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NONINTERSECTING RANDOM WALKS IN THE NEIGHBORHOOD
OF A SYMMETRIC TACNODE

BY MARK ADLER1, PATRIK L. FERRARI2 AND PIERRE VAN MOERBEKE3

Brandeis University, Bonn University, and Université de Louvain
and Brandeis University

Consider a continuous time random walk in Z with independent and
exponentially distributed jumps ±1. The model in this paper consists in
an infinite number of such random walks starting from the complement of
{−m,−m+ 1, . . . ,m− 1,m} at time −t , returning to the same starting posi-
tions at time t , and conditioned not to intersect. This yields a determinantal
process, whose gap probabilities are given by the Fredholm determinant of a
kernel. Thus this model consists of two groups of random walks, which are
contained within two ellipses which, with the choice m� 2t to leading order,
just touch: so we have a tacnode. We determine the new limit extended kernel
under the scaling m= �2t + σ t1/3�, where parameter σ controls the strength
of interaction between the two groups of random walkers.

1. Introduction. In the past decade, systems of vicious random walks and
nonintersecting Brownian motions have been investigated, and quantities such as
the correlation functions [39], the one-point distribution functions and limit pro-
cesses under appropriate scaling limits have been studied. Nonintersecting Brow-
nian motions arise in the study of random matrices [33, 34, 38], and space (and/or)
time discrete versions in random tiling and growth models [22, 23, 27–29, 40, 42,
43]. Most of these works use the mathematical framework shared by Brownian
motions starting from a point, and either ending at the same point after a given
time or the boundary condition is free (with possible extra boundary conditions
like staying positive [37, 51]).

Consider N nonintersecting Brownian bridges xi(τ ) on R, leaving from 0 at
time τ = −2N and forced to 0 at time τ = 2N . For large N , the mean den-
sity of Brownian paths has support, for each −2N < τ < 2N , on the interval
(−√4N2 − τ 2,

√
4N2 − τ 2). This means that on the macroscopic scale, where

space and time units are set equal to N , one sees a circle. Near its boundary, the
density of Brownian paths is of order N−1/3, thus to see something nontrivial one
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needs to look in a space window of size N1/3 and, by Brownian scalings, a time
window of size N2/3. We call this the “Airy microscope,” since it holds

lim
N→∞P

(
all N−1/3(

xi(2sN2/3)− 2N
) ∈Ec − s2)= P

(
A2(s)∩E =∅

)
,(1.1)

where A2 is the so-called Airy2 process. It has a universal character and was dis-
covered in the context of the so-called multilayer PNG model [42]. The scaling
(1.1) is equivalent to the customary N−1/6-GUE-edge rescaling along the circle
for nonintersecting Brownian motions leaving from the origin at time t = 0 and
returning to the origin at time t = 1; this is done by an appropriate change of the
variance of the Brownian motions.

In the context of growth models, generalizations have been introduced with ex-
ternal sources [11, 26]. Its analog in terms of Brownian motions is to require that
a finite number of Brownian motions end up at some point αN . Then under the
scaling in (1.1), the limit process is a transition process from Airy2 to Brownian
motion. For extensions to more general sources, see [9, 17], while for the case that
the top r Brownian motion ends up at 2N , see [3] and [4].

A further known situation occurs when a fraction pN of the N nonintersecting
Brownian motions (leaving from the origin at time t =−2N ) end at time t = 2N at
position aN and another fraction (1−p)N at bN , with a < b. When N →∞, the
mean density of Brownian particles has its support on one interval in the beginning
and on two intervals near the end. Thus a bifurcation appears for some intermediate
time τ0, where one interval splits into two intervals, creating a “heart-like” shape
with a cusp at the origin. Near this cusp appears a new universal process, upon
looking through the “Pearcey microscope,” where the space window is N1/4, and
the time window is N1/2. The new process is called the Pearcey process [50] and
is independent of the values of a, b and p; see [6]. Once the bifurcation has taken
place, the Brownian motions will eventually fluctuate like the Airy2 process near
the edge, with a transition from the Pearcey to the Airy2 process [2]. The Pearcey
process has also been obtained as the limit of discrete models; see [13, 14, 41].

The motivation of our work is to understand what happens when half of the
nonintersecting Brownian motions start and end at a point, while the second half
start and end at another point. When the two starting points are sufficiently far apart
from each other, the mean density of particles will be confined to two separate
circles, with Airy2 processes appearing near the boundary, as described above.
When the two starting points move away from each other at an appropriate rate
proportional to N , the two circles will just touch, creating a tacnode. A new critical
process appears by looking at the two sets of nonintersecting Brownian motions,
which experience a brief meeting in the neighborhood of the tacnode, but looked
at with the Airy scaling; we call it the tacnode process. Pictorially it can be thought
of as two Airy2 processes touching; see Figure 1.

In this paper we obtain an explicit formula for the kernel governing this tacnode
process for nonintersecting continuous-time random walks, rather than noninter-
secting Brownian motions. The same result is expected to hold for the Brownian
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FIG. 1. Illustration of the tacnode with N = 50 Brownian bridges.

motion case, since under the scaling the discrete nature of the random walks is lost,
and the random walks become Brownian paths. Our main result is the limiting ker-
nel at the tacnode under appropriate scaling limit, stated in Theorem 2.2. Before
taking the limit, the kernel is given by Theorem 2.1. The model is to let two groups
of nonintersecting random walks with jumps ±1, rate 1 and 2m+ 1 integers apart
evolve during a total time or order m, with space–time rescaled à la Airy, namely
x ∼ ξm1/3 and τ ∼ sm2/3 as suggested by formula (1.1). The parameter m, defined
here, plays the role of the number of particles N , previously defined.

There is an important difference with respect to the Airy2 and Pearcey cases:
here we have a one-parameter family of processes, which is obtained by mod-
ulating the endpoints’ distance between the two sets of Brownian motions over
distance of order N1/3. For the Pearcey processes (and the Airy2 process), geo-
metric changes of this type only have the effect of modifying the position (and
orientation) of the cusp, but the underlying Pearcey process remains unchanged.
In the literature there is another known situation with a process in a tacnode-like
geometry [13], which, however, differs from the present one.

For Brownian motions the problem can be approached using multiple orthog-
onal polynomials [19]; then Delvaux, Kuijlaars and Zhang [20] carry out asymp-
totics for these polynomials yielding a Riemann–Hilbert description of the tacnode
process kernel (which meanwhile appeared on the arXiv). In the forthcoming pa-
per [31], Johansson uses a different approach leading to an explicit kernel for the
Brownian motion problem, but seemingly and surprisingly different from the one
obtained in the present paper. In another forthcoming paper Adler, Johansson and
van Moerbeke [5] consider a tacnode process in the context of domino tilings of
two overlapping Aztec diamonds and found yet another kernel; in the same paper
they show that the kernels obtained are all equivalent! A direct relation with the
Riemann–Hilbert type formulation of the kernel [20] remains an open problem. In
a recent preprint about nonintersecting Brownian motions, Ferrari and Veto [24]
discuss a kernel for a nonsymmetric tacnode, which contains a parameter sensing
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the relative number of Brownian motions, or equivalently, the ratio of the curvature
of the curves meeting at the tacnode.

Outline. In Section 2 we define the model and state the two main results. In
Section 3, Theorem 3.1, we derive the finite time result for τ = 0, which is re-
shaped in Section 4 as a preparation to carrying out the large time limit. Before
actually doing this, we indicate in Section 5 how to introduce the time, leading to
the finite multi-time kernel in Theorem 5.4, an extension of the kernel appearing
in Proposition 4.1. In Section 6, we take the limit of the multi-time kernel, lead-
ing to the proof of the first formula of Theorem 2.2. In Section 7, we sketch the
proof of the double integral representation of the kernel, the second formula of
Theorem 2.2, using the steepest descent analysis.

2. Model and results. Consider a continuous time random walk in Z with
jumps ±1, occurring independently with rate 1; that is, the waiting times of the
up- and down-jumps are independent and exponentially distributed with mean 1.
The transition probability pt(x, y) of going from x to y during a time interval of
length t is given by

pt(x, y)= e−2t I|x−y|(2t),(2.1)

where In is the modified Bessel function of degree n; see [1].
Consider now an infinite number of continuous time random walks starting from

{. . . ,−m − 2,−m − 1} ∪ {m + 1,m + 2, . . .} at time τ = −t , returning to the
starting positions at time τ = t , and conditioned not to intersect; see Figure 2.
Denote x̃k(τ ) the position of the walk that starts and ends at position k. Then, the
point process η̃ on Z (described by the little white circles in Figure 2) defined by

η̃(x)= ∑
k∈Z\{−m,...,m}

δx,x̃k(0)(2.2)

FIG. 2. The lines are the nonintersecting walks x̃. The white circles are the support of the point
process η̃.
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with δ the Kronecker-delta, is determinantal; that is, there exists a kernel K̃m

such that the k-point correlation function ρ(k) is given by ρ(k)(y1, . . . , yk) =
det(K̃m(yi, yj ))1≤i,j≤k . One of the interesting quantities is the gap probability of
a set E, which is given by P(η̃(1E) = 0), that is, the probability that none of the
random walks are in E at time τ = 0. For a determinantal point process the gap
probability is given by the Fredholm determinant of the associated kernel K̃m pro-
jected onto E. For more informations on determinantal point processes, see [25,
30, 36, 45, 46].

The determinantal structure still holds if we consider the point process on a set
of time-slices instead of a single time τ = 0. This means that given times τ1 <

τ2 < · · ·< τp in the interval (−t, t), the point process on {τ1, . . . , τp} ×Z defined
by

η̃(τ, x)=
p∑

r=1

∑
k∈Z\{−m,...,m}

δ(τ,x),(τr ,x̃k(τr ))(2.3)

is determinantal. That is, the space–time correlation functions are given by the
determinant of an extended kernel, which we denote by K̃

ext
m (t1, x1; t2, x2), where

ti ∈ {τ1, . . . , τp} and xi ∈ Z.
It is more convenient to first study the dual or complementary process x(τ ).

The dual proceeds along the gaps of x̃(τ ). In this instance, the dual x(τ ) of x̃(τ ) is
described by n= 2m+ 1 (m ∈N) nonintersecting continuous-time random walks,
starting from −m,−m+ 1, . . . ,m− 1,m at time τ =−t , returning to the starting
positions at time τ = t ; see Figure 3, and Figure 4 for the superposition of the
trajectories of x(τ ) and x̃(τ ).

In particular, the dual process x(τ ) at τ = 0 is given by the little black circles
in Figure 3. The probability measure at time τ = 0 is obtained by the Karlin–
McGregor formula [32], and thus it is a determinantal process for a kernel Km.
Finally, the complementation principle by Borodin, Olshanski and Okounkov (see

FIG. 3. The dotted lines are the nonintersecting walks x, the dual process of x̃ of Figure 2. The
black circles are the support of the point process η.
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FIG. 4. Superposition of Figures 2 and 3.

Appendix of [16]) tells us that, if the kernel Km governs the process x(τ ), then the
kernel K̃m = 1−Km describes the dual process x̃(τ ).

THEOREM 2.1. The determinantal point process η̃(τ, x) on {τ1, . . . , τp} ×R,
τi ∈ (−t, t), defined by the two groups of nonintersecting walkers, starting and
ending 2m+ 1 apart, at times −t and t , respectively, has gap probabilities on any
compact set E ⊂ {τ1, . . . , τp} ×R given by

P
(
η̃(1E)= 0

)= det(1− K̃
ext
m )L2(E),(2.4)

where the kernel K̃
ext
m is given by

e2t2

e2t1
K̃

ext
m (t1, x1; t2, x2)

=−1[t2<t1]I|x1−x2|
(
2(t2 − t1)

)

− Vm

(2π i)2

∮

0

dz

∮

0,z

dw
et(z−z−1)

et (w−w−1)

e−t1(z+z−1)

e−t2(w+w−1)

wx2−m−1

zx1−m

× H2m+1(w)H2m+1(z
−1)

z−w
(2.5)

− Vm

(2π i)2

∮

0

dw

∮

0,w

dz
et(w−w−1)

et (z−z−1)

e−t1(z+z−1)

e−t2(w+w−1)

wx2+m

zx1+m+1

× H2m+1(z)H2m+1(w
−1)

w− z

− 1[x1 �=x2]
Vm

2π i

∮

0

dz
e(t2−t1)(z+z−1)

zx1−x2+1 H2m+1(z
−1)H2m+1(z)
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with Vm := 1/(H2m+1(0)H2m+2(0)). The function Hn is itself the Fredholm deter-
minant on �2({n,n+ 1, . . .})

Hn(z
−1) := det

(
1−K(z−1)

)
�2({n,n+1,...})(2.6)

of the kernel

K(z−1)k,� := (−1)k+�

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v− u

u− z

v− z

e2t (u−u−1)

e2t (v−v−1)
,(2.7)

where 
0 is any anticlockwise simple loop enclosing 0 and similarly 
0,u encircles
the poles at 0 and u (but not z).4

The extended kernel, governing the process η̃(τ, x), is given in terms of the
kernel K̃m(x1, x2)= K̃

ext
m (0, x1;0, x2), governing the distribution η̃(0, x), by

K̃
ext
m (t1, x1; t2, x2)=−1[t2<t1]

(
e(t2−t1)H)

(x1, x2)
(2.8)

+ (e−t1 H
K̃met2 H)(x1, x2),

where H is the discrete Laplacian

(Hf )(x)= f (x + 1)+ f (x − 1)− 2f (x).(2.9)

Remark that the transition probability of (2.1), defined for t ≥ 0, can be written
as pt(x, y)= et H1(x, y)=: et H(x, y). Here, 1 denotes the identity operator on Z,
that is, 1(x, y)= 1 if x = y and 1(x, y)= 0 if x �= y.

The formula for the kernel K̃m(x1, x2)= K̃
ext
m (0, x1;0, x2) at t1 = t2 = 0 of The-

orem 2.1, will be established in Section 3, whereas the one for K̃
ext
m will be shown

in Section 5. In Sections 4 and 5, it will be shown that both kernels K̃m(x, y) and
K̃

ext
m (t1, x2; t2, x2) have a representation, whose constituents can be expressed in

terms of Bessel functions; see the expression (4.14) and the time-dependent ker-
nel (5.26), derived from (4.14), via recipe (2.8). Also, note that the kernel K(z−1)

is a rank-one perturbation of the kernel K(0), whose Fredholm determinant

Hn(0)= det
(
1−K(0)

)
�2({n,n+1,...})(2.10)

is the distribution of the longest increasing subsequence of a random permutation
in the Poissonized version, or, equivalently, it yields the distribution of the height
function in the polynuclear growth (PNG) model [10, 42]. In the scaling limit,
considered in Section 6, Hn(0) will converge to the Tracy–Widom distribution F2.

To study the limiting behavior, when m, t → ∞, consider first the system
of nonintersecting random walks starting at time −t and ending at positions
{. . . ,−m− 2,−m− 1} at time t . This is, up to a shift by m + 1, the multilayer

4For any set of points S, the notation
∮

S

dzf (z) means that the integration path goes anticlockwise
around the points in S but does not include any other poles of f .
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PNG model studied by Prähofer and Spohn in [42]. Their work shows that the top
random walk at time τ = 0 has fluctuations around x = −m + 2t of order t1/3.
By symmetry, if one considers only the nonintersecting random walks starting and
ending at position {m + 1,m + 2, . . .}, the bottom random walk at time τ = 0
fluctuates around x =m− 2t also in the spatial scale t1/3.

The top and bottom random walks interact if the proportion of deleted configu-
rations, due to interaction, is nonzero. This happens when m= 2t to leading order
in t . The first scaling where interaction is relevant is given by m = 2t + σ t1/3.
The parameter σ modulates the strength of interaction of the two sets of nonin-
tersecting random walks. In the extreme cases σ →∞, we clearly (by a simple
probabilistic argument) go back to the situation of two independent PNG models;
thus the top of the lower walks and the bottom of the upper walks are governed
by the Airy2 process [42]. On the other hand, when σ →−∞, one expects to see
a point process governed by the sine kernel or the Pearcey process. Moreover, lo-
cally the paths will looks like random walks, so the exponents in the scaling for
time and space are in a ratio 2 : 1. Thus, we set the scaling5

m= 2t + σ t1/3, xi = ξit
1/3, ti = si t

2/3, i = 1,2.(2.11)

Also note that for each time −t < τ < t , the density of particles has its support
on two semi-infinite intervals, whose boundary, as a function of τ , describes two
curves, which at τ = 0 form a tacnode. The purpose of Theorem 2.2 is to describe
the fluctuations of the random walks in the t →∞ limit in the neighborhood of
(x, τ )= (0,0), but in the new space–time scale, given by (2.11).

In order to state the second main result, define the standard Airy kernel,

KAi(ξ1, ξ2) :=
∫ ∞

0
dλAi(ξ1 + λ)Ai(ξ2 + λ)(2.12)

and the function Q(κ), already appearing in [48],

Q(κ) := [(1− χσ̃KAiχσ̃ )−1χσ̃ Ai](κ) with σ̃ := 22/3σ(2.13)

and where χa(x)= 1[x>a]. We further set

Ai(s)(ξ) := eξs+(2/3)s3
Ai(ξ + s2),(2.14)

which equals the standard Airy function Ai(ξ), when s = 0, and define the func-
tions

A(s, ξ) := Ai(s)(σ − ξ)

+
∫ ∞
σ̃

dκ

∫ ∞
0

dα Q(κ)Ai(κ + α)Ai(s)(21/3α+ σ − ξ),(2.15)

B(s, ξ) :=
∫ ∞
σ̃

dκ Q(κ)Ai(s)(21/3κ − σ + ξ)

5We do not write explicitly the integer parts, since in the t →∞ limit it is irrelevant.
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and

C(s, ξ) := 2−1/3
∫ ∞
σ̃

dκ Q(κ)

[
Ai(2

−2/3s)(κ + 2−1/3ξ)

+
∫ ∞
σ̃

dλ Q(λ)

∫ ∞
0

dα Ai(α + λ)

(2.16)

×Ai(2
−2/3s)(α + κ + 2−1/3ξ)

]

+ (ξ ↔−ξ),

where with (ξ ↔−ξ) we mean the same expression with ξ replaced by −ξ . Fi-
nally, we define the following two Laplace transforms, P̂(u) and Q̂(u):

Q̂(u) :=
∫ ∞
σ̃

dκ Q(κ)eκu21/3
,

(2.17)
P̂(u) := −

∫ ∞
0

dκ e−κu21/3
∫ ∞
σ̃

dμ Q(μ)Ai(μ+ κ).

THEOREM 2.2. Near the tacnode appears a new determinantal process on
{s1, . . . , sp} ×R, the tacnode process T , whose gap probabilities on any compact
set E ⊂ {s1, . . . , sp} ×R are given by

P
(

T (1E)= 0
)= det(1− Kext)L2(E).(2.18)

The kernel Kext is the limit of K̃
ext
m under the scaling (2.11),

Kext(s1, ξ1; s2, ξ2) := lim
t→∞

(−1)x2e4t2

(−1)x1e4t1
t1/3

K̃
ext
m (t1, x1; t2, x2),(2.19)

where the convergence is uniform for ξ1, ξ2 and s1, s2 in bounded sets. The kernel
Kext has the following representations:

Kext(s1, ξ1; s2, ξ2)

=− 1[s2<s1]√
4π(s1 − s2)

exp
(
− (ξ1 − ξ2)

2

4(s1 − s2)

)
+ C(s1 − s2, ξ1 − ξ2)

+
∫ ∞

0
dγ

(
A(s1, ξ1 − γ )A(−s2, ξ2 − γ )+ A(s1,−ξ1 − γ )A(−s2,−ξ2 − γ )

(2.20)
− A(s1, ξ1 − γ )B(−s2, ξ2 − γ )− A(s1,−ξ1 − γ )B(−s2,−ξ2 − γ )

− B(s1, ξ1 − γ )A(−s2, ξ2 − γ )− B(s1,−ξ1 − γ )A(−s2,−ξ2 − γ )
)

−
∫ 0

−∞
dγ

(
B(s1, ξ1 − γ )B(−s2, ξ2 − γ )+ B(s1,−ξ1 − γ )B(−s2,−ξ2 − γ )

)
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as well as (with arbitrary δ > 0)

Kext(s1, ξ1; s2, ξ2)

=− 1[s2<s1]√
4π(s1 − s2)

exp
(
−(ξ1 − ξ2)

2

4(s1 − s2)

)
+ C(s1 − s2, ξ1 − ξ2)

+ 1

(2π i)2

∫
δ+iR

du

∫
−δ+iR

dv
eu3/3−σu

ev3/3−σv

es1u
2

es2v
2

(
eξ1u

eξ2v
+ e−ξ1u

e−ξ2v

)

× (1− P̂(u))(1− P̂(−v))

u− v

− 1

(2π i)2

∫
2δ+iR

du

∫
δ+iR

dv
eu3/3−σu

e−v3/3−σv

es1u
2

es2v
2

(
eξ1u

eξ2v
+ e−ξ1u

e−ξ2v

)
(2.21)

× (1− P̂(u))Q̂(−v)

u− v

− 1

(2π i)2

∫
−δ+iR

du

∫
−2δ+iR

dv
e−u3/3−σu

ev3/3−σv

es1u
2

es2v
2

(
eξ1u

eξ2v
+ e−ξ1u

e−ξ2v

)

× (1− P̂(−v))Q̂(u)

u− v

+ 1

(2π i)2

∫
−δ+iR

du

∫
δ+iR

dv
e−u3/3−σu

e−v3/3−σv

es1u
2

es2v
2

(
eξ1u

eξ2v
+ e−ξ1u

e−ξ2v

)

× Q̂(u)Q̂(−v)

u− v
.

Note the kernel (2.21) is invariant under the involution (s1, ξ1; s2, ξ2) �→
(−s2,−ξ2;−s1,−ξ1), thus reflecting the symmetry of the symmetric tacnode.

The form (2.20) of the limiting extended kernel in Theorem 2.2 will be shown
in Section 6, whereas a sketch of the proof of its double integral representation
(2.21) will be given in Section 7.

In the preprint [20], the analogous problem for Brownian Motion will be an-
alyzed with the Riemann–Hilbert approach applied to multiple orthogonal poly-
nomials. It would be interesting to see how to relate the two formulas (which we
expect to be equivalent).

3. Finite system at τ = 0. In this section we will prove Theorem 2.1, in
particular the formula for kernel K̃m(x, y) = K̃

ext
m (0, x;0, y), as in (2.5), for

t1 = t2 = 0. Consider a continuous time random walk in Z with jumps ±1, which
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occur independently with rate 1; that is, the waiting times of the up- and down-
jumps are independent and exponentially distributed with mean 1. Thus, the num-
ber of up-jumps (and similarly down-jumps) during the time interval [0, t] is Pois-
son distributed,

P(k up-jumps during [0, t])= e−t t
k

k! .(3.1)

As will be shown, the transition probability pt(x, y) of going from x to y during a
time interval of length t is given by

pt(x, y)= e−2t I|x−y|(2t),(3.2)

where In is the modified Bessel function of degree n; see [1]. To prove (3.2), first
notice that by symmetry, it is enough to consider y − x ≥ 0. To go from x to y,
the process must perform k steps down and k+ y− x steps up. Since the moment,
at which the down or up steps occur, is independent of whether it is a down or an
up step, one may assume the process doing first k steps down and then k + y − x

steps up. By the strong Markov property of the random walk and the independence
of the jumps,

pt(x, y)=∑
k≥0

P({k+ y − x up-steps and k down-steps} during time t)

= e−2t
∞∑

k≥0

tk

k!
ty−x+k

(y − x + k)!(3.3)

= e−2t I|x−y|(2t).

The modified Bessel function has the following expressions (for n ∈ Z)

In(2t)= 1

2π i

∮
S1

dz

z
et(z+z−1)z±n =

∞∑
k=0

tk

k!
tk+|n|

(k + |n|)!(3.4)

with S1 = {z ∈C||z| = 1}.
Consider now n= 2m+1 (m ∈N) continuous time random walks starting from

−m,−m+ 1, . . . ,m− 1,m at time τ = −t , returning at the starting positions at
time τ = t , and conditioned not to intersect. Denote by xk(τ ) the position at time
τ of the random walk which started from m+ 1− k (i.e., the kth highest one), see
Figure 3 for an illustration with m= 2.

The probability at time τ = 0 is easily obtained by the Karlin–McGregor for-
mula [32], namely

P

(2m+1⋂
k=1

{xk(0)= yk}
∣∣∣∣

2m+1⋂
k=1

{xk(t)= xk(−t)=m+ 1− k}
)

= const× det[pt(m+ 1− i, yj )]1≤i,j≤2m+1(3.5)
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× det[pt(yi,m+ 1− j)]1≤i,j≤2m+1

= const× (det[Iyi+j−1−m(2t)]1≤i,j≤2m+1)
2.

It is well known by [12] that the process above

x(τ ) := {xk(τ ),1≤ k ≤ 2m+ 1}, τ ∈ [−t, t],(3.6)

with a measure of this form, gives rise to a determinantal point process (random
point measure)

η=
2m+1∑
k=1

δxk(0)(3.7)

with a certain kernel Km(x, y), to be computed in Theorem 3.1.
Instead of the process x(τ ), we shall analyze its complementary (dual) process,

which we denote by

x̃(τ )= {x̃k(τ ), k ∈ Z \ [1,2m+ 1]}, τ ∈ [−t, t].(3.8)

If x denotes the trajectories of the 2m+1 particles, then let x̃ denote the trajectories
of the holes, obtained by the particle-hole transformation; see Figures 2 and 4.

The reason for starting with the process x is that the Karlin–McGregor formula
applies to a finite number of paths, while x̃ has an infinite number of paths. By
the complementation principle in the Appendix of [16], the dual point process at
τ = 0,

η̃=∑
k

δx̃k(0),(3.9)

is also determinantal with correlation kernel

K̃m(x, y)= δx,y −Km(x, y).(3.10)

First of all, we compute the kernel Km(x, y) in a form which will be suitable for
asymptotic analysis.

THEOREM 3.1. The point processes η and η̃, defined in (3.7) and (3.9), are
determinantal with correlation kernel Km and K̃m given below. Thus, for any finite
subset E ⊂ Z, the gap probability of E is given by

P
(
η(1E)= 0

)= det(1−Km)�2(E),
(3.11)

P
(
η̃(1E)= 0

)= det(1− K̃m)�2(E)
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with kernels Km(x, y) and K̃m(x, y), invariant6 under the involution (x, y) ↔
(−y,−x), namely

Km(x, y)= Vm

(2π i)2

∮

0

dz

∮

0,z

dw
et(z−z−1)

et (w−w−1)

wy−m−1

zx−m

× H2m+1(w)H2m+1(z
−1)

z−w

+ Vm

(2π i)2

∮

0

dw

∮

0,w

dz
et(w−w−1)

et (z−z−1)

wy+m

zx+m+1(3.12)

× H2m+1(z)H2m+1(w
−1)

w− z

+ Vm

2π i

∮

0

dz
1

zx−y+1 H2m+1(z
−1)H2m+1(z)

and

K̃m(x, y)=− Vm

(2π i)2

∮

0

dz

∮

0,z

dw
et(z−z−1)

et (w−w−1)

wy−m−1

zx−m

× H2m+1(w)H2m+1(z
−1)

z−w

− Vm

(2π i)2

∮

0

dw

∮

0,w

dz
et(w−w−1)

et (z−z−1)

wy+m

zx+m+1(3.13)

× H2m+1(z)H2m+1(w
−1)

w− z

− 1[x �=y]
Vm

2π i

∮

0

dz
1

zx−y+1 H2m+1(z
−1)H2m+1(z),

where Vm = 1/(H2m+1(0)H2m+2(0)). The function Hn itself is a Fredholm deter-
minant on �2({n,n+ 1, . . .})

Hn(z
−1) := det

(
1−K(z−1)

)
�2({n,n+1,...})(3.14)

of the kernel

K(z−1)k,� := (−1)k+�

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v− u

u− z

v− z

e2t (u−u−1)

e2t (v−v−1)
,(3.15)

6As it should from the geometry of the problem! The involution interchanges the two double
integrals in (3.12), as is seen from renaming w↔ z in the second double integral; also the third term,
the single integral, only depends on |x − y|, as is seen from z→ z−1.
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where 
0 is any anticlockwise simple loop enclosing 0 and similarly 
0,u encir-
cles 0 and u only (hence not z).

PROOF. Step 1: Computing the kernel Km(x, y) for the inliers x(τ ) at τ = 0,
from the Karlin–McGregor formula (3.5): It is well known by [12] that a mea-
sure of the form (3.5) implies that the point process (random point measure) η, as
in (3.7), is determinantal with correlation kernel

Km(x, y)=
2m+1∑
k,�=1

ϕk(y)[A−1]k,�ϕ�(x), x, y ∈ Z,(3.16)

where

ϕk(x)= Ix+k−1−m(2t),(3.17)

and A is the (2m+ 1)× (2m+ 1) matrix with entries

[A]k,� ≡ 〈ϕk,ϕ�〉 =
∑
x∈Z

ϕk(x)ϕ�(x).(3.18)

Using (3.4) and (3.17), the entries of the (2m + 1) × (2m + 1) matrix A, as in
(3.18), are given by

Ak,� =
∑
x∈Z

ϕk(x)ϕ�(x)= ∑
x≥0

ϕk(x)ϕ�(x)+∑
x<0

ϕk(x)ϕ�(x)

= ∑
x≥0

1

(2π i)2

∮

0

dz

∮

0

dw
et(z+z−1)et (w+w−1)

zkw�

1

(zw)x−m
(3.19)

+∑
x<0

1

(2π i)2

∮

0

dz

∮

0

dw
et(z+z−1)et (w+w−1)

zkw�

1

(zw)x−m
.

In the first integrals, we deform the paths to |z| = 1 and |w| = R > 1. Then we
take the sum inside the integrals and use

∑
x≥0(zw)−x =wz/(wz− 1). Similarly,

in the second integrals, we deform the paths as |z| = 1 and |w| = 1/R < 1 and use∑
x<0(zw)−x =−wz/(wz− 1). This leads to

Ak,� = 1

(2π i)2

∮
|z|=1

dz

∮
|w|=R

dw
et(z+z−1)et (w+w−1)

zk−mw�−m

wz

wz− 1

− 1

(2π i)2

∮
|z|=1

dz

∮
|w|=1/R

dw
et(z+z−1)et (w+w−1)

zk−mw�−m

wz

wz− 1
(3.20)

= 1

2π i

∮
|z|=1

dz
e2t (z+z−1)

zk−�+1 = Ik−�(4t),
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since for any value of z, the two integrals differ only by the residue7 at w = 1/z.
However, doing the asymptotics of the kernel Km(x, y) with this choice of basis
and thus with this A−1 seems to be hopeless.

Step 2: Changing the basis ϕk �→ ψk , such that A �→ 1 in the kernel
Km(x, y), that is, so that Km(x, y) = ∑2m+1

k=1 ψk(x)ψk(y). Replace the basis
(ϕk(x))k=1,...,2m+1 with an orthonormal basis (ψk(x))k=1,...,2m+1 with respect to
the �2(Z) scalar product 〈 , 〉 used in (3.18) [generating the same vector space, i.e.,
det(ϕk(xj ))1≤k,j≤n = const × det(ψk(xj ))1≤k,j≤n so that the measure (3.5) has
the same form, but with A= 1]. More precisely, we shall search for polynomials
Pk of degree k such that, upon defining dρt (z) := dz

2πiz
et (z+z−1),

ψk(x)=
∮
S1

dρt (z)

zx−m
Pk−1(z

−1)

(3.21)
=

∮
S1

dρt (w)wx−mPk−1(w), 1≤ k ≤ 2m+ 1,

satisfies, using the same argument as in (3.20),

δk,l = 〈ψk,ψ�〉
= ∑

x∈Z

∮

0

dρt (z)

∮

0

dρt (w)(zw)x−mPk−1(z)P�−1(w)

(3.22)
=

∮
S1

dρ2t (z)Pk−1(z)P�−1(z
−1)

=: 〈〈Pk−1,P�−1〉〉,
thus defining a new inner-product 〈〈 , 〉〉 on the circle S1 = {z ∈ C||z| = 1}. So it
suffices to find an orthonormal basis of polynomials on the circle for the weight
dρ2t (z). A classical expression for the polynomial Pk(z) is (see, e.g., [47])

Pk(z)= 1√
detmk · detmk+1

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1
[μi,j ]

0≤i≤k

0≤j≤k−1

z

...

zk

⎞
⎟⎟⎟⎟⎟⎟⎠

,(3.23)

where mk = [μi,j ]0≤i,j≤k−1 and

μi,j := 〈〈zi, zj 〉〉 =
∮
S1

dρ2t (z)z
i−j = Ii−j (4t).(3.24)

Hence the Pk(z) are polynomials of z with real coefficients. Orthonormal poly-
nomials on the circle satisfy a Christoffel–Darboux-type formula, due to Szegő;

7This residue argument will reappear later in (3.40).
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see [44]. Namely, with the notation P ∗
n (z)= znP (z̄−1) and further using the real-

ity of the coefficients, one obtains for z,w ∈ S1,

n−1∑
�=0

P�(z
−1)P�(w)=

n−1∑
�=0

P�(z)P�(w)

= P ∗
n (z)P ∗

n (w)− Pn(z)Pn(w)

1− z̄w
(3.25)

= znPn(z̄−1)wnPn(w̄−1)− Pn(z)Pn(w)

1−w/z

= z−nPn(z)w
nPn(w

−1)− Pn(z
−1)Pn(w)

1−w/z
.

Step 3: Expressing the polynomials Pn(z) in terms of the Fredholm determinant
Hn(z

−1), as in (3.14). In order to do this, one first introduces the bilinear form

〈f,g〉t,s := 1

2π i

∮
S1

du

u
f (u)g(u−1)e

∑∞
j=1(tj uj−sj u−j )

,(3.26)

upon setting t := (t1, t2, . . .) ∈ C
∞ and s := (s1, s2, . . .) ∈ C

∞. It was shown in
[7, 8] (see also the lecture notes [52]) that the functions8

p(1)
n (t, s; z) := zn τn(t− [z−1], s)√

τn(t, s)τn+1(t, s)
,

(3.27)

p(2)
n (t, s; z) := zn τn(t, s+ [z−1])√

τn(t, s)τn+1(t, s)

are bi-orthonormal polynomials with regard to the bilinear form (3.26). In the for-
mulas above, the τn(t, s) are 2-Toda τ -functions and are defined as Toeplitz deter-
minants, which are also expressible as a Fredholm determinant of the kernel (3.29)
below, using the Borodin–Okounkov identity [15]. We obtain

τn(t, s) := det
[

1

2π i

∮
S1

du

u
uk−�e

∑∞
j=1(tj uj−sj u−j )

]
1≤k,�≤n

(3.28)
= Z(t, s)det

(
1−K(t, s)

)
�2({n,n+1,...}), Z(t, s) := e

−∑∞
j=1 j tj sj ,

where the kernel K(t, s) is given by

K(t, s)k,� := 1

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v− u

e
∑∞

j=1(tj v−j+sj vj )

e
∑∞

j=1(tj u−j+sj uj )
.(3.29)

8For α ∈C, one defines [α] = (α, α2

2 , α3

3 , . . .) ∈C
∞.
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The coefficients tj , sj have to be such that the expression
∑∞

j=1(tju
j − sju

−j )

appearing in the exponent of (3.28) is analytic in the annulus ρ < |z| < ρ−1 for
0 < ρ < 1. Then, the Borodin–Okounkov identity (3.28) gives a kernel K(t, s),
with contours given by |u| = |v|−1 = ρ′, with 0 < ρ < ρ′ < 1. Assume, using
Cauchy’s theorem, that the contours may be deformed to any circle of radius 0 <

ρ < 1. Then, using
∑∞

j=1(v/z)j /j =− ln(1− v/z) (for |v/z|< 1), we obtain

K(t, s+ [z−1])k,�

(3.30)

= 1

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v − u

1− u/z

1− v/z

e
∑∞

j=1(tj v−j+sj vj )

e
∑∞

j=1(tj u−j+sj uj )

and

Z(t, s+ [z−1])= e
−∑∞

j=1 j tj (sj+z−j /j) =Z(t, s)e−
∑∞

j=1 tj z−j

.(3.31)

We now specialize all this to the locus

L = {t= (2t,0,0, . . .), s= (−2t,0,0, . . .)}.(3.32)

On this locus, one checks that Z(t, s)|L = e4t2
, that K(t, s) and its translation,

restricted to the locus L, are closely related to the kernel K(z−1) defined in (3.15)9

K(t, s)|L
conj= K(0),

(3.33)
K(t, s+ [z−1])|L

conj= K(z−1),

and that the restriction of τn(t, s) to L leads to the Fredholm determinant Hn(z
−1)

as defined in (3.14),

τn(t, s)|L =Hn(0)Z(t, s)|L = e4t2
Hn(0),

τn(t, s+ [z−1])|L =Hn(z
−1)e−2t/zZ(t, s)|L(3.34)

=Hn(z
−1)e4t2−2t/z.

Moreover, the bilinear form 〈f,g〉t,s defined in (3.26) reduces to the inner-product
〈〈f,g〉〉 defined in (3.22),

〈f,g〉t,s|L = 1

2π i

∮
S1

du

u
e2t (u+u−1)f (u)g(u−1)= 〈〈f,g〉〉.(3.35)

9With A
conj= B we mean that the two kernels A and B are conjugate kernels. In the present case,

the conjugation factor is (−1)k−�. We remind the reader that two conjugate kernels define the same
determinantal point process.
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It follows that the bi-orthogonal functions for 〈f (z), g(z)〉t,s, restricted to the lo-
cus L, coincide with the orthonormal polynomials defined by (3.22), which by
(3.27), (3.34) and (3.33) yields

Pn(z)= p(1)
n (t, s; z)|L = p(2)

n (t, s; z)|L = zne−2t/zHn(z
−1)√

Hn(0)Hn+1(0)
,(3.36)

where

Hn(z
−1)= det

(
1−K(z−1)

)
�2({n,n+1,...})(3.37)

with the kernel K(z−1) as in (3.15); this follows from (3.33). The fact that the
p

(1)
n and p

(2)
n are equal on the locus L is a consequence of the symmetry of the

inner-product 〈〈 , 〉〉, as in (3.22). However, one easily verifies it with the above
formulas. The equivalence of the Fredholm determinant parts is evident only after
the change of variable v → 1/ũ and u→ 1/ṽ. Then, the kernel obtained for p

(1)
n

is the transpose of the one for p
(2)
n .

Step 4: Expressing the kernel Km(x, y) as (3.12). Using this new basis ψk , as
in (3.21), and using the Christoffel–Darboux formula (3.25), the kernel Km(x, y)

becomes, by Step 2 (recall that n= 2m+ 1),

Km(x, y)=
n∑

k=1

ψk(x)ψk(y)

∗=
∮
S1

dρt (z)

∮
S1

dρt (w)
wy−m

zx−m

n−1∑
k=0

Pk(z
−1)Pk(w)

(3.38)

=
∮

0

dρt (z)

∮

0,z

dρt (w)
wy−m

zx−m−1

1

z−w

((
w

z

)n

Pn(z)Pn(w
−1)

− Pn(z
−1)Pn(w)

)
.

Note that the w-integrand in the double integral ∗= has no pole at w = z, enabling
one to deform the w-contour so as to include z ∈ S1; this has the advantage that
the double integral of the difference can be written as the difference of two double
integrals, each of them being finite.

Inserting (3.36) into (3.38) and setting Vm = 1/(H2m+1(0)H2m+2(0)) we get

Km(x, y)

= Vm

(2π i)2

∮

0

dz

∮

0,z

dw
et(z−z−1)

et (w−w−1)

wy−m−1

zx−m

H2m+1(w)H2m+1(z
−1)

z−w
(3.39)

− Vm

(2π i)2

∮

0

dz

∮

0,z

dw
et(w−w−1)

et (z−z−1)

wy+m

zx+m+1

H2m+1(z)H2m+1(w
−1)

z−w
.
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The expression in (3.12) is finally obtained by noticing that

1

(2π i)2

∮

0

dz

∮

0,z

dw
F(z,w)

w− z
(3.40)

= 1

(2π i)2

∮

0

dw

∮

0,w

dz
F (z,w)

w− z
+

∮

0

dz

2π i
F(z, z),

proving formula (3.12).
Step 5: Expressing the dual kernel K̃m(x, y) as (3.13). First of all, by (3.36), we

have

Hn(z
−1)= Pn(z)e

2t/zz−n
√

Hn(0)Hn+1(0).(3.41)

Thus (with n= 2m+ 1), the last term of (3.12) is given by

Vm

2π i

∮

0

dz

zx−y+1 H2m+1(z
−1)H2m+1(z)

(3.42)

= 1

2π i

∮
S1

dz

zx−y+1 e2t (z+z−1)Pn(z)Pn(z
−1).

In particular, at x = y we have

(3.42)|x=y = 〈〈Pn,Pn〉〉 = 1(3.43)

and thus

Vm

2π i

∮

0

dz

zx−y+1 H2m+1(z
−1)H2m+1(z)

(3.44)

= δx,y + (1− δx,y)
Vm

2π i

∮

0

dz
1

zx−y+1 H2m+1(z
−1)H2m+1(z).

So, K̃m(x, y) = δx,y − Km(x, y) = K̃
ext
m (0, x1;0, x2) of (2.5), thus establishing

Theorem 3.1. This also ends the proof of Theorem 2.1 for t1 = t2 = 0. �

4. Reshaping, motivation and Bessel representation. In this section we first
reshape the kernel (2.5) of Theorem 2.1 for t1 = t2 = 0, to make it adequate for
asymptotic analysis. Second, we rewrite all the terms using Bessel functions and
the Bessel kernel. This will allow us to use known asymptotics for Bessel functions
and kernel, without the need for new asymptotic analysis.

4.1. Reshaping. Note that the kernel K(z−1), defined in (3.15), with |u| <
|v|< |z|, namely

K(z−1)k,� := (−1)k+�

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v − u

u− z

v− z

e2t (u−u−1)

e2t (v−v−1)
(4.1)
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is a rank-one perturbation

K(z−1)k,� =K(0)k,� + hk(z
−1)g�(4.2)

of the symmetric10 kernel

K(0)k,� = (−1)k+�

(2π i)2

∮

0

du

∮

0,u

dv
u�

vk+1

1

v − u

e2t (u−u−1)

e2t (v−v−1)
,(4.3)

upon using the identity

1

v− u

u− z

v− z
= 1

v − u
− 1

v− z
,(4.4)

where (remember |v|< |z| in the first integration below)

hk(z
−1) = −1

2π i

∮

0

dv

(−v)k+1

e−2t (v−v−1)

v − z

= −1

2π i

∮

0,z

dv

(−v)k+1

e−2t (v−v−1)

v − z
+ e−2t (z−z−1)

(−z)k+1(4.5)

=: h̄k(z
−1)+ e−2t (z−z−1)

(−z)k+1

and

g� = −1

2π i

∮

0

du(−u)�e2t (u−u−1).(4.6)

In (4.5), one has replaced the integration about a small circle around 0 by an in-
tegration about a contour containing z as well; this is done in order to be able to
expand, later on, 1/(v − z) in a power series in z/v. Therefore we can rewrite the
Fredholm determinant Hn(z

−1) of K(z−1) as

Hn(z
−1)=Hn(0)

(
1−Rn(z

−1)
)
,(4.7)

where11

Rn(z
−1) := 〈Q,χnh(z−1)〉,

(4.8)
Qk := ((

1− χnK(0)χn

)−1
χng

)
k

and χn(k) = 1[k≥n]; here the symmetry of K(0) is being used. Accordingly
Rn(z

−1)= 〈Q,χnh(z−1)〉, as in (4.8), decomposes as (recall that n= 2m+ 1)

Rn(z
−1)= Sn(z

−1)+ e−2t (z−z−1)

(−z)n
Tn(z

−1)(4.9)

10As is seen by replacing u �→ 1/u, v �→ 1/v.
11For a = (ak)k∈Z and b= (bk)k∈Z, the inner-product 〈a, b〉 :=∑

k∈Z akbk .
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with

Sn(z
−1)= 〈Q,χnh̄(z−1)〉, Tn(z

−1)=∑
k≥1

Qn+k−1

(−z)k
.(4.10)

We set for x ∈ Z,

A(x) := −1

2π i

∮

0

dz
et(z−z−1)

(−z)x−m

(
1− Sn(z

−1)
)
,

B(x) := −1

2π i

∮

0

dz
e−t (z−z−1)

(−z)x+m+1 Tn(z
−1),

C1(x) := −1

2π i

∮

0

dz
Tn(z

−1)Tn(z)

(−z)x+1 ,(4.11)

C2(x) := 1[x �=0]
−1

2π i

∮

0

dz
Rn(z

−1)+Rn(z)−Rn(z
−1)Rn(z)

(−z)x+1 ,

C(x) := 2C1(x)+C2(x).

Remark that C1(x) = C1(−x) and C2(x) = C2(−x). Also introduce functions
Ei(z,w), which also depend on n= 2m+ 1,

E1(z,w) := et(z−z−1)

et (w−w−1)

(
z

w

)m(
1− Sn(z

−1)
)(

1− Sn(w)
)
,

E2(z,w) := − et(z−z−1)

e−t (w−w−1)
(−z)m(−w)m+1(

1− Sn(z
−1)

)
Tn(w),

(4.12)

E3(z,w) := −e−t (z−z−1)

et (w−w−1)
(−z)−m−1(−w)−mTn(z

−1)
(
1− Sn(w)

)
,

E4(z,w) := − et(z−z−1)

et (w−w−1)

(
z

w

)m

Tn(z)Tn(w
−1).

With these notations, the following statement holds.

PROPOSITION 4.1. The kernel K̃m(x, y) in (3.13) has the following expres-
sion:

(−1)x−y Hn+1(0)

Hn(0)
K̃m(x, y)

= C(x − y)(4.13)

+ 1

(2π i)2

∮

0

dz

∮

0,z

dw

∑4
i=1 Ei(z,w)

z−w

(
(−w)y−1

(−z)x
+ (−z)y

(−w)x+1

)
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as well as the Airy kernel-like expression:

(−1)x−y Hn+1(0)

Hn(0)
K̃m(x, y)

= C(x − y)

+∑
c≥0

(
A(x − c)A(y − c)+A(−x − c)A(−y − c)

(4.14)
−A(x − c)B(y − c)−A(−x − c)B(−y − c)

−B(x − c)A(y − c)−B(−x − c)A(−y − c)
)

−∑
c<0

(
B(x − c)B(y − c)+B(−x − c)B(−y − c)

)
.

PROOF. Let us first prove (4.13). Consider the kernel K̃m(x, y) as in (3.13);
one uses Hn(z

−1) = Hn(0)(1 − Rn(z
−1)), as in (4.7), and one renames the in-

tegration variables (w, z)→ (z,w) in the second double integral, enabling us to
combine the two double integrals. Then, taking into account the prefactor,

(−1)x−y Hn+1(0)

Hn(0)
K̃m(x, y)

= 1[x �=y]
2π i

∮

0

dz

(−z)x−y+1

(
1−Rn(z

−1)
)(

1−Rn(z)
)

(4.15)

+ 1

(2π i)2

∮

0

dz

∮

0,z

dw
et(z−z−1)

et (w−w−1)

(
z

w

)m(
(−w)y−1

(−z)x
+ (−z)y

(−w)x+1

)

× (1−Rn(z
−1))(1−Rn(w))

z−w
.

That the single integral above equals C2, defined in (4.11), follows from the fact
that the −1 term can be deleted, since 1

2π i

∮

0

dz zy−x−1 = δx,y and δx,y1x �=y = 0.
Multiply out (1− Rn(z

−1))(1− Rn(w)), use the expression (4.10) of Rn and the
functions Ei ’s defined in (4.12) with the result

(4.15)= 1

(2π i)2

∮

0

dz

∮

0,z

dw
1

z−w

(
(−w)y−1

(−z)x
+ (−z)y

(−w)x+1

)

×
(
E1(z,w)+E2(z,w)+E3(z,w)− w

z
E4(w, z)

)
(4.16)

+C2(x − y).

The double integral, involving the last expression in brackets, is not in a usable
form, in view of the saddle point method and the topology of the contours (see the
discussion after the proof). Namely, the integrations have to be interchanged, at
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the expense of a residue term, as is given by the general formula (3.40). So, using
this formula, and further renaming z↔w, the double integral with E4 becomes

1

(2π i)2

∮

0

dz

∮

0,z

dw
1

z−w

(
(−w)y−1

(−z)x
+ (−z)y

(−w)x+1

)
E4(z,w)

(4.17)
+ 2C1(x − y),

where C1(x) is defined in (4.11). So, taking equation (4.16) and (4.17) into ac-
count, we find that formula (4.13) for the kernel K̃m(x, y) holds.

Next we prove (4.14). The first observation is that the kernel (4.13) depends on
x and y through the expression in brackets only; the latter itself is invariant for
the interchange (x, y) �→ (−y,−x). So it suffices to consider the double integral
associated with the first term (−w)y−1(−z)−x only; the other one is automatic.
Since the integration paths can be taken to satisfy |z|< |w|, in the double integral
of (4.13), one may use the series

1

z−w
= 1

(−w)

∑
c≥0

( −z

−w

)c

valid for |w|> |z|,(4.18)

and one notices that for each of the Ei , the double integral decouples into the
product of two integrals over 
0:

1

(2π i)2

∮

0

dz

∮

0,z

dw
E1(z,w)

z−w

(−w)y−1

(−z)x

=∑
c≥0

∮

0

−dz

2π i

et(z−z−1)

(−z)x−m−c

(
1− Sn(z

−1)
)

(4.19)

×
∮

0

−dw

2π i

(−w)y−m−c−2

et(w−w−1)

(
1− Sn(w)

)
=∑

c≥0

A(x − c)A(y − c).

To see that the second integral equals A(y−c), one performs the change of variable
w �→ 1/w. Since the only poles are at w = 0 and w−1 = 0, this is allowed; so, we
do not pick up further poles. The same decoupling occurs for the other Ei ’s, which
yields

1

(2π i)2

∮

0

dz

∮

0,z

dw
E2(z,w)

z−w

(−w)y−1

(−z)x
=−∑

c≥0

A(x − c)B(y − c),

(4.20)
1

(2π i)2

∮

0

dz

∮

0,z

dw
E3(z,w)

z−w

(−w)y−1

(−z)x
=−∑

c≥0

B(x − c)A(y − c)
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and

1

(2π i)2

∮

0

dz

∮

0,z

dw
E4(z,w)

z−w

(−w)y−1

(−z)x

=−∑
c≥0

B(−x + c+ 1)B(−y + c+ 1)(4.21)

=−∑
c<0

B(−x − c)B(−y − c).

Then adding the same expressions with the interchange (x, y) �→ (−y,−x) yields
formula (4.14), completing the proof of Proposition 4.1. �

In anticipation of Section 7 on the integral representation of the limiting kernel,
which will be obtained by saddle point analysis, some comments must be made
here; they will also explain the interchange of integrals, which occurred in (4.17).
Given the future rescaling m � 2t with x = ξ1t

1/3, y = ξ2t
1/3 for t →∞, the

steepest descent method applied to A(x) and B(x) at z =−1, in particular to the
part of the integrand e±t (z−z−1)(−z)±m = e±tF (z), respectively, uses the Taylor
expansions

F(z) := z− z−1 + 2 log(−z)= 1
3(z+ 1)3 + O(z+ 1)4,

(4.22)
log(−z) = −(z+ 1)− 1

2(z+ 1)2 + O(z+ 1)3.

The steepest descent path for A(x) will therefore look like ↙
↘ with an angle of

approximately ±π/3, whereas for B(x) it will look like ↖
↗ with an angle of ap-

proximately12 ±2π/3 with the positive real axis. The contours of the four double
integrals of equation (4.13), associated with each one of the Ei’s, from the point of
view of steepest descent analysis about z,w = −1, are topologically two circles,
a z-circle inside a w-circle, which are deformed so that locally near z = w =−1
they look like the set of pictures in Figure 5 (see Section 7), with the two circles
intersecting the real axis at the common point z,w =−1 and to the right of −1.

4.2. Bessel reformulation. The purpose of this section is to express the func-
tions A(x),B(x),C1(x) and C2(x), as in (4.11) in terms of Bessel functions, the
expressions Qk and the Bessel kernel K(0), as in (4.8) and (4.3). Throughout we
will be using the integral representation of the Bessel function of order n ∈ Z,
together with its symmetries,

Jn(2t)= 1

2π i

∮

0

dz
et(z−z−1)

zn+1 = (−1)nJ−n(2t)= (−1)nJn(−2t).(4.23)

12The angles can be within the range π/3± π/6 and 2π/3± π/6.
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Jn(2t) is different from the modified Bessel function In(2t), defined in (3.4). To do
so, we shall need the following Bessel function expressions for the basic building
blocks.

LEMMA 4.2. The kernel K(0) defined in (4.3), the expressions hk and g�

given in (4.5) and (4.6) and the functions Tn(z
−1) and Sn(z

−1), given in (4.10),
can be expressed in terms of Bessel functions as follows:

K(0)k,� =
∑
a≥0

Jk+a+1(4t)J�+a+1(4t)

=: B2t (k + 1, �+ 1), g� = J�+1(4t),

hk(z
−1) = −∑

a≥0

(−z)aJk+a+1(4t)+ e−2t (z−z−1)

(−z)k+1

(4.24)

= h̄k(z
−1)+ e−2t (z−z−1)

(−z)k+1 ,

Tn(z
−1) = ∑

k≥n

Qk

(−z)k−n+1 ,

Sn(z
−1) = −∑

a≥0
k≥n

(−z)aQkJk+a+1(4t),

where Bt(i, j) is the Bessel kernel in [42]. Also,

Qk =
∑
�≥n

Pk,�J�+1(4t) with Pk,� = (
(1− χnK(0)χn)

−1)
k,�.(4.25)

PROOF. For K(0)k,� one uses in (4.3) the series 1/(v−u)= v−1 ∑
a≥0(u/v)a

for |u|< |v| and then (4.23). The same geometric series is used for hk(z
−1) in (4.5)

but with u replaced by z, from which formula (4.24) for hk(z
−1) and the formula

for Sn by (4.10) follow. Finally, one has g� = (−1)�−1J−1−�(2t)= J�+1(2t). �

The more intricate term is C2 from (4.11).

LEMMA 4.3. The expression C2(x), as in (4.11), equals

C2(x)= 1[x �=0]C∗2 (x),(4.26)

where

C∗2 (x)= (−1)x
1

2π i

∮

0

dz
1

zx+1

(
Rn(z

−1)+Rn(z)−Rn(z
−1)Rn(z)

)
(4.27)

= ∑
k≥n

Qk

(
1[x �=0]Jk−|x|+1(4t)−Qk+|x| +

∑
�≥n

Q�K(0)k,�−|x|
)
.
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PROOF. One first notices that the integrand in (4.27) is invariant under the
mapping z �→ z−1. Then, using formula (4.24) for Rn(z

−1) =∑
k≥n Qkhk(z

−1),
one breaks up the calculation as follows:

(a) Terms from Rn(z
−1)+Rn(z). We have

Rn(z
−1)+Rn(z)=

∑
k≥n

Qk

(
hk(z

−1)+ hk(z)
)

(4.28)

and thus, by integration, one checks first for x > 0, then for x < 0 and for x = 0,
that, using the symmetry properties of the Bessel functions [see (4.23)],

1

2π i

∮

0

dz
hk(z

−1)+ hk(z)

zx+1

= (−1)x
(
1x>0Jk+1−x(4t)+ 1x<0Jk+1+x(4t)

)
(4.29)

= (−1)x1[x �=0]Jk+1−|x|(4t).

Substituting into the left-hand side of (4.27) gives the first term on the right-hand
side of (4.27).

(b) Terms from Rn(z
−1)Rn(z). We have

Rn(z
−1)Rn(z)=

∑
k,�≥n

QkQ�hk(z
−1)h�(z).(4.30)

From (4.23) and (4.24) we get

1

2π i

∮

0

dz
hk(z

−1)h�(z)

zx+1

= ∑
a,b≥0

(−1)a−bδa−b,xJk+a+1(4t)Jb+�+1(4t)

−∑
b≥0

(−1)b+k+1J�+b+1(4t)Jk+b+1+x(−4t)

(4.31)
−∑

a≥0

(−1)a+�+1Jk+a+1(4t)Jx−�−a−1(4t)+ (−1)xδ�−k,x

= (−1)x
(
δ�−k,x −

∑
a≥0

Jk+a+1(4t)J�+a+1−|x|(4t)

)

= (−1)x
(
δ�−k,x −K(0)k,�−|x|

)
,

using in the last equality the expression (4.24) for the kernel K(0). In the sec-
ond equality we used the symmetries (4.23) of the Bessel functions. Substituted
into (4.30), this gives the last two terms in (4.27). �

PROPOSITION 4.4. The expressions A(x),B(x),C(x), defined in (4.11) for
x ∈ Z, can be expressed in terms of Bessel functions Jk , Qk and the kernel K(0),



TACNODE PROCESS 2625

as follows:

A(x)= Jm+1−x(2t)+∑
k≥n

∑
a≥0

QkJk+1+a(4t)Jm+1+a−x(2t),

(4.32)
B(x)= ∑

k≥n

QkJk−m+x(2t)

and

C(x)= ∑
k≥n

Qk

(
Jk−x+1(4t)+ Jk+x+1(4t)

)
(4.33)

+ ∑
k,�≥n

QkQ�

(
K(0)k+x,� +K(0)k−x,�

)
.

PROOF. The formulas for A and B follow directly from (4.11) and the expres-
sions for Tn and Sn in (4.24), together with the symmetries (4.23) of the Bessel
functions. Then

C1(x)= −1

2π i

∮

0

dz
Tn(z

−1)Tn(z)

(−z)x+1

= ∑
k,�≥n

QkQ�

(−1)x

2π i

∮

0

dz
(−z)k−�

zx+1(4.34)

= ∑
k,�≥n

QkQ�δk−�,x =
∑
k≥n

QkQk+|x|.

From Lemma 4.3, it follows that

C2(x)= 1[x �=0]
∑
k≥n

Qk

(
Jk−|x|+1(4t)−Qk+|x| +

∑
�≥n

Q�K(0)k,�−|x|
)
.(4.35)

Next we show that 1[x �=0] can actually be omitted. To do so, it suffices to show that
the sum on the right-hand side of (4.35) vanishes when x = 0.

Indeed, setting P = (1 − χnK(0)χn)
−1, as in (4.25), remember that g� =

J�+1(4t) and that Qk = (Pχng)k . Then, denoting 〈·, ·〉 the canonical scalar prod-
uct on �2(Z) we get, for x = 0, that the right-hand side of (4.35) equals

〈Pχng,χng〉 − 〈Pχng,χnPχng〉 + 〈Pχng,χnK(0)χnPχng〉
= 〈Pχng,χng〉 − 〈

Pχng,χn

(
1− χnK(0)χn

)
Pχng

〉
(4.36)

= 〈Pχng,χng〉 − 〈Pχng,χng〉 = 0.

Plugging these results into C(x)= 2C1(x)+C2(x) we obtain

C(x)= ∑
k≥n

Qk

(
Jk−|x|+1(4t)+Qk+|x| +

∑
�≥n

Q�K(0)k,�−|x|
)
.(4.37)
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It follows from the relation P = 1+ χnK(0)χnP [see the definition of Q and P

in (4.25)] that acting on χng and taking the kth entry,

Qk = 1[k≥n]
(
Jk+1(4t)+∑

�≥n

K(0)k,�Q�

)
.(4.38)

Using this relation for Qk+|x| in (4.37) we obtain

C(x)= ∑
k≥n

Qk

(
Jk−|x|+1(4t)+ Jk+|x|+1(4t)

)
(4.39)

+ ∑
k,�≥n

QkQ�

(
K(0)k,�−|x| +K(0)k+|x|,�

)
.

Finally, since K(0) is symmetric, we replace K(0)k,�−|x| = K(0)�−|x|,k and
change the labeling k↔ �. This yields (4.33), except for replacing |x| by x, which
can then be done. �

5. Extended kernel for finite time. Formula (4.14) (in Proposition 4.1) with
A(x),B(x),C(x) given by Proposition 4.4 gives the kernel K̃m governing the fluc-
tuations of the walkers near the point of meeting of the two groups of nonintersect-
ing random walkers at time τ = 0. In this section we prove Theorem 2.1 and we
extend Proposition 4.1 to the multitime setting (Theorem 5.4).

Consider the n= 2m+ 1 walks whose positions were denoted by xk(τ ) in Sec-
tion 3. Consider p different time slices τ1 < τ2 < · · ·< τp in the interval (−t, t).
Then, the probability measure at these times of the positions of the random walks
is given by

P

( p⋂
j=1

n⋂
k=1

{xk(τj )= y
j
k }

∣∣∣∣
n⋂

k=1

{xk(t)= xk(−t)=m+ 1− k}
)

= const× det[pt+τ1(m+ 1− i, y1
j )]1≤i,j≤n

(5.1)

×
(p−1∏

�=1

det[pτ�+1−τ�
(y�

i , y
�+1
j )]1≤i,j≤n

)

× det[pt−τp (y
p
i ,m+ 1− j)]1≤i,j≤n.

It is well known that a measure of this form has determinantal correlations in
space–time [18, 21, 28, 38, 49], as stated in the following proposition.
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THEOREM 5.1. Any probability measure on {x(�)
i ,1 ≤ i ≤ n,1 ≤ � ≤ p} of

the form13

1

Z
det

(
φ

(
τ0, ai; τ1, x

(1)
j

))
1≤i,j≤n

p−1∏
�=1

det
(
φ

(
τ�, x

(�)
i ; τ�+1, x

(�+1)
j

))
1≤i,j≤n

(5.2)
× det

(
φ

(
τp, x

(p)
i ; τp+1, bj

))
1≤i,j≤n

has, assuming Z �= 0, the following determinantal k-point correlation functions
for t1, . . . , tk ∈ {τ1, . . . , τp}:

ρ(k)(t1, x1, . . . , tk, xk)= det(K(ti, xi; tj , xj ))1≤i,j≤k.(5.3)

The space–time kernel K (often called extended kernel) is given by

K(t1, x1; t2, x2)=−φ(t1, x1; t2, x2)1(t2 > t1)
(5.4)

+
n∑

i,j=1

φ(t1, x1; τp+1, bi)[B−1]i,jφ(τ0, aj ; t2, x2)

with (∗ means integration with regard to the consecutive dots)

φ(τr, x; τs, y)=
{

φ(τr , x; τr+1, ·) ∗ · · · ∗ φ(τs−1, ·; τs, y), if τr < τs ,
0, if τr ≥ τs ,

(5.5)

and with the n× n matrix B having entries Bi,j = φ(τ0, ai; τp+1, bj ).

Our measure (5.1) has the form required by Theorem 5.1. The normalization
constant Z is nothing else but the partition function and it is nonzero since the
set of n paths satisfying the nonintersection constraint is nonempty. We already
determined the one-time kernel for τ = 0. To get the extended kernel one has to let
the one-time kernel “evolve” by means of the operator of the random walk. This
formulation was already present in the work of Prähofer and Spohn on the Airy2
process [42].

LEMMA 5.2. The extended kernel K̃
ext
m (t1, x1; t2, x2) of the time-dependent

point process η̃(τ, x) is given in terms of the kernel K̃m(x1, x2)= K̃
ext
m (0, x1;0, x2)

of the same point process η̃(x) at τ = 0 by the formula

K̃
ext
m (t1, x1; t2, x2)=−1[t2<t1]

(
e(t2−t1)H)

(x1, x2)
(5.6)

+ (e−t1 H
K̃met2 H)(x1, x2),

where the infinitesimal generator H of the single random walk, the discrete Lapla-
cian, acts on functions f as

Hf (x)= f (x + 1)+ f (x − 1)− 2f (x), x ∈ Z.(5.7)

13The functions φ(τ�, x; τ�+1, y) themselves may in fact vary with � above.
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Comparing the first term of (5.4) and (5.6), one sees a different ordering in the
times. This is consequence of the dual transformation.

PROOF OF LEMMA 5.2. The operator H in (5.7) is the generator of the contin-
uous time process defined by the transition probability pt(x, y), in (2.1). Indeed,
one checks that this transition probability is given by [the reader is reminded of
the notation following formula (2.9)]

pt(x, y)= e−2t I|x−y|(2t)= 1

2π i

∮

0

dz
et(z+z−1−2)

zx−y+1

(5.8)
= et H1(x, y)= (et H)(x, y),

because
∂

∂t
pt (x, y)= 1

2π i

∮

0

dz

zx−y+1 (z+ z−1 − 2)et (z+z−1−2)

= pt(x − 1, y)+ pt(x + 1, y)− 2pt(x, y)(5.9)

= (Hpt)(x, y)

with initial conditions p0(x, y) = 1(x, y). Here, 1 denotes the identity operator
on Z, that is, 1(x, y)= 1 if x = y and 1(x, y)= 0 if x �= y. The one-point kernel in
Section 3, formula (3.38), was written as a sum involving ψk(x) and ψk(y). Under
the time flow, they will become different functions; therefore, we set �k(0, x) =
�k(0, x)=ψk(x), and thus, with this new notation, the kernel reads

Km(x1, x2)=
n∑

k=1

ψk(x1)ψk(x2)=
n∑

k=1

�k(0, x1)�k(0, x2).(5.10)

The two set of functions {�k(0, x), k = 1, . . . , n} and {�k(0, x), k = 1, . . . , n} sat-
isfy

span{�k(0, x), k = 1, . . . , n} = span{pt(m+ 1− k, x), k = 1, . . . , n},
span{�k(0, x), k = 1, . . . , n} = span{pt(x,m+ 1− k), k = 1, . . . , n}(5.11)

with 〈�k(0, x),�p(0, x)〉 = δk,p,

so that the matrix B defined in (5.4) becomes the identity matrix.
Let us consider the functions of Theorem 5.1. First of all, the function

φ(t1, x1; t2, x2) appearing in (5.4) becomes

φ(t1, x1; t2, x2)1[t2>t1] = 1[t2>t1]pt2−t1(x1, x2)
(5.12)

= 1[t2>t1]
(
e(t2−t1)H)

(x1, x2),

where t1, t2 ∈ {τ1, . . . , τp}. Next, with τ0 =−t , τp+1 = t we have

φ(t1, x; t, bk)= pt−t1(x, bk)= (e−t1 H)(x, ·) ∗ φ(0, ·; t, bk)(5.13)
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and

φ(−t, ak; t2, x)= pt2+t (ak, x)= φ(−t, ak;0, ·) ∗ (et2 H)(·, x).(5.14)

With the choice of basis used for the kernel at τ = 0, we have that φ(0, ·; t, bk)

is replaced by �k(0, ·) and φ(−t, ak;0, ·) by �k(0, ·) (so that B = 1). Thus in
Theorem 5.1 we have replaced

φ(t1, x; t, bk)→ (e−t1 H)(x, ·) ∗�k(0, ·)
(5.15)

= (e−t1 H�k(0, ·))(x)=:�k(t1, x)

and

φ(−t, ak; t2, x)→�k(0, ·) ∗ (et2 H)(·, x)= (�k(0, ·)et2 H)(x)
(5.16)

= (et2 H�
�k(0, ·))(x)=:�k(t2, x).

Therefore the extended kernel has the following expression in terms of the kernel
Km in (3.38):

K
ext
m (t1, x1; t2, x2)=−1[t1<t2]pt2−t1(x1, x2)+

n∑
k=1

�k(t1, x1)�k(t2, x2)

(5.17)
=−1[t1<t2]

(
e(t2−t1)H)

(x1, x2)+ (e−t1 H
Kmet2 H)(x1, x2).

Notice that, using the semi-group property of et H, we have the consistency re-
lations (for i = 1, . . . , p)

�k(τi, x)= (
e(τp−τi )H�k(τp, ·))(x),

(5.18)
�k(τi, x)= (

�k(τ1, ·)e(τi−τ1)H)
(x).

The kernel K̃
ext
m for the dual random walk is then given by taking the comple-

ment. Using (5.17) and remembering that K̃m = 1−Km from formula (3.10), we
get

K̃
ext
m (t1, x1; t2, x2)

= 1[t1=t2]1(x1, x2)−K
ext
m (t1, x1; t2, x2)

= 1[t1=t2]1(x1, x2)+ 1[t1<t2]
(
e(t2−t1)H)

(x1, x2)

− (e−t1 H
Kmet2 H)(x1, x2)(5.19)

= 1[t1=t2]
(
e(t2−t1)H)

(x1, x2)+ 1[t1<t2]
(
e(t2−t1)H)

(x1, x2)

− (
e(t2−t1)H)

(x1, x2)+ (
e−t1 H(1−Km)et2 H)

(x1, x2)

=−1[t2<t1]
(
e(t2−t1)H)

(x1, x2)+ (e−t1 H
K̃met2 H)(x1, x2),

yielding (5.6), completing the proof of Lemma 5.2. �
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With the help of Lemma 5.2, we can easily prove Theorem 2.1, starting from
Theorem 3.1.

PROOF OF THEOREM 2.1. One of the key ingredients is that f (x) := ux is an
eigenfunction of H with eigenvalue u+ u−1 − 2. Indeed,

(Hf )(x)= ux+1 + ux−1 − 2ux = (u+ u−1 − 2)ux

(5.20)
= (u+ u−1 − 2)f (x).

Moreover, H is symmetric. Therefore,

(et Hf )(x)= et(u+u−1−2)f (x),
(5.21)

(f et H)(x)= (et H�
f )(x)= et(u+u−1−2)f (x).

Then, (2.5) follows straightforwardly from (3.13) by applying e−t1 H to the left,
et2 H to the right of K̃m [together with (5.8) for the first term of (5.6)]. �

For the further analysis, we extend the reformulation of the kernel for τ = 0, as
in Proposition 4.1, to the extended case. For that purpose, we first define the basic
functions replacing A, B , and C of the one-time case (see Proposition 4.4). To do
so, define a new function J

(τ)
x (2t) dependent on a parameter τ

J
(τ)

x (2t) :=
∮

0

dz

2π iz

et(z−z−1)

zx
eτ(z+z−1−2)

(5.22)

= e−2τ

(
t + τ

t − τ

)x/2

Jx

(
2
√

t2 − τ 2
)
.

Also define a τ -dependent extension of the kernel K(0)k,�, as in (4.24), namely

K(τ)(0)k,� :=
∑
a≥0

J
(τ)
a+k+1(4t)Ja+�+1(4t).(5.23)

Then define new functions A(τ, x),B(τ, x),C(τ, x) with τ ∈R and x ∈ Z, which
extend the functions A(x),B(x),C(x), first defined in (4.11) and re-expressed in
(4.32), by

A(τ, x) := J
(τ)
m+1−x(2t)+∑

k≥n

∑
a≥0

QkJk+1+a(4t)J
(τ)
m+1+a−x(2t),

B(τ, x) := ∑
k≥n

QkJ
(τ)
k−m+x(2t),

(5.24)
C(τ, x) := ∑

k≥n

Qk

(
J

(τ)
k+1+x(4t)+ J

(τ)
k+1−x(4t)

)

+ ∑
k,�≥n

QkQ�

(
K(τ)(0)k+x,� +K(τ)(0)k−x,�

)
.
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Remember Hn(0)= det(1−K(0))�2(n,n+1,...).

LEMMA 5.3. Given the notation (4.12) for the Ei ’s, the extended kernel K̃
ext
m

is given by

(−1)x2e4t2

(−1)x1e4t1

Hn+1(0)

Hn(0)
K̃

ext
m (t1, x1; t2, x2)

=−1[t2<t1]pt1−t2(x1, x2)
Hn+1(0)

Hn(0)
+C(t1 − t2, x1 − x2)

(5.25)

+ 1

(2π i)2

∮

0

dz

∮

0,z

dw
1

z−w

4∑
i=1

Ei(z,w)

×
(

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
+ (−z)x2

(−w)x1+1

e−t1(w+w−1+2)

e−t2(z+z−1+2)

)
.

THEOREM 5.4. The extended kernel K̃
ext
m is also expressed as

(−1)x2e4t2

(−1)x1e4t1

Hn+1(0)

Hn(0)
K̃

ext
m (t1, x1; t2, x2)

=−1[t2<t1]pt1−t2(x1, x2)
Hn+1(0)

Hn(0)
+C(t1 − t2, x1 − x2)

+∑
c≥0

(
A(t1, x1 − c)A(−t2, x2 − c)+A(t1,−x1 − c)A(−t2,−x2 − c)

(5.26)
−A(t1, x1 − c)B(−t2, x2 − c)−A(t1,−x1 − c)B(−t2,−x2 − c)

−B(t1, x1 − c)A(−t2, x2 − c)−B(t1,−x1 − c)A(−t2,−x2 − c)
)

−∑
c<0

(
B(t1, x1 − c)B(−t2, x2 − c)+B(t1,−x1 − c)B(−t2,−x2 − c)

)
.

PROOFS OF LEMMA 5.3 AND THEOREM 5.4. First of all, let us focus on the
term (e(t2−t1)H)(x1, x2) in (5.6). Remember that t2 − t1 < 0, so we can rewrite

(−1)x2e4t2

(−1)x1e4t1

(
e(t2−t1)H)

(x1, x2)= (−1)x2e2t2

(−1)x1e2t1
I|x1−x2|

(
2(t2 − t1)

)

= e2t2

e2t1
I|x1−x2|

(
2(t1 − t2)

)
(5.27)

= pt1−t2(x1, x2),

where we used the property In(−2t)= (−1)nIn(2t) of the modified Bessel func-
tion; see (3.4).
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Next we derive the double integrals in (5.25). The corresponding expression
of the kernel K̃m in (4.13) is a linear combination [not forgetting the conjugation
factor of the left-hand side of (4.13)] of

−wx2−1

zx1
− zx2

wx1+1 .(5.28)

Applying e−t1 H to the left and et2 H to the right, (5.28) transforms into

−wx2−1

zx1

e−t1(z+z−1−2)

e−t2(w+w−1−2)
− zx2

wx1+1

e−t1(w+w−1−2)

e−t2(z+z−1−2)
.(5.29)

The multiplication by the prefactor (−1)x2e4t2

(−1)x1e4t1
leads then to the expression in (5.25).

Next derive the terms with the sums in (5.26) and the expression for C. We act
with the semigroup on the summation part of the kernel (4.14), which is expressed
in terms of A(x),B(x),C(x), namely

Hn+1(0)

Hn(0)
K̃m(x1, x2)=

∑
c≥0

[(−1)x1A(x1 − c)][(−1)x2A(x2 − c)] + · · ·
(5.30)

+ (−1)x1−x2C(x1 − x2)

with A(x),B(x),C(x) given in Proposition 4.4. So, except for the term C(x1 −
x2), the expression above is a sum of decoupled terms. Therefore acting on the
(−1)xA(±x − c)’s and (−1)xB(±x − c)’s with e−t1 H to the left amounts (by
linearity) to acting on the (−1)xJN±x(2t) (for some N depending on the terms)
and finally to acting on 1/(−z)±x inside the integration. More precisely, by (5.21)
with f (x) := 1/(−z)±x , we have

(e−t1 Hf )(x)= et1(z+z−1+2)f (x) and
(5.31)

(f et2 H)(x)= e−t2(z+z−1+2)f (x),

from which, by linearity,

∑
y∈Z

(e−t1 H)(x, y)(−1)yJN±y(2t)=
∮

0

dz

2π iz

et(z−z−1)

zN
(e−t1 Hf )(x)

=
∮

0

dz

2π iz

et(z−z−1)

zN(−z)±x
et1(z+z−1+2)(5.32)

= (−1)xe4t1J
(t1)
N±x(2t)

and ∑
y∈Z

(−1)yJN±y(2t)(et2 H)(y, x)= (−1)xe−4t2J
(−t2)
N±x (2t).(5.33)
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This extends to the functions (−1)xA(±x − c), (−1)xB(±x − c) because they
are linear in the (−1)xJN±x(2t) [see (4.32)]. Explicitly, applying e−t1 H (to the
left) to (−1)xA(±x − c) amounts to replacing A(±x − c) with e4t1A(t1,±x − c).
Similarly, applying et2 H (to the right) to (−1)xA(±x − c) amounts to replacing
A(±x − c) with e−4t2A(−t2,±x − c). The same holds for B instead of A. Thus
we have obtained the terms in kernel (5.26) including A’s and B’s.

Exactly the same procedure applies for the term (−1)x1−x2C(x1 − x2), because
it is again a linear combination of (−1)x1−x2JN±x1∓x2(4t). Therefore acting with
e−t1 H and et2 H as before on (−1)x1−x2C(x1 − x2) leads to the replacement of
C(x1 − x2) by e4(t1−t2)C(t1 − t2, x1 − x2). This completes the proof of formulas
(5.25) and (5.26) for the extended kernel, thus establishing Lemma 5.3 and Theo-
rem 5.4. �

6. Asymptotics. In this section we prove the first half of Theorem 2.2, namely
formula (2.20). From the discussion in Section 2 after Theorem 2.1, concerning the
interaction between the top and bottom sets of random walks, we rescale space,
time and the gap n= 2m+ 1 between the two groups of walkers, as follows:

m= 2t + σ t1/3, xi = ξit
1/3, ti = si t

2/3, i = 1,2,(6.1)

where σ ∈R is a fixed parameter modulating the “strength of interaction” between
the upper and lower sets of walks. To prove formula (2.20) of Theorem 2.2, we first
analyze the asymptotics of the building blocks and determine some bounds which
will be used later to show that we can exchange (by dominated convergence) the
large time limit with the integrals (sums).

Recall from (5.22), (2.13) and (5.23) the functions J
(τ)
x (2t) and Q, and the

kernel K(τ)(0)k,�,

J (τ)
x (2t)= e−2τ

(
t + τ

t − τ

)x/2

Jx

(
2
√

t2 − τ 2
)
,

K(τ)(0)k,� =
∑
a≥0

J
(τ)
a+k+1(4t)Ja+�+1(4t),(6.2)

Q(κ)= [(1− χσ̃KAiχσ̃ )−1χσ̃ Ai](κ) with σ̃ := 22/3σ,

and where χa(x)= 1[x>a]. Remember from (2.14) the definition of

Ai(s)(ξ) := eξs+(2/3)s3
Ai(ξ + s2)(6.3)

and define the Airy-like kernel

K
(s)
Ai (κ, λ) :=

∫ ∞
0

dγ Ai(s2−2/3)(κ + γ )Ai(λ+ γ ).(6.4)
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Also define the following step functions of κ,λ ∈R, for which—by anticipation—
we indicate the limits for t →∞:

J (s)
t (κ) := t1/3J

(st2/3)

[2t+κt1/3+1](2t)→Ai(s)(κ),

K(s)
t (κ, λ) := (2t)1/3K(st2/3)(0)[4t+κ(2t)1/3],[4t+λ(2t)1/3] →K

(s)
Ai (κ, λ),

Qt (κ) := (2t)1/3Q[4t+κ(2t)1/3](6.5)

= [(
1− χ(n−4t)/(2t)1/3 K(0)

t χ(n−4t)/(2t)1/3
)−1

χ(n−4t)/(2t)1/3 J (0)
2t

]
(κ)

→ Q(κ).

LEMMA 6.1. We have the following bounds and limits for J (s)
t and K(s)

t de-
fined in (6.5). There exists a t0 > 0 such that uniformly for t ≥ t0 it holds that∣∣J (s)

t (κ)
∣∣≤ c1 min{1, e−θκ}, ∣∣K(s)

t (κ, λ)
∣∣≤ c2e

−θ(κ+λ)(6.6)

for any fixed θ > 0 and some constants c1, c2 > 0 (independent of t). Moreover

lim
t→∞J (s)

t (κ)=Ai(s)(κ), lim
t→∞K(s)

t (κ, λ)=K
(s)
Ai (κ, λ)(6.7)

uniformly for κ,λ, and s in a bounded set.

PROOF. We have

J (s)
t (ξ)= t1/3J

(st2/3)

[2t+ξ t1/3](2t)

= e−2st2/3
(

1+ st−1/3

1− st−1/3

)(1/2)[2t+ξ t1/3]
(6.8)

× t1/3J[2t+ξ t1/3]
(
2t

√
1− s2t−2/3

)
.

The prefactor can be estimated for t →∞, as follows:

e−2st2/3
(

1+ st−1/3

1− st−1/3

)t+(1/2)ξ t1/3

= eξs+(2/3)s3(
1+ O(t−1/3)

)
,(6.9)

where the O(t−1/3) is uniform for s in a bounded set and independent of ξ . There-
fore, for t large enough, |(6.9)| ≤ exp(2|ξs|+ |s3|). Concerning the remaining part
of (6.8), using (A.4), one readily obtains

lim
t→∞ t1/3J[2t+ξ t1/3]

(
2t

√
1− s2t−2/3

)=Ai(ξ + s2).(6.10)

Regarding the bound, for s in a bounded set, if t is large enough it follows from
bound (A.6) that

∣∣t1/3J[2t+ξ t1/3]
(
2t

√
1− s2t−2/3

)∣∣(6.11)
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is first of all uniformly bounded and for large ξ it decays as e−βξ for any choice of
β > 0. The statements in the first parts of (6.6) and (6.7) then follow if we choose
β satisfying β ≥ θ + 2|s| for any s in the given bounded set.

To compute the limit of K(s)
t , one uses definition (6.5) and formula (6.2) for

K(st2/3)(0), but with J replaced by J in the last equality below,

K(s)
t (κ, λ)= (2t)1/3K(st2/3)(0)[4t+κ(2t)1/3],[4t+λ(2t)1/3]

= (2t)1/3
∑

γ∈(2t)−1/3N

J
(s2−2/3(2t)2/3)

[4t+(γ+κ)(2t)1/3](4t)J[4t+(γ+λ)(2t)1/3](4t)(6.12)

= 1

(2t)1/3

∑
γ∈(2t)−1/3N

J (s2−2/3)
2t (κ + γ )J (0)

2t (λ+ γ ).

From this, using bound (6.6) on J , we obtain

∣∣K(s)
t (κ, λ)

∣∣≤ c2
1e
−θ(κ+λ) 1

(2t)1/3

∑
γ∈(2t)−1/3N

e−2θγ ≤ c2e
−θ(κ+λ)(6.13)

for t ≥ t0 = 1 and some c2 > 0, uniformly for s in a bounded set.
We can think of the sum in (6.12) as an integral of piece-wise constant functions.

The first bound in (6.6) allows us to use dominated convergence to exchange the
limit and the integral. Then, limt→∞ J (s)

t (κ)=Ai(s)(κ) yields

lim
t→∞K(s)

t (κ, λ)=
∫ ∞

0
dγ Ai(2

−2/3s)(κ + γ )Ai(λ+ γ )=K
(s)
Ai (κ, λ).(6.14) �

LEMMA 6.2. Set σ̃t := n−4t
(2t)1/3 and define the operator Mt = χσ̃t

K(0)
t χσ̃t

, ap-
pearing in the definition (6.5) of Qt . Then, uniformly for t ≥ t0, we have for the
operator-norm14 ‖ · ‖,

‖Mt‖< 1,(6.15)

which implies that

‖(1− Mt )
−1‖ ≤ (1− ‖Mt‖)−1 ≤ C <∞(6.16)

for some finite constant C independent of t .

PROOF. By Lemma 6.1 and the fact that σ̃t → σ̃ as t →∞, it follows that

lim
t→∞Mt = χσ̃KAiχσ̃ =: M(6.17)

14Where ‖A‖ = sup|f |≤1 |Af |.
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pointwise. Moreover,

lim
t→∞‖Mt − M‖2 ≤ lim

t→∞‖Mt − M‖2
HS

= lim
t→∞

∫
dκ dλ|Mt (κ, λ)− M(κ, λ)|2(6.18)

=
∫

dκ dλ lim
t→∞|Mt (κ, λ)− M(κ, λ)|2 = 0,

where we use by Lemma 6.1 dominated convergence to exchange the limit and the
integral together with (6.17). It is known that λmax = ‖M‖ < 1 for any fixed σ̃

(see, e.g., [48]). This, together with (6.18), implies that

‖Mt‖ ≤ ‖M‖ + ‖Mt − M‖< 1(6.19)

for t large enough. �

LEMMA 6.3. Consider Qt as defined in (6.5). There exists a t0 > 0 such that,
uniformly for t ≥ t0, it holds

|Qt (κ)| ≤ c3e
−θκ(6.20)

for any θ > 0 and some constant c3 > 0 (independent of t). Moreover,

lim
t→∞Qt (κ)= Q(κ)(6.21)

uniformly for κ in a bounded set.

PROOF. For the sake of this proof, set Jt := J (0)
t and Kt := K(0)

t . First of
all we prove that Qt (κ) is uniformly bounded for t ≥ t0. Recall that Qt (κ) =
[(1− Mt )

−1χσ̃t
J2t ](κ). Since (1− Mt )

−1 exists, we can use the identity

(1− Mt )
−1 = 1+ χσ̃t

Ktχσ̃t
(1− Mt )

−1,(6.22)

which upon integrating from σ̃ to ∞ against the function J2t gives

Qt (κ)= χσ̃t
J2t (κ)+

∫ ∞
σ̃t

dλ Kt (κ, λ)[(1− Mt )
−1χσ̃t

J2t ](λ).(6.23)

Thus,

|Qt (κ)| ≤ |χσ̃t
J2t (κ)| +

∫ ∞
σ̃t

dλ|Kt (κ, λ)||[(1− Mt )
−1χσ̃t

J2t ](λ)|.(6.24)

But

|[(1− Mt )
−1χσ̃t

J2t ](λ)| ≤ ‖(1− Mt )
−1‖|J2t |∞(6.25)

is uniformly bounded for t ≥ t0 (by Lemmas 6.1 and 6.2). Then, using the bound
for Kt and J (s)

t (κ) in (6.6) we obtain the bound (6.20).
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To prove (6.21), we show that

|Qt − Q|∞ = sup
κ
|Qt (κ)− Q(κ)|→ 0(6.26)

as t →∞. We have

|Qt − Q|∞ = |(1− Mt )
−1χσ̃t

J2t − (1− M)−1χσ̃ Ai|∞
≤ |[(1− Mt )

−1 − (1− M)−1]χσ̃ J2t |∞(6.27)

+ |(1− M)−1[χσ̃ J2t − χσ̃ Ai]|∞ + O(t−1/3),

where the correction term O(t−1/3) comes from the fact that the difference be-
tween σ̃t and σ̃ is not larger than (2t)−1/3. Then,

(6.27)≤ ‖(1− Mt )
−1 − (1− M)−1‖|χσ̃ J2t |∞

(6.28)
+ ‖(1− M)−1‖|χσ̃ J2t − χσ̃ Ai|∞ + O(t−1/3).

The first term goes to zero as t →∞. Indeed, |χσ̃ J2t |∞ ≤ C <∞ by Lemma 6.1,
and, using the identity

(1− Mt )
−1 − (1− M)−1 = (1− Mt )

−1[Mt − M](1− M)−1(6.29)

together with the fact that ‖Mt‖< 1, ‖M‖< 1, and ‖M − Mt‖→ 0 in the t →
∞ limit [see Lemma 6.2 and (6.18)]; so one has ‖(1−Mt )

−1− (1−M)−1‖→ 0.
The second term goes to zero as well, since ‖(1 − M)−1‖ is bounded and, by
Lemma 6.1, |χσ̃ J2t − χσ̃ Ai|∞ → 0. �

PROOF OF THEOREM 2.2, FORMULA (2.20). We now define new func-
tions At (s, ξ), Bt (s, ξ), Ct (s, ξ), which are rescaled versions of A(τ, x), B(τ, x),
C(τ, x) [see formula (5.24)] under the scaling (6.1):

At (s, ξ) := t1/3A(st2/3, ξ t1/3),

Bt (s, ξ) := t1/3B(st2/3, ξ t1/3),(6.30)

Ct (s, ξ) := t1/3C(st2/3, ξ t1/3).

As t →∞, these functions will converge to A(s, ξ), B(s, ξ), C(s, ξ) of (2.15) and
(2.16).

One then recognizes in these expressions functions (6.5), thus yielding

At (s, ξ)= J (s)
t (σ − ξ)

+ 1

(2t)1/3

∑
κ∈In,t

1

(2t)1/3

∑
α∈(2t)−1/3N

Qt (κ)J (0)
2t (κ + α)

× J (s)
t (21/3α + σ − ξ),(6.31)
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Bt (s, ξ)= 1

(2t)1/3

∑
κ∈In,t

Qt (κ)J (s)
t (ξ − σ + 21/3κ − t−1/3),

Ct (s, ξ)= 2−1/3

(2t)1/3

∑
κ∈In,t

Qt (κ)
(

J (2−2/3s)
2t (κ − 2−1/3ξ)

+ J (2−2/3s)
2t (κ + 2−1/3ξ)

)
+ 2−1/3

(2t)2/3

∑
κ,λ∈In,t

Qt (κ)Qt (λ)
(

K(s)
t (κ − 2−1/3ξ, λ)

+ K(s)
t (κ + 2−1/3ξ, λ)

)
.

For instance, the function Jk+1+a(4t) in A(τ, x) becomes, upon setting a =
α(2t)1/3 and κ := (2t)−1/3(k − 4t),

Jk+1+a(4t)= J[4t+(κ+α)(2t)1/3+1](4t)= (2t)−1/3J (0)
2t (κ + α).(6.32)

Notice that the sum over k ≥ n in the expressions (5.24) becomes a sum over
κ ∈ In,t with

In,t := (2t)−1/3({n,n+ 1, . . .} − 4t),(6.33)

so that the condition k ≥ n = 2m + 1 = 4t + 2σ t1/3 + 1 translates into κ =
(2t)−1/3(k − 4t) > 22/3σ = σ̃ . Setting the summation variable c = γ t1/3, rewrite
the kernel (5.26) in Theorem 5.4, with the scaling (6.1)

(−1)x2e4t2

(−1)x1e4t1

Hn+1(0)

Hn(0)
K̃

ext
m (t1, x1; t2, x2)

=−1[s1>s2]
Hn+1(0)

Hn(0)
t1/3p(s1−s2)t

2/3(ξ1t
1/3, ξ2t

1/3)+ Ct (s1 − s2, ξ1 − ξ2)

+ 1

t1/3

∑
γ∈t−1/3N

(
At (s1, ξ1 − γ )At (−s2, ξ2 − γ )

+ At (s1,−ξ1 − γ )At (−s2,−ξ2 − γ )

− At (s1, ξ1 − γ )Bt (−s2, ξ2 − γ )
(6.34)

− At (s1,−ξ1 − γ )Bt (−s2,−ξ2 − γ )

− Bt (s1, ξ1 − γ )At (−s2, ξ2 − γ )

− Bt (s1,−ξ1 − γ )At (−s2,−ξ2 − γ )
)

− 1

t1/3

∑
γ∈t−1/3Z−

(
Bt (s1, ξ1 − γ )Bt (−s2, ξ2 − γ )

+ Bt (s1,−ξ1 − γ )Bt (−s2,−ξ2 − γ )
)
.



TACNODE PROCESS 2639

In view of (2.10) we have limt→∞Hn+1(0)/Hn(0) = 1 and in the t →∞ limit,
(n− 4t)/(2t)1/3 → σ̃ . Notice that the sums with the preceding volume element,
1/t1/3 or 1/(2t)1/3 depending on the case, can be just thought of as integrals with
the integrand being piece-wise constant. What follows holds uniformly in t for
t ≥ t0 where t0 is a fixed constant. The exponential bounds of Lemmas 6.1 and 6.3
imply that for any θ > 0 there exists some c > 0 (the constant c depends on σ ,
which is, however, fixed)

|At (s,−ξ)| ≤ ce−θξ and lim
t→∞At (s, ξ)= A(s, ξ).(6.35)

Moreover At (s, ξ) tends to A(s, ξ) uniformly on bounded sets, by uniform con-
vergence on bounded sets and dominated convergence of the integrand. Using the
exponential bound of Lemma 6.3 and the fact that Jt is just bounded, we obtain
similarly

|Bt (s, ξ)| ≤ c min{1, e−θξ } and lim
t→∞Bt (s, ξ)= B(s, ξ).(6.36)

Finally, the exponential bounds of Lemmas 6.1 and 6.3 imply that

|Ct (s, ξ)| ≤ c and lim
t→∞Ct (s, ξ)= C(s, ξ),(6.37)

where the last limit holds uniformly for ξ and s in bounded sets.
Using the bounds in (6.35), (6.36) and (6.37), one concludes that the integrands

(summands) in (6.34) are uniformly bounded by functions which are integrable
(summable). This is uniform for ξ, η and s in a bounded set. Then, by dominated
convergence, we can take the limit inside, thus yielding (2.20). Finally, the Gaus-
sian term in (2.20) comes from the known asymptotic (for s > 0),

lim
t→∞ t1/3e−2st2/3

Iξt1/3(2st2/3)= 1√
4πs

exp
(−ξ2/(4s)

)
,(6.38)

which can be derived from a saddle point argument. �

7. Integral representation of the Tacnode kernel. To derive the double in-
tegral representation (2.21) of Theorem 2.2 there are two ways. One can use the
Airy functions integral representations (A.7) together with

∫ ∞
0

dλe−λ(u−v) = 1

u− v
whenever  (u− v) > 0.(7.1)

This is quite straightforward, but it requires several computations which are not
reported here.



2640 M. ADLER, P. L. FERRARI AND P. VAN MOERBEKE

The second is to do a steepest descent analysis starting from formula (5.25) in
Lemma 2.1. Here we merely indicate a sketch of the saddle point argument (not a
proof). The limits of the other terms have been discussed in the previous section.
The main task here is to take the limit of this double integral, when t →∞, with
the scaling

n= 2m+ 1, m= 2t + σ t1/3,

z=−1+ ζ t−1/3 and w =−1+ωt−1/3,(7.2)

xi = ξit
1/3 and ti = si t

2/3, i = 1,2.

Also recall the definitions (2.17) of the Laplace transforms Q̂(ζ ) and P̂(ζ ), as
well as the function C in (2.16). The reader is reminded of the steepest descent
discussion in Section 4.1. For taking the limit of the extended kernel, we need the
following lemma.

LEMMA 7.1. Given the scaling (7.2) above, the following limits hold:

lim
t→∞ et(z−z−1)(−z)m = eζ 3/3−σζ(7.3)

and

lim
t→∞Tn(z

−1)= e−2σζ Q̂(ζ ), lim
t→∞Tn(w)= e2σωQ̂(−ω),

(7.4)
lim

t→∞Sn(z
−1)= P̂(ζ ), lim

t→∞Sn(w)= P̂(−ω),

where P̂ and Q̂ are the Laplace transforms defined in (2.17). One also checks

lim
t→∞

(−w)x2−1

(−z)x1
= eξ1ζ

eξ2ω
and lim

t→∞ e−ti (z+z−1+2) = esiζ
2
.(7.5)

PROOF. Letting t →∞, setting n= 2m+1, m= 2t+σ t1/3, the critical point
will be at z,w =−1, and thus the leading contribution will come from the neigh-
borhood of the critical points, which suggests the scalings in z and w above. The
Taylor expansion of the F -function (4.22) gives

et(z−z−1)(−z)m = et(z−z−1)+m log(−z) = etF (z)+σ t1/3 log(−z)

= etF (−1+ζ t−1/3)+σ t1/3 log(1−ζ t−1/3)(7.6)

= eζ 3/3−σζ (
1+ O(t−1/3)

)
.

Setting in addition the scaling for ti and xi , one finds by Taylor expanding about
z = −1 and w = −1 the limits (7.5). Introducing the running variable k = 4t +
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κ(2t)1/3, one gets

lim
t→∞Tn(z

−1)= lim
t→∞

∑
k≥n

Qk

(−z)k−n+1

= lim
t→∞

∑
k≥n

Qke
−(k−n+1) log(−z)

= lim
t→∞(2t)−1/3

∑
κ≥σ̃+(2t)−1/3

(2t)1/3Q4t+κ(2t)1/3(7.7)

× e−(κ−σ̃ )(2t)1/3(−ζ t−1/3)

=
∫
κ≥σ̃

dκ Q(κ)e(κ−σ̃ )ζ21/3 = e−2σζ Q̂(ζ )

and similarly

lim
t→∞Tn(w)= e2σω

∫
κ≥σ̃

dκ Q(κ)e−κω21/3 = e2σωQ̂(−ω).(7.8)

The limit of the expression Sn, as in (4.10), involves h̄k , as in (4.24). Using the for-
mula (4.24) for h̄k(z

−1) in terms of Bessel functions and Lemma 6.1, one checks,
introducing the running variable a = μ(2t)1/3,

lim
t→∞ h̄k(z

−1)=− lim
t→∞

∑
a≥0

(−z)aJk+a+1(4t)

=− lim
t→∞(2t)−1/3

∑
κ≥σ̃+(2t)−1/3

eμ(2t)1/3 log(1−ζ t−1/3)J (0)
2t (κ +μ)(7.9)

=−
∫ ∞

0
dμe−μζ21/3

Ai(κ +μ).

Therefore, one finds

lim
t→∞Sn(z

−1)= lim
t→∞〈Q,χnh̄(z−1)〉 = lim

t→∞
∑
k≥n

Qkh̄k(z
−1)

= lim
t→∞(2t)−1/3

∑
κ≥σ̃+(2t)−1/3

(2t)1/3 Qt (κ)h̄k(z
−1)(7.10)

=−
∫
κ≥σ̃

dκ Q(κ)

∫ ∞
0

dμe−μζ21/3
Ai(κ +μ)= P̂(ζ ).

This completes the proof of Lemma 7.1. �

Sketch of Proof of Theorem 2.2, formula (2.21). Since the sum in brackets in
(5.25) is invariant under the involution x1 ↔−x2 and t1 ↔−t2, it suffices to con-
sider the double integral, with the first term only. The second half comes for free
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FIG. 5. Contours z ∈ 
0 and w ∈ 
0,z in the neighborhood of z=w =−1.

by acting with the involution! Given scaling (7.2), Lemma 7.1 yields

lim
t→∞ t1/3 dzdw

z−w

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
= dζ dω

ζ −ω

(
eξ1ζ

eξ2ω

)
es1ζ

2

es2ω
2(7.11)

and, from (4.12),

lim
t→∞

4∑
i=1

Ei(z,w)= eζ 3/3−σζ

eω3/3−σω

(
1− P̂(ζ )

)(
1− P̂(−ω)

)

− eζ 3/3−σζ

e−ω3/3+σω
e2σω(

1− P̂(ζ )
)

Q̂(−ω)

(7.12)

− e−ζ 3/3+σζ

eω3/3−σω
e−2σζ (

1− P̂(−ω)
)

Q̂(ζ )

− eζ 3/3−σζ

eω3/3−σω

e2σζ

e2σω
Q̂(−ζ )Q̂(ω).

Combining (7.11) and (7.12) yields the following limit below, first with the
contours as indicated in Figure 5, which then can be transformed into the vertical
lines above in Figure 6, compatible with Figure 5. Indeed, to pick steepest descent
paths about z = w = −1 respecting the integration contours in

∮

0

dz
∮

0,z

dw of
(7.13), one must choose the local paths, as illustrated in Figure 5; these paths
must be completed by closed contours encircling the origin deformed to provide
steepest descent contours. In the ζ,ω scale, there are 4 rays emanating from the
origin ω= ζ = 0; one is then free to deform these rays so as to obtain two parallel
imaginary lines near the origin, as depicted in Figure 6. Therefore the following

FIG. 6. Vertical lines ±δ + iR and ±2δ+ iR of integration for ζ and ω.
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limit holds for the first double integral

lim
t→∞

t1/3

(2π i)2

∮

0

dz

∮

0,z

dw

z−w

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)

4∑
i=1

Ei(z,w)

= 1

(2π i)2

∫
δ+iR

dζ

∫
−δ+iR

dω
eζ 3/3−σζ

eω3/3−σω

es1ζ
2

es2ω
2

(
eξ1ζ

eξ2ω

)
(i)

× (1− P̂(ζ ))(1− P̂(−ω))

ζ −ω

− 1

(2π i)2

∫
2δ+iR

dζ

∫
δ+iR

dω
eζ 3/3−σζ

e−ω3/3−σω

es1ζ
2

es2ω
2

(
eξ1ζ

eξ2ω

)
(ii)

× (1− P̂(ζ ))Q̂(−ω)

ζ −ω
(7.13)

− 1

(2π i)2

∫
−δ+iR

dζ

∫
−2δ+iR

dω
e−ζ 3/3−σζ

eω3/3−σω

es1ζ
2

es2ω
2

(
eξ1ζ

eξ2ω

)
(iii)

× (1− P̂(−ω))Q̂(ζ )

ζ −ω

− 1

(2π i)2

∫
δ+iR

dζ

∫
−δ+iR

dω
eζ 3/3+σζ

eω3/3+σω

es1ζ
2

es2ω
2

(
eξ1ζ

eξ2ω

)
(iv)

× Q̂(−ζ )Q̂(ω)

ζ −ω
.

In view of the scaling (7.2), the involution x1 ↔−x2 and t1 ↔−t2 induces the
involution ξ1 ↔−ξ2 and s1 ↔−s2, so that the limit of the other double integral is
given by the same formula (7.13) above, but with

ξ1 ↔−ξ2 and s1 ↔−s2.(7.14)

We are also allowed to interchange the integration variables ζ ↔−ω, provided
the contours of integration are modified accordingly; this last interchange implies∫

δ+iR
dζ

∫
−δ+iR

dω remains(7.15)

∫
2δ+iR

dζ

∫
δ+iR

dω and
∫
−δ+iR

dζ

∫
−2δ+iR

dω interchange.(7.16)

So, the three combined maps,

ζ ↔−ω, s1 ↔−s2, ξ1 ↔−ξ2(7.17)
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have the following effect on the four double integrals (i), . . . , (iv) in (7.13):

double integral (i) with
eξ1ζ

eξ2ω
→ same double integral (i), except for

e−ξ1ζ

e−ξ2ω
;

double integral (ii) with
eξ1ζ

eξ2ω
→ same double integral (iii), except for

e−ξ1ζ

e−ξ2ω
;

double integral (iii) with
eξ1ζ

eξ2ω
→ same double integral (ii), except for

e−ξ1ζ

e−ξ2ω
;

double integral (iv) with
eξ1ζ

eξ2ω
→ same double integral (iv), except for

e−ξ1ζ

e−ξ2ω
.

Therefore the limit

lim
t→∞

t1/3

(2π i)2

∮

0

dz

∮

0,z

dw

z−w

4∑
i=1

Ei(z,w)

(7.18)

×
(

(−w)x2−1

(−z)x1

e−t1(z+z−1+2)

e−t2(w+w−1+2)
+ (−z)x2

(−w)x1+1

e−t1(w+w−1+2)

e−t2(z+z−1+2)

)

is given by the right-hand side of (7.13) with the replacement

eξ1ζ

eξ2ω
→ eξ1ζ

eξ2ω
+ e−ξ1ζ

e−ξ2ω
.(7.19)

Finally, in order to change the sign of the last integral, one switches the sign ω→
−ω and ζ →−ζ , which changes

−
∫
δ+iR

dζ

∫
−δ+iR

dω
1

ζ −ω
into +

∫
−δ+iR

dζ

∫
δ+iR

dω
1

ζ −ω
.(7.20)

Renaming variables ζ → u,ω→ v gives formula (2.21).

APPENDIX: SOME PROPERTIES OF BESSEL AND AIRY FUNCTIONS

Let us recall that the Bessel function representation of order n ∈ Z

Jn(2t)= 1

2π i

∮

0

dz
et(z−z−1)

zn+1(A.1)

has the symmetries

Jn(2t)= (−1)nJ−n(2t)= (−1)nJn(−2t).(A.2)

Moreover,

1

2π i

∮

0

dz

z

eb(z−z−1)ea(z+z−1)

zn
=

(
b+ a

b− a

)n/2

Jn

(
2
√

b2 − a2
)
.(A.3)
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It is well known [1] that

lim
t→∞ t1/3J[2t+ξ t1/3](2t)=Ai(ξ).(A.4)

An uniform bound obtained in [35] is

|(2t)1/3Jn(2t)| ≤ c, c= 0.785 . . . , n ∈ Z.(A.5)

This bound, together with uniform expansion which can be found in [1] is used in
Lemma A.1 of [22] to get the following result. Fix any θ > 0. Then, there exists a
constant t0 > 0 and a constant C > 0 such that, uniformly in t ≥ t0,∣∣t1/3J[2t+ξ t1/3](2t)

∣∣≤ C min{1, e−θξ }.(A.6)

Actually, the statement of Lemma A.1 of [22] is for θ = 1/2 but inspecting the
proof it is straightforward to see that it holds for any fixed θ > 0. The Airy function
has, among others, the following two integral representations. For any δ > 0, it
holds

Ai(x)= 1

2π i

∫
δ+iR

dueu3/3−ux, Ai(x)= 1

2π i

∫
−δ+iR

dv e−v3/3+vx.(A.7)

Moreover, for any δ > 0, it holds

Ai(s)(x)= esx+2s3/3 Ai(x + s2)= 1

2π i

∫
δ+iR

dueu3/3+u2s−ux,

(A.8)

Ai(s)(x)= esx+2s3/3 Ai(x + s2)= 1

2π i

∫
−δ+iR

dv e−v3/3+v2s+vx.
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