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SHARP METASTABILITY THRESHOLD FOR AN ANISOTROPIC
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Bootstrap percolation models have been extensively studied during the
two past decades. In this article, we study the following “anisotropic” boot-
strap percolation model: the neighborhood of a point (m, n) is the set

{(m+2,n),m+1,n),(m,n+1),(m—1,n),(m—2,n),(m,n—1)}.

At time 0, sites are occupied with probability p. At each time step, sites that
are occupied remain occupied, while sites that are not occupied become occu-
pied if and only if three of more sites in their neighborhood are occupied. We
prove that it exhibits a sharp metastability threshold. This is the first math-
ematical proof of a sharp threshold for an anisotropic bootstrap percolation
model.

1. Introduction.

1.1. Statement of the theorem. Bootstrap percolation models are interesting
models for crack formation, clustering phenomena, metastability and dynamics of
glasses. They also have been used to describe the phenomenon of jamming (see, for
example, [30]), and they are a major ingredient in the study of so-called kinetically
constrained models; see, for example, [14]. Other applications are in the theory
of sandpiles [13] and in the theory of neural nets [2, 29]. Bootstrap percolation
was introduced in [9] and has been an object of study for both physicists and
mathematicians. For some of the earlier results, see, for example, [1, 7, 8, 10, 18,
26, 28, 31, 32].

The simplest model is the so-called simple bootstrap percolation on Z>. At
time 0, sites of Z> are occupied with probability p € (0, 1) independently of each
other. At each time increment, sites become occupied if at least two of their near-
est neighbors are occupied. The behavior of this model is now well-understood:
the model exhibits a sharp metastability threshold. Nevertheless, slight modifica-
tions of the update rule provide challenging problems, and the sharp metastability
threshold remains open in general. A few models have been solved, including sim-
ple bootstrap percolation and the modified bootstrap percolation in every dimen-
sion, and so-called balanced dynamics in two dimensions [3-6, 12, 20-22]. The
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FI1G. 1. Left: An example of a simple bootstrap percolation’s growth (red sites are the oldest, blue
the youngest). Right: An example of the anisotropic model’s growth.

case of anisotropic dynamics, in which the neighborhood of a point is not invariant
under a ninety-degree rotation in a lattice plane (even in two dimensions), has so
far eluded mathematicians, and even the scale at which the metastability thresh-
old occurs is not clear. (Note added in proof: For a general class of models in 3
dimensions, this scale has since been established in [33].)

In this article, we provide the first sharp metastability threshold for an
anisotropic model. We consider the following model, first introduced in [15]. The
neighborhood of a point (m, n) is the set

{im+2,n),(m+1,n),(m,n+1),(m—1,n),m—2,n), (m,n—1)}.

At time 0, sites are occupied with probability p. At each time step, sites that are
occupied remain occupied, while sites that are not occupied become occupied if
and only if three of more sites in their neighborhood are occupied. We are inter-
ested in the behavior (when the probability p goes to 0) of the (random) time T
at which 0 becomes occupied. For earlier studies of two-dimensional anisotropic
models, whose results, however, fall short of providing sharp results, we refer to
[11, 15, 16, 24, 25,27, 32, 34].

THEOREM 1.1. Consider the dynamics described above, then

2
—(log l) logT —> i when p — 0.
)4 V4 12

This model and the simple bootstrap percolation have very different behavior,
as illustrated in Figure 1.

Combined with techniques of [12] we believe that our proof paves the way
toward a better understanding of general bootstrap percolation models. More di-
rectly, the following models fall immediately into the scope of the proof. Consider
the neighborhood Ny of (m, n) defined by

{tm+k,n),....(m+1,n),mn+1),(m—1,n),..., m—k,n),(m,n—1)},
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and assume that the site (m, n) becomes occupied as soon as N contains k + 1
occupied sites. Then the techniques developed in this article extend to this context,
showing that

1 1\? (P) 1
— (log —) logT — — when p — 0.
p p 4k +1)

1.2. Outline of the proof. The time at which the origin becomes occupied is
determined by the typical distance at which a “critical droplet” occurs; here, a crit-
ical droplet means a connected localized set of occupied sites, which after growing
via the bootstrap rule spans a macroscopic proportion of the space. Furthermore,
the typical distance of this critical droplet is connected to the probability for a crit-
ical droplet to be created. Such a droplet then keeps growing until it covers the
whole lattice with high probability. In our case, the droplet will be created at a
distance of order exp % (log %)2. Determining this distance boils down to estimat-
ing how a rectangle, consisting of an occupied double vertical column of length
e% log %, grows to a rectangle of size 1/ p® by % log %.

Obtaining an upper bound is usually the easiest part: one must identify “an al-
most optimal” way to create the critical droplet. This way follows a two-stage pro-
cedure. First, a vertical double line of height % log % is created. Then, the rectangle

grows to size 1/p? by % log % We mention that this step is quite different from
the isotropic case. Indeed, after starting as a vertical double line, the droplet grows
in a logarithmic manner; that is, it grows logarithmically faster in the horizontal
than in the vertical direction. On the one hand, the computation of the integral de-
termining the constant of the threshold is easier than in [20]. On the other hand,
the growth mechanism is more intricate.

The lower bound is much harder: one must prove that our “optimal” way of
spanning a rectangle of size 1/p? by % log % is indeed the best one. We combine
existing technology with new arguments. The proof is based on Holroyd’s notion
of hierarchy applied to k-crossable rectangles containing internally filled sets (i.e.,
sets such that all their sites become eventually occupied when running the dynam-
ics restricted to the sets). A large rectangle will be typically created by generations
of smaller rectangles. These generations of smaller rectangles are organized in a
tree structure which forms the hierarchy. In our context, the original notion must
be altered in many different ways (see the proof).

For instance, one key argument in Holroyd’s paper is the fact that hierarchies
with many so-called “seeds” are unlikely to happen, implying that hierarchies cor-
responding to one small seed were the most likely ones. In our model, this is no
longer true. There can be many seeds, and a new comparison scheme is needed.
A second difficulty comes from the fact that there are stable sets that are not rect-
angles. We must use the notion of being k-crossed (see Section 3). Even though it
is much easier to be k-crossed than to be internally filled, we can choose the free
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parameter k to be large enough in order to get sharp enough estimates. We would
like to mention a third difficulty. Proposition 21 of [20] estimates the probability
that a rectangle R’ becomes full knowing that a slightly smaller rectangle R is full.
In this article, we need an analog of this proposition. However, the proof of Hol-
royd’s Proposition uses the fact that the so-called “corner region” between the two
rectangles is unimportant. In our case, this region matters, and we need to be more
careful about the statement and the proof of the corresponding proposition.

The upper bound together with the lower bound result in the sharp threshold. In
a similar way as in ordinary bootstrap percolation Holroyd’s approach refined the
analysis of Aizenman and Lebowitz, here we refine the results of [15] and [34]. We
find that the typical growth follows different “strategies” depending on which stage
of growth we are in. The logarithmic growth into a critical rectangle is the main
new qualitative insight of the paper. In [34], long vertical double lines were con-
sidered as critical droplets; before, Schonmann [26] had identified a single vertical
line for the Duarte model as a possible critical droplet. The fact that these are not
the optimal ones is the main new step toward the identification of the threshold,
apart from the technical ways of proving it. Although the growth pattern is thus
somewhat more complex, the computation of the threshold can still be performed.

1.3. Notations. Let P, be the percolation measure with p > 0. The initial
(random) set of occupied sites will always be denoted by K. We will denote by
(K) the final configuration spanned by a set K. A set S (for instance a line) is said
to be occupied if it contains one occupied site (i.e., S N K # @). It is full if all its
sites are occupied (i.e., S C K). A set S is internally filled if S C (K N S). Note
that this notation is nonstandard and corresponds to being internally spanned in the
literature.

The neighborhood of 0 will be denoted by N. Observe that the neighborhood
of (m,n) is (m,n) +N.

A rectangle [a, b] X [c, d] is the set of sites in 72 included in the Euclidean
rectangle [a, b] X [c, d]. Note that a, b, ¢ and d do not have to be integers. For a
rectangle R = [a, b] x [c, d], we will usually denote by (x(R), y(R)) = (b — a,
d — c) the dimensions of the rectangle. When there is no possible confusion, we
simply write (x, y). A line of the rectangle R is a set {(m,n) € R : n = ng} for
some ng fixed. A column is a set {(m,n) € R : m = mg} for some m fixed.

1.4. Probabilistic tools. There is a natural notion of increasing events in

{0, I}Zz: an event A is increasing if for any pair of configurations w < w'—every
occupied site in w is occupied in w’—such that w is in A, then @’ is in A. Two
important inequalities related to increasing events will be used in the proof: the
first one is the so-called FKG inequality. Let A and B be two increasing events,
then

P,(AN B) >P,(A)P,(B).
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The second is the BK inequality. We say that two events occur disjointly if for any
w € AN B, itis possible to find a set F' so that wr € A and w e € B (the restriction
means that the occupied sites of w|r are exactly the occupied sites of w which are
in F'). We denote the disjoint occurrence by A o B (we denote Ajo---0 A, forn
events occurring disjointly). Then

P,(Ao B) <P,(A)P,(B).

We refer the reader to the book [19] for proofs and a complete study of percolation
models.

We will also use the following easy instance of Chernoff’s inequality. For every
e > 0, there exists pg > 0 such that for every p < pg and n > 1, the probability
of a binomial variable with parameters n and p being larger than en is smaller
than e™".

2. Upper bound of Theorem 1.1. A rectangle R is horizontally traversable if
in each triplet of neighboring columns, there exists an occupied site. A rectangle is
north traversable if for any (horizontal) line ¢ = {(k, n), k € Z}, there exists a site
(m,n) € RNLsuchthat {(m+1,n), m+2,n), m,n+1),(m—1,n), im—2,n)}
contains two occupied sites. It is south traversable if for any (horizontal) line £,
there exists a site (m,n) € R N £ such that {(m — 1,n), (m — 2,n), (m,n — 1),
(m+1,n), (m + 2, n)} contains two occupied sites.

LEMMA 2.1. Let € > 0, then there exist py, yo > 0 satisfying the following:
for any rectangle R with dimensions (x,y),
exp[—(1 + e)xe 3] < P, (R is horizontally traversable)
< exp[—(1 —&)(x —2)e ]
provided yo/p <y < 1/(yop?) and p < po.

PROOF. Letu =1— (1 — p)” be the probability that there exists an occupied
site in a column. Let A; be the event that the ith column from the left is occupied.
Then R is horizontally traversable if and only if the sequence Ay, ..., Ay has no
triple gap (meaning that there exists i such that A;, A;+1 and A;4> do not occur).

This kind of event has been studied extensively; see [20]. It is elementary to prove
that

a(u)™" <P, (R is horizontally traversable) < o)~ "2,
where o (u) is the positive root of the polynomial
X —uX?—u(l —w)X —u(l —u)’.

When py goes to infinity and p?y goes to 0 (and therefore p goes to 0), u goes
to 1 and

loga(u) ~ —(1 —u)® ~ —e=3PY.

The result follows readily. [J
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LEMMA 2.2. For every € > 0, there exists pg, xo > 0 satisfying the following
property: for any rectangle R with dimensions (x, y),

exp[(1 + s)ylog(pzx)] < PP, (R is north traversable)
provided p < po and x < 1/(xop?).

The same estimate holds for south traversability by symmetry under reflection.

PROOF. Letng € N. Let v be the probability that one line is occupied. In other
words, the probability that there exists a site (m, ng) such that two elements of
(m—2,n9), (m—1,n9), (m,no+1), (m+1,n9) and (m + 2, ng) are occupied. If
p*x goes to 0, the probability that there is such a pair of sites is equivalent to the
expected number of such pairs, giving

log v ~ log[(8x — 16) p] ~ log[ p*x].

(Here 8x — 16 is a bound for the number of such pairs.) Using the FKG inequality,
we obtain

v <P »(R is north traversable).

Together with the asymptotics for v, the claim follows readily. [

For two rectangles R; C R», let I(Ry, R>) be the event that R, is internally
filled whenever R; is full. This event depends only on Ry \ R;.

PROPOSITION 2.3. Let € > 0. Then there exist pg, kg > 0 such that the fol-
lowing holds: for any rectangles R1 C Ry with dimensions (x1, y1) and (x2, y2),
exp(—(1 +&)[(x2 — x1)e P2 — (y2 — y) log(p*x1)]) <P, (I (R1, R2)),
providing p < po, p*x1 < 1/ko and ko/p < y1 < 1/(kop?).
Take two rectangles Ry C R such that Ry = [ay, a2] X [b1,b2] and Ry =
[c1, 2] x [d1, d]. Define sets
Ry:=[ci,a1]l x [d1,d2] and R, :=laz, c2] x [d1, d2],
Ry :=lai,a2] X [b2,d2] and  Rp:=lai, az] x [di, b1l,
H:=Ry\{(x,y):x €lar,ax] ory € [by, b2]}.
The set H is the corner region; see Figure 2.

PROOF. Let ¢ > 0. Set pg and ko := max(xg, yp) in such a way that Lem-
mata 2.1 and 2.2 apply. Let Ry C R two rectangles. If R, and R, are horizontally
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Ry

R, R,
Rb RQ

FIG. 2. The rectangles Ry and R, are in light gray while R; and Ry, are in white. The corner
region H is hatched.

traversable while R, and R, are respectively north and south traversable, then R,
is internally filled whenever R| is internally filled. Using the FKG inequality,

P,(I(Ry, R2))
> P, (Ry hor. trav.)P, (R; north trav.)[P, (R, hor. trav.)P, (R; south trav.)
> exp(—(1+&)[(x2 — x1)e P2 — (2 — yn) log(p*x1)]),
using Lemmata 2.1 and 2.2 (the conditions of these lemmata are satisfied). [J

PROPOSITION 2.4 (Lower bound for the creation of a critical rectangle). For
any € > 0, there exists po > 0 such that for p < po.

1 1 1\2
P, ([0, p =2V is internally filled) > exp|:—<g + 8) — (log —) :|
p p

PROOF. Let ¢ > 0. For any p small enough, consider the sequence of rectan-
gles (erlj)kognSN

R = [0, p~ ! 7/ REUD] 5 [0,/ p).

where kg is defined in such a way that Proposition 2.3 applies with ¢ and N :=
%log% — logkop. The following computation is straightforward, using Proposi-
tion 2.3:

N
[1PpLI(RE. R D]

n=ko

N
> CXp|:—(1 +e) Z ((p—1—3(n+1)/10g(1/p) o p—1—3n/10g(1/p))e—3(n+l)

n=ko

1
_ ;log(p2p—l—3n/log(1/p)))i|
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1 1\?
=exp| —(1+¢)— <log —)
p p

L N 1 n
e — (1=3—")]).
X [Z Gog(1/p)7 T 2 10g(1/p)< 10g(1/p))]>

n=ko n=ko

The first sum goes to 0 as O(1/In %) while the second one is a Riemann sum

converging to fol / 3(1 —3y)dy = %. The rectangle [0, p—>]? is internally filled if

all the following events occur (we include asymptotics when p goes to 0):

e F the event that {0, 1} x [O, 8% log %] is full, of probability exp[—28%(log %)2];

e F the event that R = [0, e% log %] x [0, p_(”g)] is horizontally traversable, of
probability larger than

(l+e 2
[1— (1= pys/ploed/pP "> expl—ptE] = exp[—sl<log l) ];
p p

e G the intersection of I (R}, R}, |) for 0 <n < N — 1, of probability larger than
exp[—(1 + 8)(% + 8)%(log %)2] using the computation above;
e H the event that [0, p‘2+8 1x [0, 6% log %] is north traversable, with probability

larger than
2
(1 _ (1 . pz)p72+5)2(1/P)10g(1/P) ~ (p£)6(l/p)10g(1/p) — exp|:_6gl<10g l) i|’
p p

e [ the event that [0, 6% log %] x [0, p~2] is horizontally traversable, with proba-
bility larger than (1 — (1 — p)6(1/P)10g(1/P))P75 and thus converging to 1;
e J the event that [0, p~>]% is north traversable with probability larger than [1 —
2 -5 ,.-5 .
(1 — p~)? "7 ~ thus also converging to 1.
The FKG inequality gives

P, ([0, p~>1* is int. filled) > P,(ENFNGNHNINJ)
1 1 1\?2
> exp[—(l + 8)(— + 108)—<1og —) ]
6 P P

PROOF OF THE UPPER BOUND IN THEOREM 1.1. Let ¢ > 0 and consider A
to be the event that any line or column of length p~ intersecting the box [—L, L]?
where L = exp[(% +é&) % (log %)2] contains two adjacent occupied sites. The prob-
ability of this event can be bounded from below.

when p is small enough. [J

P,(A) > [1— (1 — p2)P 2P ~exp[8L2% 7 /2] —> 1.
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(The factor 8 is due to the number of possible segments of length p~.) De-
note by B the event that there exists a translate of [0, p‘5 1? which is included
in [—L, L)? and internally filled. Applying Proposition 2.4 and dividing [—L, L]
into (Lp>)? disjoint squares of size p~>, one easily acquires

P,(B) > 1 — [1 — ¢~ (1/6+e)1/p)og(1/p)?|(LP")?
~l— exp(_(Lps)ze—(1/6+e)(1/p)<1og(1/p>>2) 1

Moreover, the occurrence of A and B implies that log7 < (ﬁ + 28)%(log %)2

for p small enough. Indeed, a square of size p— is filled in less than p~!0 steps.

After the creation of this square, it only takes a number of steps of order exp[(ll—2 +
e)%(log %)2] to progress and reach 0, thanks to the event A. The FKG inequality
yields

1 1 1\2
Pp[logT < (E +28>—(10g —) } >P,(ENF)>Pu(E)P,(F)— 1
4 4

which concludes the proof of the upper bound. [J
3. Lower bound of Theorem 1.1.

3.1. Crossed rectangles. Two occupied points x, y € Z?* are connected if x €
y + N. A set is connected if there exists a path of occupied connected sites with
end-points being x and y.

Two occupied points x, y € Z?> are weakly connected if there exists z € Z? such
that x,y € z+ N. A set S is weakly connected if for any points x, y € S, there
exists a path of occupied weakly connected points with end-points x and y.

Let k > 0. A rectangle [a, b] X [c,d] is k-vertically crossed if for every
j € lc,d — k], the final configuration in [a, b] X [j, j + k] knowing that [a, b] x
[c,d]\ [a, b] x [j, j + k] is full contains a connected path from top to bottom.
A rectangle R is k-crossed (or simply crossed) if it is k-vertically crossed and hor-
izontally traversable. Let A (R1, Ry) be the event that R, is k-vertically crossed
whenever R; is full. Note that this event is contained in the event that R, and R,
are traversable, and R; and Rj, are k-vertically crossed.

LEMMA 3.1. Forevery ¢ > 0, there exist po, Q, k > 0 satisfying the following
property: for any rectangle R with dimensions (x,y),

1
P,[R is k-vertically crossed] < p_k Q7 exp[(1 — s)ylog(pzx)] when — < x,
p

1
P,[R is k-vertically crossed] < p_k exp[(1 — e)ylog p] when x < —,
p

providing p < po.
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PROOF. Lete > 0andsetk = |[1/¢]. Consider first the rectangle [0, x] x [1, k]
and the event that there exists a connected path in the final configuration knowing
that Z x (Z\ [1, k]) is full. O

CLAIM. In the initial configuration, there exist Ay, ..., A, (r < k— 1) disjoint
weakly connected sets such that ny + --- +n, >k +r — 1 where n; > 2 is the
cardinality of A;.

PROOF. We prove this claim by induction. For k = 2, the only way to cross
the rectangle is to have a weakly connected set of cardinality 2. We define A to
be this set. For k > 3, there are three cases:

Case 1: No sites become occupied after time 0: It implies that the crossing from
bottom to top is present in the original configuration. Therefore, there exists a
connected set crossing the strip in the original configuration. Moreover, this set is
of cardinality at least k since it must contain one site in each line at least. Taking
the connected subset of cardinality k to be Aj, we obtain the claim in this case.

Case 2: The first line or the last line intersects a full weakly connected set
of cardinality 2: Assume that the first line intersects a weakly connected set S
of cardinality 2. The rectangle [2, k] x [0, x] is (k — 1)-vertically crossed. There

exist disjoint sets By, ..., B, satisfying the conditions of the claim. If these sets
are disjoint from S, set A = S, Ay = By, ..., Ay4+1 = B,. If one set (say Bj)
intersects S, weset Ay = B1US, Ay = B3, ..., A, = B,. In any case the condition

on the cardinality is satisfied.

Case 3: Remaining cases: There must exist three sites in the same neighborhood
(we call this set §), spanning (m, n) € [0, x] x [2, k — 1] at time 1. The rectangles
[0,x] x[1,n—1]and [0, x] x [n+ 1, k] are respectively (n — 1)-vertically crossed
and (k — n)-vertically crossed. If n ¢ {2, k — 2}, then one can use the induction
hypothesis in both rectangles, and perform the same procedure as before. If n =2,
then apply the induction hypothesis for the rectangle above. The same reasoning
still applies. Finally, if n = k — 2, one can do the same with the rectangle below.

0

Let C = C (k) be a universal constant bounding the number of possible weakly
connected sets of cardinality less than k (up to translation). For any weakly con-
nected set of cardinality n > 1, we have that the probability to find such a set
in the rectangle [0, x] x [1, k] is bounded by Cp" (kx). We deduce using the BK
inequality that

k r
P,[[0, x] x [0, k] k-vert. cross.] < Z( Z H (kC)p"jx)

r=1 \nj+-+n,<k+r—1 j=1
3.1

k
<Y (k+r) *kC) p*(px).

r=1
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First assume px > 1. We find

k
P,[[0, x] x [0, k] k-vert. cross.] < > (k +r)" (kC)" p*~2xk~!

r=1
< @KC)* (pPn)*!
since px > 1. We find
P,[[0, x] x [0, k] k-vert. cross.] < O exp[—(1 — &)k log(p?x)]

with O =2k3C.

Now, we divide the rectangle R into |y/k]| rectangles of height k. If R is ver-
tically crossed, then all the rectangles are vertically crossed. Using the previous
estimate, we obtain

Ly/k]
P,[R is k-vertically crossed] < 1_[ P, (R; is k-vertically crossed)
i=1

< QKLY/K] exp[(l — g)k{%J log(pzx)]'

Using that the rectangle of height & is k-vertically crossed with probability larger
than p*, we obtain the result in this case.

If xp < 1, then we can bound the right-hand term of (3.1) by Cp*~! and con-
clude the proof similarly.

Observe that when x > 1/p, the rectangle will grow in the vertical direction
using £ disjoint weakly connected pairs of occupied sites (if it grows by £ lines).
When x < 1/p, arectangle will grow in the vertical direction using one big weakly
connected set of ¢ occupied sites. From this point of view, the dynamics is very
different from the simple bootstrap percolation.

REMARK 3.2. We have seen in the previous proof that being k-vertically
crossed involves only sites included in weakly connected sets of cardinality two.

This remark will be fundamental in the following proof.
For two rectangles R| C R3, define

p -3 o]
WP(Ry, Rp) = —————[(x2 — x1)e”7P?] if — <x,
(log(1/p))? p?
P
WP(R1,R) = ——
(log(1/p))?
1 1
x [(x2 — x1)e P2 — (y2 — y1) log(p*x2)] if > <xy< Pt
p -3 . 1
WP(Ry, Ry) = —————[(x2 —x1)e 772 — (y2 — y1) log p] ifxy < —.
(log(1/p))? s P
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PROPOSITION 3.3. Let e, T > 0, there exist pg, Q, k > 0 such that for any
p < po and any rectangles Ry C R, with dimensions (x1, y1) and (x2, y2) satisfy-

ing
T 1 1 1
—log—<y»<—log—,
p P p P
then

2
P,[A(R1, Ro)] < p~ 2 Q¥ exp[—(l - e)% <log %) WP(R), Rz)].

PROOF. Lete > 0 and set pg, Q, yo, k given by Lemmata 3.1 and 2.1 applied
with ¢. Note that Q can be taken greater than 1. Consider two rectangles Ry C R»
satisfying the conditions of the proposition. We will use that p?y, goes to 0 and
y» goes to infinity (in particular, yo < y» < p~2/yo). We treat the case 1/p < x <
1/p?; the other cases are similar.

First assume

e(y2 — yD) log(p?x2) < —(1 — &) (x2 — x1)e P2,

The event Ar(Ry, R») is included in the events that R; and R, are k-vertically
crossed (these two events are independent). Using Lemma 3.1, we easily deduce
the claim via

P,[Ak(R1, R2)] < exp[(l — &) (y2 — y1) log(p*x2)]
<exp[—(1 — &)*((xa — x1)e P2 — (y2 — y1) log(p?x2))].

We now assume

e(y2 — y1) log(p?xa) > —(1 — &) (xa — x1)e P2,

Let Y be the number of vertical lines containing one occupied site of H weakly
connected to another occupied site. We have

32) PylAk(R1, R2)] <P,[Ak(R1, Ry) and ¥ < &(x2 — x1)]
' +P,IY > ey — x1).

Bound on the second term. Note that the probability « that a line contains one
occupied site in H weakly connected with another occupied site behaves like
Cp?*(y2 — y1) (where C is universal) and therefore goes to 0 when p goes to 0. The
probability of ¥ > g(x — x1) is bounded by the probability that a binomial vari-
able with parameters n = x» — x| and o = sz(yg — y1) is larger than %(xz —Xx1).
Invoking Chernoff’s inequality, we find ‘

P,lY > e(x2 — x1)] < exp[—(x2 — x1)]
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for p small enough. Since e ~3P¥2 converges to 0, we obtain for p small enough,

PplY > e(x2 — x1)]

1—¢

(3.3) < exp[— (x — xl)e—3pyz}

<exp[—(1 — &)((x2 — x1)e P2 — (v, — y1) log(p*x2))].

Bound on the first term. Let E be the event that R; and R; are k-vertically
crossed and Y < e(xo» — x1). We know that

P,[Ak(R1, Ry) and Y < e(x2 — x1)]
(3.4) =P,[R¢ and R, hor. trav.|E]P [ E]
<P,[R; and R, hor. trav.|E]P,[R; and R}, are k-vertically crossed].

We want to estimate the first term of the last line. Let 2 be the (random) set of
all pairs of weakly connected occupied sites in H. Conditioning on E corresponds
to determining the set 2 thanks to the remark preceding the proof. Let w be a
possible realization of 2. Slice R, U R, into m rectangles Ry, ..., R, (with widths
x @) such that:

e no element of w intersects these rectangles;
e all the lines that do not intersect w belong to a rectangle R;;
e m is minimal for this property (note that m < 2¢e[xy — x1]).

For each of these rectangles, conditioning on {2 = w} boils down to assuming that
there are no full pairs in the corner region, which is a decreasing event, so that via
the FKG inequality,

P, (R; hor. trav.|2 = w) <P, (R; hor. trav.) <exp[—(1 — g)(x —2)e™3P2],
Since Y < eg(x2 — x1), we know that
W x> (1= 3e)(x — x1).
We obtain

P,[R; and R, are hor. trav.|Q2 = w] < P,[rectangles R; are all hor. trav.|Q2 = w]

exp—[(1 — 8)(x(i) — 2)6_3”)’2]

[A

i=1

= exp[_(l —&e)(1 =T¢e)(xp — xl)e_3Py2]_

By summing over all possible w, we find

(3.5) P,[R¢ and R, hor. trav.|E] < exp[—(1 —&)(1 — 7¢)(x2 — x1)e 32,
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Using Lemma 3.1 and inequality (3.5), inequality (3.4) becomes

]P)P[Ak(Rl’ RZ) N {Y < g(xZ — Xl)}]
<exp[—(1 — &)*(xy — xp)e P2 p~ 2k Q@rV

x exp[—(1 — &)(y2 — y) log(p* ).
The claim follows by plugging the previous inequality and inequality (3.3) into

inequality (3.2). U

3.2. Hierarchy of a growth. We define the notion of hierarchies, and the spe-

cific vocabulary associated to it. This notion is now well established. We slightly
modify the definition, weakening the conditions imposed in [20].

Hierarchy, seed, normal vertex and splitter: A hierarchy 'H is a tree with vertex
degrees at most three with vertices v labeled by nonempty rectangles R, such
that the rectangle labeled by v contains the rectangles labeled by its descendants.
If the number of descendants of a vertex is O, it is a seed, and if it is one, it
is a normal vertex [we denote by u +— v if u is a normal vertex of (unique)
descendant v] and if it is two or more, it is a splitter. Let N (H) be the number
of vertices in the tree.

Precision of a hierarchy: A hierarchy of precision t (with ¢t > 1) is a hierarchy
satisfying these additional conditions:

(1) if w is a seed, then y(R,) < 2¢, if u is a normal vertex or a splitter,
y(Ry) = 2t;

(2) if u is a normal vertex with descendant v, then y(R,) — y(R,) < 2t;

(3) if u is a normal vertex with descendant v and v is a seed or a normal
vertex, then y(R,) — y(Ry) > t;

(4) if u is a splitter with descendants vy, ..., v;, there exists j such that
V(RW) = Y(Ry;) > 1.

Occurrence of a hierarchy: Let k > 0, a hierarchy k-occurs if all of the following
events occur disjointly:

(1) Ry is k-crossed for each seed w;

(2) Ax(Ry, Ry) occurs for each pair u and v such that u is normal;

(3) Ry is the smallest rectangle containing (Ry, U---U R,;) for every split-
ter u (vy, ..., v; are the descendants of u).

REMARK 3.4. In the literature, the precision of a hierarchy is an element

of R2. In our case, we do not need to control the x-coordinate.

REMARK 3.5. We can use the BK inequality to deduce that for any hierarchy

Hand k > 1,

P,[H k-occurs] < 1_[ P,[R, k-crossed] l_[ P,[Ak(Ryw, Ry)].

vseed u—>w
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The following lemmata are classical.
LEMMA 3.6 (Number of hierarchies). Lett > 1, the number N;(R) of hierar-
chies of precision t for a rectangle R is bounded by
Ni(R) < [X(R) + y(R)]O/1
where c is a prescribed function.
PROOF. The proof is straightforward once we remark that the depth of the hi-

erarchy is bounded by y(R)/t (every two steps going down in the tree, the perime-
ter reduces by at least ¢). For a very similar proof, see [20]. [

LEMMA 3.7 (Disjoint spanning). Let S be an internally filled and connected
set of cardinality greater than 3, then there exist i disjoint nonempty connected
sets Sy, ...,S; with i € {2, 3} such that:

(i) the strict inclusions S C S, ..., S; C S hold,
(i) (S1U---US) =S,
(iii) {Sy is internally filled} o - - - o {S; is internally filled} occurs.

PROOF. Let K be finite, (K) may be constructed via the following algo-

rithm: for each time step r =0, ..., T, we find a collection of m; connected sets
Si...., S}, and corresponding sets of sites K1, ..., K}, with the following prop-
erties:

i) K!,..., K,tnt are pairwise disjoint;

(i) K! CK;

(iii) S! = (K!) is connected;

(iv) if i # j, then we cannot have S; C S;
(v) K CS'C(K) where

ny
=S
i=1
(vi) 8T = (K).
Initially, the sets are just the individual sites of K: let K be enumerated as K =

{x1,...,x,}, and set mg = r and S? = Kl-o = {x;}, so that in particular Sy = K.
Suppose that we have already constructed the sets ST, ..., S,’n[, then:

(a) if there exist j sets S , ..., S{i (with 2 < j < 3) such that the spanned set

is connected, set K’ to be the union of the previous sets and S’ the spanned set.
We construct the state (Si“, Kf“), e, (S,ﬁf;ll, K,ﬁ;:l) at time 7 + 1 as follows.
From the list (S{, K{), ..., (S, . K},) at time ¢, delete every pair (S}, K}) for
which S/ C §’. Then add (S’, K’) to the list. Next increase ¢ by 1 and return to

step (a).
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(b) else stop the algorithm and set t = 7.

Properties (i)—(v) are obviously preserved by this procedure, and m; is strictly
decreasing with ¢, so the algorithm must eventually stop.

To affirm that property (vi) holds, observe that if (K) \ ST is nonempty, then
there exists a site y € (K) \ S¥such that y + A/ contains 3 occupied sites in S¥; oth-
erwise y would not belong to (K) (since y does not belong to K'). These neighbors
must lie in at least two distinct sets S1, ..., S; since y is not in ST. Observe that the
set spanned by Si, ..., S; is connected (any spanned site remains connected to the
set that spanned it). Therefore, these sets are in an i-tuplet which corresponds to
the case (a) of the algorithm (since y links the connected components). Therefore
the algorithm should not have stopped at time 7.

Finally, to prove the lemma, note that we must have at least one time step (i.e.,
7 > 1) since the cardinality of S is greater than N. Considering the last time step
of the algorithm (from time 7 — 1 to time 7) and sets involved in the creation of
&' =87 = (K). These sets fulfill all of the required properties. [

To any connected set S, one can associate the smallest rectangle, denoted [S],
containing it. For any k& > 1, if S is internally filled, then [S] is k-crossed.

PROPOSITION 3.8. Let k> 1 and t > 3, and take any connected set S which
is internally spanned, then some hierarchy of precision t with root-label R, = [S]
k-occurs.

PROOF. The proof is an induction on the height (the y-dimension) of the rect-
angle. Let S be an internally filled connected set, and let R = [S]. If y(R) < 2t,
then the hierarchy with only one vertex r and R, = R k-occurs. Consider that
y(R) > 2t, and assume that the proposition holds for any rectangle with height
less than y(R).

First observe that, using Lemma 3.7, there exist m; disjoint connected sets
Sll, R S,}“ spanning S (with associated rectangles called Rl1 = [Sll], e R,Ll =
[S,L1 1). Assume that R!, ..., Rﬁnt are defined; while one of the sets is of cardinal-
ity greater than 3, it is possible to define iteratively R{™ = [SIT], ..., Ry =
[S,’nﬂl]. This is obtained by harnessing Lemma 3.7 iteratively. Stop at the first
time step, called 7, for which the rectangle R’ with smallest height satisfies
y(R) — y(R") >t (R’ obviously exists since the height of R is greater than 2t).
Three possibilities can occur:

Case I: y(R) — y(R') < 2t. Since R’ is crossed, the induction hypothesis claims
that there exists a hierarchy of precision ¢, called H’, with root r" and root-label
R, = R’. Furthermore, the event A;(R’, R) occurs (since R is k-crossed), and it
does not depend on the configuration inside R’. We construct H by adding the
root r with label R to the hierarchy H’. This hierarchy is indeed a hierarchy of
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precision ¢, and it occurs since the event Ag(R’, R) is disjoint from the other events
appearing in H'.

Case 2: y(R) — y(R') > 2t and T = 1 (the algorithm stopped at time 1).
There exist m; rectangles Ry, ..., R,, corresponding to connected sets created
by the algorithm at time 7" = 1. Moreover, R is the smallest rectangle containing
(R U---URy,). It is easy to see that events {R; is k-crossed} occur disjointly
due to the fact that sets S; are disjoint. By the induction hypothesis, there exist m1
hierarchies H; (i =1, ..., mp) such that events in these hierarchies depend only
on S;. The hierarchy created by adding the root r with label R, = R is a hierarchy
of precision ¢ because y(R) — y(R;) >t for some i < m (the algorithm stopped
at time 1). Moreover, the hierarchy k-occurs since R is the smallest rectangle con-
taining (Ry U .- U R,,;,) and hierarchies H; (i =1, ..., m1) k-occur disjointly.

Case 3: y(R) — y(R') > 2t and T > 2. Consider the rectangle R” from which
R’ has been created and denote by Ry, ..., R, its other “descendants” (set Ry =
R’). There exist hierarchies H;, ..., H,, associated to Ry, ..., R,, which occur
disjointly. Consider a root r with label R and a second vertex y with label R”. One
can construct a hierarchy through the process of adding m + 1 additional edges
(r,y) and (y,r;) for j =1,...,m where r; is the root of H;. This hierarchy k-
occurs. It is therefore sufficient to check that it is a hierarchy of precision ¢. To do
so, notice that y(R”) — y(R) <t and y(R") — y(Ry) >t [since y(R) — y(R") <t
and y(R) — y(R") > 2¢]. O

3.3. Proof of the upper bound. We want to bound the probability of a hierar-
chy H with precision % log % to occur. Let

N
A? = inf Z WP (R, Ruy1) (Ru)o<n<nN € oF )
n=0
where ’D’; denotes the set of finite increasing sequences of rectangles Ry C --- C
Ry such that:
o xo<p '
o yo <2 log and yy > 5, log 1
® Yyl — W < %log% forn=0,...,N — 1.

Before estimating the probability of a hierarchy, we bound AlT7 when p and T go
to 0.

PROPOSITION 3.9. We have

1
liminflimianIT) > —.
T—-0 p—0

(@)}
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PROOF. Lete, p > 0.Choose 0 < T < ¢ so that

6
For two rectangles R and R’ with dimensions (x, y) [resp., (x/, y )], define x =
pXand y = %(log %) where X, Y € Ry [resp., x' = pX X" and y = Y (log )]
With these notations, we obtain

o0 1
/ max{l —3y,0}dy=—- —e¢.
T

P -x _X\ -3y
W”(R,R/)zm(p X' _ p=X)e=3Y"log(1/p)

inf{log(p?p~*"), log p}

3.6 —(Y' —-Y
-0 O =) /)
(pl—X/-i—:’)Y/ _ pl—X+3Y/) , ] ,
= + & —Y)inf{2 - X', 1}.
(log(1/p))? (' — ¥)inf{ }

Consider a sequence of rectangles (RY) in D%, then

N
(p 4
WP(RP,RY )=
go ( )= ZO (log(1/p))>

p p
1-X7, +3v),, 1-X}+3y

n+l)

+Z( Sy = YP)inf(2 - XP | 1)

First assume that there exists n such that 1 — X, +1 +3Y7? 1 < —2¢ for some values
of p going to 0. Since

1-Xxh+3r? 1-Xh+3Yh D CE <) SN B (R T) o4

—P m+l + p and pl_ p m+1
are positive for every m, the first sum is larger than
pl- X3yl p1—Xg+3Y{’ p2 — p3Y{’—s
>
(log(1/p))* ~ (log(1/p))?
We can thus assume that for any sequence liminf Z,],v:_ol( 1-X, +1 + 3Y +1) >
—2¢. We deduce
N
liminf Y "(Y) , —¥P)inf{2 — X7 1}
n=0
> hmmfZ( Yy —YPymax{l —3Y) | —2¢,0}

1
> [T max(1 =3y +27) — 26,01 dy = £ 9%,
T
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where in the last line we used Y? , < Y 4+ 2T. The claim follows readily. O

n+1

The two following lemmata are easy (yet technical for the second) but funda-
mental in the proof of Proposition 3.12 below. They authorize us to control the
probability of a hierarchy even though there could be many seeds (and even large
seeds).

LEMMA 3.10. Let k> 1, p > 0 and let R be a rectangle with dimensions
(x,y). Then we have for any a, b > 0,

P,[R k-crossed] < pk P,[Ak([0,a] x [0,5],[0,a + x] x [0, b+ y])].
PROOF. Simply note that if the rectangle [a,a + x] x [b, b + y] is crossed,

and {0} x [a + 1, a + k] is full, then Ak ([0, a] x [0, b], [0,a + x, b + y]) occurs.
The proof follows using the FKG inequality. [

Let N (H) be the number of vertices in the hierarchy.

LEMMA 3.11. Lete, T > 0, there exist pg, Q, k > 0 such that for p < pg, we
have the following: Let 'H be a hierarchy of precision %log% with root label R

satisfying ﬁ log% <y(R) < %log %, then there exists N > 1 and Ry C --- C Ry
rectangles satisfying the following properties:

e Ry has dimensions larger than R;
e R has dimensions

(X xk. X y);

u seed u seed

o ¥(Rut1) = y(Ry) < 2 log, forevery0<n <N — 1;

o we have
[ PplAc(Rw, Ry)]
V= w
NG 1 1\2
< (pt Q" )Y [T exp| (1 = )W (R, RHH);(log ;) ]
n=0

PROOF. Lete, T > 0. Fix pg, Q, k > 0 so that Proposition 3.3 applies with ¢
and 7. Invoking Proposition 3.3 [note that %log% < y(Ry) < y(R) for a normal
vertex], we know

l_[ IP)p[Ak(Rw, Rv)]

V= w

1 1\?
<T] QY(R“’)y(R”)exp[—(l—e)Wp(Rw,Rv);(log;> ]

V= w
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It is thus sufficient to find an increasing sequence of rectangles satisfying the three
first conditions such that

N
Z Wp(Rwa Rv) = Z Wp(Rm Rn+1) - stplitter(H) IOg p,

v w n=0

where Ngplier 1 the number of splitters in the hierarchy. This can be done by
induction. If the root of the hierarchy is a seed, the result is obvious since the sums
are empty.

If the root r of the hierarchy is a normal vertex, then we consider the hierarchy
with root v being the only descendant of . By induction there exists a sequence
satisfying all the assumptions. By setting Ry 41 with dimensions x(Ry) +x(R,) —
x(Ry) and y(Ry) + y(R;) — y(Ry), we obtain from the decreasing properties of
WP(.,.) that WP (Ry, Ry+1) < WP(R,, R;). The claim follows readily.

If the root r of the hierarchy is a splitter, then we consider the hierarchies
with roots vy, ..., v; (i € {2,3}) being the descendant of ». There exist sequences
(R,gl))nf n; for each of these hierarchies. Consider the following sequence:

ROV LRYRY 4+ RY, L RY 4 RY max(R,RY) 4+ + RY)),

where R + R’ is any rectangle with dimensions being the sum of the dimensions
of R and R’, and max(R, R’) is a rectangle with dimensions being the maximum
of the dimensions of R and R’. .

Since the dimensions of R](\;l) 4+ 4 Rj(\l,l) can exceed those of R by at most 3
(some space is allowed when combining two or more sets: they are only weakly
connected), we obtain via a simple computation that

1 j 1 '
WP[RY) + -+ Ry max(R, Ry + -+ RY))] < —klog p.
We deduce that removing the last rectangle in the sequence costs at most k log p.

The sequence then satisfies all the required conditions. [J

PROPOSITION 3.12. Let € > 0. Then there exist k, po > 0 such that

1 1 12
P, (S is internally filled) < exp|:— (8 — e) — (log —) }
p p

for p < po and S a connected set satisfying % log% <y(S) < %log %.

PROOF. Choose T, pg > 0 such that A’; > % — ¢ for any p < pg. Consider a
connected set S satisfying the conditions of the proposition, and set R = [S]. First
assume that x(R) > p~>. Then a simple computation implies that

IP,[S internally filled] < P,,[R hor. traversable]

<exp[—(1 —&)p e 21081/P)] < exp[—p~?],
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and the claim follows in this case. Therefore, we can assume that x(R) < p_5 .

Since S is internally filled, there exists a hierarchy H of precision % log % with
root label R that occurs (Proposition 3.8). Moreover, the number of possible hier-
archies is bounded by

—6¢(1/T)

1 7¢I/ p)log(1/p)/((T/p)log(1/p))]
]

1
Ni(R) < |p70 4 g
p 4
when p is small enough (Lemma 3.6). We deduce

P, (R is crossed)

. T 1
—6e(1/T) maX{Pp [H occurs] : ‘H of precision — log — and root R}.
p

p

=p

Bounding the probability of S being internally filled boils down to estimating
the probability for a hierarchy to occur.

CLAIM. The probability that a hierarchy H of precision %log% with root
label R is k-occurring is smaller than exp[—(% — 38)%(log %)2].

PROOF. Let H be a hierarchy. First assume that there exists one seed with
root label R’ satisfying x (R’) > p~!=2T . Then the probability that this seed is hor-
izontally traversable is smaller than exp —p~'~7 when p is small enough (same
computation as usual). The claim follows easily in this case.

We now assume that x(R’) < p~'=27 for every seed of the hierarchy. Using
Lemma 3.11, there exist rectangles Ry C - -- C Ry satisfying the conditions of the
lemma such that

[ PplAc(Ry. RY)]

V= w
k oy (RN G T 1 1’
<(p Q)] eXp[—(l — &)WP(R,, an—(log —) }
n=0 p p
Using Lemma 3.10, we can transform this expression into

Nseed(H) - -
]_[ P,[Ry crossed] < p kNGO l_[ Pp[Ak(R;, Ri+1)],

u seed n=1

where Ngeed(H) < N (H) is the number of seeds of H and

R =10, x(Ry)) + -+ x(Ry)1 X [0, y(Ryy) + - - + y(Ry)].
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(In the previous formula, we have indexed the seeds by uy, ..., u5.) We conclude
that

P,['H occurs]
< 1_[ P,[R, crossed] l_[ P,[Ak(Ry, Ry)]

u seed u—v

< (p—2k Qy(R))N(H)

N o N 1 1\?
xexp{—(1+£)|:2 WP(R,-,Ri+1)+ZW”(Ri,Rm)]—(log;) }

n=0 n=0 p
2
< 51/ log(1/p))? exp[_(l _ 8)<l _ 8) 1 (log l) }
6 p p
since the sequence RO, e IéN, Ro, ..., Ry isin C‘D’; for p small enough (we have

excluded the case where the seeds are too large), the number of vertices is uni-
formly bounded by 3%/T when p goes to 0 and y(R) < %log %. O

We can now conclude by the following computation:

1 1 1\2
P, (S internally filled) < pke@/T) exp(—(— — 38) — <log —> )
6 p P
1 1 1\2
cenl (- +)5(ee )]
6 p p

PROOF OF LOWER BOUND IN THEOREM 1.1. Let pg, k > 0 be such that

for p small enough. [

P, (S internally filled) < ¢~ (1/6-)(1/p)(og(1/p)?

for any p < po and any connected set S such that

1 1 1 1
- log— = y(S]) = —log—.
3p " p pp

Let E be the event that the origin is spanned by the configuration in [—% log %,
%log %]2, the probability of this event goes to 0. Indeed, two cases are possible.
Either the origin is occupied, which occurs with probability p going to 0, or the
origin is not occupied at time 0. In this case, there must exist a neighborhood con-
taining 3 occupied sites at distance less than % log % to the origin. This probability
goes to 0 when p goes to 0.



1240 H. DUMINIL-COPIN AND A. C. D. VAN ENTER

Let F be the event that no rectangle in [—L, L]? of perimeter between # log %

and %log % is crossed, where

oo (- )b} ]

In this case, Lemma 3.7 implies that no connected set S C [—L, L]? such that
y(SD = %log% is crossed. Indeed, if it was the case, we could construct a con-
nected set S with # log% < y(SDh < %log% which is internally filled using
Lemma 3.7.

It is easy to see that if £ and F hold, we must have log T > (11—2 — 8)%(10g %)2.

Indeed, the information must necessarily come from outside the box [—L, L].
Then

IP’[I T<<1 )1<1 1)2]
ogl <|——¢)—|log—
P 12 %)
<P,(E)+P,(F)
<P,(E)+ p_862(1/12—8)(I/P)(IOg(l/P))ze—(1/6—8)(1/p)(10g(1/p))2’

where p_8 bounds the number of possible dimensions of [S] and exp[Z(% —
8)%(log %)2] the number of possible locations for its bottom-left corner. When
p goes to 0, the right-hand side converges to 0 and the lower bound follows. [

REMARK 3.13. Recently, improvements of estimates for the threshold of sim-
ple bootstrap percolation have been proved [17, 23]. It is an interesting question
to try to improve the estimates in our case. We mention that a major difficulty will
come from the fact that “small” seeds are not excluded in the hierarchy growth.

REMARK 3.14. Our approach gives a much improved upper bound, compared
to [24, 25], for the semi-oriented bootstrap percolation. But at this point we do not
have a sharp threshold result, due to the lack of a corresponding argument for the
lower bound.
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