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MIXING OF THE SYMMETRIC EXCLUSION PROCESSES IN
TERMS OF THE CORRESPONDING SINGLE-PARTICLE

RANDOM WALK

BY ROBERTO IMBUZEIRO OLIVEIRA1

IMPA

We prove an upper bound for the ε-mixing time of the symmetric exclu-
sion process on any graph G, with any feasible number of particles. Our esti-
mate is proportional to TRW(G) ln(|V |/ε), where |V | is the number of vertices
in G, and TRW(G) is the 1/4-mixing time of the corresponding single-particle
random walk. This bound implies new results for symmetric exclusion on
expanders, percolation clusters, the giant component of the Erdös–Rényi ran-
dom graph and Poisson point processes in R

d . Our technical tools include a
variant of Morris’s chameleon process.

1. Introduction. The symmetric exclusion process is a continuous-time
Markov chain defined on a weighted graph G = (V ,E, {we}e∈E), where V is a
set of vertices, E is a set of edges and to each e ∈ E, we assign a positive weight
we > 0. For k ≤ |V |, k-particle symmetric exclusion on G has the following infor-
mal description.

Informal description of EX(k,G): Start with k indistinguishable particles placed
on distinct vertices of V . Each particle moves independently according to the sym-
metric transition rates given by the edge weights, except that moves to occupied
sites are suppressed.

This is one of the most basic and best studied processes in the literature on in-
teracting particle systems [15, 16]. Literally hundreds of papers have been written
on this process, but most of these results apply only to restricted classes of infinite
graphs, such as the lattices Z

d .
Exclusion processes over finite graphs have also been a testbed for the quantita-

tive analysis of finite Markov chains. Coupling [1], comparison arguments [8], the
martingale method for log-Sobolev inequalities [12, 23] and variants of the evolv-
ing sets technology [19, 21] have been variously applied to this process. Sharp
results are known for some special cases, such as the complete graph [12] and
discrete tori (Z/LZ)d [19, 23].

In this paper we consider EX(k,G) over an arbitrary finite graph and bound its
mixing time in terms of the corresponding single-particle random walk, which we
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denote by RW(G). Our result is very general, but we will see that it nearly matches
previously known mixing results for EX(k,G) for very specific G and also gives
new results in many interesting classes of examples. We will also argue that the
kind of result presented here is of conceptual interest.

1.1. The main result, and why it is interesting. Recall that the ε-mixing-time
of an irreducible continuous-time Markov chain Q on a finite set S, with transi-
tion probabilities {qt (s, s

′)}s,s′∈S,t≥0, and stationary (equilibrium) distribution π ,
is given by the formula

TQ(ε) ≡ inf
{
t ≥ 0 : max

s∈S
dTV(qt (s, ·),π) ≤ ε

}
,(1.1)

where dTV is the total-variation distance; cf. (2.2.1). The 1/4 mixing time TQ(1/4)

will also be called the mixing time of Q. Our main result follows.

THEOREM 1.1 (Main result; proven in Section 1.4). There exists a univer-
sal constant C > 0 such for all ε ∈ (0,1/2), all connected weighted graphs
G = (V ,E, {we}e∈E) with |V | ≥ 2 and all k ∈ {1, . . . , |V | − 1},

TEX(k,G)(ε) ≤ C ln(|V |/ε)TRW(G)(1/4).

Our bound follows quite naturally if one assumes (heuristically) that the mixing
time of EX(k,G) is not much larger than that of k independent random walks on G,
a process we denote by RW(k,G) in what follows:

[Heuristic assumption] TEX(k,G)(ε) ≤ C0TRW(k,G)(ε), C0 > 0 universal.

This assumption, if at all true, is well beyond the reach of present techniques.
However, it is at least plausible, given that RW(k,G) and EX(k,G) are similar.

It can be shown that TRW(k,G)(ε) and TRW(G)(ε/k) are of the same order if
ε/k � 1; thus our assumption is equivalent to

[Heurisitic assumption] TEX(k,G)(ε) ≤ C1TRW(G)(ε/k), C1 > 0 universal.

Recall the general inequality “TRW(G)(δ) ≤ C2 ln(1/δ)TRW(G)(1/4),” with C2 > 0
universal, which is valid for any 0 < δ < 1/2 [1]. Applying this to our assumption,
we obtain

[Heuristic conclusion] TEX(k,G)(ε) ≤ C3 ln(k/ε)TRW(G)(1/4),

C3 > 0 universal.

Theorem 1.1 coincides with this for k > |V |c, c > 0 a universal constant; whereas
for other k it is a strictly weaker result.

We emphasize that what we just presented is not a rigorous proof of The-
orem 1.1, since we offer no good grounds for our heuristic assumption. What
is interesting is that the theorem does give an a posteriori justification for
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a weakened form of the assumption. We note that the bound “TEX(k,G)(ε) ≤
CTRW(G)(1/4) ln(k/ε)” is tight up to constant factors for some G (e.g., discrete
tori (Z/LZ)d , d fixed [19]); therefore, in some sense Theorem 1.1 is quite close to
the best that one might hope for.

Many other complex Markov chains are built from simpler processes that inter-
act; examples appear in, for example, [1, 7, 18]. Given our main result, it seems
reasonable that, at least in some cases, the mixing time of these complex processes
may be bounded in terms of their constituent parts. Some of the techniques we use
to prove Theorem 1.1 are very specific to EX(k,G), but it may be that some of the
same ideas will turn out to be useful in other cases.

1.2. Connections with Aldous’s conjecture. Another motivation for our paper
is a conjecture of Aldous’s for the interchange process, which was recently proved
in [6]. The interchange process on G with k ≤ |V | particles can be informally
described as follows:

Informal description of IP(k,G): Start with k distinct vertices of V labeled
1,2, . . . , k all remaining vertices (if any) are labelled “empty.” For each edge e,
switch the labels of the endpoints of e at rate we.

One can obtain EX(k,G) from IP(k,G) by “forgetting” the labels of the k

particles. In particular, the contraction principle [1] implies that TEX(k,G)(ε) ≤
TIP(k,G)(ε) for all 1 ≤ k ≤ |V | − 1 and all ε ∈ (0,1).

Aldous conjectured—and Caputo et al. recently proved [6] (see also [10])—
that IP(k,G) and EX(k,G) always have the same spectral gap as RW(G) [or
RW(k,G)]. This is a remarkable result, but it does not say much about the mix-
ing times of these processes, since the bounds for TIP(k,G)(ε) or TEX(k,G)(ε) that
can be obtained from the spectral gap are typically very loose.

Theorem 1.1 gives tighter relations between these mixing times. In the proof of
the theorem, we will show that the bound claimed for TEX(k,G)(ε) in the theorem
statement in fact holds for TIP(k,G)(ε) whenever k ≤ |V |/2. Our proofs can be
adapted to show that

∀α ∈ (0,1),∃Cα > 0,∀G,∀k ≤ α|V |:
TIP(k,G)(ε) ≤ CαTRW(G)(1/4) ln(|V |/ε).

That is, one can get a bound similar to Theorem 1.1 also for the interchange pro-
cess, as long as the fraction of empty sites is bounded away from 0. Unfortunately,
this leaves out the most interesting case of IP(|V |,G), which is a random walk by
random transpositions in the group of permutations of V . Fortunately, the restric-
tion on k does not make a difference for the exclusion process.

1.3. Applications and comparison with previous results. It is not hard to apply
Theorem 1.1 to specific examples: all one needs is a bound for the mixing time of
simple random walk on the given graph, and RW(G) is typically much easier to
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TABLE 1
Bounds for TEX(k,G)(1/4) via Theorem 1.1 in examples where no previous bound was available. We

take d as a fixed parameter and assume k ≈ |V |/2

Example Bound for TEX(k,G)(1/4)

(Z/LZ)d with nearest-neighbor bonds [19] |V |2/d ln |V |
Typical largest percolation cluster in (Z/LZ)d [4, 22] |V |2/d ln |V |
Typical Poisson process, in [0,L]d [5] (case α > d) |V |2/d ln |V |
Bounded-degree expanders ln2 |V |
Giant component of Gn,c/n, c > 1 [11] ln3 |V |

analyse than EX(k,G). The only example where we know Theorem 1.1 gives a
suboptimal bound is in the case G = (Z/LZ)d with the usual bonds, where the
optimal bound, obtained by Morris [19], is of the order L2 lnk whereas ours is
about L2 lnL (both for d fixed). Notice that this difference is only relevant for
quite small k.

Table 1 presents the bounds given by Theorem 1.1 in examples where no pre-
vious bound appears explictly in the literature. The references are to papers where
the mixing times of the corresponding graphs are computed. We consider only
k ≈ |V |/2 and omit constant factors.

In fairness, we note that a combination of canonical paths, log Sobolev constants
and comparison arguments could in principle be applied to examples. This method
is discussed in Section A in the Appendix. However, we note that:

• To the best of our knowledge, no good canonical paths bounds have been worked
out for the examples in Table 1, and it might be hard or impossible to do so;

• Even if such bounds were obtained, there are natural lower bounds for how good
they can be (cf. Section A), and Theorem 1.1 is at least as good as these lower
bounds, up to the constants (it is actually better by a ln |V | factor in the case of
expanders).

1.4. Key steps of the proof. Our proof of Theorem 1.1 can be broken into two
main steps. We first show that IP(2,G) always has a mixing time comparable to
RW(G).2

LEMMA 1.1. For any weighted graph G,

TIP(2,G)(1/4) ≤ 20,000TRW(G)(1/4).

We then bootstrap the first lemma to a larger number of particles.

2Since the single-particle marginal distributions of IP(2,G) are given by RW(G), TRW(G)(1/4) ≤
TIP(2,G)(1/4) is immediate from the contraction principle.
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LEMMA 1.2 (Proven in Section 6.1). There exists a universal constant K > 0
such that for all connected weighted graphs G = (V ,E, {we}e∈E), all ε ∈ (0,1/2)

and all k ∈ {1, . . . , |V |/2},
TIP(k,G)(ε) ≤ KTIP(2,G)(1/4) ln(|V |/ε).

Before we continue, we show how Theorem 1.1 easily follows from the two
lemmas.

PROOF OF THEOREM 1.1. Combining Lemma 1.2 with Lemma 1.1 gives

TIP(k,G)(ε) ≤ CTRW(G)(1/4) ln(|V |/ε) if ε ∈ (0,1/2) and k ≤ |V |/2

where C = 20,000K . The contraction principle [1] implies

TEX(k,G)(ε) ≤ TIP(k,G)(ε) ≤ CTRW(G)(1/4) ln(|V |/ε)
if ε ∈ (0,1/2) and k ≤ |V |/2.

However, EX(k,G) and EX(|V | − k,G) are the same process with the roles of
empty and occupied sites reversed. In particular, TEX(k,G)(ε) = TEX(|V |−k,G)(ε) for
all ε. �

We now give an overview of the main ideas involved in proving the two lemmas.
The proof of Lemma 1.1 relies on realizing that there are two classes of graphs.
Some G are “easy,” in that two independent random walkers are likely to meet by
time O(TRW(G)(1/4)) from any pair of initial states. In this case, an argument of
Aldous and Fill’s [1] suffices to prove Lemma 1.1 (see Proposition 4.4).

On the other hand, if G is not easy, then for most initial states two independent
random walkers are very unlikely to meet by time �(TRW(G)(1/4)); cf. Proposi-
tion 4.5. Intuitively, IP(2,G) and RW(2,G) are similar in the abscence of colli-
sions, and we will use this to prove Lemma 1.1 over noneasy graphs. The negative
correlation property will be crucial for this part of the argument; see Remark 4.3
for details.

The proof of Lemma 1.2 is considerably more involved. We first note that there
are two methods in the literature for moving from mixing of pairs of particles to
many more particles, both of which were introduced by Morris [19, 20]. The first
one [20] gives bounds for walks on the symmetric group by random transpositions.
Unfortunately, the method seems to require too much from the process to be useful
in our general setting. Moreover, the bounds given by that method would have a
factor of ln(|V |) ln(1/ε) where ours has a ln(|V |/ε) term.

Morris’s other method was introduced in his study of symmetric exclusion over
(Z \ LZ)d [19]. The so-called chameleon process features particles that change
color in a way that encodes the conditional distribution of the kth particle in
IP(k,G) given the other k − 1 particles. It is this method that we will success-
fully adapt to prove Lemma 1.2.
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One way to understand Morris’s construction is that it reduces the analysis of
mixing to the study of pairwise collisions between particles. The analysis for (Z \
LZ)d is greatly facilitated by the explicit structure of the graph, something that
we lack in general. This will require certain technical modifications of Morris’s
construction, of which we will try to make sense with remarks in our proofs.

1.5. Organization. Section 2 reviews some preliminary material. Section 3
discusses RW(G), EX(k,G) and IP(k,G), presents their joint graphical construc-
tion and reviews the negative correlation property. Section 4 presents the proof of
Lemma 1.1. The chameleon process is introduced in Section 5. It is then used to
prove Lemma 1.2 in Section 6, but several lemmas are postponed to Sections 7–9.
It would be pointless to describe these steps now, but Section 6.2 provides an out-
line of those sections. Finally, Section 10 presents some final remarks, and the
Appendix contains some technical steps that are not particularly illuminating.

2. Preliminaries.

2.1. Basic notation. N = {0,1,2,3, . . .} is the set of nonnegative integers and
N+ ≡ N \ {0}. For n ∈ N+, [n] ≡ {i ∈ N+ : i ≤ n} = {1, . . . , n}. If S is a finite set,
|S| is the cardinality of S. For any k ∈ [|S|],(

S

k

)
= {A ⊂ S : |A| = k}

is the set of all size-k subsets of S, and

(S)k = {s = (s(1), . . . , s(k)) ∈ Sk :∀i, j ∈ [k], “i �= j” ⇒ “s(i) �= s(j)”}
is the set of all k-tuples of distinct elements in S.

NOTATIONAL CONVENTION 2.1. The elements of (S)k will always be de-
noted by boldface letters such as x, with x(i) denoting the ith coordinate of x.

Notice that with these symbols,∣∣∣∣(S

k

)∣∣∣∣= ( |S|
k

)
, |(S)k| = (|S|)k.

A graph is a couple H = (V ,E) where V �= ∅ is the set of vertices, and E ⊂ (V
2

)
is the set of edges. For each e ∈ E, the two elements a, b ∈ V such that e = {a, b}
are called the endpoints of e.

A weighted graph is a triple G = (V ,E, {we}e∈E), where (V ,E) is a graph,
and we > 0, the weight of edge e, is positive for each e ∈ E. When a graph G is
introduced without explicitly defining the edge weights, we will assume that they
are all equal to 1. We will assume throughout this paper that all graphs we consider
are connected.
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2.2. Basic probabilistic concepts. L[X] denotes the law or distribution of the
random variable X.

Given two probability distributions μ,ν over the same finite set S, the total
variation distance between them is given by several equivalent formulas:

dTV(μ, ν) ≡ max
A⊂S

(
μ(A) − ν(A)

)
(2.2.1)

= sup
f :S→[0,1]

∫
f dμ −

∫
f dν(2.2.2)

=∑
s∈S

(
μ(s) − ν(s)

)
+(2.2.3)

= 1

2

∑
s∈S

|μ(s) − ν(s)|.(2.2.4)

Another equivalent definition of dTV is

dTV(μ, ν) = inf P(X �= Y),

where the infimum is over all pairs (X,Y ) of S-valued random variables with
L[X] = μ and L[Y ] = ν [such a pair is called a coupling of (μ, ν)]. This implies
that for any pair of S-valued random variables X,Y defined over the same proba-
bility space,

dTV(L[X], L[Y ]) ≤ P(X �= Y).

We will need the following simple fact: if (for i = 1,2) μi, νi are probability
distributions on the finite set Si ,

dTV(μ1 × μ2, ν1 × ν2) ≤ dTV(μ1, ν1) + dTV(μ2, ν2).(2.2.5)

We will write Unif(S) for the uniform distribution on a set S �= ∅. This is the
normalized counting measure on S, if S is finite, or normalized Lebesgue measure
over S, if S ⊂ R

d .

2.3. Markov chains and mixing times. For our purposes it is convenient to
define a continous-time Markov chain over a finite set S as a family of processes

{(Xs
t )t≥0 : s ∈ S}

defined on the same probability space, with the following properties:

(1) For each s ∈ S, Xs
0 = s almost surely.

(2) Each Xs
t is a “càdlàg” path over S: there exists a divergent sequence

τ0 = 0 < τ1 < τ2 < · · ·
and a sequence {si}i≥0 ⊂ S with s0 = s with Xs

t ≡ si over each interval
[τi, τi+1).
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(3) For each h ≥ 0 and each càdlàg path (xu)u≥0 taking values in S [in the sense
of (2)],

P(Xs
t+h = s′|Xs

t ′ = xt ′,0 ≤ t ′ ≤ t) = P(X
xt

h = s′) almost surely.

The last property is the so-called Markov property. It also implies that the law of
(Xs

t+h)h≥0 equals that of (X
xt

h )h≥0 under the above conditioning. It is well known
that any such process is uniquely defined by its transition rates,

q(s, s ′) ≡ lim
ε↘0

P(Xs
ε = s′)
ε

[(s, s′) ∈ S2, s �= s ′],
or equivalenty by its generator,

Q : f ∈ R
S �→ Qf (·) ≡ ∑

s′∈S,s′ �=·
q(·, s′)

(
f (s ′) − f (·)).

We will usually make no distinction between a Markov chain and its generator in
our notation.

In this paper we will only work with irreducible chains, that is, chains for which
for all A ⊂ S with A �= ∅, S \A �= ∅, there exist a ∈ A, b ∈ S \A with q(a, b) > 0.
It is well known that such Markov chains have a unique stationary distribution π ,
that is, a distribution such that if s∗ is picked according to π independently from
the (Xs

t )t≥0,s∈S , then L[Xs∗
t ] = π for all t ≥ 0. Moreover,

∀s ∈ S dTV(L[Xs
t ], π) ↘ 0 as t → +∞.

(The symbol “↘” denotes monotone convergence.) The ε-mixing time of Q is thus
defined as in the Introduction,

TQ(ε) ≡ inf
{
t ≥ 0 : max

s∈S
dTV(L[Xs

t ], π) ≤ ε
}

[ε ∈ (0,1)].
We will often need two elementary facts about Markov chains and their mixing

times.

PROPOSITION 2.1 ([13], equation (4.36), page 55). Let Q be a Markov chain
on finite state space S. Then for all 0 < ε < 1/2,3

TQ(ε) ≤ �log2(1/ε)�TQ(1/4).

PROPOSITION 2.2 ([1], Lemma 7 in Chapter 4). Let Q be a Markov chain on
finite state space S with symmetric transition rates. Then π is uniform over S and
moreover, for all 0 < ε < 1/2 and t ≥ 2TQ(ε),

P(Xs
t = s′) ≥ (1 − 2ε)2

|S| ,

for all s, s′ ∈ S, with the same notation introduced above.

3The result in [13] is for discrete-time chains, but the proof trivially extends to continuous time.
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We also make the following convenient notational convention.

NOTATIONAL CONVENTION 2.2. By definition, for any càdlag path (xt )t≥0
there exists a divergent sequence t0 = 0 < t1 < t2 < · · · with xt constant over
[ti , ti+1) for each i ≥ 0. For t > 0, we define xt− to be the state of xt immediately
prior to time t . That is,

xt− ≡
{

xti−1, if t = ti for some i ≥ 1;
xt , otherwise.

Notice that xt− = xt−δ for all δ > 0 sufficiently small.

3. Random walks, exclusion and interchange processes. In this section we
formally define the main Markov chains in this paper: RW(G),EX(k,G) and
IP(k,G). We also present the standard graphical construction for the three pro-
cesses at the same time, and then discuss the negative correlation property for
EX(k,G). The material in this section is quite classical: Liggett’s books [15, 16]
are basic references, and the manuscript by Aldous and Fill [1] contains some ad-
ditional facts on IP(k,G) as well as a presentation, that is, somewhat closer in style
to ours.

3.1. Definitions. The three processes we are defined in terms of the same
weighted graph G = (V ,E, {we}e∈E) with V finite; cf. Section 2. We will be im-
plicitly assuming that G is connected, in which case one can easily show that the
chains defined below are irreducible. It will be useful to define the transpositions

fe : x ∈ V �→
⎧⎨⎩

b, if x = a,

a, if x = b,

x, otherwise.

We also write fe(A) = {fe(a) : a ∈ A} and fe(x) = (fe(x(i)))ki=1 for A ∈ (V
k

)
and

x ∈ (V )k (resp.).
Simple random walk on G, denoted by RW(G), is the continuous-time Markov

chain with state space V and transition rates

q(u, v) ≡
{

we, if fe(u) = v;
0, otherwise

[(u, v) ∈ (V )2].
We will also consider the process RW(k,G) that corresponds to k such random
walks performed simultaneously and independently. Since the transition rates of
these process are also symmetric, it follows that the stationary distribution of
RW(k,G) is Unif(V k) for all k ∈ N+.

The k-particle symmetric exclusion process on G, denoted by EX(k,G), is the
continuous-time Markov chain with state space

(V
k

)
and transition rates

q{k}(A,B) ≡
{

we, if fe(A) = B;
0, otherwise

[
(A,B) ∈

((
V

k

))
2

]
.
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The transition rates are again symmetric, and the stationary distribution of
EX(k,G) is Unif(

(V
k

)
).

The k-particle interchange process on G, denoted by IP(k,G), has state space
(V )k . The transition rates of IP(k,G) are given by

q(k)(x,y) ≡
{

we, if fe(x) = y;
0, otherwise

[(x,y) ∈ ((V )k)2].
This process also has symmetric transition rates, and its stationary distribution is
Unif((V )k).

3.2. The standard graphical construction. We now present the standard
graphical construction of these three processes. Graphical constructions are stan-
dard tools in the study of interacting particle systems [15] and are usually attributed
to Harris in the literature. The basic construction presented here will be elaborated
upon later in the paper; see Section 5. For brevity, we omit all proofs in this sub-
section.

Set W = ∑
e∈E we. We need a marked Poisson process, that is, a pair of inde-

pendent ingredients given as follows:

(1) A Poisson process P = {τ1 ≤ τ2 ≤ τ3 ≤ · · ·} ⊂ [0,+∞) with rate W .
(2) An i.i.d. sequence of E-valued random variables (“markings”) {en}n∈N, with

∀n ∈ N P(en = e) = we/W.

Let 0 ≤ t ≤ s < +∞ be given. We define a random permutation I(t,s] : V → V

associated with the time interval (t, s] as follows: if P ∩ (t, s] = ∅, I(t,s] is the
identity map on V . If, on the other hand,

P ∩ (t, s] ≡ {τj : m ≤ j ≤ n} �= ∅,

we set I(t,s] = fen ◦ fen−1 ◦ · · · ◦ fem ; that is, I(t,s] is the composition of each trans-
position fej

corresponding to τj ∈ (t, s], and the transpositions are composed in
the order they appear. We also set It ≡ I(0,t] for t > 0 and I(t,t] = identity map
over V .

REMARK 3.1. Strictly speaking, we should worry about what happens if P ∩
(t, s] is infinite, or (more generally) some finite interval (a, b] in [0,+∞) has
infinite intersection with P . However, since the probability of any of this holding
is 0, we will simply ignore these issues.

Notice the following simple properties:

PROPOSITION 3.1 (Proof omitted). For all 0 ≤ t ≤ s ≤ r , I(t,r] = I(s,r] ◦ I(t,s].

PROPOSITION 3.2 (Proof omitted). For all 0 ≤ t ≤ s < +∞, L[I(t,s]] =
L[I−1

(t,s]].
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PROPOSITION 3.3 (Proof omitted). Let 0 ≤ t0 < t1 < t2 < · · · < tk . Then the
maps I(ti−1,ti ], 1 ≤ i ≤ k, are independent.

NOTATIONAL CONVENTION 3.1. We “lift” the random maps I(t,s] to permu-
tations of

(V
k

)
and (V )k , which we also denote by I(t,s]:

I(t,s](A) ≡ {
I(t,s](a) : a ∈ A

} [
A ∈

(
V

k

)]
,

I(t,s](x) ≡ (
I(t,s](x(1)), I(t,s](x(2)), . . . , I(t,s](x(k))

) [x ∈ (V )k].
For brevity, we will often write xI

t ,AI
t ,xI

t instead of It (x), It (A), It (x) (resp.).

The key property of the graphical construction follows:

PROPOSITION 3.4 (Proof omitted). Let t0 ≥ 0. Then:

(1) For each x ∈ V , the process {I(t0,t+t0](x)}t≥0 is a realization of RW(G) with
initial state x.

(2) For each A ∈ (V
k

)
, the process {I(t0,t+t0](A)}t≥0 is a realization of EX(k,G)

with initial state A.
(3) For each x ∈ (V )k , the process {I(t0,t+t0](x)}t≥0 is a realization of IP(k,G)

with initial state x.

3.3. The negative correlation property. EX(k,G) enjoys important negative
correlation properties. In this paper we only need a very special result, which is
contained in any of [3, 14, 15].

LEMMA 3.1. Given A ∈ (V
k

)
, let {AI

t }t≥0 be a realization of EX(k,G) starting
from A. Then for all u ∈ (V )2—that is, for all distinct u(1),u(2) ∈ V —we have

P
({u(1) ∈ AI

t } ∩ {u(2) ∈ AI
t }
)≤ P

(
u(1) ∈ AI

t

)
P
(
u(2) ∈ AI

t

)
.

Using the construction in the previous section, we can write the above inequality
as

P
({I−1

t (u(1)) ∈ A} ∩ {I−1
t (u(2)) ∈ A})≤ P

(
I−1
t (u(1)) ∈ A

)
P
(
I−1
t (u(2)) ∈ A

)
.

The following is then immediate from Proposition 3.2.

COROLLARY 3.1 (Proof omitted). Given u ∈ (V )2, let {uI
t }t≥0 be a realiza-

tion of IP(2,G) starting from u. Then for all A ⊂ V ,

P
({uI

t (1) ∈ A} ∩ {uI
t (2) ∈ A})≤ P

(
uI

t (1) ∈ A
)
P
(
uI

t (2) ∈ A
)
.
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4. The dynamics of pairs of particles. The goal of this section is to prove
Lemma 1.1. We fix a weighted graph G = (V ,E, {we}e∈E) for the remainder of
the section (and of the paper). The definitions of RW(G), RW(k,G), EX(k,G) and
IP(k,G) are all relative to this graph.

4.1. Some facts on RW(2,G) and IP(2,G). Much of this section will involve
comparisons between IP(2,G) and RW(2,G). The following notational conven-
tion will be useful.

NOTATIONAL CONVENTION 4.1. Given x ∈ V 2, {xR
t ≡ (xR

t (1),xR
t (2)) : t ≥

0} denotes a realization of RW(2,G) from initial state x. That is, the trajectories of
xR
t (1),xR

t (2) are independent realizations of RW(G) with respective initial states
x(1),x(2).

We collect several simple facts about RW(2,G) and IP(2,G) that we will need
later on. The first one is obvious, for example, from the graphical construction.

PROPOSITION 4.1 (Proof omitted). For i = 1,2, L[xR
t (i)] = L[xI

t (i)].

The next proposition is a direct consequence of (2.2.5).

PROPOSITION 4.2 (Proof omitted). The mixing times of RW(2,G) sat-
isfy TRW(2,G)(ε) ≤ TRW(G)(ε/2).

PROPOSITION 4.3. Let k ∈ N be given. Then TRW(2,G)(2−k) ≤ (k + 1) ×
TRW(G)(1/4).

PROOF. Follows from the previous proposition combined with Proposi-
tion 2.1. �

The next lemma has the following meaning. Suppose t is so large that xR
t is

close to equilibrium. In this case, E[φ(xR
t )] is close to the uniform average of φ

over V 2, for all mappings 0 ≤ φ ≤ 1. The lemma shows that E[φ(xI
t )] cannot be

much larger than that average. This will require the negative correlation property;
cf. Corollary 3.1.

LEMMA 4.1. Let φ : V 2 → [0,1]. Then

∀ε ∈ (0,1/16),∀t ≥ TRW(G)(ε),∀x ∈ (V )2 E[φ(xI
t )] ≤ 8

√
ε + 9

∑
v∈V 2

φ(v)

|V |2 .
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PROOF. Define the “good set” of all a ∈ V with nearly uniform probability

Good ≡
{
a ∈ V : max

i=1,2

∣∣∣∣P(xR
t (i) = a

)− 1

|V |
∣∣∣∣≤ 2

√
ε

|V |
}
.

We will show toward the end of the proof that

P(xI
t /∈ Good2) ≤ 8

√
ε,(4.1.1)

which (since 0 ≤ φ ≤ 1) implies

E
[
φ(xI

t )I(V )2\Good2(xI
t )
]≤ 8

√
ε.(4.1.2)

On the other hand, notice that

E[φ(xI
t )IGood2(xI

t )] = ∑
a∈(Good2)∩(V )2

P
(
xI
t = (a(1),a(2))

)
φ(a)

≤ ∑
a∈(Good2)∩(V )2

P

( 2⋂
i=1

{
xI
t (i) ∈ {a(1),a(2)}})φ(a)

(Cor. 3.1) ≤ ∑
a∈(Good2)∩(V )2

2∏
i=1

P
({

xI
t (i) ∈ {a(1),a(2)}})φ(a)

(Prop. 4.1) = ∑
a∈(Good2)∩(V )2

2∏
i=1

P
({

xR
t (i) ∈ {a(1),a(2)}})φ(a)

[a(i) ∈ Good] ≤ ∑
a∈(Good2)∩(V )2

(
2 + 4

√
ε

|V |
)2

φ(a)

(√
ε ≤ 1/4

) ≤ 9
∑

a∈V 2

φ(a)

|V |2 .

Combining this with (4.1.2) finishes the proof, except for (4.1.1). To prove that,
we let Bad = V \ Good. Notice that

√
ε|Bad|
|V | ≤ ∑

a∈V

1

2

{∣∣∣∣P(xR
t (1) = a

)− 1

|V |
∣∣∣∣+ ∣∣∣∣P(xR

t (2) = a
)− 1

|V |
∣∣∣∣}

as each a ∈ Bad contributes at least
√

ε/|V | to the sum. But the RHS equals

dTV(L[xR
t (1)],Unif(V )) + dTV(L[xR

t (2)],Unif(V )) ≤ 2ε

since t ≥ TRW(G)(ε). We deduce
√

ε|Bad|
|V | ≤ 2ε or equivalently |Good| ≥ (

1 − 2
√

ε
)|V |.
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Moreover, P(xR
t (i) = a) ≥ (1 − 2

√
ε)|V |−1 for all a ∈ Good, hence

P
(
xR
t (i) ∈ Good

)≥ |Good|
|V |

(
1 − 2

√
ε
)≥ (

1 − 2
√

ε
)2 ≥ 1 − 4

√
ε.

Inequality (4.1.1) now follows from

P(xI
t /∈ Good2) ≤ P

(
xI
t (1) /∈ Good

)+ P
(
xI
t (2) /∈ Good

)
(Proposition 4.1) = P

(
xR
t (1) /∈ Good

)+ P
(
xR
t (2) /∈ Good

)≤ 8
√

ε. �

4.2. When collisions are nearly as fast as mixing. Recalling Notational con-
vention 4.1, we define the first meeting time M(x) of RW(2,G) started from x ∈ V 2

as the smallest t0 ≥ 0 such that xR
t0
(1) = xR

t0
(2) (this is a.s. finite by ergodicity). We

will also write

M≥t (x) = inf{h0 ≥ 0 : xR
t+h0

(1) = xR
t+h0

(2)}
for the time until the first meeting after t (this is a “time-shifted” meeting time).

The following definition will be crucial for our analysis.

DEFINITION 4.1. We say that a weighted graph G is easy if

sup
x∈V 2

P
(
M(x) > 20,000TRW(G)(1/4)

)≤ 1/8.

We note that all long enough paths and cycles are examples of easy graphs.
Noneasy graphs include (Z/LZ)d for d ≥ 2 fixed and L sufficiently large, as well
as large expander graphs. The next proposition proves Lemma 1.1 for all easy
graphs via a coupling argument due to Aldous and Fill.

PROPOSITION 4.4. Lemma 1.1 holds for all easy weighted graphs.

PROOF SKETCH. Given G, Aldous and Fill [1, Chapter 14, Section 5] con-
struct a coupling of IP(|V |,G) started from two different states u,v. Letting
{uI

t ,vI
t }t≥0 denote the coupled trajectories, the following property holds: for each

1 ≤ i ≤ |V |, uI
t (i),vI

t (i) behave as independent random walks up to their first
meeting time, which we denote by Mi . After this time Mi , uI

t (i) = vI
t (i), that is,

the two processes move together. This implies

∀t ≥ 0 dTV(L[uI
t ], L[vI

t ]) ≤ P(uI
t �= vI

t ) ≤
|V |∑
i=1

P
(
uI

t (i) �= vI
t (i)

)

≤
|V |∑
i=1

P(Mi > t).
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It is easy to adapt this to a coupling of IP(2,G) starting from given x,y ∈ (V )2, so
that, if {xI

t ,yI
t }t≥0 denotes the coupled trajectories, we have

∀t ≥ 0 dTV(L[xI
t ], L[yI

t ]) ≤ P(M1 > t) + P(M2 > t).

Now both M1 and M2 are the meeting times of independent random walkers on G,
which shows that

∀t ≥ 0 sup
x,y∈(V )2

dTV(L[xI
t ], L[yI

t ]) ≤ 2 sup
z∈V 2

P
(
M(z) > t

)
.

For t = 20,000TRW(G)(1/4) and G easy, the RHS is ≤ 1/4. By convexity, this
implies that

sup
x∈(V )2

dTV
(

L[xI
t ],Unif((V )2)

)≤ 1

4
.

In other words, TIP(2,G)(1/4) ≤ 20,000TRW(G)(1/4). �

REMARK 4.1. Aldous and Fill’s argument actually proves Theorem 1.1 for
all easy graphs; see [1], Chapter 14, Section 5 for details.

4.3. Long time to meet in noneasy graphs. We now consider what happens
when IP(2,G) is performed on a graph, that is, not easy. Our first goal is to show
that independent random walkers take a relatively long time to meet from most
initial states in V .

PROPOSITION 4.5. Assume G = (V ,E, {we}e∈E) is not easy. Then

1

|V |2
∑

v∈V 2

P
(
M(v) ≤ 20TRW(G)(1/4)

)≤ 1

125
.

REMARK 4.2. In general we cannot guarantee that P(M(v) < 20 ×
TRW(G)(1/4)) is uniformly small over all v ∈ (V )2. In particular, the probabil-
ity of collision from adjacent v(1),v(2) might be much greater than the above
bound.

PROOF OF THE PROPOSITION. Set T = TRW(G)(1/4). Since G is not easy,
there exists some x ∈ V 2 with

P
(
M(x) > 20,000T

)
> 1/8.(4.3.1)

Consider some k ∈ N. Using the Markov property and the notation introduced in
Section 4.2, one can write

P
(
M(x) > 40kT

)= E
[
I{M(x)>40(k−1)T }P

(
M≥40(k−1)T (x) > 40T |xR

40(k−1)T

)]
.
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The conditional probability in the RHS equals P(M(y) > 40T ) for y = xR
40(k−1)T ,

hence

P
(
M(x) > 40kT

)≤
(

sup
y∈V 2

P
(
M(y) > 40T

))
P
(
M(x) > 40(k − 1)T

)
(. . . induction. . . ) ≤

(
sup

y∈V 2
P
(
M(y) > 40T

))k
.

Applying this to k = 500 and using the bound in (4.3.1) gives the following with
room to spare:

sup
y∈V 2

P
(
M(y) > 40T

)≥ 8−1/500 ≥ e−3/500 ≥ 497

500
.

Fix some y ∈ V 2 achieving this supremum. Notice that M(y) > 40T holds if
and only if yR

t (1) �= yR
t (2) for all 0 ≤ t ≤ 40T . If, that is, the case, yR

20T +h(1) �=
yR

20T +h(2) for all 0 ≤ h ≤ 20T . Using the Markov property as before, we see that

497

500
≤ P

(
M(y) > 40T

)≤ P
(
M≥20T (y) > 20T

)
= ∑

v∈V 2

P(yR
20T = v)P

(
M(v) > 20T

)
.

Moreover, by (2.2.2),∑
v∈V 2

P(yR
20T = v)P

(
M(v) > 20T

)
≤ ∑

v∈V 2

P(M(v) > 20T )

|V |2 + dTV(L[yR
20T ],Unif(V 2)).

Hence

497

500
− dTV(L[yR

20T ],Unif(V 2)) ≤ ∑
v∈V 2

P(M(v) > 20T )

|V |2 .

We finish by noting that, by Proposition 4.3, 20T ≥ TRW(2,G)(2−19), hence

dTV(L[yR
20T ],Unif(V 2)) ≤ 2−19 ≤ 1

500
,

and therefore ∑
v∈V 2

P(M(v) > 20T )

|V |2 ≥ 496

500
= 1 − 1

125
.

�
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4.4. If meeting takes a long time, IP(2,G) and RW(2,G) are similar. We have
just shown that the meeting is unlikely to be smaller than 20TRW(G)(1/4) from
most initial states. We now show that IP(2,G) is similar to RW(2,G) until the first
meeting time.

PROPOSITION 4.6. For any x ∈ (V )2 and s ≥ 0,

dTV(L[xR
s ], L[xI

s ]) ≤ P
(
M(x) ≤ s

)
.

We will only need the following simple corollary (proof omitted) in what fol-
lows.

COROLLARY 4.1. For any x,y ∈ (V )2 and s ≥ 0,

dTV(L[xI
s ], L[yI

s ]) ≤ P
(
M(x) ≤ s

)+ P
(
M(y) ≤ s

)+ dTV(L[xR
s ], L[yR

s ]).

PROOF OF PROPOSITION 4.6. We present a coupling of {xI
t }t≥0 and {xR

t }t≥0

such that the two processes agree up to M(x). The proposition then follows from
the coupling characterization of dTV(·, ··); cf. Section 2.2.

Our coupling is given by a continuous-times Markov chain on S = (V )2 × V 2

with transition rates given by q(·, ··). The state space can be split into two parts,

 ≡ {(z, z) : z ∈ (V )2} and its complement 
c.

• Transition rule 1: The transition rates from any pair (x,y) ∈ 
c to any other pair
in S are the same as those of independent realizations of RW(2,G) and IP(2,G).

• Transition rule 2: The transition rates from a pair (x,x) ∈ 
 are determined as
follows:
– Transition rule 2.1: For each e ∈ E with |e ∩ {x(1),x(2)}| = 1,

q((x,x), (fe(x), fe(x))) = we;
– Transition rule 2.2: If e ∈ E satisfies e = {x(1),x(2)},{

((x,x), (fe(x), (x(1),x(1)))) = we,

q((x,x), (x, (x(2),x(2)))) = we.

– Transition rule 2.3: All other potential transitions have rate 0.

Inspection of the marginals reveals that this indeed gives a coupling of {xR
t }t≥0 and

{xI
t }t≥0 when started from an initial state (x,x) ∈ 
. Moreover, the two processes

can only differ after a transition has occurred according to rule 2.2. The first time
when this happens is precisely the first meeting time of {xR

t }t≥0. �
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4.5. Proof of the mixing time bound for IP(2,G). We now use the tools devel-
oped above in order to prove Lemma 1.1.

PROOF OF LEMMA 1.1. The case of easy graphs is covered by Proposi-
tion 4.4, so assume G = (V ,E, {we}e∈E) is not easy. Let x,y be given and
T ≡ TRW(G)(1/4). Notice that for all A ⊂ (V )2, if {xI

t }t≥0, {yI
t }t≥0 are defined

over the same probability space,

P(xI
40T ∈ A) − P(yI

40T ∈ A) = E[P(xI
40T ∈ A|xI

20T ) − P(yI
40T ∈ A|yI

20T )]
≤ E

[
dTV

(
P(xI

40T ∈ ·|xI
20T ),P(yI

40T ∈ ·|yI
20T )

)]
.

Maximizing over A yields

dTV(L[xI
40T ], L[yI

40T ])
(4.5.1)

≤ E
[
dTV

(
P(xI

40T ∈ ·|xI
20T ),P(yI

40T ∈ ·|yI
20T )

)]
.

By the Markov property and Corollary 4.1,

dTV
(
P(xI

40T ∈ ·|xI
20T = v),P(yI

40T ∈ ·|yI
20T = w)

)
= dTV(L[vI

20T ], L[wI
20T ])

≤ P
(
M(v) ≤ 20T

)+ P
(
M(w) ≤ 20T

)+ dTV(L[vR
20T ], L[wR

20T ]).
Proposition 4.3 implies the third term in the RHS is ≤ 2−19 for any v,w. Using
this in conjunction with (4.5.1), we obtain

dTV(L[xI
40T ], L[yI

40T ]) ≤ E[φ(xI
20T )] + E[φ(yI

20T )] + 2−19,(4.5.2)

where φ(z) = P(M(z) ≤ 20T ). Notice that 0 ≤ φ ≤ 1. We may apply Lemma 4.1
and the fact that 20T ≥ TRW(G)(2−20) (cf. Proposition 2.1) to deduce

E[φ(xI
20T )] ≤ 2−7 + 9

∑
v∈V 2

P(M(v) ≤ 20T )

|V |2 .(4.5.3)

Applying the same reasoning to φ(yI
20T ) and plugging the results into (4.5.2), we

obtain

dTV(L[xI
40T ], L[yI

40T ]) ≤ 18
∑

v∈V 2

P(M(v) ≤ 20T )

|V |2 + 2−6 + 2−19.(4.5.4)

Finally, we use the fact that G is not easy, combined with Proposition 4.5, to de-
duce

dTV(L[xI
40T ], L[yI

40T ]) ≤ 18

125
+ 2−9 + 2−6 ≤ 1/4(4.5.5)

with room to spare. By convexity,

dTV(L[xI
40T ],Unif((V )2)) ≤ 1/4.(4.5.6)

Since this holds for all x ∈ (V )2, we have TIP(2,G)(1/4) ≤ 40T , which implies
Lemma 1.1 for noneasy graphs. �



MIXING OF SYMMETRIC EXCLUSION 889

REMARK 4.3. The first inequality in (4.5.3) follows from Lemma 4.1, which
is a consequence of the negative correlation property; cf. Lemma 3.1 and Corol-
lary 3.1. This is the first crucial use we make of negative correlation in this paper.

5. The chameleon process. In the previous section we determined the order
of magnitude of the mixing time of IP(2,G). Going beyond two particles will
require an important additional idea, that is, based on Morris’s paper [19]. His idea
is to introduce the so-called chameleon process to keep track of the conditional
distribution of one particle in IP(k,G). We will need a different process, which
will nevertheless call by the same name.

5.1. A modified graphical construction. We will need consider a variant of
the construction of IP(k,G) presented in Section 3.2. Consider three independent
ingredients:

(1) A Poisson process P = {τ1 ≤ τ2 ≤ τ3 ≤ · · ·} ⊂ [0,+∞) with rate 2W .
(2) An i.i.d. sequence of E-valued random variables {en}n∈N, with P(en = e) =

we/W .
(3) An i.i.d. sequence of coin flips {cn}n∈N with P(cn = 1) = P(cn = 0) = 1/2.

Recall the definition of fe from Section 3.1, and set f 1
e = fe, f 0

e = the identity
function. We modify the definition of the maps I(t,s] from Section 3.2 as follows:
if P ∩ (t, s] = ∅, I(t,s] is the identity map, as before. Otherwise,

P ∩ (t, s] = {τn < τn+1 < · · · < τm},
and we set

I(t,s] = f cm
em

◦ · · · ◦ f
cn+1
en+1 ◦ f cn

en
.

The thinning property of the Poisson process implies that {τn : cn = 1} is a Poisson
process with rate W . One can use this to show that:

PROPOSITION 5.1 (Proof omitted). The joint distribution of the maps I(t,s],
0 ≤ t < s < +∞, is the same as in Section 3.2.

5.2. The chameleon process. The chameleon process is built on top of the
modified graphical construction. The definition of the process will depend on a
parameter T > 0 which we call the phase length, for reasons that will become
clear later on.

Given y ∈ (V )k−1, let O(y) ≡ {y(1), . . . ,y(k−1)} denote the set of vertices that
“occupied” by the coordinates of y. The chameleon process will be a continuous-
time, time-inhomogeneous Markov chain with state space

Ck(V ) ≡ {(z,R,P,W) : z ∈ (V )k−1;
(5.2.1)

the sets O(z),R,P,W partition V }.
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Notice that we do allow any of the R,P,W to be empty in the above definition.
For a given (z,R,P,W) ∈ Ck(V ), it will be convenient to refer to the vertices in
the sets O(z),R,P,W as black, red, pink and white (resp.). Notice that any vertex
v ∈ V will belong to one of these color classes.

The evolution of the process from initial state (z,R,P,W) will be denoted by

{(zC
t ,RC

t ,P C
t ,WC

t )}t≥0.

By definition, this process will only be updated at the times τn (n ∈ N) given by
the Poisson process and at deterministic times 2iT , i ∈ N. Moreover, the updates
at times τn are of different kinds depending on whether τn ∈ ((2i −2)T , (2i −1)T ]
for some i ∈ N+, or τn ∈ ((2i − 1)T ,2iT ] for some i ∈ N+. Finally, we will define
for convenience,

(zC
0−,RC

0−,P C
0−,WC

0−) = (z,R,P,W)

and will allow an instantaneous change at time t = 0: that is,

it might happen that (zC
0 ,RC

0 ,P C
0 ,WC

0 ) �= (z,R,P,W).

The three update rules are described in Box 5.1.

REMARK 5.1. Technically, this process is not càdlàg, as it changes at time 0.
We will nevertheless continue to use t− (cf. Notational convention 2.2) with the
proviso for t = 0 that we have just described.

REMARK 5.2. We briefly note that our chamaleon process is more compli-
cated than Morris’s process [19]. In brief: his process does not have constant-color
phases and will depink right when the number of pink particles exceeds the mini-
mum of red and white. The second difference is a matter of convenience, but the
first one will be fundamental at key steps of our argument.

5.3. Two basic properties. The next two results will be useful later on. We
only sketch the proofs.

LEMMA 5.1. Let

(ẑi , R̂i, P̂i, Ŵi) = the value of (zC
2iT−,RC

2iT−,P C
2iT−,WC

2iT−) (i ∈ N).

Then {(ẑi , R̂i, P̂i , Ŵi)}i∈N is a discrete-time, time-homogeneous Markov chain.
Moreover, if Dj is the j th depinking time of the process, then D̂j ≡ Dj/2T is
a stopping-time for this discrete-time Markov chain.
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Box 5.1 The three kinds of updates in the chameleon process.
• Constant-color phases: If t = τn ∈ ((2i − 2)T , (2i − 1)T ] for some i ∈ N+,

update

(zC
t ,RC

t ,P C
t ,WC

t ) = (f cn
en

(zC
t−), f cn

en
(RC

t−), f cn
en

(P C
t−), f cn

en
(WC

t−)).(5.2.2)

That is, the states of the endpoints of en are flipped if cn = 1, and nothing hap-
pens if cn = 0.

• Color-changing phases. If t = τn ∈ ((2i − 1)T ,2iT ], for i ∈ N+, update as
above unless:

1. en = {w, r} has a white endpoint w ∈ WC
t− and a red endpoint r ∈ RC

t− ;

2. |P C
t−| < min{|RC

t−|, |WC
t−|}.

If (1) and (2) hold, r and w both become pink, and we call t a pinkening time.

(zC
t ,RC

t ,P C
t ,WC

t ) = (zC
t−,RC

t− \ {r},P C
t− ∪ {r,w},WC

t− \ {w}).(5.2.3)

• Depinking times. If t = 2iT with i ∈ N (t = 0 or t lies at the end of a color-
changing phase) and |P C

t−| ≥ min{|WC
t−|, |RC

t−|} (more pink than either white
or red), flip a fair coin di , and make all pink particles become red or white
depending on whether di comes out heads or tails (resp.).

(zC
t ,RC

t ,P C
t ,WC

t ) =
{

(zC
t−,RC

t− ∪ P C
t−,∅,WC

t−), di = 1;
(zC

t−,RC
t−,∅,WC

t− ∪ P C
t−), di = 0.

(5.2.4)

PROOF SKETCH. Markovianity and time-homogeneity are obvious. To prove
the stopping time property, it suffices to check that (setting D0 = 0),

∀j > 0
Dj

2T
= inf

{
i >

Dj−1

2T
: |P̂i | ≥ min{|R̂i |, |Ŵi |}

}
,

where we allow the inf to be +∞ if the set is empty or Dj−1 = +∞. �

LEMMA 5.2. Suppose (zC
2iT ,RC

2iT ,P C
2iT ,WC

2iT ) is the state of the chameleon
process at time 2iT (i.e., at the beginning of a constant-color phase). Then(
zC
(2i+1)T ,RC

(2i+1)T ,P C
(2i+1)T ,WC

(2i+1)T

)= (I (zC
2iT ), I (RC

2iT ), I (P C
2iT ), I (WC

2iT )),

where I = I(2iT ,(2i+1)T ] is the map defined in the modified graphical construction.

PROOF. By inspection. �

5.4. The chameleon process and conditional distributions. We now explain
the relationship between the chameleon process and conditional distributions.
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NOTATIONAL CONVENTION 5.1. x = (x(1), . . . ,x(k)) ∈ (V )k is represented
as a pair (z, x), where z = (x(1), . . . ,x(k−1)) ∈ (V )k−1 and x = x(k) ∈ V \O(z).
[Notice that xI

t = (zI
t , x

I
t ) for all t ≥ 0.]

PROPOSITION 5.2 (Proof omitted). Given an initial state x = (z, x) ∈ (V )k
for IP(k,G), set R = {x}, P = ∅ and W = V \ (O(z) ∪ {x}). Consider the inter-
change process {xI

t = (zI
t , x

I
t )}t≥0 started from state x and the chameleon process

{(zC
t ,RC

t ,P C
t ,WC

t )}t≥0 started from configuration (z,R,P,W) ∈ Ck(V ). Then

∀t ≥ 0,∀b = (c, b) ∈ (V )k P(xI
t = b) = E

[
inkt (b)I{zC

t =c}
]
,(5.4.1)

where

inkt (v) ≡ I{v∈RC
t } + I{v∈P C

t }
2

(v ∈ V ).(5.4.2)

This is almost identical (up to changes in notation) to [19, Lemma 1], and we
omit its proof. It will be useful to think of inkt (v) as the amount of “red ink” at
vertex v ∈ V : a red vertex has one unit of red ink, a pink vertex has half a unit, and
black or white vertices have no ink. We will see below that the total amount of red
ink in the system determines the rate of convergence to equilibrium of IP(k,G).

6. From 2 to k particles via the chameleon process. In this section we
present the proof of Lemma 1.2, modulo several lemmas about the chameleon
process that we will prove later. We then outline the remainder of the paper.

6.1. Proof of Lemma 1.2.

PROOF. We assume we have defined a chameleon process over Ck(V ) as in
Section 5.2. We will take the notation and definitions from that section for granted.
We also define

inkt ≡ ∑
v∈V

inkt (v) = |RC
t | + |P C

t |
2

(t ≥ 0).(6.1.1)

We note for later reference that

inkt ≡ ∑
v∈V \O(zI

t )

inkt (v)(6.1.2)

since the vertices in O(zI
t ) have zero red ink.

We have argued in Proposition 5.2 that the distribution of IP(k,G) started from
x = (z, x) ∈ (V )k corresponds to a chameleon process started from (z, {x},∅,V \
(O(z) ∪ {x})). Letting inkx

t denote the value of inkt in that chameleon process, we
will show that:
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LEMMA 6.1 (Proven in Section 8.2). The following inequality holds for all
1 ≤ k ≤ |V | − 1:

sup
x∈(V )k

dTV
(

L[xI
t ],Unif((V )k)

)≤ 2k sup
x∈(V )k

E

[
1 − inkx

t

|V | − k + 1

∣∣∣Fill
]

where

Fill ≡
{

lim
t→+∞ inkx

t = |V | − k + 1
}
.

The main goal is to bound the expected value in the RHS of the inequality
in Lemma 6.1. Fix some x ∈ (V )k , and let Dj(x) denote the j th depinking time
for the chameleon process corresponding to x. Also set înk

x
j ≡ inkx

Dj (x) for this
process. We will show in Proposition 7.1 that there are infinitely many depinking
times, that is, there are infinitely many times of the form 2iT at which the number
of pink particles is at least as large as the minimum of the numbers of white and
red. The definition of the chameleon process implies that inkx

t can only change
at depinking times, hence for any t ≥ 0 inkx

t = 1 if t < D1(x) and inkx
t = înk

x
j if

Dj(x) ≤ t < Dj+1(x) for some j . We deduce that

1 − inkx
t

|V | − k + 1
≤ sup

m≥j

(
1 − înk

x
m

|V | − k + 1

)
+ I{Dj (x)>t}

≤ ∑
m≥j

(
1 − înk

x
m

|V | − k + 1

)
+ I{Dj (x)>t}.

Taking expectations, we see that the RHS of the inequality in Lemma 6.1 is at most

2k sup
x∈(V )k

{∑
m≥j

E

[
1 − înk

x
m

|V | − k + 1

∣∣∣Fill
]

+ P
(
Dj(x) ≥ t |Fill

)}
.(6.1.3)

A simple (but technical) proposition proven in the Appendix will take care of the
first term.

PROPOSITION 6.1 (Proven in Section B). For all � ≥ 1 and x ∈ (V )k ,

E

[
1 − înk

x
�

|V | − k + 1

∣∣∣Fill
]

≤√|V | − k + 1
(

71

72

)�

.

We thus have

2k sup
x∈(V )k

{∑
m≥j

E

[
1 − înk

x
m

|V | − k + 1

∣∣∣Fill
]

+ P
(
Dj(x) ≥ t |Fill

)}
(6.1.4)

≤ C2|V |3/2e−c1j + 10k sup
x∈(V )k

P
(
Dj(x) ≥ t |Fill

)
,
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where c1 = ln(72/71) > 0 and C2 = 720 are universal constants.
Bounding P(Dj (x) ≥ t |Fill) is the key step in the proof. Up to now all of our

results have been valid for all values of k, |V | and of the phase length parameter
T > 0. The next lemma will require restrictions on these values.

LEMMA 6.2 (Proven in Section 9.3). There exist universal constants C3,C4 >

0, such that if |V | ≥ 300, T ≥ C3TIP(2,G)(1/4) and k/|V | ≤ 1/2, then

∀x ∈ (V )k, ∀j ∈ N: E
[
eDj (x)/(C4T )|Fill

]≤ ej .

If |V | ≥ 300 Markov’s inequality allows one to deduce that, for yet another
universal constant L ≡ C3C4,

P
(
Dj(x) > t |Fill

)≤ ej−t/(LTIP(2,G)(1/4)).

Plugging this into (6.1.4) and Lemma 6.1, we obtain

dTV(L[xI
t ]),Unif((V )k)) ≤ C1|V |3/2e−c1j + 10|V |ej−t/(LTIP(2,G)(1/4)).

Since this inequality holds for all j , we can take

j =
⌊

t

2LTIP(2,G)(1/4)

⌋
and obtain

dTV(L[xI
t ],Unif((V )k)) ≤ K0|V |3/2e−t/(2LTIP(2,G)(1/4))

with K0 > 0 universal. Comparing with the definition of mixing time in (1.1) and
noting that Unif((V )k) is stationary for IP(k,G) finishes the proof in the case
|V | ≥ 300.

The case |V | < 300—that is, |V | bounded by a universal constant—can be
dealt with in several ways. For example, one may use the result of Caputo et
al. [6] for the spectral gap of IP(k,G) together with the standard lower bound for
TRW(G)(1/4) in terms of the spectral gap and the usual upper bound for TIP(k,G)(ε)

in terms of its spectral gap (see, e.g., [17] for these standard bounds). Alterna-
tively, one may use Aldous and Fill’s analysis (see Remark 4.1) together with the
inequality

P
(
M(x) > 2iTRW(G)(1/4)

)≤
(

1 − 1

4|V |
)i

,

which one can prove via Proposition 2.2 and a few simple calculations. �
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6.2. Outline of the missing steps. We now summarize the main steps left in
the proof.

(1) In Section 7 we collect several facts about the quantity ink. The proof of Propo-
sition 6.1 on the decay of E[1 − înk

x
�/(|V | − k + 1)|Fill], presented in the Ap-

pendix (see Section B), relies on results from this section.
(2) Section 8 contains the proof of Lemma 6.1, which is based on an auxiliary

result on conditional distributions (Lemma 8.1).
(3) Section 9 bounds the right tail of the first depinking time in a chameleon pro-

cess, and then uses this to bound the exponential moment of the j th depinking
time. This leads to the key Lemma 6.2, proven in Section 9.3.

7. A miscellany of facts on ink. In this section we prove several facts we will
need about the quantity inkt introduced in (6.1.1). We will use the same notation
introduced in the proof of Lemma 1.2 (cf. Section 6.1):

(1) x ∈ (V )k is some fixed state;
(2) (z,R,P,W) = (z, {x},∅,V \ (O(z) ∪ {x})) ∈ Ck(V ) is the initial state corre-

sponding to x in the sense of Proposition 5.2;
(3) inkx

t is the total amount of ink in (zC
t ,RC

t ,P C
t ,WC

t ) (with the above initial
state);

(4) Dj(x) is the j th depinking time for this process;
(5) finally, înk

x
j ≡ inkx

Dj (x).

We will mostly omit x from the notation in what follows. Most proofs in this
section follow by inspection, so we will be quite brief.

In principle the total number of number of depinking times could be finite. We
begin by showing that this is not the case.

PROPOSITION 7.1. The number of depinking times is almost surely infinite.

REMARK 7.1. Notice that this only works because our definition of a depink-
ing time allows for “trivial depinking times” where there are only red and black
(or only white and black) particles left. This was noted in Box 5.1.

PROOF OF PROPOSITION 7.1. We use the following simple fact (proof omit-
ted): there exists some δ > 0 such that each color-changing phase that starts with
min{|RC

t |, |WC
t |} > 0 will have a pinkening with probability ≥ δ, regardless of

the past. This implies that, given s ≥ 0, the values of |P C
t | for t ∈ [s,+∞)

will have a strictly positive probability of increasing by the end of each color-
changing phase, at least until |P C

t | ≥ min{|RC
t |, |WC

t |}. Since |P C
t | can only de-

crease at depinking steps, this shows that |P C
t | must continue to increase until

|P C
t | ≥ min{|RC

t |, |WC
t |}, and the next time of the 2iT will be a depinking time.

�

The next result follows by inspection.
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PROPOSITION 7.2 (Proof omitted). 0 ≤ înkj ≤ |V | − k + 1 for all j ∈ N, a.s.

We now compute the amount of change of ink in each step.

PROPOSITION 7.3. For j ∈ N, înkj+1 ∈ {înkj +
(înkj ), înkj −
(înkj )} a.s.,
where


(r) ≡
⌈

min{r, |V | − k + 1 − r}
3

⌉
(r ∈ N).(7.0.1)

Moreover, conditionally on {înk�}j�=0, each possibility is equally likely.

PROOF. Box 5.1 shows that there are no pink particles left in the system after
depinking is performed. This implies that înkj = inkDj

= |RC
Dj

|. Moreover, since

the total number of nonblack particles is |V | − k + 1, there must be înkj red and
|V | − k + 1 − înkj white particles at time Dj .

A pinkening step decreases the number of red and white particles by 1 each and
increases the number of pink particles by 2. However, no pinkenings are performed
if the number of pink particles is at least the number of red or the number of white
particles. In other words, the number of pinkening steps until the next depinking is
precisely the smallest p satisfying 2p ≥ înkj − p or 2p ≥ |V | − k − 1 − înkj − p,
which is p = 
(înkj ) for 
 defined in (7.0.1).

At the depinking step, the pink particles either all become white, or they
all become red. These possibilities corresponds to înkj+1 = înkj − 
(înkj ) or
înkj+1 = înkj + 
(înkj ), respectively. Which possibility will actually occur de-
pends on the value of the fair coin di , that is, flipped at the depinking time
2iT = Dj+1. It is easy to see that the coin is independent of {înk�}�≤j , and this
implies that both possibilities are equally likely. �

The next lemma summarizes the above sequence of propositions and adds a
useful remark.

LEMMA 7.1. The sequence {înkj }j≥0 is a Markov chain with initial state
înk0 = 1, absorbing states at 0 and |V | − k + 1 and transition probabilities given
by

p(a, b) ≡ 1

2

(
I{b=a+
(a)} + I{b=a−
(a)}

)
(7.0.2)

(a, b ∈ {0,1,2, . . . , |V | − k + 1}).
Moreover, it is almost surely absorbed in finite time in either 0 or |V | − k + 1.
Finally, the event

Fill ≡
{

lim
j→+∞ înkj = |V | − k + 1

}
(7.0.3)

has probability 1/(|V | − k + 1).
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REMARK 7.2. The event Fill corresponds to the number of red particles con-
verging to |V |−k +1, that is, that there are only black and red particles at all large
enough times, or, equivalently, to red ink filling up all available space. Notice that
we can rewrite

Fill ≡
{

lim
t→+∞ inkt = |V | − k + 1

}
,

which is the form that appears in the proof of Lemma 1.1.

PROOF OF LEMMA 7.1. The first sentence is obvious given the sequence of
propositions; only notice that p(a, a) = 1 if a ∈ {0, |V |−k+1}. We omit the trivial
proof of the next assertion, which implies înk∞ ≡ limj→+∞ înkj ∈ {0, |V |−k+1}.

Now notice that the increments of înkj are unbiased; that implies that this pro-
cess is also a martingale. We thus have

P(Fill) = P(înk∞ = |V | − k + 1)

(înk∞ ∈ {0, |V | − k + 1}) = E[înk∞]
|V | − k + 1

({înkj }j∈N bounded, cf. Prop. 7.2) = limj→+∞ E[înkj ]
|V | − k + 1

(mart. property + înk0 = 1) = E[înk0]
|V | − k + 1

= 1

|V | − k + 1
. �

We will need one final lemma before we proceed.

LEMMA 7.2. For all b ∈ (V )k−1 and t ≥ 0,

P({zC
t = b} ∩ Fill) = P(zC

t = b)

|V | − k + 1
.

PROOF. This follows from the previous lemma if we can show that Fill and zC
t

are independent. To see this, simply notice that Fill is entirely determined by the
coin flips di performed at the depinking times, whereas the value of zC

t does not at
all depend on these coin flips. �

REMARK 7.3. It transpires from the above that the chameleon process condi-
tioned on Fill is the same as the unconditional process, except that the coin flips di

performed at depinking times are biased. This remark will be useful in the proof
of Lemma 6.2 in Section 9.3.

8. Convergence to stationarity in terms of ink. In this section we will prove
Lemma 6.1, used in the proof of Lemma 1.2 (cf. Section 6.1), in which we show
that the amount of ink in the system can be used to bound the distance to the
stationary distribution. We start with a preliminary result on marginals.



898 R. I. OLIVEIRA

8.1. The convergence to equilibrium of conditional distributions. We will
again use Notational convention 5.1, whereby any x = (x(1), . . . ,x(k)) ∈ (V )k is
written as a pair x = (z, x) with z = (x(1), . . . ,x(k − 1)) and x = x(k).

Let x = (z, x) ∈ (V )k and consider the IP(k,G) process {xI
t }t≥0. Set R = {x},

P = ∅ and W = V \ (O(z) ∪ {x}) and recall from Proposition 5.2 that the
chameleon process {(zC

t ,RC
t ,P C

t ,WC
t )}t≥0 satisfies

∀t ≥ 0,∀b = (c, b) ∈ (V )k P(xI
t = b) = E

[
I{zC

t =c}inkx
t (b)

]
,(8.1.1)

where (as before) we use inkx
t (·) to denote the amount of ink in this chameleon

process corresponding to x. The following lemma relates the total amount of ink
in this process to the near-uniformity of xI

t conditionally on zI
t .

LEMMA 8.1. Given x = (z, x) ∈ (V )k , let x̃I
t = (zI

t , x̃
I
t ) where, conditionally

on zI
t , x̃I

t is uniform over V \ O(zI
t ). Then

dTV(L[xI
t ]), L[x̃I

t ]) ≤ E

[
1 − inkx

t

|V | − k + 1

∣∣∣Fill
]

where Fill is the event defined in Lemma 7.1 (see also Remark 7.2).

PROOF. We have seen that zI
t and zC

t have the same distribution; cf. the proof
of Proposition 5.2. We deduce that

∀t ≥ 0,∀b = (c, b) ∈ (V )k P(zI
t = c, x̃I

t = b) = P(zC
t = c)

|V | − k + 1

= P({zC
t = c} ∩ Fill),

where the last equality follows from Lemma 7.2. On the other hand, (8.1.1) implies

∀t ≥ 0,∀b = (c, b) ∈ (V )k P(xI
t = b) ≥ E

[
I{zC

t =c}∩Fillinkx
t (b)

]
.(8.1.2)

We deduce that

∀t ≥ 0,∀b = (c, b) ∈ (V )k(
P(zI

t = c, x̃I
t = b) − P(zI

t = c, xI
t = b)

)
+

≤ (
E
[
I{zC

t =c}∩Fill

(
1 − inkx

t (b)
)])

+
= E

[
I{zC

t =c}∩Fill

(
1 − inkx

t (b)
)]

since the integrand is ≥ 0.

We now combine this with formula (2.2.3) for dTV(·, ··).
dTV(L[xI

t ], L[x̃I
t ]) ≤ ∑

b=(c,b)∈(V )k

E
[
I{zC

t =c}∩Fill

(
1 − inkx

t (b)
)]

= ∑
c∈(V )k−1

E

[
I{zC

t =c}∩Fill

∑
b∈V \O(c)

(
1 − inkx

t (b)
)]
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[sum over b + (6.1.2)] = ∑
c∈(V )k−1

E
[
I{zC

t =c}∩Fill(|V | − k + 1 − inkx
t )
]

(sum over c) = E[IFill(|V | − k + 1 − inkx
t )]

(apply Lemma 7.1) = 1 − E[inkx
t |Fill]

|V | − k + 1
. �

8.2. Distance to the stationary distribution in terms of ink.

PROOF OF LEMMA 6.1. We will prove the following stronger inequality:

sup
x,y∈(V )k

dTV(L[xI
t ], L[yI

t ]) ≤ 2k sup
w∈(V )k

E

[
1 − inkw

t

|V | − k + 1

∣∣∣Fill
]
,(8.2.1)

which implies the lemma by convexity.
Declare two states u,v ∈ (V )k to be adjacent (u ∼ v) if they differ at precisely

one coordinate: that is, there exists an i ∈ [k] with u(i) �= v(i) and u(r) = v(r) for
r ∈ [k] \ {i}. We first bound dTV(L[xI

t ], L[yI
t ]) for adjacent x ∼ y.

One can assume without loss of generality that x and y differ precisely at the kth
coordinate. Using the notation from Section 5.4, we write x = (z, x) and y = (z, y)

for z ∈ (V )k−1 and x ∈ V \ O(z). Defining x̃I
t = (zI

t , x̃
I
t ) as in Section 8.1 and ỹI

t

similarly, we see that L[x̃I
t ] = L[ỹI

t ] for all t ≥ 0. We deduce that

dTV(L[xI
t ], L[yI

t ]) ≤ dTV(L[xI
t ], L[x̃I

t ]) + dTV(L[yI
t ], L[ỹI

t ])
+ dTV(L[x̃I

t ], L[ỹI
t ])

(3rd. term = 0) = dTV(L[xI
t ], L[x̃I

t ]) + dTV(L[yI
t ], L[ỹI

t ])
(8.2.2)

(use Lemma 8.1) ≤ E

[
1 − inkx

t

|V | − k + 1

∣∣∣Fill
]

+ E

[
1 − ink

y
t

|V | − k + 1

∣∣∣Fill
]

≤ 2 sup
w∈(V )k

E

[
1 − inkw

t

|V | − k + 1

∣∣∣Fill
]
.

Now consider x,y ∈ (V )k arbitrary. One can find a sequence {x[i]}ri=0 ⊂ (V )k
with r ≤ 2k and

x[0] = x ∼ x[1] ∼ x[2] ∼ · · · ∼ x[r] = y.

The triangle inequality gives

dTV(L[xI
t ], L[yI

t ]) = dTV(L[x[0]It ], L[x[r]It ]) ≤
r∑

i=1

dTV(L[x[i − 1]It ], L[x[i]It ]).

Applying (8.2.3) to each adjacent pair x[i − 1],x[i] gives (8.2.1). �
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9. Depinkings are fast. The results in this section lead to the key Lemma 6.2.
We first show that, in the first two phases of the chameleon process—a constant
color and a color-changing phase—, the number of red particles decreases in ex-
pectation by a constant factor.

LEMMA 9.1 (Proven in Section 9.1). Consider a modified chameleon process
where one drops condition (2) for a pinkening step; cf. Box 5.1. Assume also that
k ≤ |V |/2, |V | ≥ 300 and that the initial state (z,R,P,W) ∈ Ck(V ) with |P | <

|R| ≤ |W |. If the phase length parameter T satisfies

T ≥ 20TIP(2,G)(1/4),

then

E[|RC
2T−|] ≤ (1 − c)|R|,

where c = 1/1000 > 0.

With this, we will show that the first depinking time has an exponential moment.

LEMMA 9.2 (Proven in Section 9.2). Consider a chameleon process (with-
out the modification in the previous lemma) with |V | ≥ 300 and k ≤ |V |/2,
started from an initial state (z,R,P,W) ∈ Ck(V ) with |P | = ∅. There exists
a universal constant K > 0 such that if the phase length parameter T satisfies
T ≥ 20TIP(2,G)(1/4), the first depinking time D1 of this process satisfies

E
[
eD1/(KT )]≤ e.

In Section 9.3 we deduce Lemma 6.2 from Lemma 9.2.

9.1. Loss of red particles in the two first phases.

PROOF OF LEMMA 9.1. Note that there is no depinking at time t = 0, since
there are less pink particles than white or red ones in the state (z,R,P,W). Finally,
the conditions on P,W,R and k imply

3|W | ≥ |R| + |P | + |W | = |V | − k + 1 ≥ |V |/2 ⇒ |W | ≥ |V |/6.

The interval (0, T ] is a constant-color phase where black, red and white particles
are simply moved around. Lemma 5.2 shows that the state of the process at time T

is given by

(zC
T ,RC

T ,P C
T ,WC

T ) = (I (z), I (R), I (P ), I (W)),

where I = I(0,T ] = IT is the map obtained from the modified chameleon construc-
tion in Section 5. We will need the following properties later on:
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PROPOSITION 9.1 (Proven in Section 9.1.1). For all (a, b) ∈ (V )2 and S,L ⊂
V with S × L ⊂ (V )2, |L| ≥ |V |/12,

P
(
(a, b) ∈ I (S) × I (S)

)≤ P(a ∈ I (S))

( |S|
|V | + 2−10

)
.

P
(
(a, b) ∈ I (S) × I (L)

)≥ |S||L|
|V |2 (1 − 2−9) ≥ |S|

13|V | .

REMARK 9.1. The intuitive meaning of this is that (RC
T ,WC

T ) are close to uni-
form in terms of correlations of “pairs of particles” at the end of the constant-color
phase, and this will only hold because T = �(TIP(2,G)). Morris’s original argu-
ment for (Z/LZ)d could instead rely on good estimates for transition probabilities
for single-particle random walks. We note that we need the negative correlation
property in the proof of this proposition.

In the time interval (T ,2T ), each time T < τm < 2T may or may not be a
pinkening time, depending on whether pinkening condition (1) is satisfied. We
will nevertheless consider the maps

Ĩt ≡ I(T ,t], T ≤ t < 2T ; cf. the definition in Section 5.1.(9.1.1)

We emphasize that Ĩt does not correspond directly to the evolution of the
chameleon process in the time interval (T ,2T ). Propositions 3.3 and 5.1 imply:

PROPOSITION 9.2 (Proof omitted). {Ĩt }T <t<2T is independent from I , and
so are all the points of the Poisson process {τn}n in the interval (T ,2T ) and all
markings en, cn corresponding to these points.

We need a new definition before we proceed. Let a ∈ V be given. Let φa be
the first time of the form τm with T < τm ≤ 2T for which a ∈ em; if no such time
exists, let φa = +∞. If φa < +∞, there exists a vertex b ∈ V such that the edge
em just mentioned has a = Ĩφa−(a) and Ĩφa−(b) as endpoints immediately prior to
time φa . We set Fa ≡ b in that case, or Fa ≡ ∗ if φa = +∞. The following simple
claim is essential to what follows.

CLAIM 1. The number of pinkening steps performed in time interval (T ,2T )

is at least the number of b ∈ I (W) such that Fa = b for some a ∈ I (R).

PROOF. Let b ∈ I (W). Given the rules for color-changing phases (cf.
Box 5.1), the particle at that location will move in the time interval (T ,2T ) accord-
ing to Ĩt until the first time t = τm ∈ (T ,2T ) such that Ĩt−(b) ∈ em and the other
endpoint of em is white (if such a time exists). Now if a ∈ I (R) satisfies Fa = b

and τm = φa , we have {Ĩt−(b), a} = em and a must still be red at time (φa)−, since
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it was not contained in an edge before in this phase. It follows that the particle
started from b must become pink by time φa . �

The claim implies

|RC
2T−| = |R| − # of pinkening steps in (T ,2T ](9.1.2)

≤ |R| − ∑
b∈I (W)

I
⋃

a∈I (R){Fa=b}.(9.1.3)

The sum in the RHS satisfies∑
b∈I (W)

I
⋃

a∈I (R){Fa=b} ≥ ∑
a∈I (R),b∈I (W)

I{Fa=b}

(9.1.4)
− ∑

{a,a′}⊂I (R),b∈I (W)

I{Fa=b}I{Fa′=b},

and we obtain

E[|RC
2T−| − |R|]
≤ − ∑

(a,b)∈(V )2

P
(
a ∈ I (R), b ∈ I (W),Fa = b

)
(9.1.5)

+ ∑
{a,a′}⊂V,b∈V

P
(
a, a′ ∈ I (R), b ∈ I (W),Fa = b,Fa′ = b

)
.

The event {Fa = b} is entirely determined by the points of the marked Poisson
process and by the coin flips performed in the time interval (T ,2T ), and therefore
is independent of I ; cf. Proposition 9.2. We deduce∑

(a,b)∈(V )2

P
(
a ∈ I (R), b ∈ I (W),Fa = b

)
= ∑

(a,b)∈(V )2

P
(
a ∈ I (R), b ∈ I (W)

)
P(Fa = b)

(9.1.6)

(use Proposition 9.1) ≥ |R|
13|V |

∑
(a,b)∈(V )2

P(Fa = b)

= |R|
13|V |

∑
a∈V

P(Fa �= ∗).

For a given a ∈ V , P(Fa = ∗) is the probability that there is no T < τn < 2T with
en � a. Notice that this is at most the probability that Ĩ2T (a) = a: a cannot move
if there is no edge en � a with T < τn ≤ 2T . We deduce

P(Fa �= ∗) ≥ 1 − P
(
Ĩ2T (a) = a

)= P(aR
T �= a),
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where {aR
t }t≥0 is a realization of RW(G) started from a. By the contraction prin-

ciple and Proposition 2.1,

T ≥ 20TIP(2,G)(1/4) ≥ 20TRW(G)(1/4) ≥ TRW(G)(2
−20),

which implies

P(aR
T �= a) ≥ 1 − 1

|V | − 2−20 ≥ 13

14
since |V | ≥ 300.

We deduce from (9.1.6) that∑
(a,b)∈V 2

P
(
a ∈ I (R), b ∈ I (W),Fa = b

)≥ |R|
14

.(9.1.7)

We now consider the second sum in the RHS of (9.1.5). As before, we notice
that {Fa = b,Fa′ = b} is independent of I and therefore∑

{a,a′}⊂V,b∈V \{a,a′}
P
(
a, a′ ∈ I (R), b ∈ I (W),Fa = b,Fa′ = b

)
= ∑

{a,a′}⊂V,b∈V \{a,a′}
P
(
a, a′ ∈ I (R), b ∈ I (W)

)
P(Fa = b,Fa′ = b)

≤ ∑
{a,a′}⊂V,b∈V \{a,a′}

P
(
a, a′ ∈ I (R)

)
P(Fa = b,Fa′ = b).

We claim that:

CLAIM 2 (Proven in Section 9.1.2). For all (a, a′, b) ∈ (V )3,

P(Fa = b,Fa′ = b) ≤ P(Fa = a′,Fa′ = b) + P(Fa′ = a,Fa = b).

Summing up over b above gives at most P(Fa = a′) + P(Fa′ = a) in the RHS.
Therefore,∑
{a,a′}⊂V,b∈V \{a,a′}

P
(
a, a′ ∈ I (R)

)
P(Fa = b,Fa′ = b)

≤ ∑
{a,a′}⊂V

P
(
a, a′ ∈ I (R)

)(
P(Fa = a′) + P(Fa′ = a)

)
= ∑

(a,a′)∈(V )2

P
(
a ∈ I (R), a′ ∈ I (R)

)
P(Fa = a′)

(apply Prop. 9.1) =
( |R|

|V | + 2−10
) ∑

(a,a′)∈(V )2

P
(
a ∈ I (R)

)
P(Fa = a′)

(⋃
a′

{Fa = a′} = {Fa �= ∗}
)

=
( |R|

|V | + 2−10
)∑

a∈V

P
(
a ∈ I (R)

)
P(Fa �= ∗)
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(
P(Fa �= ∗) ≤ 1

) ≤
( |R|

|V | + 2−10
)∑

a∈V

P
(
a ∈ I (R)

)
=
( |R|

|V | + 2−10
)

E[|I (R)|]

=
( |R|

|V | + 2−10
)
|R| since I = I(0,T ] is a bijection.

Plugging this equation and (9.1.7) into (9.1.5) we obtain

E[|RC
2T | − |R|] ≤ |R|

( |R|
|V | + 2−10 − 1

14

)
(9.1.8)

≤ −|R|/30 if |R| ≤ |V |/28.

If |R| > |V |/28, we can still find a subset R0 ⊂ R of size |R0| = �|V |/28�. Since∑
b∈I (W)

I{∃a∈I (R):Fa=b} ≥ ∑
b∈I (W)

I{∃a∈I (R0):Fa=b},(9.1.9)

we may repeat the reasoning presented from (9.1.4) onwards, replacing R by R0,
to deduce that

E[|RC
2T−| − |R|] ≤ −|R0|

30
.

We now note that, since |V | ≥ 300,

|R0| ≥ |V |
30

− 1 ≥ 3|V |
100

≥ 3|R|
100

since |R| ≤ |V |. We deduce that

E[|RC
2T−| − |R|] ≤ − |R|

1000
if |R| > |V |/28,

which gives the lemma together with (9.1.8). �

9.1.1. Proof of the required estimates for the I map (Proposition 9.1).

PROOF OF PROPOSITION 9.1. Recall that T ≥ 20TIP(2,G)(1/4), therefore
T ≥ 2TIP(2,G)(2−10) by Proposition 2.1. By the contraction principle [1], this also
implies that T ≥ TRW(G)(2−10).

Recall that I = I(0,T ] as in the construction of the modified chameleon process.
This implies that for any set S, I (S) has the law of EX(|S|,G) started from S. We
deduce

P
(
(a, b) ∈ I (S) × I (S)

)= P({a, b} ⊂ SI
T )

(negative correlation, Lemma 3.1) ≤ P(a ∈ SI
T )P(b ∈ SI

T )

(L[I ] = L[I−1], Proposition 3.2) = P
(
a ∈ I (S)

)
P(bI

T ∈ S)(
T ≥ TRW(G)(2

−10)
) ≤ P

(
a ∈ I (S)

)( |S|
|V | + 2−10

)
.
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As for the other inequality in the proposition, we have

P
(
(a, b) ∈ I (S) × I (L)

)= P
(
(aI

T , bI
T ) ∈ S × L

)
(
take x = (a, b)

)= P(xI
T ∈ S × L)

(*) ≥ (1 − 2−9)2 |S × L|
|(V )2|

≥ (1 − 2−8)
|S||L|
|V |2 ,

where (∗) follows from the symmetry of the transition rates of IP(2,G), the fact
that T ≥ 2TIP(2,G)(2−10) and Proposition 2.2. We note that |L|/|V | ≥ (1/12) and
1 − 2−8 ≥ 12/13 to finish the proof. �

9.1.2. Proof of claim on Fa (Claim 2).

PROOF OF CLAIM 2. It suffices to show that for (a, a′, b) ∈ (V )3,

P(Fa = b,Fa′ = b,φa ≤ φa′) = P(Fa = b,Fa′ = a,φa ≤ φa′).(9.1.10)

Let Lb,Rb denote the events appearing in the LHS and RHS of (9.1.10) (resp.).
We present a simple measure-preserving mapping �, which acts on

(P, {en}n, {cn}n, {di}i ),
that maps Lb into Rb and vice-versa. We describe � in words: all values of di , T <

τj ≤ 2T and all corresponding ej and cj , except for the following modification: if
τm = φa , we flip the value of cm to c′

m = 1 − cm.
Let us check that � has the desired properties. � is clearly measure-preserving,

since φa is a stopping time that is independent of the value cm of the flipped coin.
Now suppose {Ît }T <t≤2T is defined precisely as {Ĩt }T <t≤2T , but with cm

flipped. It is easy to see that φa,φa′ retain their values and that the random vari-
able F̂a corresponding to Fa in the Î process satisfies F̂a = Fa . The two processes
coincide for any time T < t < φa . If Lb holds, we have φa = τj < 2T for some j ,
and the endpoints of ej are a and Ĩφa−(Fa) = Ĩφa− (by definition of Fa). Since the

coin flips used for Ĩφa and Îφa are opposite, we have

(Îφa (a), Îφa (b)) = (Ĩφa (b), Ĩφa (a))

whereas Ĩφa (c) = Îφa (c) for all c ∈ V \ {a,Fa}.
Under Lb, ∀t ∈ [φa,2T ]: (Ît (a), Ît (b)) = (Ĩt (b), Ĩt (a)).

Under Lb, the edge e� corresponding to τ� = φa′ was of the form e� = {a′,
Ĩφa′−(b)}. This implies e� = {a′, Îφa′−(a)} in the Ît process, and the latter must
be in the event Rb. This shows that P(Lb) ≤ P(Rb). The opposite inequality fol-
lows from reversing roles of the two processes. �
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9.2. Estimate for the first depinking time (Lemma 9.2).

PROOF OF LEMMA 9.2. As in Lemma 9.1 we drop condition (2) for a de-
pinking time, and notice that this change does not change the value (or the distri-
bution) of D1. The modification to the process also does not affect the end result
of Lemma 5.1: that is, the discrete-time process starting from (z,R,P,W) with
subsequent states (ẑi , R̂i, P̂i, Ŵi) described in that lemma is a time-homogeneous
Markov chain, and D̂1 ≡ D1/2T is a stopping time for this process.

Moreover, we assume without loss of generality that |R| ≤ |W |, which implies
that |RC

t | ≤ |WC
t | for t < D1. This implies |WC

t | ≥ |V |/6 unless there are more
pink particles than red ones at time t < D1; this follows from the reasoning in the
beginning of the proof of Lemma 9.1 in Section 9.1. Recall that each pinkening
step remores a red particle and creates two pink ones. It follows that |RC

2iT−| <

2|R|/3 implies D1 ≤ 2iT , and

∀i ∈ N+ P(D̂1 > i) ≤ P(|R̂i | ≥ 2|R|/3, D̂1 > i − 1)
(9.2.1)

≤ 3E[R̂iI{D̂1>i}]
2|R|

= 3E[E[R̂i |F̂i−1]I{D̂1>(i−1)}]
2|R| ,(9.2.2)

where F̂i−1 is the σ -field generated by (ẑ�, R̂�, P̂�, Ŵ�) for � ≤ i − 1.
We now estimate the integrand in (9.2.2). Lemma 5.1 and its proof impliy that

E[|R̂i ||F̂i−1]
is the expected number of red particles after a potential depinking, a constant-color
phase and a color-changing phase for a chameleon process started from

(ẑi−1, R̂i−1, P̂i−1, Ŵi−1) ∈ Ck(V ).

By Lemma 9.1, we can ensure that

E[|R̂i ||F̂i−1] ≤ (1 − c)|R̂i−1| if |Ŵi−1| ≥ |V |/6 and |P̂i−1| < |R̂i−1|.
As noted before, these conditions are always satisfied in the event {D̂1 > (i − 1)},
because there are less pink than red particles. We deduce

∀i ∈ N+
E[|R̂i |I{D̂1>i}]

|R| ≤ E[E[|R̂i ||F̂i−1]I{D̂1>(i−1)}]
|R|

≤ (1 − c)

{
E[|R̂i−1|I{D̂1>i−1}]

|R|
}

(. . . induction. . . ) ≤ (1 − c)i .



MIXING OF SYMMETRIC EXCLUSION 907

This implies

P(D1 > 2iT ) = P(D̂1 > i) ≤ 3(1 − c)i

2
, c = 1/1000 universal.

From this one can easily show that E[eD1/KT ] ≤ e for some universal K . �

9.3. Proof of Lemma 6.2.

PROOF. Fix x ∈ (V )k . We first prove that

E
[
eDj (x)/(KT )]≤ ej , K > 0 from Lemma 9.2;(9.3.1)

this is the bound we wish to obtain except that we are not conditioning on Fill.
We proceed as in the previous proof and consider the discrete-time process

{(ẑi , R̂i, P̂i, Ŵi)}i≥0,

introduced in Lemma 5.1, henceforth called the hat process. This time we take the
initial state

(z,R,P,W) ≡ (
z, {x},∅,V \ (O(z) ∪ {x}))

corresponding to x = (z, x) in the sense of Proposition 5.2. Also recall the defini-
tion D̂i ≡ Di(x)/2T and note that (9.3.1) is equivalent to

E[eD̂j /K ′ ] ≤ ej , K ′ = 2K .(9.3.2)

This is valid for j = 1 due to Lemma 9.2. For j > 1, we recall the definition of the
σ -fields F̂i , recall that D̂j−1 is a stopping time for the hat process (cf. Lemma 5.1)
and obtain

E[eD̂j /K ′ ] ≤ E
[
eD̂j−1/K

′
E
[
e(D̂j−D̂j−1)/K

′ |F̂
D̂j−1

]]
.(9.3.3)

We will apply the strong Markov property of the hat process (cf. Lemma 5.1 again)
to bound the conditional expectation in the RHS. The conditional law of D̂j −
D̂j−1 given F̂

D̂j−1
is the law of the hat process started from state

(ẑ
D̂j−1

, R̂
D̂j−1

, P̂
D̂j−1

, Ŵ
D̂j−1

).

Notice that P̂
D̂j−1

= P C
Dj−1−

�= ∅; in fact, since depinking occurs at time Dj−1, we

know that |P C
Dj−1−

| ≥ min{|RC
Dj−1−

|, |WC
Dj−1−

|}. However, at time Dj−1 all pink

particles disappear: the hat process evolves as if started from a state with no pink
particles, and D̂j − D̂j−1 is the first depinking time for the hat process with this
modified initial state. We deduce from Lemma 9.2 that

E
[
e(D̂j−D̂j−1)/K

′ |F̂
D̂j−1

]≤ e almost surely,
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so that

E[eD̂j /K ′ ] ≤ E[eD̂j−1/K
′ ]e ≤ ej by induction.(9.3.4)

This proves (9.3.3) and (9.3.1).
To prove the lemma, notice that conditioning on Fill simply biases the coin flips

di performed at depinking times; cf. Remark 7.3. This will not change the distri-
bution of D̂1 or the conditional distribution of D̂j − D̂j−1 given the past of the
process, so the argument we presented above still applies. �

10. Final remarks. Our paper leaves many questions open. Here we present
a few problems that seem especially interesting:

• Are there any other interacting particle systems whose mixing parameters can
be bounded solely in terms of the constituent parts? Nonsymmetric exclusion is
an obvious candidate. Another is the zero-range process. Morris [18] used the
comparison principle and a coupling argument on the complete graph to bound
the spectral gap of this process on a grid. Can one do something less indirect
over an arbitrary graph?

• Can we find a mixing time upper bound of IP(|V |,G) (i.e., as many particles
as vertices), that is, similar to our main Theorem? Inspection of the chameleon
process shows that it gives the conditional distribution of a particle given the
whole past trajectory of the other particles. This means, in particular, that it
cannot deal with k = |V | particles.

• Recall the heuristic assumption in the Introduction: TEX(k,G)(ε) ≤ C1 ×
TRW(G)(ε/k) with C1 > 0 universal. Is this actually true? This would be stronger
than our main theorem.

• Combining the previous two items: is it true that TIP(|V |,G)(ε) = C1 ×
TRW(G)(ε/|V |)? Could it even be possible that TIP(|V |,G)(ε) ≤ TRW(|V |,G)(ε),
that is, the interchange process mixes at least as fast as independent random
walkers? This would give Aldous’s (now proven) conjecture on the spectral gap
as a corollary.

APPENDIX A: MIXING BOUNDS FOR EX(k,G) VIA CANONICAL PATHS

We use asymptotic notation below as shorthand; see, for example, [2] for precise
definitions. Let G = (V ,E, {we}e∈E) be a weighted graph. It seems that the best
general bound that was previously available (implicitly) for the mixing time of
EX(k,G) comes from the combination of three ingredients.

Mixing time from Log-Sobolev constant. The state space of EX(k,G) has car-
dinality

(|V |
k

) = 2�(|V |) if k = �(|V |). By the results of [9], if ρEX(k,G) is the log-
Sobolev constant of EX(k,G), then

TEX(k,G)(1/4) = O

(
ln |V |

ρEX(k,G)

)
for k = �(|V |).
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Log-Sobolev inequality for the Bernoulli–Laplace model. Consider the com-
plete graph K|V | where each edge has weight 1/|V |. EX(k,K|V |) is the so-called
Bernoulli–Laplace model with k particles, whose log Sobolev constant is of the
order �(ln(|V |2/k(|V | − k))). Notice that this is �(1) for k = �(|V |).

Comparison argument. Now consider a general weighted graph G = (V ,E,

{we}e∈E). Assume that for each pair (x, y) ∈ V 2 one has defined a path γx,y in G

connecting x to y. For each such pair, let Ix,y(e) = 1 if e is crossed by γx,y and 0
otherwise, and also let �x,y denote the length of γx,y . Finally, define

φ(G) ≡ max
e∈E

∑
(x,y)∈V 2

�x,yIx,y(e)

|V |we

.

It is shown in the proof of [8, Theorem 3.1] that this comparison constant for the
Dirichlet forms of RW(G) can be “lifted” with no loss to EX(k,G). The compari-
son principle for the log Sobolev constant [9] implies ρEX(k,G) = �(φ−1(G)). We
deduce

TEX(k,G)(1/4) = O(φ(G) ln |V |) if k = �(|V |).(A.0.1)

It can be very hard to find good upper bounds on φ(G) in general, but the
general lower bound we will present implies that

φ(G) ≥ 2dist2

d
,(A.0.2)

where dist2 is the average over all (x, y) ∈ V 2 of the square of the graph-theoretic
distance between x and y, and d is the average (weighted) degree in G. Indeed, it
suffices to see that

φ(G) ≥ ∑
e∈E

we∑
f ∈E wf

( ∑
(x,y)∈V 2

Ix,y(e)�x,y

|V |we

)

= 1∑
f ∈E wf

[ ∑
(x,y)∈V 2

(∑
e∈E Ix,y(e)�x,y

|V |
)]

[use
∑

e Ix,y(e) = �x,y] = 1

|V |−1∑
f ∈E wf

[ ∑
(x,y)∈V 2

�2
x,y

|V |2
]

[use �x,y ≥ dist(x, y)] ≥ 1

|V |−1∑
f ∈E wf

[ ∑
(x,y)∈V 2

dist(x, y)2

|V |2
]

= 2dist2

d
.

We note that this is a lower bound, which we do not know how to achieve in the
examples in Table 1.
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APPENDIX B: THE TRAJECTORY OF înkj GIVEN Fill

We use the facts proven in Section 7 to derive the technical estimate in Proposi-
tion 6.1 in the proof of Lemma 1.2; cf. Section 6.1.

PROOF OF PROPOSITION 6.1. We take the notation in Section 7 for granted,
but omit the superscript w in this proof. Our first goal will be to show that, condi-
tionally on Fill, {înkj }j≥0 is still a Markov chain. Repeating the steps of the proof
of Lemma 7.1, we note that

P(Fill|(înki )i≤j ) = E[înk∞|(înki )i≤j ]
|V | − k + 1

= înkj

|V | − k + 1
= P(Fill)înkj .

We deduce from Bayes’s rule and the Markovian property that

P

( j⋂
i=1

{înki = ai}|Fill

)
= P

( j⋂
i=1

{înki = ai}
)
aj

(Markov property for înkj ) = p(1, a1)p(a1, a2) · · ·p(aj−1, aj )aj

= q(1, a1) · · ·q(aj−1, aj ),

where

q(a, b) = bp(a, b)

a
if a �= 0.

Notice that, since înkj does not visit 0 in the event Fill, we do not need to define
q(a, b) for a = 0. We have shown:

PROPOSITION B.1. Conditionally on Fill, the trajectory of {înkj }j≥0 is that of
a Markov chain in {1, . . . , |V | − k + 1}, with transition rates q(a, b) and started
from înk0 = 1.

For the remainder of the proof, we will use this proposition to bound 1 −
înk�/(|V | − k + 1). Actually, another quantity is easier to bound. Set I� =
înk�/(|V | − k + 1) and

Z� ≡
√

min{1 − I�, I�}
I�

.

Notice that conditionally on Fill, I� > 0 always, hence Z� is a.s. well defined for
all �. Moreover, one can check that 1 − I� ≤ Z� always. Therefore the lemma will
follow from the estimate

E
Fill[Z�] ≤ (71/72)�

√|V | − k + 1,

where E
Fill[·] corresponds to an expectation with respect to the conditional distri-

bution given Fill. Since Z0 = √|V | − k + 1, the above estimate follows directly
from the following claim.
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CLAIM 3.

∀� ∈ N E
Fill[Z�] ≤ (71/72)EFill[Z�−1].

Therefore, proving this claim will finish the proof.
To prove the claim, we first note that for all i, Zi is a function of înki , and

Z�−1 = 0 ⇒ Z� = 0. We deduce

E
Fill[Z�] = E

Fill
[
E

Fill
[

Z�

Z�−1

∣∣∣ înk�−1

]
Z�−1I{Z�−1 �=0}

]
.(B.0.1)

We now bound the conditional expectation in the RHS. We may assume that
înk�−1 = r with 0 < r < |V |−k +1 (otherwise Z�−1 = 0). Thus we wish to bound

E
Fill
[

Z�

Z�−1

∣∣∣ înk�−1 = r

]
, 1 ≤ r ≤ |V | − k.

If we note that

Z�

Z�−1
=

√
min{1 − I�, I�}√

min{1 − I�−1, I�−1} × I�−1

I�

=
√

min{1 − I�, I�}√
min{1 − I�−1, I�−1} × înk�−1

înk�

and define f (a) = √
min{a, |V | − k + 1 − a}, we see that

E
Fill
[

Z�

Z�−1

∣∣∣înk�−1 = r

]
= E

Fill
[

f (înk�)

f (înk�−1)
× înk�−1

înk�

∣∣∣înk�−1 = r

]

(use Proposition B.1) =∑
s

q(r, s)
f (s)

f (r)
× r

s

[use formula for q(·, ··)] =∑
s

p(r, s)
f (s)

f (r)

where p(·, ··) are the transition rates of the unconditional {înkj }j≥0 process. Using
the formula for these, we obtain

E
Fill
[

Z�

Z�−1

∣∣∣ înk�−1 = r

]
= 1

2

(
f (r + 
(r)) + f (r − 
(r))

f (r)

)
.(B.0.2)

Recall the formula for 
(r) (cf. Proposition 7.3),


(r) ≡
⌈

min{r, |V | − k + 1 − r}
3

⌉
.

We now split the analysis of the RHS of this in two cases.
Case 1: 1 ≤ r ≤ (|V | − k + 1)/2. In this case f (r) = √

r and 
(r) = �r/3� ≥
r/3. We use the upper bound f (r ± 
(r)) ≤ √

r ± 
(r) to obtain

E
Fill
[

Z�

Z�−1

∣∣∣ înk�−1 = r

]
= 1

2

(√
1 − 
(r)

r
+
√

1 + 
(r)

r

)
.(B.0.3)



912 R. I. OLIVEIRA

Recall the bound “
√

1 − x + √
1 + x ≤ 2(1 − x2/8),” valid for all 0 ≤ x ≤ 1; this

can be checked by squaring both sides of the inequality. In our case, we apply this
with x = 
(r)/r ≥ 1/3 and deduce

E
Fill
[

Z�

Z�−1

∣∣∣ înk�−1 = r

]
= 1 − 1

8

(

(r)

r

)2

≤ 71

72
.(B.0.4)

Case 2: (|V |−k+1)/2 < r ≤ |V |−k. In this case (B.0.3) holds with r ′ = |V |−
k + 1 − r replacing r . Similar calculations imply that the conditional expectation
is also ≤ 71/72 in this case.

Thus we see that in both cases

E
Fill
[

Z�

Z�−1

∣∣∣ înk�−1 = r

]
≤ 71

72
.

Plugging this into (B.0.1) gives

E
Fill[Z�] ≤ 71

72
E

Fill[Z�−1I{Z�−1 �=0}
]= 71

72
E

Fill[Z�−1],
which completes the proof. �

Acknowledgments. We thank Ton Dieker and Prasad Tetali for useful discus-
sions on the exposition. We also thank an anonymous referee for a long list of
typos in the previous version, as well as for numerous suggestions.

REFERENCES

[1] ALDOUS, D. and FILL, J. A. Reversible Markov Chains and random walks on graphs. Book
draft. Available at http://www.stat.berkeley.edu/~aldous/RWG/book.html.

[2] ALON, N. and SPENCER, J. H. (2000). The Probabilistic Method, 2nd ed. Wiley, New York.
MR1885388

[3] ANDJEL, E. D. (1988). A correlation inequality for the symmetric exclusion process. Ann.
Probab. 16 717–721. MR0929073

[4] BENJAMINI, I. and MOSSEL, E. (2003). On the mixing time of a simple random walk on the su-
per critical percolation cluster. Probab. Theory Related Fields 125 408–420. MR1967022

[5] CAPUTO, P. and FAGGIONATO, A. (2007). Isoperimetric inequalities and mixing time for a
random walk on a random point process. Ann. Appl. Probab. 17 1707–1744. MR2358639

[6] CAPUTO, P., LIGGETT, T. M. and RICHTHAMMER, T. (2010). Proof of Aldous’ spectral gap
conjecture. J. Amer. Math. Soc. 23 831–851. MR2629990

[7] COOPER, C., FRIEZE, A. and RADZIK, T. (2009). Multiple random walks and interacting
particle systems. In Automata, Languages and Programming. Part II. Lecture Notes in
Computer Science 5556 399–410. Springer, Berlin. MR2544812

[8] DIACONIS, P. and SALOFF-COSTE, L. (1993). Comparison theorems for reversible Markov
chains. Ann. Appl. Probab. 3 696–730. MR1233621

[9] DIACONIS, P. and SALOFF-COSTE, L. (1996). Logarithmic Sobolev inequalities for finite
Markov chains. Ann. Appl. Probab. 6 695–750. MR1410112

[10] DIEKER, A. B. (2010). Interlacings for random walks on weighted graphs and the interchange
process. SIAM J. Discrete Math. 24 191–206. MR2600660

http://www.stat.berkeley.edu/~aldous/RWG/book.html
http://www.ams.org/mathscinet-getitem?mr=1885388
http://www.ams.org/mathscinet-getitem?mr=0929073
http://www.ams.org/mathscinet-getitem?mr=1967022
http://www.ams.org/mathscinet-getitem?mr=2358639
http://www.ams.org/mathscinet-getitem?mr=2629990
http://www.ams.org/mathscinet-getitem?mr=2544812
http://www.ams.org/mathscinet-getitem?mr=1233621
http://www.ams.org/mathscinet-getitem?mr=1410112
http://www.ams.org/mathscinet-getitem?mr=2600660


MIXING OF SYMMETRIC EXCLUSION 913

[11] FOUNTOULAKIS, N. and REED, B. A. (2008). The evolution of the mixing rate of a simple
random walk on the giant component of a random graph. Random Structures Algorithms
33 68–86. MR2428978

[12] LEE, T.-Y. and YAU, H.-T. (1998). Logarithmic Sobolev inequality for some models of ran-
dom walks. Ann. Probab. 26 1855–1873. MR1675008

[13] LEVIN, D. A., PERES, Y. and WILMER, E. L. (2009). Markov Chains and Mixing Times.
Amer. Math. Soc., Providence, RI. MR2466937

[14] LIGGETT, T. M. (1974). A characterization of the invariant measures for an infinite particle
system with interactions. II. Trans. Amer. Math. Soc. 198 201–213. MR0375531

[15] LIGGETT, T. M. (1985). Interacting Particle Systems. Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences] 276. Springer, New
York. MR0776231

[16] LIGGETT, T. M. (1999). Stochastic Interacting Systems: Contact, Voter and Exclusion Pro-
cesses. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences] 324. Springer, Berlin. MR1717346

[17] MONTENEGRO, R. and TETALI, P. (2006). Mathematical aspects of mixing times in Markov
chains. Found. Trends Theor. Comput. Sci. 1 x+121. MR2341319

[18] MORRIS, B. (2006). Spectral gap for the zero range process with constant rate. Ann. Probab.
34 1645–1664. MR2271475

[19] MORRIS, B. (2006). The mixing time for simple exclusion. Ann. Appl. Probab. 16 615–635.
MR2244427

[20] MORRIS, B. (2009). Improved mixing time bounds for the Thorp shuffle and L-reversal chain.
Ann. Probab. 37 453–477. MR2510013

[21] MORRIS, B. and PERES, Y. (2005). Evolving sets, mixing and heat kernel bounds. Probab.
Theory Related Fields 133 245–266. MR2198701

[22] PETE, G. (2008). A note on percolation on Z
d : Isoperimetric profile via exponential cluster

repulsion. Electron. Commun. Probab. 13 377–392. MR2415145
[23] YAU, H.-T. (1997). Logarithmic Sobolev inequality for generalized simple exclusion pro-

cesses. Probab. Theory Related Fields 109 507–538. MR1483598

IMPA
ESTRADA DONA CASTORINA, 110
RIO DE JANEIRO, RJ 22460-320
BRAZIL

E-MAIL: rimfo@impa.br

http://www.ams.org/mathscinet-getitem?mr=2428978
http://www.ams.org/mathscinet-getitem?mr=1675008
http://www.ams.org/mathscinet-getitem?mr=2466937
http://www.ams.org/mathscinet-getitem?mr=0375531
http://www.ams.org/mathscinet-getitem?mr=0776231
http://www.ams.org/mathscinet-getitem?mr=1717346
http://www.ams.org/mathscinet-getitem?mr=2341319
http://www.ams.org/mathscinet-getitem?mr=2271475
http://www.ams.org/mathscinet-getitem?mr=2244427
http://www.ams.org/mathscinet-getitem?mr=2510013
http://www.ams.org/mathscinet-getitem?mr=2198701
http://www.ams.org/mathscinet-getitem?mr=2415145
http://www.ams.org/mathscinet-getitem?mr=1483598
mailto:rimfo@impa.br

	Introduction
	The main result, and why it is interesting
	Connections with Aldous's conjecture
	Applications and comparison with previous results
	Key steps of the proof
	Organization

	Preliminaries
	Basic notation
	Basic probabilistic concepts
	Markov chains and mixing times

	Random walks, exclusion and interchange processes
	Definitions
	The standard graphical construction
	The negative correlation property

	The dynamics of pairs of particles
	Some facts on RW(2,G) and IP(2,G)
	When collisions are nearly as fast as mixing
	Long time to meet in noneasy graphs
	If meeting takes a long time, IP(2,G) and RW(2,G) are similar
	Proof of the mixing time bound for IP(2,G)

	The chameleon process
	A modified graphical construction
	The chameleon process
	Two basic properties
	The chameleon process and conditional distributions

	From 2 to k particles via the chameleon process
	Proof of Lemma 1.2
	Outline of the missing steps

	A miscellany of facts on ink
	Convergence to stationarity in terms of ink
	The convergence to equilibrium of conditional distributions
	Distance to the stationary distribution in terms of ink

	Depinkings are fast
	Loss of red particles in the two first phases
	Proof of the required estimates for the I map (Proposition 9.1)
	Proof of claim on Fa (Claim 2)

	Estimate for the first depinking time (Lemma 9.2)
	Proof of Lemma 6.2

	Final remarks
	Appendix A: Mixing bounds for EX(k,G) via canonical paths
	Appendix B: The trajectory of inkj given Fill
	Acknowledgments
	References
	Author's Addresses

