g(λ).
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Clearly, a →∞ implies λ = λ(a) →∞, and so to prove (4.3) we must show that
limλ→∞ g(λ) =−∞.

To achieve the latter, note that a lower bound on h(μλ|μ0) is obtained by apply-
ing (3.38) to f (x) := β̄(x ∨ 0) for some β̄ > β . This yields

g(λ) ≤−(β̄ − β)

∫
E

x dμλ(x) + log[M(β̄) + 1].(4.7)

The integral in the right-hand side tends to infinity as λ →∞, and so (4.3) indeed
follows.

Finally, recall the definition of A(β) in (3.16), which is finite because of
Lemma 3.4. Then, by (4.3), there is an a0 < ∞ such that

sup
Q∈C

�(Q)=a

[β�(Q) − I que(Q)] ≤ A(β) − 1 ∀a ≥ a0,(4.8)

and so all Q ∈ C with β�(Q) − I que(Q) > A(β) − 1 must satisfy �(Q) < a0
and I que(Q) < β�(Q) + 1 − A(β) ≤ βa0 + 1 − A(β) =: γ . Consequently, the
supremum can be restricted to the set C ∩ {Q ∈ P inv(ẼN) : I que(Q) ≤ γ }. �

Step 2: � is upper semicontinuous on {Q ∈ P inv(ẼN) : I que(Q) ≤ γ } for every
γ > 0.

PROOF. From the definition of � and the inequality h(π1,1Q|μ0) ≤
I que(Q) ≤ γ , it follows that it is enough to show that the map μ �→ �(μ) :=∫
E(5.16), (x∨0)dμ(x) is upper semicontinuous on Kγ := {μ ∈ P(E) :h(μ|μ0) ≤

γ }. To do so, let (μM)M∈N be a sequence in Kγ converging to μ weakly as
M →∞. Then

�(μM) =
∫
E
[(x ∨ 0) ∧ n]dμM(x) +

∫
E

x1{x>n} dμM(x),(4.9)

and so

lim sup
M→∞

�(μM) ≤
∫
E
[(x ∨ 0) ∧ n]dμ(x)

(4.10)
+ sup

M∈N

∫
E

x1{x>n} dμM(x) ∀n ∈ N.

By the inequality in (3.38), we have

λ

∫
E

x1{x>n} dμM(x) ≤ h(μM |μ0) + log
∫
E

eλx1{x>n} dμ0(x)

(4.11)
∀M,n ∈ N, λ > 0,

and so

sup
M∈N

∫
E

x1{x>n} dμM(x) ≤ γ

λ
+ 1

λ
log

∫
E

eλx1{x>n} dμ0(x).(4.12)
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By (1.3), the limit as n → ∞ of the right-hand side is γ /λ. Since λ > 0 is
arbitrary, we conclude that the limit as n → ∞ of the left-hand side is zero.
Letting n → ∞ in (4.10) and using monotone convergence, we therefore get
lim supM→∞ �(μM) ≤ �(μ), as required. �

Step 3: Let �(Q) := β�(Q)− I que(Q). Then, by Step 1, we have that for some
γ > 0,

sup
Q∈C

�(Q) = sup
Q∈C

I que(Q)≤γ

�(Q) ≤ sup
Q∈P inv(ẼN)

I que(Q)≤γ

�(Q).(4.13)

By Theorem 2.2, I que is lower semicontinuous. Hence, by Step 2, β� − I que is
upper semicontinuous on the compact set {Q ∈ P inv(ẼN) : I que(Q) ≤ γ }, achiev-
ing its supremum at some Q∗. Let μ∗ := π1,1Q

∗. Then, by (1.3), the inequality
in (3.38) gives ∫

E
(x ∨ 0)dμ∗(x) ≤ γ + log

∫
E

ex dμ0(x) < ∞,(4.14)

and, since �(Q∗) > −∞, we also have
∫
E(x ∧ 0)dμ∗(x) > −∞, so that Q∗ ∈ C .

Hence

sup
Q∈C

�(Q) = sup
Q∈P inv(ẼN)

I que(Q)≤γ

�(Q) = �(Q∗),(4.15)

which completes the proof. �

5. Reformulation of the criterion for disorder relevance. Note that,
by (2.10) and (2.12), for α > 0, the necessary and sufficient condition for rele-
vance, I que(Qβ) > I ann(Qβ), in Theorem 1.5 translates into

lim
tr→∞m[Qβ ]trH

(
�[Qβ ]tr |μ⊗N0

0

)
> 0.(5.1)

In Lemma 5.3 below, we give two alternative expressions for the specific relative
entropy appearing in (5.1). These expressions will be needed in Sections 6 and 7.

I. Asymptotic mean stationarity. In what follows we will make use of the notion
of asymptotic mean stationarity (see Gray [16], Section 1.7). Let A be a topologi-
cal space and equip AN0 with the product topology. A measure P on AN0 is called
asymptotically mean stationary if for every Borel measurable G ⊂ AN0 ,

P(G) := lim
n→∞

1

n

n−1∑
k=0

P(θ−kG) exists.(5.2)
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As in Section 2, θ denotes the left-shift acting on AN0 . If P is asymptotically mean
stationary, then P is a stationary measure, called the stationary mean of P .

For Q ∈ P inv(ẼN), recall from Section 2.1 that κ(Q) ∈ P(EN0) is the proba-
bility measure induced by the concatenation map κ : ẼN → EN0 that glues a se-
quence of words into a sequence of letters, that is, κ(Q) = Q ◦ κ−1. Our aim
is to replace �Q in (5.1) by κ(Q), which is not stationary but more conve-
nient to work with. These two probability measures are related in the following
way.

LEMMA 5.1. If mQ < ∞, then κ(Q) is asymptotically mean stationary with
stationary mean κ(Q) = �Q.

PROOF. Let X := κ(Y ) ∈ EN0 , where Y is distributed according to Q. Let I

denote the set of indices i ∈ N0 where a new word starts (0 ∈ I ). For i ∈ N0, let
ri := inf{j ∈ N : i − j ∈ I }, that is, the distance from i to the beginning of the word
it belongs to. For j ∈ I , let Lj denote the length of the word that starts at j . Then,
for any G ⊂ EN0 Borel measurable, we have

n−1∑
i=0

κ(Q)(θ iX ∈ G) =
n−1∑
i=0

i∑
k=0

Q(θiX ∈ G,ri = k)

(5.3)

=
n−1∑
k=0

n−1∑
i=k

Q(θiX ∈ G,ri = k).

Next, note that

Q(θiX ∈ G,ri = k)

= Q(θiX ∈ G, i − k ∈ I,Li−k > k)
(5.4)

= Q(θiX ∈ G,Li−k > k|i − k ∈ I )Q(i − k ∈ I )

= Q(θkX ∈ G,L0 > k)Q(i − k ∈ I ).

Hence, dividing the sum in (5.3) by n, we get

1

n

n−1∑
i=0

κ(Q)(θ iX ∈ G) =
n−1∑
k=0

Q(θkX ∈ G,L0 > k)fk,n,(5.5)

where we abbreviate fk,n := n−1 ∑n−k−1
j=0 Q(j ∈ I ). By the renewal theorem,

limn→∞ fk,n = 1/mQ for k fixed. Since

∞∑
k=0

Q(L0 > k) = mQ < ∞,(5.6)
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we can apply the bounded convergence theorem, and conclude that

κ(Q)(G) = 1

mQ

∞∑
k=0

Q(θkX ∈ G,L0 > k)

= 1

mQ

∞∑
k=0

∞∑
j=k+1

Q(θkX ∈ G,L0 = j)(5.7)

= 1

mQ

∞∑
j=1

j−1∑
k=0

Q(θkX ∈ G,L0 = j) = �Q(G).

The last equality is simply the definition of �Q in (2.7). �

To complement Lemma 5.1, we need the following fact stated in Birkner [5],
Remark 5, where ergodicity refers to the left-shifts acting on ẼN and EN.

LEMMA 5.2. If Q ∈ P inv(ẼN) is ergodic and mQ < ∞, then �Q ∈ P inv(EN)

is ergodic.

An asymptotic mean stationary measure can be interchanged with its station-
ary mean in several situations (see Gray [15], Chapter 6), for example, in relative
entropy computations, as in Lemma 5.3 below. Before stating this lemma, we use
an extension of the notion of specific relative entropy to measures that are not
necessarily stationary. More precisely, for two measures P and Q on a product
space AN, we define the specific relative entropy of P w.r.t. Q as

H(P|Q) := lim sup
n→∞

1

n
h(πnP|πnQ),(5.8)

where πn is the projection onto the first n coordinates. For Q ∈ P inv(ẼN), we
introduce the following Radon–Nikodym derivative:

fn(x) := dπnκ(Q)

dμ⊗n
0

(x), x ∈ EN0 .(5.9)

With this notation, the main result of this section is the following.

LEMMA 5.3. For Q ∈ P inv(ẼN) ergodic with mQ < ∞,

H(�Q|μ⊗N0
0 ) = H(κ(Q)|μ⊗N0

0 ),(5.10)

= lim
n→∞

1

n
logfn(x) for κ(Q)-a.s. all x ∈ EN0 .(5.11)

The first equality holds also without the assumption of ergodicity.
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PROOF. The first equality follows from Gray [16], Corollary 7.5.1, last equal-
ity in equation (7.32), which does not need the assumption of ergodicity. For the
proof of the other equality, define

f̄n(x) := dπn�Q

dμ⊗n
0

(x).(5.12)

Since �Q is stationary and ergodic (Lemma 5.2), Gray [16], Theorem 8.2.1, ap-

plied to the pair �Q, μ
⊗N0
0 gives that

lim
n→∞

1

n
log f̄n(x) = H(�Q|μ⊗N0

0 )(5.13)

for �Q almost all x. But �Q is the stationary mean of κ(Q) (Lemma 5.1), so that
Gray [16], Theorem 8.4.1, combined with (5.13) gives

lim
n→∞

1

n
logfn(x) = H(�Q|μ⊗N0

0 )(5.14)

for κ(Q) almost all x. �

II. Alternative formulation. We will apply Lemma 5.3 to the measure [Qβ]tr,
which is ergodic, being a product measure. The word length distribution of it is

K tr(n) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
K(n), if 1 ≤ n ≤ tr−1,
∞∑

m=tr
K(m), if n = tr,

0, if n > tr .

(5.15)

For [Qβ]tr, the function fn in (5.9) becomes

fn(x) = EK tr

(
n−1∏
k=0

(
eβxk

M(β)

)1{Sk=0}
)
= EK tr

(
e
∑n−1

k=0{βxk−logM(β)}1{Sk=0}),(5.16)

where EK tr denotes expectation with respect to law of the Markov chain S with
renewal time distribution K tr starting from 0. This follows from the definition
of Qβ and (1.17). To emphasize the fact that in the last expression the sequence
x ∈ EN0 is picked from κ([Qβ]tr), we take two independent sequences

(xk)k∈N0, (x̂k)k∈N0 drawn from μ
⊗N0
0 and μ

⊗N0
β , respectively,(5.17)

and an independent copy S′ of S. Let I := {i ≥ 0 : Si = 0}, I ′ := {i ≥ 0 : S′
i = 0}.

Then

H
(
�[Qβ ]tr |μ⊗N0

0

)
(5.18)

= lim
n→∞

1

n
log EK tr

[
e
∑n−1

k=0[βxk1{k /∈I ′}+βx̂k1{k∈I ′}−logM(β)]1{k∈I }].
Note the appearance of two renewal sets I, I ′, which are the key to understanding
the issue of relevant vs. irrelevant disorder; recall Remark 1.18.
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6. Monotonicity of disorder relevance: Proof of Theorem 1.6.

PROOF. In view of (5.10) in Lemma 5.3, the condition for relevance in (5.1)
becomes

lim
tr→∞m[Qβ ]trH(κ([Qβ]tr)|μ⊗N0

0 ) > 0.(6.1)

We will show that β �→ H(κ([Qβ]tr)|μ⊗N0
0 ) is nondecreasing for every tr ∈ N,

which will imply the claim because m[Qβ ]tr = mK tr does not depend on β . It will be
enough to show that β �→ h(πnκ([Qβ]tr)|μ⊗n

0 ) is nondecreasing for all tr, n ∈ N.
Fix tr, n ∈ N. For β ∈ [0,∞) and x̄ = (x0, x1, . . . , xn−1) ∈ En, let

k(β, x̄) := dπnκ([Qβ]tr)
dμn

0
(x̄) = EK tr

( ∏
k∈Jn

eβxk

M(β)

)
,(6.2)

with Jn := {0 ≤ k < n :Sk = 0} the set of renewal times prior to time n for the
chain S that has renewal time distribution K tr, to which we add 0 for convenience.
Our goal is to prove that

β �→ f (β) :=
∫

Rn
[k(β, x̄) log k(β, x̄)]dμ⊗n

0 (x̄) = h(πnκ([Qβ]tr)|μ⊗n
0 )(6.3)

is nondecreasing on [0,∞). We will do this by proving a stronger property.
Namely, for β̄ = (β0, β1, . . . , βn−1) ∈ [0,∞)n and x̄ ∈ En, let

k(β̄, x̄) := EK tr

( ∏
k∈Jn

eβkxk

M(βk)

)
.(6.4)

We will show that

β̄ �→ f (β̄) :=
∫

Rn
[k(β̄, x̄) logk(β̄, x̄)]dμ⊗n

0 (x̄)(6.5)

is nondecreasing on [0,∞)n in each of its arguments.
We will prove monotonicity w.r.t. β1 only. The argument is the same for the

other variables, with one simplification for β0; namely, we may drop the corre-
sponding indicator 1{0∈Jn} in the third line of (6.6) and in (6.8). First, using that∫

k(β̄, x̄)dμ⊗n
0 (x̄) = 1 for all β̄ , we compute

∂β1f (β̄)

=
∫

Rn
∂β1[k(β̄, x̄) log k(β̄, x̄)]dμ⊗n

0 (x̄)

(6.6)
=

∫
Rn

∂β1[k(β̄, x̄)] log k(β̄, x̄)dμ⊗n
0 (x̄)

=
∫

Rn
∂β1

(
eβ1x1

M(β1)

)
EK tr

(
1{1∈Jn}

∏
k∈Jn\{1}

eβkxk

M(βk)

)
log k(β̄, x̄)dμ⊗n

0 (x̄).
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Next, we note that

∂β1

(
eβ1x1

M(β1)

)
dμ0(x1) = eβ1x1x1M(β1)− eβ1x1M ′(β1)

M(β1)2 dμ0(x1)

=
(
x1 − M ′(β1)

M(β1)

)
eβ1x1

M(β1)
dμ0(x1)(6.7)

= (x1 −Eβ1)dμβ1(x1),

where Eβ1 := M ′(β1)/M(β1) = ∫
x1 dμβ1(x1). Now, let x̄1 be x̄ without x1, and

abbreviate

A(x1; x̄1) := EK tr

( ∏
k∈Jn\{1}

eβkxk

M(βk)
1{1∈Jn}

)
log k(β̄, x̄).(6.8)

Then, for fixed x̄1, the integral over x1 in (6.6) equals∫
Rn

(x1 − Eβ1)A(x1; x̄1)dμβ1(x1)

(6.9)
≥

∫
Rn

(x1 −Eβ1)dμβ1(x1)

∫
Rn

A(x1; x̄1)dμβ1(x1) = 0,

where the inequality holds because both x1 �→ x1 − Eβ1 and x1 �→ A(x1; x̄1)

are nondecreasing [for the latter we need that β1 ∈ [0,∞)]. It therefore follows
from (6.6), after integrating over x̄1 as well, that ∂β1f (β̄) ≥ 0. �

7. Disorder irrelevance: Proof of Corollaries 1.7 and 1.8(i).

7.1. Proof of Corollary 1.7.

PROOF. This is immediate from Theorem 1.5 and the fact that I que = I ann

when α = 0. The latter was already noted at the end of Section 2. �

7.2. Proof of Corollary 1.8(i).

PROOF. We will show disorder irrelevance for all β that satisfy M(2β)/

M(β)2 < 1 + χ−1. To show that for such β the limit in (5.1) is zero, we use
an annealed bound on H(�[Qβ ]tr |μ⊗N0

0 ) based on the expression (5.11) for it. We
bound the limit in the right-hand side of that formula, using (3.22) with the role of
�n played by

fn(x) = dπnκ([Qβ]tr)
dμ⊗n

0

(x), x ∈ EN0 .(7.1)

This satisfies

Eκ([Qβ ]tr)(fn(x)) = Eμ⊗n
0

(fn(x)fn(x)),(7.2)
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because fn(x) depends on the first n coordinates of x only, and the Radon–
Nikodym derivative of πnκ([Qβ]tr) with respect to μ⊗n

0 is fn. Using (5.16), we
write the last expectation as

Eμ⊗n
0

(fn(x)fn(x))

= Eμ⊗n
0

(
(EK tr × EK tr)

(
n−1∏
k=0

(
eβxk

M(β)

)1{Sk=0} n−1∏
l=0

(
eβxl

M(β)

)1{S′
l
=0}

))
(7.3)

= (EK tr × EK tr)

(
Eμ⊗n

0

(
n−1∏
k=0

(
eβxk

M(β)

)1{Sk=0} n−1∏
l=0

(
eβxl

M(β)

)1{S′
l
=0}

))

= (EK tr × EK tr)
(
�(β)

∑n−1
k=0 1{Sk=S′

k
=0}),

where EK tr × EK tr is the expectation with respect to two independent copies S,S′
of the Markov chain starting from 0 with renewal time distribution K tr , and

�(β) := M(2β)

M(β)2 .(7.4)

If we now let

f tr
2 (λ) := lim

n→∞
1

n
log(EK tr × EK tr)

(
e
λ
∑n−1

k=0 1{Sk=S′
k
=0}),(7.5)

then (5.11), (3.22) and (7.1)–(7.5) imply that

H
(
�[Qβ ]tr |μ⊗N0

0

)≤ f tr
2 (log�(β)), β ∈ [0,∞), tr ∈ N.(7.6)

Combining this bound with the condition for relevance in (5.1), we see that to
prove irrelevance it suffices to show that

lim
tr→∞m[Qβ ]trf tr

2 (log�(β)) = 0.(7.7)

By (A.2) in Appendix A, we have

f2(λ) = 0 ⇐⇒ λ ≤ λ0 := − log P(I ∩ I ′ �= ∅),(7.8)

where I, I ′ are the sets of renewal times for S,S′ without truncation, and f2(λ)

as defined in Appendix A. By Lemma A.1, if λ < λ0, then suptr∈N trf tr
2 (λ) < ∞.

Since limtr→∞ m[Qβ ]tr/ tr = 0 always, (7.7) holds as soon as log�(β) < λ0, that
is, �(β) < 1/P(I ∩ I ′ �= ∅). Now the claim of the corollary follows because P(I ∩
I ′ �= ∅) = χ/(χ +1) (see Spitzer [19], Section 1), with χ as defined in (1.21), and
with the convention that the last ratio is 1 if χ =∞. �
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8. Disorder relevance: Proof of Corollary 1.8(ii).

PROOF. We restrict the expectation in (5.18) to the set

An := {
(Sk)

n
k=0 : I ∩ {1, . . . , n} = I ′ ∩ {1, . . . , n}},(8.1)

that is, S follows I ′ and collects only the tilted charges x̂k defined in (5.17). This
gives for the expectation the lower bound

exp

[
n−1∑
k=0

[βx̂k − logM(β)]1{k∈I ′}
]

P(An).(8.2)

Let kn := |I ∩{1, . . . , n}|, τ ′
0 = 0 and τ ′

1 < · · · < τ ′
kn

the elements of I ′ ∩{1, . . . , n}.
By the renewal theorem, we have kn/n → 1/mtr as n →∞. Moreover,

P(An) = P(τ1 > n− τ ′
kn

)

kn∏
i=1

K tr(τ ′
i − τ ′

i−1),(8.3)

so that

1

n
log P(An) = 1

n
log P(τ1 > n− τkn) +

kn

n

1

kn

kn∑
i=1

logK tr(τ ′
i − τ ′

i−1)

(8.4)

→ 1

mtr

tr∑
k=1

K tr(k) logK tr(k),

while

1

n

n−1∑
k=0

{βx̂k − logM(β)}1{k∈I ′} → 1

mtr
c(β)(8.5)

with

c(β) := βEμβ (x̂1)− logM(β) = β[logM(β)]′ − logM(β) = h(μβ |μ0).(8.6)

Hence

mtrH
(
�[Qβ ]tr |μ⊗N0

0

)≥ h(μβ |μ0)+
tr∑

k=0

K tr(k) logK tr(k),(8.7)

and

lim inf
tr→∞ m[Qβ ]trH(κ([Qβ]tr)|μ⊗N0

0 ) ≥ h(μβ |μ0) −H(K).(8.8)

Consequently, h(μβ |μ0) > H(K) is sufficient for disorder relevance. �

We close by proving the second part of (1.26).

lim
β→∞h(μβ |μ0) = log[1/μ0({w})].(8.9)
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We distinguish three different cases:
(1) w =∞. Apply (3.38) with μ = μβ , ν = μ0 and f (x) = x ∨ 0, to get

h(μβ |μ0) ≥
∫
E
(x ∨ 0)dμβ(x) − log[M(1)+ 1].(8.10)

The integral diverges as β →∞, and so (8.9) follows.
(2) μ0({w}) = 0 with w < ∞. Now μβ converges weakly as β → ∞ to δw ,

the point measure at w. Hence (8.9) follows by using the lower semicontinuity
of μ �→ h(μ|μ0) and the fact that h(δw|μ0) = ∞ because δw is not absolutely
continuous w.r.t. μ0.

(3) μ0({w}) > 0 with w < ∞. Define

fβ(x) := dμβ

dμ0
(x) = eβx

M(β)
, x ∈ E.(8.11)

This function satisfies

lim
β→∞fβ(x) = 0 for x < w,

lim
β→∞fβ(w) = 1/μ0({w}),(8.12)

fβ(x) ≤ 1/μ0({w}) < ∞ for x ≤ w.

Since t �→ t log t is increasing on [1,∞) and on (0,1] takes values in [−e−1,0],
we can apply the bounded convergence theorem to the integral

h(μβ |μ0) =
∫
E

fβ(x) logfβ(x)dμ0(x),(8.13)

to get (8.9).

APPENDIX A: STANDARD FACTS ABOUT THE HOMOPOLYMER

In this appendix we recall a few standard facts about the homopolymer. For
proofs we refer to Giacomin [11], Chapter 2, and den Hollander [8], Chapter 7.

The homopolymer has a path measure as in (1.4), but with exponent
λ
∑n−1

k=0 1{Sk=0}, λ ∈ [0,∞). For a given renewal time distribution K , it is known
that the free energy f (λ) is the unique solution of the equation

e−λ = ∑
n∈N

K(n)e−nf (λ)(A.1)

whenever a solution exists, otherwise f (λ) = 0. Clearly

f (λ) = 0 ⇐⇒ λ ≤− log P(I �= ∅),(A.2)

where I = {k ∈ N :Sk = 0} is the set of renewal times of S.
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Let S,S′ be two independent copies of the Markov chain starting form 0, with
renewal time distribution K , and with sets of renewal times I, I ′. Transience of the
joint renewal process I ∩ I ′ is equivalent to P(I ∩ I ′ �= ∅) < 1. In that case, let

λ0 := − log P(I ∩ I ′ �= ∅) > 0,(A.3)

and denote by f2(λ) and f tr
2 (λ) the free energy of the homopolymer whose un-

derlying Markov chain has renewal set I ∩ I ′ when the renewal times of S,S′ are
drawn from K , respectively, K tr defined in (5.15). Then limtr→∞ f tr

2 (λ) = f2(λ).
Note that f2(λ) = 0 if and only if λ ≤ λ0. This property does not hold for f tr

2 (λ),
but the following lemma shows that f tr

2 (λ) tends to zero fast as tr → ∞ when
λ < λ0.

LEMMA A.1. Suppose that P(I ∩ I ′ �= ∅) < 1. Then suptr∈N trf tr
2 (λ) < ∞

for all λ < λ0.

PROOF. As in the paragraph preceding the lemma, define I tr, I ′ tr, where
now the Markov chains S,S′ have renewal time distribution K tr. Let K2,K

tr
2 be

the renewal time distributions generating the sets I ∩ I ′, I tr ∩ I ′ tr respectively.
Put L2(n) := ∑n

k=1 K2(k) and Ltr
2 (n) := ∑n

k=1 K tr
2 (k). Then L2(∞) = e−λ0 and

Ltr
2 (∞) = 1 because the renewal process I tr ∩ I ′ tr is resurrent. Since K tr

2 (n) =
K2(n) for 1 ≤ n < tr, it follows from (A.1) that

e−λ =
tr−1∑
n=1

K2(n)e−nf tr
2 (λ) +

∞∑
n=tr

K tr
2 (n)e−nf tr

2 (λ)

(A.4)
≤ L2(tr−1)+ e− trf tr

2 (λ)[1 −L2(tr−1)],
where the equality holds because f tr

2 (λ) > 0 for λ > 0. Hence

trf tr
2 (λ) ≤ log

[
1 −L2(tr−1)

e−λ − L2(tr−1)

]
.(A.5)

The term between brackets tends to (1 − e−λ0)/(e−λ − e−λ0) as tr →∞, which is
finite for λ < λ0. �

The order of the phase transition for the homopolymer depends on the tail of K .
If K satisfies (1.24), then (see [11], Theorem 2.1, [8], Theorem 7.4)

f (λ) ∼ λ1/(1∧α)L∗(1/λ), λ ↓ 0,(A.6)

for some L∗, that is, strictly positive and slowly varying at infinity. Hence, the
phase transition is order 1 when α ∈ [1,∞) and order m ∈ N \ {1} when α ∈
[ 1
m

, 1
m−1). This shows that the value α = 1

2 is critical in view of the Harris criterion
mentioned in Remark 1.14.
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APPENDIX B: PROOF OF LEMMA 3.2

We borrow ideas from the proof of the lower bound of the LDP in Theorem 2.2
given in Birkner, Greven and den Hollander [6], Proposition 4.1. What follows is
a rewriting of the relevant parts of that proof, organized as Sections B.1–B.4. Our
setting is the same as their setting because the assumption throughout Section 3.2
is that E := supp[μ0] is finite.

We will prove that Sque(β;1) ≤ Sque(β;1−). Fix A < Sque(β;1). By (3.14)
and (2.12), there is a Q ∈ P inv(ẼN) with mQ < ∞ such that β�(Q) −
I que(Q) > A. Because � and I que are affine, we may assume without loss of
generality that Q is ergodic.

B.1. Step 1: Good sentences. For ε > 0, the set

Uε(Q) := {Q′ ∈ P inv(ẼN) :�(Q′) > �(Q) − ε}(B.1)

is open because � is continuous. Hence there is an M0 ∈ N large enough, a δ1 > 0
and a finite set A0 ⊂ ẼM0 such that

UM,δ1 := {Q′ ∈ P inv(ẼN) : |(πM0Q
′)(s)− fs | < 2δ1 ∀s ∈ A0} ⊂ Uε(Q),(B.2)

where we set fs := (πM0Q)(s) for s ∈ A0. Also, by (1.2), we can assume that

K(n) ≥ n−α−1−ε ∀n ≥ M0.(B.3)

By the ergodicity of Q, for every s ∈ A0 we have

lim
M→∞

1

M
|{0 ≤ j ≤ M −M0 :πM0(θ̃

jY ) = s}| = fs for Q-a.e. Y.(B.4)

Consequently, there is a large M and a finite set A ⊂ ẼM with

(πMQ)(A) ≥ 1 − ε(B.5)

such that∣∣∣∣ 1

M
|{0 ≤ j ≤ M −M0 :πM0(θ̃

j z) = s}| − fs

∣∣∣∣ < δ1 ∀s ∈ A0, z ∈ A.(B.6)

Moreover, we can assume for all z ∈ A the following relations, which are stated
in [6], equation (3.6), and are consequences of ergodicity, too:

|κ(z)| ∈ [M(mQ − ε),M(mQ + ε)],(B.7)

logQ
(
κ
(
Y (1), Y (2), . . . , Y (M)

)= κ(z)
)

(B.8)
∈ [−M

(
mQH(�Q)+ ε

)
,−M

(
mQH(�Q) − ε

)]
,

logQ
((

Y (1), Y (2), . . . , Y (M)
)= z

) ∈ [−M
(
H(Q) + ε

)
,−M

(
H(Q) − ε

)]
,(B.9)

|κ(z)|∑
i=1

logμ0((κ(z))i)− MmQE�Q
[logμ0(X1)] ∈ [−Mε,Mε],(B.10)
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M∑
i=1

logK
(∣∣z(i)

∣∣)− MEQ[logK(τ1)] ∈ [−Mε,Mε].(B.11)

In the above relations, |κ(z)| denotes the length of the string κ(z), (κ(z))i is the ith
letter of that string, z(i) is the ith word of the sentence z, |z(i)| is its length, while
H(Q),H(�Q) are the specific entropies of the measures Q,�Q. In the last rela-
tion, τ1 is distributed as the length of the first word of an element of ẼN drawn
from Q. Finally, M can be chosen such that

M >
8M0

δ1
,

1

M
(α + 1 + ε) log[M(mQ + ε) +M0] < ε.(B.12)

B.2. Step 2: Good trajectories. For given ω ∈ EN0 , we define a set T ω
ε,M of

trajectories for the renewal sequence T = (Ti)i∈N0 on which Rω
N ∈ UM,δ1 . In Step 3

we will control the probability that T follows a trajectory in T ω
ε,M .

Let B := {κ(z) : z ∈ A} be the set of concatenations of the sentences of A.
By (B.5) and (B.8),

|B| ≥ (1 − ε)eM(mQH(�Q)−ε).(B.13)

Divide ω into consecutive pieces of length � := [M(mQ + ε)] +M0, mark with 1
those pieces that start with an element of B, and mark with 0 the remaining pieces,
that is, for j ≥ 0, let

σj := 1{θj�ω starts with an element of B}.(B.14)

Let {j (r) : r ≥ 1} be the increasing sequence that picks out the j ≥ 1 with σj = 1,
and let j (0) = 0. The increments {j (r + 1)− j (r) : r ≥ 0} are i.i.d. geometric ran-
dom variables with probability of success pB := P(ω starts with an element of B).
It follows from (B.10) and (B.13) that

pB ≥ (1 − ε)eM(mQH(�Q)+mQE�Q
[logμ0(X1)]−2ε)(B.15)

= (1 − ε)e−MmQH(�Q|μ⊗N0
0 )−2εM.(B.16)

The equality in the second line follows from [6], equation (1.26). In particular, for
P-a.e. ω we have σj = 1 for infinitely many j ’s, and so the sequence {j (r) : r ≥ 1}
is well defined.

Pick any N > 16M/δ1. The set T ω
ε,M consists of all T that first jump to j (1)�

[i.e., T1 = j (1)�], next make M jumps that cut out of θj (1)�ω an element of A
[which is possible by the definitions of j (1) and B], next jump to j (2)� [i.e.,
TM+2 = j (2)�], next again cut out an element of A, and continue likewise until
they jump to j (�N/(M + 1) + 1)� (no conditions are imposed afterwards). The
words between two consecutive j (r)�’s we call a block. After the first jump to
j (1)� and up to the last jump to j (�N/(M + 1) + 1)�, at least N words are cut
out, because T has created �N/(M + 1) blocks each containing exactly M + 1



1802 D. CHELIOTIS AND F. DEN HOLLANDER

words. We note that the first M words are important and of typical length, while
the last word is of an untypically large length and its sole purpose is for T to move
to a good position in ω. Call Y (1), Y (2), . . . , Y (N) the first N words cut.

LEMMA B.1. Rω
N ∈ UM,δ1 for all T in T ω

ε,M .

PROOF. By the definition of Rω
N , we need to show that every element s ∈ A0

occurs in the finite sequence(
πM0 θ̃

j (Y (1), Y (2), . . . , Y (N))per)
0≤j≤N−1(B.17)

the right number of times, that is, a number of times that falls in the interval ((fs −
2δ1)N, (fs + 2δ1)N).

For the lower bound, note that the sequence (Y (1), Y (2), . . . , Y (N)) contains at
least the words of the first [N/(M +1)]−1 blocks out of the �N/(M +1) blocks
that T created, because the last word of these blocks has index at most i∗ = 1 +
(N/(M + 1)− 1)(M + 1) = N −M < N . Each such block offers at least M(fs −
δ1) occurrences of the word s, because of (B.6) and i∗ < N − M0. Thus, we have
at least

M(fs − δ1)

(
N

M + 1
− 2

)
= N(fs − δ1) − fs − δ1

M + 1
N − 2M(fs − δ1)

(B.18)
> N(fs − 2δ1)

occurrences of s in the sequence in (B.17), where the last inequality holds because
N > 16M/δ1 and M > 8M0/δ1 by (B.12).

For the upper bound, note that, because of (B.6), the occurrences of s in the
sequence in (B.17) are at most

1 + (
(fs + δ1)M +M0

)( N

M + 1
+ 1

)
+M0

(B.19)

≤ N(fs + δ1) + NM0

M + 1
+M(fs + δ1) + 2M0 + 1 < N(fs + 2δ1),

where the last inequality again uses N > 16M/δ1 and M > 8M0/δ1. �

B.3. Step 3: Probability of good trajectories. For the quenched probability
P(T ∈ T ω

ε,M), we have the lower bound

P(T ∈ T ω
ε,M) ≥ K(j (1)�)

× (
eM(H(Q)−mQH(�Q)−2ε)eM(EQ[logK(τ1)]−ε))�N/(M+1) (B.20)

×
�N/(M+1) ∏

r=1

inf|η−MmQ|<Mε
K

([j (r + 1) − j (r)]�− η
)
.
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The last product is a lower bound for the probability of the large jumps that land at
the points j (r + 1)�, 1 ≤ r ≤ �N/(M + N) . The power preceding this product
corresponds to the jumps inside each of the �N/(M + 1) blocks, and uses that,
by (B.8) and (B.9), for each element of B there are at least eM(H(Q)−mQH(�Q)−2ε)

different words of A having this element as concatenation, and that, by (B.11), the
probability for M jumps to cut out a given word in A is at least eM(EQ[logK(τ1)]−ε).
It therefore follows that

lim inf
N→∞

1

N
log P(τ ∈ T ω

ε,M)

≥ H(Q) − mQH(�Q)+ EQ[logK(τ1)] − 3ε(B.21)

+ 1

M
E

(
log

[
inf|η−MmQ|<Mε1

K
([j (2) − j (1)]� − η

)])
.

To be more precise, (B.20) gives (B.21) with the right-hand side multiplied by
M/(M +1), but since the factors in (B.20) are probabilities, replacing M/(M +1)

by 1 still gives us a lower bound. Now, because of (B.3) and � − η ≥ M0, the last
expectation is bounded from below by

E
[
log

(([j (2)− j (1)]�)−α−1−ε)]
=−(α + 1 + ε)E

[
log

([j (2)− j (1)]�)]
(B.22)

≥−(α + 1 + ε)
(
log�+ log E[j (2) − j (1)]),

where we use the concavity of log. Since E[j (2) − j (1)] = 1/pB , by combining
(B.21) and (B.22) with the lower bound on pB in (B.16), we get that

lim inf
N→∞ N−1 log P(T ∈ T ω

ε,M)

≥ H(Q) −mQH(�Q) + EQ[logK(τ1)] − 3ε

+ 1

M

[−(α + 1 + ε)

× (
log�− log(1 − ε) +MmQH(�Q|μ⊗N0

0 )+ 2εM
)]

(B.23)

= H(Q) −mQH(�Q)+ EQ[logK(τ1)] −mQH(�Q|μ⊗N0
0 )

− αmQH(�Q|μ⊗N0
0 )− 3ε − εmQH(�Q|μ⊗N0

0 )

− 1

M
(α + 1 + ε)

(
log�− log(1 − ε)

)− 2(α + 1 + ε)ε.

The fourth line equals −I que(Q) because of [6], equations (1.16), (1.30) and
(1.32), where in using (1.16) we note that what we call in this paper α is called
α − 1 in [6]. The fifth line is at least −εCQ for some positive constant CQ that
depends on Q, because of (B.12). Thus, we end up with

lim inf
N→∞ N−1 log P(T ∈ T ω

ε,M) ≥−I que(Q) − εCQ.(B.24)
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B.4. Step 4: Lower bound. For T ∈ T ω
ε,M , we have

NmRω
N
≤ j

(⌈
N

M + 1

⌉
+ 1

)(
M(mQ + ε) +M0

)
,(B.25)

and note that

lim
N→∞

1

N
j

(⌈
N

M + 1

⌉
+ 1

)
= 1

M + 1

1

pB
.(B.26)

Hence

E
(
e
NmRω

N
log z+Nβ�(Rω

N))
≥ E

(
e
NmRω

N
log z+Nβ�(Rω

N)
1{T ∈T ω

ε,M }
)

(B.27)

≥ eNβ(�(Q)−ε)zj (�N/(M+1) +1)(M(mQ+ε)+M0)P(τ ∈ T ω
ε,M).

Combining (3.10), (B.24), (B.26) and (B.27), we get

Sque(β; z) ≥ β�(Q) − βε + M(mQ + ε) +M0

(M + 1)pB
log z

(B.28)
− I que(Q) −CQε.

Now let z ↑ 1 and ε ↓ 0, to get Sque(β;1−) ≥ β�(Q) − I que(Q) > A. Since A <

Sque(β;1) was arbitrary, it follows that Sque(β;1−) ≥ Sque(β;1).

Acknowledgment. The research in this paper was carried out while the first
author was a postdoc at EURANDOM.

REFERENCES

[1] ALEXANDER, K. S. (2008). The effect of disorder on polymer depinning transitions. Comm.
Math. Phys. 279 117–146. MR2377630

[2] ALEXANDER, K. S. and SIDORAVICIUS, V. (2006). Pinning of polymers and interfaces by
random potentials. Ann. Appl. Probab. 16 636–669. MR2244428

[3] ALEXANDER, K. S. and ZYGOURAS, N. (2009). Quenched and annealed critical points in
polymer pinning models. Comm. Math. Phys. 291 659–689. MR2534789

[4] ALEXANDER, K. S. and ZYGOURAS, N. (2010). Equality of critical points for polymer depin-
ning transitions with loop exponent one. Ann. Appl. Probab. 20 356–366. MR2582651

[5] BIRKNER, M. (2008). Conditional large deviations for a sequence of words. Stochastic Process.
Appl. 118 703–729. MR2411517

[6] BIRKNER, M., GREVEN, A. and DEN HOLLANDER, F. (2010). Quenched large deviation
principle for words in a letter sequence. Probab. Theory Related Fields 148 403–456.
MR2678894

[7] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036

[8] DEN HOLLANDER, F. (2009). Random Polymers. Lecture Notes in Math. 1974. Springer,
Berlin. MR2504175

http://www.ams.org/mathscinet-getitem?mr=2377630
http://www.ams.org/mathscinet-getitem?mr=2244428
http://www.ams.org/mathscinet-getitem?mr=2534789
http://www.ams.org/mathscinet-getitem?mr=2582651
http://www.ams.org/mathscinet-getitem?mr=2411517
http://www.ams.org/mathscinet-getitem?mr=2678894
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=2504175


THE CRITICAL CURVE FOR PINNING OF POLYMERS 1805

[9] DERRIDA, B., GIACOMIN, G., LACOIN, H. and TONINELLI, F. L. (2009). Fractional moment
bounds and disorder relevance for pinning models. Comm. Math. Phys. 287 867–887.
MR2486665

[10] DONEY, R. A. (1997). One-sided local large deviation and renewal theorems in the case of
infinite mean. Probab. Theory Related Fields 107 451–465. MR1440141

[11] GIACOMIN, G. (2007). Random Polymer Models. Imperial College Press, London.
MR2380992

[12] GIACOMIN, G., LACOIN, H. and TONINELLI, F. (2010). Marginal relevance of disorder for
pinning models. Comm. Pure Appl. Math. 63 233–265. MR2588461

[13] GIACOMIN, G., LACOIN, H. and TONINELLI, F. L. (2011). Disorder relevance at marginality
and critical point shift. Ann. Inst. Henri Poincaré Probab. Stat. 47 148–175. MR2779401

[14] GIACOMIN, G. and TONINELLI, F. L. (2009). On the irrelevant disorder regime of pinning
models. Ann. Probab. 37 1841–1875. MR2561435

[15] GRAY, R. M. (1988). Probability, Random Processes, and Ergodic Properties. Springer, New
York. MR0918767

[16] GRAY, R. M. (1990). Entropy and Information Theory. Springer, New York. MR1070359
[17] HARRIS, A. B. (1974). Effect of random defects on the critical behaviour of Ising models.

J. Phys. C 7 1671–1692.
[18] LACOIN, H. (2010). The martingale approach to disorder irrelevance for pinning models. Elec-

tron. Commun. Probab. 15 418–427. MR2726088
[19] SPITZER, F. (1976). Principles of Random Walks, 2nd ed. Springer, New York. MR0388547
[20] TONINELLI, F. L. (2008). A replica-coupling approach to disordered pinning models. Comm.

Math. Phys. 280 389–401. MR2395475
[21] TONINELLI, F. L. (2008). Disordered pinning models and copolymers: Beyond annealed

bounds. Ann. Appl. Probab. 18 1569–1587. MR2434181

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF ATHENS

PANEPISTIMIOPOLIS

15784 ATHENS

GREECE

E-MAIL: dcheliotis@math.uoa.gr

MATHEMATICAL INSTITUTE

LEIDEN UNIVERSITY

P.O. BOX 9512
2300 RA LEIDEN

THE NETHERLANDS

E-MAIL: denholla@math.leidenuniv.nl

http://www.ams.org/mathscinet-getitem?mr=2486665
http://www.ams.org/mathscinet-getitem?mr=1440141
http://www.ams.org/mathscinet-getitem?mr=2380992
http://www.ams.org/mathscinet-getitem?mr=2588461
http://www.ams.org/mathscinet-getitem?mr=2779401
http://www.ams.org/mathscinet-getitem?mr=2561435
http://www.ams.org/mathscinet-getitem?mr=0918767
http://www.ams.org/mathscinet-getitem?mr=1070359
http://www.ams.org/mathscinet-getitem?mr=2726088
http://www.ams.org/mathscinet-getitem?mr=0388547
http://www.ams.org/mathscinet-getitem?mr=2395475
http://www.ams.org/mathscinet-getitem?mr=2434181
mailto:dcheliotis@math.uoa.gr
mailto:denholla@math.leidenuniv.nl

	Introduction and main results
	Introduction
	Main results
	Discussion
	Outline

	Annealed and quenched LDP
	Notation
	Annealed LDP
	Quenched LDP

	Variational formulas: Proof of Theorem 1.4
	Proof of (1.16)
	Proof of (1.15) for mu0 with finite support
	Proof of (1.15) for mu0 satisfying (1.3)
	Technical lemmas

	Characterization of disorder relevance: Proof of Theorem 1.5
	Reformulation of the criterion for disorder relevance
	Monotonicity of disorder relevance: Proof of Theorem 1.6
	Disorder irrelevance: Proof of Corollaries 1.7 and 1.8(i)
	Proof of Corollary 1.7
	Proof of Corollary 1.8(i)

	Disorder relevance: Proof of Corollary 1.8(ii)
	Appendix A: Standard facts about the homopolymer
	Appendix B: Proof of Lemma 3.2
	Step 1: Good sentences
	Step 2: Good trajectories
	Step 3: Probability of good trajectories
	Step 4: Lower bound

	Acknowledgment
	References
	Author's Addresses

