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Applying probabilistic techniques we study regularity properties of
quantum master equations (QMESs) in the Lindblad form with unbounded
coefficients; a density operator is regular if, roughly speaking, it describes
a quantum state with finite energy. Using the linear stochastic Schrodinger
equation we deduce that solutions of QMEs preserve the regularity of the ini-
tial states under a general nonexplosion condition. To this end, we develop
the probabilistic representation of QMEs, and we prove the uniqueness of
solutions for adjoint quantum master equations. By means of the nonlinear
stochastic Schrodinger equation, we obtain the existence of regular station-
ary solutions for QMEs, under a Lyapunov-type condition.

1. Introduction. In order to establish the well-posedness of the mean values
of quantum observables represented by unbounded operators, we investigate the
regularity of solutions of quantum master equations (with unbounded coefficients)
in stationary and transient regimes. For this purpose, we use classical stochastic
analysis.

1.1. Gorini—Kossakowski—Lindblad—Sudarshan equations. In many open
quantum systems, the states of a small quantum system with Hamiltonian H : h —
h evolve according to the operator equation

(L.1) %pz(0)=£*(pz(9)), po(e) = o,

where L, (p) = Gp + pG* + Y32 LkpL} (see, e.g., [8, 23, 38]). Here, (b, (-, -))
is a separable complex Hilbert space, G, L1, L, ... are given linear operators in
b satisfying G = —i H — % Y #e1 L¥Ly on suitable common domain and the un-
known density operator p;(o) is a nonnegative operator in h with unit trace. The
operators L1, Ly, ... describe the weak interaction between the small quantum

system and a heat bath.

Received March 2011; revised July 2011.
1 Supported in part by FONDECYT Grants 1070686 and 1110787, and by BASAL Grants PFB-03
and FBO-16 as well as by PBCT-ACT 13 project.
MSC2010 subject classifications. Primary 60H15; secondary 60H30, 81C20, 46L55.
Key words and phrases. Quantum master equations, stochastic Schrodinger equations, regular so-
lutions, probabilistic representations, open quantum systems.

1978


http://www.imstat.org/aop/
http://dx.doi.org/10.1214/11-AOP692
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html

REGULARITY OF SOLUTIONS TO QMES 1979

The measurable physical quantities of the small quantum system are represented
by self-adjoint operators in fj, which are called observables. Very important ob-
servables are unbounded, like position, momentum and kinetic energy operators.
In the Schrédinger picture, the mean value of the observable A at time 7 is given
by tr(p;(0)A), the trace of p;(0)A.

In the Heisenberg picture, the initial density operator o is fixed. Using, for in-
stance, (1.1) we obtain the following equation of motion for the observable A:

d
(1.2) EZ(A) = L(7;(A)), To(A) = A,

where L(7;(A)) = T,(A)G + G*T;(A) + Y 32 L{T;(A)Ly; see, for example,
[8, 23]. The expected value of A at time time 7 is given by tr(o7Z;(A)).

1.2. Stochastic Schrodinger equations (SSEs). The evolution of the state of a
quantum system conditioned on continuous measurement is governed (see, e.g.,
[3, 6, 38]) by the stochastic evolution equation on f.

t O ot
(13) n=vo+ [ Goods+ Y [ L) ask.
k=1

Here G(y) = Gy + Y52, (R(y, Liy) Ly — 302y, Ley)y), Li(y) = Ley — Ry,
Liy)y and B!, B2, ... are real valued independent Wiener processes.

EXAMPLE 1. Set h = L*(R,C). Let Q, P: — b be defined by Qf (x) =
xf(x) and Pf(x) = —if'(x). In (1.3), take H = 5~P% + cQ?, L; = aQ and
Lo=BP,withm>0,a,8>0and c e R. Forall k>3, fix Ly =0.

Example 1 with «, 8, ¢ > 0 describes the simultaneous monitoring of position
and momentum of a linear harmonic oscillator; see, for example, [25, 37]. Tak-
ing instead o > 0 and 8 = ¢ = 0 we get a well-studied model for the continuous
measurement of position of a free particle; see, for example, [5, 17, 25, 28] and
references therein.

Our main tool for studying (1.1) and (1.2) is the following linear SSE on §:

t S
(14) X, () =¢ +/0 GX,(§)ds + Z/O LiX(€) dWY,
k=1
where W!, W2, ... are real valued independent Wiener processes on a filtered

complete probability space (2, §, (51)r>0, P). In fact, the basic assumption of this
paper is:

(H) There exists a nonnegative self-adjoint operator C in h such that: (i) G is
relatively bounded with respect to C; and (ii) (1.4) has a unique C-solution for any
initial condition & satisfying E(||C£||*> + ||£]|?) < oo.
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Here, a strong solution X (&) of (1.4) is called C-solution if E|| X, (£)|*> < E| £,
and the function ¢ > E||CX,(£)||? is uniformly bounded on compact time inter-
vals; see Definition 2.1 for details.

The law of X;(Yo)/||X:(Yo)|l with respect to | X7 (Yp) |2 - P coincides with the
law of Y; for all # € [0, T']; see [32]. The main technical and conceptual advantage
of (1.3) over (1.4) is that the norm of Y; is equal to 1.

1.3. Principal objectives. Our main goal is to make progress in the under-
standing of the evolution of tr(p; (0) A) when A is unbounded.

Given a self-adjoint nonnegative operator C in h, we denote by Sic(h) the
set of all nonnegative operators o:h — h for which, loosely speaking, Co is a
trace-class operator; see Definition 3.1. From Section 3 we have that the expected
value of A with respect to o € Stc(f)) is well defined whenever A € £((D(C),
I-llc),H), where £((D(C), |- |lc),bh) is the space of all operators relatively
bounded with respect to C. Our first objective is:

(O1) To prove that the solution p; (o) of (1.1) belongs to Sfr’c(h) (forall r > 0)
provided that C satisfies hypothesis (H) and that o € £]L c®.

The key condition to guarantee the uniqueness of solution of (1.1) is the exis-
tence of a self-adjoint nonnegative operator C in h such that formally

(1.5) L(C?) < K(C*+ 1),

where [ is the identity operator in fh and K € [0, oo[. This condition, introduced
by Chebotarev and Fagnola [12] (see also [10, 18, 22]), is a quantum analog
of the Lyapunov condition for nonexplosion of classical Markov processes; see
[10] for heuristic arguments. Since hypothesis (H) holds under a weak version of
(1.5) (see [19, 31] and Remark 6.1), inequality (1.5) is the underlying assump-
tion of objective (O1). In many physical examples, relevant observables belong
to £((DCO), || - lc), bh) for some C satisfying (1.5). In Example 1, for instance,
C = P? + (7 satisfies hypothesis (H) (see, e.g., [19, 31]), and the position and
momentum operators Q and P are (P2 + Q?)-bounded.

Previously, the regularity of the solutions to (1.1) has been treated in [1, 13,
15] using methods from the operator theory. Exploiting the characteristics of a
model describing a variable number of neutrons moving in a translation invariant
external reservoir of unstable atoms, Davies [15] established that p;(g) € 2{ c®)
whenever C is the particle number operator on an adequate Fermion Fock space.
Arnold and Sparber [1] obtained the same property with C being essentially the
energy operator for a linear quantum master equation associated to a diffusion
model with Hartree interaction.

The second objective presents the first attempt (to the best of my knowledge) to
show the existence of stationary solutions of (1.1) with finite energy.

(02) To prove the existence of a stationary solution of (1.1) belonging to )3;” L)
provided essentially that:
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(L) There exist two nonnegative self-adjoint operators C and D and a con-
stant K > 0O such that {x € hy: | Dx || + ||x]|? < 1} is compact in f, and
LC<—-D>+ K1 +1).

Hypothesis (L) is a quantum version of the Lyapunov criterion for the existence
of invariant probability measures for stochastic differential equations, which ap-
plies to many open quantum systems; see, for example, [21] and Section 6. Let
£(H) be the set of all bounded operators from § to h. In the case where G is
the infinitesimal generator of a strongly continuous contraction semigroup on §
and, loosely speaking, 7;(I) = I for all ¢+ > 0, Fagnola and Rebolledo [21] proved
that under hypothesis (L), there exists at least one density operator o, satisfying
tr(0c0Z; (A)) = tr(0ecA) for all + > 0 and A € £(h). The main point of objective
(02) is that among such stationary states oo We can select a finite-energy density
operator belonging to the domain of L., under the same hypothesis (L).

The third main objective develops the rigorous probabilistic representation of
solution of (1.1), the key step to achieve objectives (O1) and (O2).

(03) Assume hypothesis (H), and let o = E|£) (€|, where & is a h-valued ran-
dom variable such that E||&]|> = 1 and E||C£||*> < co. We wish to prove that (1.1)
has a unique solution, which is

(1.6) pi(@) =EIX; (§)) (X (§)I.

In Dirac notation, |x){y|:h — b is defined by |x)(y|(z) = (v, z)x, with x, y € b.
Using (1.6) we can assert that

(1.7) pi(@) = E|Y;) (Y|

with Yy = & (see [32]). Objective (03), together with (1.7), shows that physical
models based on the stochastic Schrodinger equations are in good agreement with
their formulations in terms of quantum master equations.

In the physical literature, the probabilistic representations (1.6) and (1.7) of the
density operator at time ¢ have been obtained by means of formal computations;
see, for example, [2, 8, 24]. Barchielli and Holevo [4] established essentially (1.6)
and (1.7) in situations where G, L1, Lo, ... are bounded.

1.4. Approach. In the perspective of the operator theory, methods based on the
Hille—Yosida theorem and perturbations of linear operators [27, 34] present severe
limitations for studying linear functionals of the solutions of (1.1) and (1.2). For
example, it is very difficult to decompose L, into E}k + Ei for a dissipative operator
Li in £1(h) and an infinitesimal generator Eﬁ of a Cp semigroup of contractions
on £4 (), which together satisfy [} (o)1 <«l£2(0)Ili + K llo]l1 whenever ¢ €
D(Ei). Here, 0 <o < 1, K >0 and £;(h) is the Banach space of trace-class
operators on h equipped with the trace norm || - ||;. Another difficulty is that £ and
L, are defined formally; indeed £ and L, can be interpreted as sesquilinear forms,
but without having a priori knowledge about their cores.
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When G is the generator of a Cy semigroup of contractions on b, Davis [16]
provided solutions of (1.1) by means of semigroups. Modifying Davis’s ideas,
Chebotarev constructed a quantum dynamical semigroup 7 ™™ that is weak so-
lution of (1.2) by generalizing the Chung construction of the minimal solution of
Feller—Kolmogorov equations for countable state Markov chains; see Remark 2.5.
Under certain conditions involving (1.5) and invariant sets for exp(Gt), Cheb-
otarev and Fagnola [12] proved the uniqueness of 7 ™™ see Remark 2.5. This
property implies that £, is the infinitesimal generator of the predual semigroup
p M) of 7MiM “and a core for L, is formed by the linear span of all |x)(y| with
x, y belonging to D(G), the domain of G; see Remark 4.2. In Remark 4.2, we out-
line how to obtain p ™M (£Tc(b)) - L‘Tc(h) under various assumptions including
exp(Gt)D(C) Cc D(C). It is a hard proBlem, in general, to find C satisfying (1.5)
whose domain D(C) is invariant under the action of exp(Gt).

In contrast to closed quantum systems, solutions of (1.1) are not decomposable
as dyadic products of solutions of evolution equations in §. Nevertheless, the so-
lution of (1.1) is unraveled into stochastic quantum trajectories; more precisely,
objective (O3) establishes that p; (o) is expressed as the mean value of quadratic
functionals of the solutions of SSEs in a general context. This property allows us
to achieve objectives (O1) and (O2) by using SSEs, without serious difficulties and
without assumptions involving invariant sets for exp(G¢). Applying (1.6) we also
deduce that p; (o) satisfies (1.1) in both sense integral and £1 (h)-weak. This leads
to prove rigorously some dynamical properties of p;(o) given in physics; see, for
example, Theorem 4.6.

We now focus on objective (O1). By Section 3, o € £tc(h) iff there exists a

h-valued random variable £ satisfying E(||C£||? + ||€]1*) < oo and o = E|£)(&].
Therefore (1.6) leads directly to objective (O1) since E||C X, (&) ||2+E| X, (&) ||> <
0o. Assumption (1.5) is natural in the context of (1.4) because (1.5) is essentially
the dissipative condition for (1.4).

We turn to objective (O2). Here, hypothesis (L) is a classical Lyapunov condi-
tion for (1.4). Relation (1.6) suggests us that fh |x)(x|u(dx) is a good candidate
for being a stationary solution for (1.1) when p is an invariant probability mea-
sure for (1.4) such that fh ||x||2u(dx) = 1. This reduces objective (O2) to prove
that there exists an invariant probability measure for (1.4), different from the Dirac
measure at 0, which is a difficult problem. We instead use (1.7). Under a weak
version of hypothesis (L), there exists an invariant probability measure I" for (1.3)
such that fi [|x||*T (dx) =1 and fj | Dx||*T'(dx) < oo; see [32]. Then, using (1.7)
we deduce that o = fb |x){x|I"(dx) is a stationary solution to (1.1) that belongs
to ,Sf p(h); see Section 5. This is a step forward in the study of the long time
behavior of unbounded observables.

1.5. Technical ideas: Unraveling. Fix o € Stc(h)- Then o = E|&)(&]| for
some h-valued random variable & satisfying E(||C£||*>+ [|£]|?) < oo; see Section 3.
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We can define

(1.8) pi(e) :=E[X: (§))(X: ()],

because p;(0) does not depend on the choice of &; see Theorem 4.1. We next
outline how to establish that p; (o) is a solution of (1.1).
Applying 1t6’s formula we obtain

t
(X1(8), x)X:(§) = (£, x)§ +f0 ((Xs(8), x)G X () + (GX, (&), x) X (§)) ds

S
+3 / (Li X, (&), X)L X (§) ds + M,
k=170

with M, = 3221 [o((X;(5), x) Lk X5 (§) + (Li X5 (§), x) X5(§)) dW. Since M, is
a local martingale, we use stopping times and the dominated convergence theorem
to deduce that

E(X, (€). x) X (&)
t
(19)  =E(& x)E+ fo E(X,(€), x)G X, (£) ds

t ot t
+ [ EGX©.0X @) ds + 3 [ ELX©). ) LiX @) ds.
0 =170
Define the operator L, (&€,s5):H— b to be

o0
EIGX(E)) (X&) +EIXs NG X (&) + Y EILi X5 () (L X5 (6]
k=0
We now face the major technical difficulties; we have to prove that L, (&, s) is
a trace-class operator such that: (i) £L.(&,1) = L4(ps(0)); (ii) the function s >
1L« (€, s)]1 is locally bounded; and (iii) s + L(&,s) is weakly continuous in
£1(h). Then, applying (1.9) yields

t
(1.10) p(@) =0+ /0 L.(0s(0)) ds,

where we understand the integral of (1.10) in the sense of the Bochner integral in
£1(h). Thus, we can deduce that for any A € £(h),

d
(1.11) 7 tr(Ap: (@) = tr(AL(p:(0)))-

1.6. Technical ideas: Uniqueness. Recall that p;(0) is defined by (1.8) for
any g € Stc(h). In order to establish the uniqueness of the solution of (1.1) un-
der hypothesis (H), Theorem 4.3 extends p;(0) to a strongly continuous semi-
group (p;);>0 of bounded operators on £1(h). Thus, (p;);>0 belongs to the class S
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formed by all the locally bounded semigroups (p;);>0 on £1(h) such that for any
x € D(C): () t — p;(|x){x]) is weakly continuous in £1(h)); and (ii) p;(]x){x])
satisfies (1.11) in ¢t = 0; see Theorem 4.5 and Lemma 7.20 for details. We next
outline the proof that (p;);>0 is the unique element in S, and so (1.1) has a unique
solution (in the semigroup sense).

Let (0)r>0 € S. Taking in mind that £(f) is the dual of £;(h), we consider
the semigroup (7;);>0 on £(h) which is the adjoint semigroup of (p;);>0. Using
techniques from operator theory we obtain in Lemma 7.21 that (7;),>¢ is a weak
solution of (1.2), namely, forall > 0, A € £(h) and x € D(C) we have

d
(1.12) E(x, T:(A)x) = (x, L(T;(A))x).
Now, we wish to prove that (7;),>0 is the unique weak solution of (1.2), which
is an important problem itself; see, for example, [10-13, 18, 30]. Suppose for a
moment that § is finite-dimensional and Lj; # O for only a finite number of k.
Applying the 1td formula to (X (x), 7,_s(A) X (x)) we deduce that
(X (x), AX; (x))

= (x, T;,(A)x) + M,

t d7, (A
+/ ((Xs(x),E(ZS(A))XS(x)> —<Xs(x), @
0 r

‘Xs(x)>> ds

r=t—s

with
X ot
M= /O (L X5 (), T—s (A) X5 (1) + (X, (x), Tr—s (A) L X (x))) dWE.
k=1

From (1.12) we obtain (X;(x), AX;(x)) = (x, Z,(A)x) + M;, and so the martin-
gale property of M; leads to IE(X;(x), AX;(x)) = (x, 7;(A)x), and hence all the
elements in S are the same semigroups, which implies p = p.

In the general case, G and L are unbounded operators. Therefore

d
(s, x) = 75\ Ti—s(A)x) (= (x, L(T—s(A))x))

is not continuous on [0, 7] x h, and consequently we cannot apply directly Itd’s
formula to (X(x), Z;_s(A)X(x)). We overcome this difficulty in Section 7.1
by applying Itd’s formula to a regularized version of (x,7,_s(A)x); the result-
ing stochastic integrals (similar to those in M;) are only local martingales, and so
we have to use stopping times.

1.7. Outline. Section 2 addresses the existence and uniqueness of solutions
for the adjoint quantum master equation, as well as its probabilistic representa-
tion. Section 3 deals with the probabilistic interpretations of regular density op-
erators. In Section 4 we construct Schrodinger evolutions by means of stochastic
Schrodinger equations and study the regularity of solutions to (1.1). Section 5 fo-
cusses on the existence of regular stationary solutions for (1.1). In Section 6 we
apply our results to a quantum oscillator. Section 7 is devoted to proofs.



REGULARITY OF SOLUTIONS TO QMES 1985

1.8. Notation. Throughout this paper, the scalar product (-, -) is linear in the
second variable and anti-linear in the first one. We write 8 (h) for the Borel o -
algebra on . Suppose that A is a linear operator in . Then A* denotes the adjoint
of A. If A has a unique bounded extension to fj, then we continue to write A for
the closure of A.

Let X, 3 be normed spaces. We write £(X, 3) for the set of all bounded op-
erators from X to 3 (together with norm || - ||gx 3)). We abbreviate | - [|¢x,3)
to || - ||, if no misunderstanding is possible, and define £(X) = £(X, X). By Sfr(f))
we mean the subset of all nonnegative trace-class operators on f.

Let C be a self-adjoint positive operator in f. Then, for any x,y € D(C) we
set (x, y)c = (x, ) + (Cx, Cy) and ||x|c = /{x, x)c. As usual, L2(P, h) stands
for the set of all square integrable random variables from (€2, §, P) to (b, B(H)).
We write LZC(IP), h) for the set of all & € L3(P, h) satisfying & € D(C) a.s. and
E||§||% < 00. The function ¢ :f§ — b is defined by m¢c(x) = x if x € D(C) and
mc(x) =0 whenever x ¢ D(C). In the sequel, the letter K denotes generic con-
stants.

2. Adjoint quantum master equation. We begin by presenting in detail the
notion of C-solution to (1.4).

HYPOTHESIS 1. Suppose that C is a self-adjoint positive operator in fj such
that D(C) is a subset of the domains of G, L1, L3, ..., and the maps G omc, Ly o
wc, Ly omc, ... are measurable.

DEFINITION 2.1. Let Hypothesis 1 hold. Assume that I is either [0, oo[ or
[0,T], with T € Ry. An h-valued adapted process (X;(£)):e1 With continuous
sample paths is called strong C-solution of (1.4) on I with initial datum & if and
only if for all r € I:

o E[X,®* <E[&]*, X;(§) € D(C) as., sup,cpo. EIC X ()| < oc.
o X,(6) =&+ [ Gre(Xs(€))ds + X522, f§ Lire (X, (§)) AWK P-as.

NOTATION 2.1. The symbol X (&) will be reserved for the strong C-solution
of (1.4) with initial datum &.

REMARK 2.1. Suppose that C is a self-adjoint positive operator in b, together
with A € £((D(C), || - llc), h). Then A o m¢ :h — b is measurable whenever I is
equipped with its Borel o -algebra (see, e.g., [19] for details).

We now make more precise our basic assumptions, that is hypothesis (H).

HYPOTHESIS 2. Suppose that Hypothesis 1 holds. In addition, assume:
(H2.1) The operator G belongs to £((D(C), | - llc), h).
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(H2.2) Forall x € D(C), 2% (x, Gx) + 322, | Lyx]|> = 0.
(H2.3) Let & € LZC(]P’, h) be §o-measurable. Then for all T > 0, (1.4) has a
unique strong C-solution on [0, 7] with initial datum &.

REMARK 2.2. Let A be a closable operator in fj whose domain is contained in
D(C), where C is a self-adjoint positive operator in h. Applying the closed graph
theorem we obtain A € £((D(C), || - llc), b), which leads to a sufficient condition
for (H2.1).

REMARK 2.3. Let C be a self-adjoint positive operator in f such that D(C) C
D(G). Assume that 20 (x, Gx) + Y 72, |Lxx||> <0 for all x € D(G). Then the
numerical range of G is contained in the left half-plane of C, and so G is closable.
Therefore G € £((D(C), || - lic), h) by Remark 2.2.

Using arguments given in Section 1.6 we prove the following theorem, estab-
lishing the uniqueness of the solution of (1.2).

DEFINITION 2.2. Suppose that A € £(h) and that C is a self-adjoint positive
operator in . A family of operators (A;);>0 belonging to £(h) is a C-solution of
(1.2) with initial datum A iff A9 = A and for all ¢t > 0:

@ L(x, Ay) = (x, 4,Gy) + (Gx, Ary) + Y52 (Lix, A;Lyy) for all x, y €
D(C).
(b) supgepo,nllAslie) < oo.

THEOREM 2.1. Suppose that Hypothesis 2 holds. Let A belong to £(§). Then,

for every nonnegative real number t there exists a unique T;(A) in £() such that
forall x,y in D(C),

(2.1) (x, T,(A)y) = E(X;(x), AX( ().
Moreover, any C-solution of (1.2) with initial datum A coincides with T (A), and
17 (M)llew) < 1 Alleey) for all t > 0.

PROOF. The proofs fall naturally into Lemmata 7.1 and 7.2. [

As a by-product of our proof of the existence of solutions to (1.1), we “con-
struct” a solution to (1.2), and so Theorem 2.1 leads to Theorem 2.2.

THEOREM 2.2. Let Hypothesis 2 hold. Suppose that A € £(h) and that T;(A)
is as in Theorem 2.1. Then (7;(A));>0 is the unique C-solution of (1.2) with initial
datum A.

PROOF. Lemmata 7.20 and 7.21 shows that (7;(A));>0 is a C-solution of (1.2)
with initial datum A. Theorem 2.1 now completes the proof. [
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REMARK 2.4. In [30], C. M. Mora developed the existence and uniqueness of
the solution to (1.2) with A unbounded, as well as its probabilistic representation.
Thus taking A € £(h), Corollary 14 of [30] established the statement of Theo-
rem 2.2 under assumptions including the existence of an orthonormal basis (e, ),eN
of b that satisfies, for example, Ge,, Lye, € D(C) and sup,ez, |C Pox|l < [|Cx||
for all x € D(C), where P, is the orthogonal projection of fj over the linear man-
ifold spanned by ey, ..., e,. In Theorem 2.2 we remove this basis, extending the
range of applications.

REMARK 2.5.  Suppose that 2R (x, Gx) + > 22 || Lix |> <0 forall x € D(G).
Let G be the infinitesimal generator of a Cp-semigroup of contractions. Define the
sequence (T("))nzo of linear contractions on £(f) by

Ot
<u,7;(n+l)(A)v>=<€GZM,A€GIU>+Z/ (LkeG(T—S)u"Z;(I’l)(A)LkeG(l‘—S)v>ds’
0
k=1

where u,v € D(G), A € £(h), and T~V = 0. A. M. Chebotarev proved that
Picard’s successive approximations 7" converge as n — 0o to a quantum dy-
namical semigroup 7 ™" which is a weak solution to (1.2); see, for exam-
ple, [10, 18]. Holevo [26] developed the probabilistic representation of 7 ™im
under restrictions, including that G and G* are the infinitesimal generators of
Co-semigroup of contractions. From Chebotarev and Fagnola [12] we have that
Z(mm)(l ) = I for any ¢ > 0, provided that there exists a self-adjoint positive op-
erator C in h and a linear manifold ® C D(G) which is a core for C such that:
(i) The semigroup generated by G leaves invariant ©; and (ii) For some y > 0,
2R(C%x, Gx) + Y02, IICLix |1 < el|x||% for all x € (I — G)~1(D); see also
[13, 18]. This implies the uniqueness (in the semigroup sense) of the solution to
(1.2) with A bounded; see, for example, [18].

In addition to its proof, the main novelty of Theorem 2.2 is that we do not
assume properties like G are the infinitesimal generators of a semigroup and con-
dition (i), which involves the study of invariant sets for exp(Gt). The latter is not
an easy problem in general.

3. Probabilistic representations of regular density operators. The follow-
ing notion of a regular density operator was introduced by Chebotarev, Garcia and
Quezada [13] to investigate the identity preserving property of minimal quantum
dynamical semigroups.

DEFINITION 3.1. Let C be a self-adjoint positive operator in . An operator
o belonging to Sf(b) is called C-regular iff o = >, .5y Anlun) (u,| for some count-
able set J, summable nonnegative real numbers (A,),cy and family (u,,),c5 of el-
ements of D(C), which together satisty »_,.5 1, [|Cu, 2 < co. We write Efc(h)
for the set of all C-regular density operators. ’
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We next formulate the concept of C-regular operators in terms of random vari-
ables. This characterization of L\T,c(h) complements those given in [13] using
operator theory; see also [10].

THEOREM 3.1. Suppose that C is a self-adjoint positive operator in ly. Let o
be a linear operator in §y. Then o is C-regular if and only if o = E|&)(&| for some
Ee LZC(P, h). Moreover, E|&)(&| can be interpreted as a Bochner integral in both
£1(h) and £(h).

PROOF. The proof is divided into Lemmata 7.5 and 7.6. [

By the following theorem, the mean values of a large number of unbounded
observables are well posed when the density operators are C-regular. Theorem 3.2
also provides probabilistic interpretations of these expected values.

THEOREM 3.2. Suppose that C is a self-adjoint positive operator in b, and fix
o =E|&)(&| with & € LL(P, h). Then:

(a) The range of o is contained in D(C) and Co =E|CE&)(&].

(b) Consider A € £((D(C), || -llc),h), and let B be a densely defined lin-
ear operator in §) such that D(C) C D(B*). Then AoB is densely defined and
bounded. The unique bounded extension of AgB belongs to £1(h) and is equal to
E|A&)(B*&|, where E|AE)(B*E| is a well defined Bochner integral in both £1(h)
and £(h). Moreover,

tr(AoB) = E(B*¢€, A§).
PROOF. Deferred to Section 7.2. [

4. Quantum master equation. We first deduce that (1.8) defines a density
operator.

THEOREM 4.1. Let Hypothesis 2 hold. Then, for every t > 0 there exists a
unique operator p; € £(£1(h)) such that for each C-regular operator o,

4.1 pi(@) =E|X:(§))(X: (5,

where & is an arbitrary random variable in LZC(IP, bh) satisfying o =E|£)(£|. Here
X (&) is the strong C-solution of (1.4) with initial datum &, and we can interpret
E|X,;(£)){(X,(§)| as a Bochner integral in £1(h) as well as in £(h). Moreover,
loellgce @y < 1 forallt = 0.

PROOF. Deferred to Section 7.4. [

NOTATION 4.1. From now on, p; stands for the operator given by (4.1).
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The next theorem says that the expected value E commutes with the action of
p: on random C-regular pure density operators.

THEOREM 4.2. Assume that Hypothesis 2 holds. Let o = E|&)(&|, with & €
LE(P,b). Then Ep: (1€)(]) = ps (@) for all t = 0.

PROOE. Deferred to Section 7.5. [

We now summarize some relevant properties of the family of linear operators
(Pz)tzo'

THEOREM 4.3. Adopt Hypothesis 2. Then (p;)i=0 is a semigroup of con-

tractions such that p,(Qf(h)) - S]L(b), p,(ﬂic(h)) - Sfr’c(h), and for all ¢ €
£t

4.2) lim tr|ps(0) — o (0)| = 0.
§s—>t
PROOF. The proof is divided into Lemmata 7.12, 7.13 and 7.14. [

The analysis outlined in Section 1.5 leads to our first main theorem, which as-
serts that [£| X, (£)) (X, (£)] satisfies (1.1) in both senses, integral and £;(h)-weak,
whenever o = E|£)(£]| is C-regular.

HYPOTHESIS 3. The operators G, L1, L3, ... are closable.

THEOREM 4.4. Let Hypotheses 2 and 3 hold. Suppose that o is C-regular.
Then forall t > 0,

t 00
(4.3) pi(@) =0+ /0 <Gps ©) +ps(@G* + ) Lips (Q)Li) ds,
k=1

where we understand the above integral in the sense of the Bochner integral in
£1(H). Moreover, for any A € £(h) and t > 0,

d o0
(4.4) 7 tr(Ap(0)) = tr(A (GPT(Q) +p1(©)G* + Y Lips (Q)L}L‘))-

k=1
PROOF. Deferred to Section 7.7. O

REMARK 4.1. Let G, L1, Ly, ... be densely defined. Then Hypothesis 3 is
equivalent to saying that G*, LY, L3, ... are densely defined.

The second main theorem of this paper establishes that under Hypothesis 2,
p:(0) is the unique solution of (4.4) in the semigroup sense. Its proof is based on
arguments given in Section 1.6.
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DEFINITION 4.1. A semigroup (p;);>0 of bounded operators on £;(h) is
called semigroup C-solution of (1.1) if and only if:

(i) For each nonnegative real number 7', sup, (o, 71112t £(g (h)) < 0©-
(ii) For any x € D(C) and A € £(h), the function r > tr(p;(|x){x|)A) is con-
tinuous.
(iil) lim;— 04 (tr(Ap; (Ix)(x[)) — tr(Alx)(x]))/t = (x, AGx) + (Gx, Ax) +
Y iei{Lkx, ALgx) whenever x € D(C) and A € £(b).

THEOREM 4.5. Let Hypothesis 2 hold. Then (p;);>0 is the unique semigroup
C-solution of (1.1).

PROOF. Deferred to Section 7.8. [

Theorems 4.4 and 4.5, together with Theorem 3.2, show that the mean values
of the observables with respect to the solutions of the quantum master equations
are well posed in many physical situations. Moreover, Theorems 3.2, 4.4 and 4.5
allow us to make rigorous some explicit computations concerning the evolution of
unbounded observables, like the following Ehrenfest-type theorem.

THEOREM 4.6. Assume the setting of Example 1. Then (p;);>0 is the unique
semigroup (P* + Q?)-solution of (1.1). If ¢ € STP2+Q2 (L*(R, C)), then for all
t>0,

d 1 d
4.5) I tr(Qp(0)) = — tr(Pps(0)), —tr(Pps(0)) = —2ctr(Qps(0)).
t m dt

PROOF. Deferred to Section 7.9. [

REMARK 4.2. A novelty of this paper lies in the use of probabilistic methods
for proving Theorems 4.4 and 4.5. In order to adopt a purely Operator Theory
viewpoint, we now return to Remark 2.5. Let (7,;);>0 be the semigroup on £;(f)
whose adjoint semigroup is (’Z;(mm))tzo; that is, 7, is the predual semigroup of
Tmin) T case 7™M Jeaves invariant the identity operator, the linear span of
{Ix)(y|:x,y € D(G)} is a core for the infinitesimal generator of (7 );>0, which
is denoted by L, for simplicity of notation; see, for example, Proposition 3.32
of [18]. Then, under conditions (i) and (ii) given in Remark 2.5, (7, );>0 is the
unique strongly continuous semigroup on £1(f) satisfying a version of (1.1) for
all o = |x)(y| with x, y € D(G). In order to establish ’Et(ﬂtc(h)) C Sic(h) as

well as the assertions of Theorem 4.4, we have to prove first that £1+,C (h) € D(L,).
If we are able to do it, then ST’C (h) is an invariant set for 7, provided that

(4.6) sup|tr(7 (n(n + 37! C?)e)| < 00
neN
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for any o € ST’ c (). When C is invertible, (4.6) follows from

(4.7) |[cTI T (i (n + CHTICH) T < K|In(n + CH7L.
A careful reading of [22] reveals that for any A € £(h) we have
(4.8) |cTtrmm et < k|ctacT!

under assumptions of type (1.5), together with exp(Gt), leaves invariant a core of
C contained in D(G); see also [10, 13]. This gives (4.7), and so (4.6) holds. Under
the same assumptions, an alternative is to obtain (4.8) by proving ||C “17MmA) x
C'| < K||C"'AC™"|| directly from the definition of 7, but with effort. Here
7™ is as in Remark 2.5. Finally, to establish (4.3) and (4.4) we have to get that
L4(0) =Go+0G* + 332 LroLj forany o € £f - (h).

5. Regular stationary solutions of quantum master equations. This sec-
tion is devoted to objective (O2). In this direction, the next theorem provides the
representation of the density operator at time ¢ as the average of all pure states
|Y;) (Y| associated to the nonlinear stochastic Schrodinger equation (1.3). This
model has a sound physical basis; see, for example, [2, 3, 25, 37].

DEFINITION 5.1.  Let C satisfy Hypothesis 1. Suppose that [ is either [0, +o0o[
or [0, T] provided T € [0, +o00[. We say that (Q, (Y;)se1, (Br)ser) is a C-solution
of (1.3) with initial distribution 6 on I if and only if:

e B= (Bk)kEN is a sequence of real valued independent Brownian motions on the
filtered complete probability space (2, §, (F1)re1, Q).

e (Yy)ser is an h-valued process with continuous sample paths such that the law of
Yo coincides with 6 and Q(||Y;||=1forallr ) =1.

e Foreveryt el:Y; € D(C) Q-a.s. and sup o EgllCYs||* < oo.

o Qas., Y, =Y+ [§ Grc(Yy))ds + Y52, J§ Li(mc(Yy))dBX forall t € I

THEOREM 5.1. Suppose that Hypothesis 2 holds. Let o = fb [y){(y0(dy),
with 6 probability measure over Yy satisfying 6 (D(C)N{x ebh:|x||=1}) =1 and
Jy ICx[1?6(dx) < oo. Then for all t > 0,

pt(Q):EQ|Yl)<YI|’

where p;(0) is defined by (4.1), and (Q, (Yt)t>0, (Br)¢>0) is the C-solution of (1.3)
with initial law 6.

PROOF. Deferred to Section 7.10. O

REMARK 5.1. Let 6 be as in Theorem 5.1. Suppose that Hypothesis 2 holds.
Then, we can use the same arguments as in the proof of Theorem 1 of [32]
for establishing that (1.3) has a unique (in the probabilistic sense) C-solution
(Q, (Y1)r=0, (Br)s>0) with initial law 6.
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REMARK 5.2. From Theorems 3.2 and 5.1 we obtain that the expected value
of A e £((D(C), | -llc),bh) at time ¢ is equal to E(Y;, AY;). This gives theoreti-
cal support for the numerical computation of the mean value of an observable A
at time ¢ through (1.3), which is the principal method for computing efficiently
tr(Apr(0)); see, for example, [8, 29, 35].

Our third main theorem deals with the existence of regular stationary states
for (1.1). This is a step forward in the understanding of the long-time behavior of
unbounded observables.

HYPOTHESIS 4. Let Hypothesis 2 hold. Assume the existence of a prob-
ability measure I' on ‘B(h) such that: I'(Dom(C) N {x € bh: (x| =1}) =1,
Jy ICZ]*T'(dz) < oo and

S.D F(A):/bP,(x,A)F(dx)

for any + > 0 and A € B(h). Here P;(x, A) = Q. (Y} € A) if x € Dom(C) and
Pi(x, A) =5, (A) otherwise; the C-solution of (1.3) with initial data x € Dom(C)
is denoted by (Qx, (¥;")s=0, (B;™")i=0)-

THEOREM 5.2. Under Hypothesis 4, there exists a C-regular operator 0
such that pt(0c0) = 0co for all t > 0.

PROOF. Deferred to Section 7.11. [

REMARK 5.3. Combining the results of Section 4 with Theorem 5.2 yields
the existence of a C-regular stationary solution to (1.1).

6. Quantum oscillator. In this section we illustrate our general results with
the following quantum oscillator.

EXAMPLE 2. Consider h = [>(Z,.), together with its canonical orthonormal
basis (e;)nez, - The closed operators a®, a are given by: for all n € Z a'e, =
Vn+1epy1,aeg=0and ae, = /ne,_ if n € N. Define N =a'a.

Choose H = ifi(a’ — a) + BoN + B3(a¥)?a® with By, 2, B3 € R. Let L; =
aia, Ly = ara’, Ly =wo3N, Ly = asa?, Ls = ozs(aT)2 and L¢g = a6N2, where
af,...,o6 € C.Set Ly =0 for any k > 7, and so take G = —i H — 22:1 LiLi/2.

Example 2 describes a laser-driven quantum oscillator in a Kerr medium that
interacts with a thermal bath. In addition, Example 2 unifies concrete physical
systems such as the following two basic models:
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e A mode with natural frequency w of a electromagnetic field inside of a cavity is
described by B = w, a1 = VAW + 1), an = ~/Av and B; = B3 = ax =0, with
k=3, ..., 6. Here, the mode is damped with rate «; by a thermal reservoir, and
v is a parametrization of the bath temperature; see, for example, [8, 23, 38].

e A simple two-photon absorption and emission process is modeled by 83 € R,
aq4 > 0,05 >0and B1 = Br = a1 = ap = a3 = ag = 0; see, for example, [9, 20]
and references therein.

The next theorem characterizes the well-posedness of the mean values of ob-
servables formed by a finite composition of ' and a in transient and station-
ary regimes. Important examples of such observables are Q = i(a” + a)/v/2,
P=i(a"—a)/~/2and N.

THEOREM 6.1. Assume the setting of Example 2, and let p;(0) be as in The-
orem 4.1. Suppose that p is a natural number greater than or equal to 4.

(i) Let |a4| > |a5| and let o € Sin (lz(Z+)). Then p;(0) is a NP-regular op-
erator that satisfies both (4.3) and (4.4). Moreover, (p;):>0 is the unique semigroup
NP-solution of (1.1).

(ii) Suppose that either |ag| > |as| or |ag| = |as| with |az|* — |a1|> +4Q2p +
1)|Ot4|2 < 0. Then, there exists a NP -regular operator o~ such that p;(0co) = Qoo
foranyt > 0.

PROOF. Deferred to Section 7.12. [

REMARK 6.1. In the proof of Theorem 6.1 we use the following sufficient
condition for condition (H2.3), which is developed in [19].

HYPOTHESIS 5. Suppose that C is a self-adjoint positive operator in
such that G, Li, Ly,... belong to £((D(C), | -llc),h), and 2%{x, Gx) +
Py | Lxx||*> <O for any x in a core of C. In addition, assume that for any x
belonging to a core of C2, 2% (C%x, Gx) + Y32, ICLix||> < K(|x]|% + 1).

7. Proofs.

7.1. Proof of Theorem 2.1. We first prove that (2.1) defines implicitly a
bounded operator 7;(A).

LEMMA 7.1. Adopt the assumptions of Hypothesis 2 with the exception of
condition (H2.2). Consider A € £(h). Then for every t > 0 there exists a unique
7 (A) belonging to £(h) for which (2.1) holds for all x,y in D(C). Moreover,
I 7: (Al < Al for any t > 0.
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PROOF. By Definition 2.1, |E(X;(x), AX;(y))| < [|Allllx||||y]| for all x,y €
D(C). Hence the sesquilinear form over D(C) x D(C) given by (x,y) —
E(X;(x), AX;(y)) can be extended uniquely to a sesquilinear form [-, -] over f) x
with the property that |[x, y]| < ||A|lllx]|||y]| for any x, y € h. There exists a unique
bounded operator 7;(A) on h such that |[x, y]| = (x, Z;(A)y) for all x, y in h. Fur-
thermore, || 7, (A)[| < [|A]. O

Using arguments given in Section 1.6 we next establish the uniqueness of solu-
tions for the adjoint quantum master equations.

LEMMA 7.2.  Let Hypothesis 2 hold. Assume that (A;);>0 is a C-solution of
(1.2) with initial datum A € £(). Then A; = T;(A) for all t > 0, where T;(A) is
as in Therorem 2.1.

PROOF. Using It6’s formula we will prove that for all x, y € D(C),
(7.1) E(X;(x), AX:(y)) = (x, Ary).

This, together with Lemma 7.1, implies A, = 7;(A).
Motivated by the fact that 4, is only a weak solution, we fix an orthonormal
basis (e,),en of h and consider the function Fj, : [0, t] x h x h — C defined by

Fl’l(s7 u, U) = <R}’lﬁy AI—SRIZU>7

where R, =n(n+ C)~! and it = Y nen (en, u)e,. Since the range of R, is con-
tained in D(C), condition (a) of Definition 2.2 yield

d
(7.2) d—Fn(s, u,v) =—g(s, Ryit, Ryv)

s
with g(s, x, y) = (x, A—sGy) + (Gx, Ai—sy) + > po i (Lix, Ai—sLiy). Accord-
ing to conditions (a), (b) of Definition 2.2, we have that t — (u, A,v) is con-
tinuous for all u,v € b, and so combining CR,, € £(h) with Hypothesis 2 we
get the uniform continuity of (s, u, v) —> g(s, R,u, R,v) on bounded subsets of

[0, 2] x b x b. Therefore we can apply It6’s formula to F, (s A T}, X;j (x), X;j ),
with 7j = inf{r > 0: | X; ()| + | X: Wl > j}-
Fix x, y € D(C). Combining Itd’s formula with (7.2) we deduce that

Fu(t Aty X (), X[ (1)) = Fa (0, Xo(), Xo(0) + I}, + M.

SATj

Here for s € [0,1]: My = Y02, fo 7 (Ru X/ (x), Ay Ry Li X' () dW) +
Y21 fy AR Li Xy (), Ar—r Ry Xy (1)) dWF and

I =/0 (=&, Ru X, (x), R X, () + gn(r, X, (x), X, (y))) dr,
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the function g,(r,u,v) is equal to (Ryu, A;—,R,Gv) + (R,Gu, A, Ryv) +
Zlgil (RyLyu, At—arLH))-
We next establish the martingale property of M. For all r € [0, ] we have

IR, X CONP A 1P R L X5 N1 < 7% sup 1A PN Le X (012

s€[0,7]

INT;

By (H2.1) and (H2.2), E [y Y22, [(RuX) (x), Ar—r RuLi X, (9) 2 ds < 0.
Thus (202 fo 7 (Ru X (x), Ar—r RuLi X, (3)) dW¥)sei0.1) is a martingale. The
same conclusion can be drawn for

O eSAT; - . %
3 /0 (RuLi XY (x), Aryr Ra XY (3)) AW,
k=1

and so (Mj);se(o,s] 1s @ martingale. Hence
(73)  E(RuX{ @), Arinr; RaX[” (1)) = (Rux. A Ryy) +ELJ} .

We will take the limit as j — oo in (7.3). Since E(supse[o’t]lle(&‘)Hz) < 0
for £ = x, y (see, e.g., Theorem 4.2.5 of [36]), using the dominated convergence
theorem, together with the continuity of ¢t —> (u, A,v), we get

E(Ry X; (), Ar—ine; Ru X1 (0)) — j>00 E(Ru X, (x), ARy X, ().

Applying again the dominated convergence theorem yields E//”

ATj _>]_)OO ]Ell‘n’
and hence letting j — oo in (7.3) we deduce that

E(Ro X, (x), ARy Xy (1)) — (Rux, A Ruy)
(7.4) t
—E fo (=g (5. RuXs(0), RuXs (1)) + gn(s, Xs(x), Xs(1))) ds.

Finally, we take the limit as n — oo in (7.4). Since ||R,|| < 1 and R, tends
pointwise to / as n — 0o, the dominated convergence theorem yields

Jim B Ot 0005, X, 0, Xe 0D ds = [ g6, X, X, (60 ds.

For any x € D(C), lim,—,oc CRyx = Cx. By ||CR, x| < ||Cx]||, using the domi-
nated convergence theorem gives

t t
Jim B [ g6 R X, R Xo0)ds =E [ 05, X,(0), X, (0)) .

Thus, letting n — oo in (7.4) we obtain (7.1). U
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7.2. Proof of Theorem 3.2. We begin by examining the properties of the
Bochner integral E|&)(x| when &, x € L2(P, b).

LEMMA 7.3.  Suppose that & and yx belong to L>(P, ). Then E|&) (x| defines
an element of £1(h), which moreover, is given by

(7.5) (x, EIE) (x1y) =E(x, &) {x. y)

forall x,y €b. Here, E|&) (x| is well defined as a Bochner integral with values in
both £1(h) and £(Y). In addition, tr(E|&)(x]) = E(x, &).

PROOF. We first get E|€) (x| € £1(h). Since the image of |£) (x| lies in the set
of all rank-one operators on b, |£)(x| takes values in £1(h). Applying Parseval’s
equality yields

(7.6) tr(Alg) (x|) = (x. A§).

Hence &) (x| is B(£1(h))-measurable because the dual of £(h) is formed by all
maps o — tr(Ap) with A € £(h). Let x, y € h. The absolute value of the operator
|x)(y| is equal to the operator |y)(y|||x||/|ly|l in case y # 0, and coincides with the
null operator otherwise. Therefore

(1.7) 1) Yl = Mllsz: (Il

Iyl
Combining &, x € L3(P, h) with (7.7) gives E|||§){x||l1 < oo, and so the Bochner
integral E|€) (x| is well defined in the separable Banach space £ (h).

We now turn to work in £(f). The application (x, y) — |x)(y| from § x h to
£(h) is continuous, and in consequence the measurability of £ and x implies
that |§)(x| is B(L(h))-measurable. Thus using || - ||g@) < || - [l we deduce that
|€) (x| is Bochner P-integrable in £(h); see, for example, [39] for a treatment of
the Bochner integral in Banach spaces which, in general, are not separable. Since
£1(h) is continuously embedded in £(h), either of the interpretations of E|&) (x|
given above refers to the same operator.

Finally, for any x, y belonging to b, the linear function A — (x, Ay) is continu-
ous as a map from £(f) to C. This gives (7.5). Similarly, (7.6) yields tr(E|&)(x|) =
Etr(1){(x]) =E(x,§), because tr(-) € £1(h)". O

REMARK 7.1. Under the assumptions of Lemma 7.3, E|£)(x| can also be
interpreted as a Bochner integral in the pointwise sense; see, for example, [14].

To prove Theorem 3.2, we need the following lemma.

LEMMA 7.4. Let C be a self-adjoint positive operator in Y. Suppose that & €
LQC(IP’, h) and A € L((D(C), || - llc), ). Then A& belongs to L2(P, h).



REGULARITY OF SOLUTIONS TO QMES 1997

PROOF. Since A& = Anc (&) P-a.s., from Remark 2.1 we deduce that A¢ is
strongly measurable. Thus A& € L>(P, h). O

PROOF OF THEOREM 3.2. We start by proving statement (a). Let x € D(C)
and let y € h. Using Lemma 7.3 yields

(Cx,0y) =E(Cx,§)(§, y) =E(x, C§)(§, y).
In Lemma 7.4 we take A = C to obtain C£ € L2(P, ). Thus, Lemma 7.3 implies
Ex, C§)(§, y) = (x, EIC§)(£]y), and so (Cx, oy) = (x, E[C&)(&]y). Then oy €
D(C*) =D(C) and Coy = E|CE&)(&]y, which is our assertion.

Part (a) yields D(B) = D(ApB), and so AgB is densely defined. We next prove
that Ag B coincides with E|A&)(B*&| on D(B). For this purpose, we approximate
A by AR,, where R, is the Yosida approximation of —C.

Suppose that x € h and y € D(B). As in the proof of Lemma 7.2 we con-
sider R, =n(n + C)_l, and so CR,z —> ;00 Cz for any x € D(C). Therefore
(x, AR, 0BY) — > {(x, AoBy), and hence Lemma 7.3 gives

(7.8) (v, AoBy) = lim B((AR,)"x,§)(§, By) = lim E(x, AR.£)(€, BY).

Since ||R,|| <1 and R, commutes with C, |[AR,z|| < K||z|lc. Using the domi-
nated convergence theorem we obtain

(7.9) (x, AgBy) = lim E(x, AR.)(§, By) =E(x, A§)(B"¢, y).

Since B is densely defined, B* is a closed operator. Remark 2.2 now shows that
B* € £((D(C), || - llc), b), and so applying Lemma 7.4 gives A&, B*£ € L>(P, b).
Combining (7.9) with Lemma 7.3 we get (x, AoBy) = (x, E|A&)(B*&|y). Since
the closure of ApB is equal to E|A&)(B*&|, we complete the proof of statement
(b) by using Lemma 7.3. [

7.3. Proof of Theorem 3.1. First, we easily construct a random variable that
represents a given C-regular operator.

LEMMA 7.5. Letpe€ Etc(f)), with C self-adjoint positive operator in ly. Then
there exists £ € LZC(]P’, h) such that o =E|€)(&| and ||€||* = tr(0) a.s.

PROOF. Incase o =0, we take & = 0. Otherwise, consider that o is written as
in Definition 3.1. Then, we choose 2 = 7, and for any n € J we define P({n}) =

An/tr(o) and &(n) = J/tr(Q)u,. U

Second, we use part (a) of Theorem 3.2, together with Lemma 7.3, to establish
the sufficient condition of Theorem 3.1.

LEMMA 7.6. Let C be a self-adjoint positive operator in §y. Suppose that o =
E|&E) (|, with & € LZC(IP’, h). Then o is C-regular.



1998 C. M. MORA

PROOF. Lemma 7.3 shows that o € Sf(h), hence 0 = > ,cytnlun)(unl,

~

where J is a countable set, (A,),ey are summable positive real numbers and
(Un)nes 1s a orthonormal family of vectors of h. Using statement (a) of Theo-
rem 3.2 yields u,, € D(C) for alln € 7.

We can extend (u,),c5 to an orthonormal basis (e;),cy of hh formed by ele-
ments of D(C). From Parseval’s equality we obtain

Y hallCunll> =" Aal(Cutm, e)1* = D> dn(Cer, lun) (un|Cex),

neJ neJked keJ ned

and s0 Y,y Anl[Cuy % = Y ke (Cek, 0Cex). Combining Lemma 7.3 with Parse-
val’s equality we now get

Y malCunl? =Y E|E, Cer)> =E > |(CE, e,)|* =E[ CE*.

nedJ kel kel
This gives o € Sﬁc(f)). U

7.4. Proof of Theorem 4.1. We first establish, in our framework, the well-
known relation between Heisenberg and Schrédinger pictures.

LEMMA 7.7. Suppose that Hypothesis 2 holds, together with § € LZC(]P’, h).
Let T;(A) be as in Theorem 2.1. Then for all A € £(b),

(7.10) tr(AE[X; (§))(X:(§)]) = (T (A)EIE) (£ ).

PROOF. Fix A € £(h), and define the function f;,, : h — C by f,(x) = (x, Ax)
if ||x|| <n, and f,(x) = 0 otherwise. Using the Markov property of X;(£), which
can be obtained by techniques of well-posed martingale problems, we get

(7.11) E(fa(X:(6)) = E((fu(X:()))/T0) =EP: fu(§),

where P; f,(x) = E(f,(X;(x))) for all x € D(C).
We will take the limit as n — oo in (7.11). The dominated convergence theorem
leads to

(7.12) Jim E(f, (X (8))) = E(X (), AX; ().

Combining (7.12) with (2.1) yields P; f;,(x) — -0 (x, 7:(A)x) whenever x €
D(C). Since || P, f,(x)| < ||A]lllx |3, according to the dominated convergence the-
orem, we have EP; f,(§) — E(&, 7,(A)&) as n — oo. Then, letting n — oo in
(7.11) we get E(X,(&), AX,(&§)) = E(&,7,(A)&) by (7.12), and so Theorem 3.2
leads to (7.10). [

We next check that p;(p) is well defined by (4.1).

LEMMA 7.8. Let Hypothesis 2 hold and consider &, ¢ € LZC(]P’, bh) such that
E|§)(§] =Elp)(@l. Then E|X;(6))(X:(§)| = E|X:(9)) (X:(@)].
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PROOF. Let A € £(h). Using Lemma 7.7 yields

tr(AE[X, (§)) (X, (6)]) = (T, (A)E[§) (§]) = tr(AE| X, (9)) (X: (@)])-
Hence [|E|X;(5)){(X:(E)] — E|X (@) (X (@)llle, ) = 0; see, for example, Propo-
sition 9.12 of [33]. O

We now address the contraction property of the restriction of p; to ST’C (h).

LEMMA 7.9. Let Hypothesis 2 hold. If o, 0 are C-regular, then
(7.13) trlpr(0) — p1 (0)| < trlo — 0l

PROOF.  Since tr|p;(0) — p1(0)| = SUP||Al| ¢ ) =1 tr(Ap; (@) — tr(Aps(0))], ac-
cording to Lemma 7.7 we have

tlpi(0) = @)= sup (T (A)o) — (T, (A)d)l.
AcL(h). ] Al=1

Therefore tr|p;(0) — p:(0)] < tr|o — 0| SUP | Al ¢ p)=1 IZ;(A)||, and so Theorem 2.1
leads to (7.13). [

The following lemma helps us to extend p; to all £(bh).

LEMMA 7.10. Suppose that C is a self-adjoint positive operator in ). Then
Efc(f)) is dense in ST([)) with respect to the trace norm.

PROOF. Letp € £1+(h). Then there exists a sequence of orthonormal vectors
(uj)jen for which 0 =3 ey Ajluj)(ujl, withd; >0and - jcnA; < 0o. For any
X,y € b we have

tllx) (x| = [y)(yl] = sup [(x,Ax) = (y, AY) < Jx =y + 2]yl x = yl.
Al =1
and so {|x)(x]|:x € D(C)} is a | - |lg,)-dense subset of {|x)(x|:x € b} since

D(C) is dense in §h. Now, the lemma follows from tr|o — Z?:] Ajluj)(ujl| =

PROOF OF THEOREM 4.1. Combining Theorem 3.1 with Lemma 7.8 we ob-
tain that (4.1) defines unambiguously a linear operator p; (o) for any g € £T c()
and ¢ > 0. Lemma 7.10 guarantees the uniqueness of the operator belonging to
L£(£1(h)) for which (4.1) holds. We next extend p; to a bounded linear operator in
£1(h) by means of density arguments.

Suppose that o € 2?(!)). By Lemma 7.10, there exists a sequence (0),en Of
C-regular operators for which lim,, , « [0 — onllg, ) — 0. We define p; () to be
the limit in £1(h) of p;(0,) as n — 00; according to Lemma 7.9 this limit exists
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and does not depend on the choice of (g,),en. Recall that every A € £(h) has
a unique decomposition of the form A = N(A) + i IJ(A), with Ji(A) and I (A)
self-adjoint operators in . For each ¢ € £1(f) we set

e (0) = pr(M(0)+) — pr (M(0)-) +i(p: (I(0)+) — pr(3(0)-)),

where A, A_ denotes, respectively, the positive and negative parts of the self-
adjoint operator A; see, for example, [7] for details.

We will verify that p, € £(£1(h)). Let 0 = 01 — 02 +i(03 — 04), With g; €
Etc(h) forany j =1,...,4. Since || Z;(A)|| < ||A|, Lemma 7.7 yields

trlpr(@)l = sup |tr(Ap (@)= sup [t(Z;(A)o)| < tr(le).
1Al gm=1 I1Allgm=1

The construction of p;(¢) now implies || p;(0)llg, @) < llellg,®) for all o € £1(h).
Consider two C-regular operators g, 0 and « > 0. By Definition 3.1, ¢ + «Q be-
longs to ,Stc(b). If A € £(h), then applying Lemma 7.7 we obtain

tr(p; (0 + @0)A) =tr(T;(A)o) + a tr(Z,(A)3) = tr((0;(0) + ap; (2))A).

Therefore [|0;(0 + a@0) — p; (@) — ap;(©) g, ) =0, and so Lemma 7.10 leads to
pr(o + ap) = pi(0) + ap; () for any o, 0 € ST(h). Careful algebraic manipula-
tions now show the linearity of p; : £1(h) — £1(h). U

7.5. Proof of Theorem 4.2. Let us first prove the continuity of the map &
pr(EIE)ED.

LEMMA 7.11. Assume that Hypothesis 2 holds. Let & and &,, with n € N,
be random variables in LZC(IF’, b) satisfying E|E — &> —p—oo 0. Then
pi(E[&x)(Enl) converges in £() to p; (E[§)(§]) as n — oo.

PROOF. Let x € ). Combining (4.1) with the linearity of (1.4) we get

| o1 Bl1En) (5nDx — pr (EIE) (& x|
< E[(X:(&n), )1 X1 (En — I + ENX: (5 — &), 0} X:(E)]

< Ix (Bl — & lI* + 2\/IE||£ - Snllz\/]Elléllz)-
In the last inequality we used that E|| X,(n)||> <E|ln||? forn € LZ(P, ). O

PROOF OF THEOREM 4.2. There exits a sequence (&,), of (D(C), | -|)-
valued random variables with finite ranges such that ||§, — &|| converges mono-
tonically to 0; see, for example, [14]. By Lemma 7.11, p,(E|&,)(&,|) converges
to p:(E|E)(&]) in £(h). Since p; is linear, an easy computation shows that

Ep: (16:) (€nl) = o1 (E|€,) (§11), hence
(7.14) Ep: (181) (En) —>n—o0 or(EIE)(E]  1n £(b).
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We will prove that Ep,(|€,)(&,|) converges to Ep,(|€)(&]) in £(h) as n — oo,
which together with (7.14) implies p; (E|£)(&]) = Ep;(|€)(&]). From Lemma 7.11

we obtain [|or (1€, (&al) — 0r(18) (5Dl 2y —>nsc0 0. For any x, y € b we have
x){¥IlIl1 = llx|lllyll, and so Lemma 7.9 yields

lor (€Y EnDIl < o (1&n) EaD Il < 180 1> < 2(11E1 — £ + 1E1).
Therefore || p; (1€,) (5 1) — 0: (15} (Dl e) —>n—s000. U

7.6. Proof of Theorem 4.3. Our proof is divided into three lemmata. The first
two deal with the semigroup property of (0;)s>0.

LEMMA 7.12. Let Hypothesis 2 hold, and let o be C-regular. Then for all
t >0, p;(0) belongs to £f (h) and py45(0) = pr © ps(0) whenever s > 0.

PROOF. Since X;(§) € L%(IP), h), combining Theorem 3.1 with (4.1) gives
(5 () C £F o (b).
We will establish the semigroup property of the restriction of p to Sfc(f)).

Consider & € LZC(IP’, h) satisfying p = E|£)(£], and fix x, y € h. For all z € h) we
define p,(z) = (z, x)(y, z) if [{z,x)(y,z)| <n, and p,(z) = 0 otherwise. Using
the Markov property of X; (&) we deduce that

(7.15)  E(pn(Xr45(8)) = E((pn (X145 /Ts) = EPi(pn) (X5(8)),

where for all z € D(C), Pi(pn)(2) = E(pn(X:(2))).
Let z € D(C). Applying the dominated convergence theorem gives

Jim E(pn (X:(2))) = E(X:(2), x)(y, Xi(2)) = (¥, pr (|2)(z])x),

hence lim, oo Pi(pn)(2) = (v, p1(I2){(z])x). Then EP;(pn)(Xs(§)) —n-oo
E(y, p; (| Xs(€)){(X5(&)])x), and so Theorem 4.2 leads to

(7.16)  lim EP(pn)(Xs(§)) = (y, o (E| X5 ()} (X5 (E)Dx) = (¥, o1 © ps(0)x).
By (7.15), in (7.16) we replace s by 0 and ¢ by ¢ 4 s to obtain
Tim E(py (Xp45(6)) = lim EPr,(pn)(X0(§)) = (¥, prs(@)).

Thus, letting n — oo in (7.15), we get p;45(0) = pr 0 ps(0) by (7.16). U

LEMMA 7.13.  Under Hypothesis 2, (p;):>0 is a semigroup of contractions
which leaves Ef(h) invariant.

PROOF. By Theorem 4.1, || ¢l ece,m)) < 1. Since p;(0) is positive whenever
o is C-regular, using Lemma 7.10 yields (x, p;(0)x) > 0 for any o € Sf(b) and
x €b.
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Suppose that 0 = o1 — 02 + i(03 — 04), Where g1, ..., 04 are C-regular op-
erators. Applying (4.1) gives pp(0) = 0, and Lemma 7.12 asserts that p; (o) =
ot o ps(o) for any s, ¢t > 0. Then, combining Lemma 7.10 with density arguments,
we deduce that (po;);>0 is a semigroup. [

We now examine the continuity of the map # — p;(0) when p is C-regular.

LEMMA 7.14. Adopt Hypothesis 2, together with o € £1+,C(h)' Then the map
t = ps(0) from [0, oo[ to £1(h) is continuous.

PROOF. Consider & € L2C(IP>, h) such that o = E|£)(&|. Theorem 3.2 yields
E|X;(&) % < E|& 1> = tr(o) for all # > 0, and so combining Theorem 3.2 with the
Cauchy-Schwarz inequality yields

trlpr(@) —ps(@l = sup  [E(X;(§), AX;(§)) — (Xs(§), AXs(§))]
Aeg(h). | Al=1

< 2(tr() (B X (6) — X,(6) %)%,

Since E(sup;c(o, 77 | Xs(€)]|?) < oo for any T > O (see, e.g., Theorem 4.2.5 of
[36]), using the dominated convergence theorem, we get (4.2). U

7.77. Proof of Theorem 4.4. First, we establish the weak continuity of the map
t — AX;(§) when A is relatively bounded by C.

LEMMA 7.15. Assume that Hypothesis 2 holds. If & belongs to LZC(}P’, h) and
if Ae LD - lc), b), then for all ¥ € L2 (P, h) and t > 0 we have

(7.17) lim E(y, AX;(8)) =E(), AX,(5)).

PROOF. Let (s,), be a sequence of nonnegative real numbers converging to ¢.
Since (X, (§), AXy, (§), CX;,(£))), is a bounded sequence in L2(P, b3) with
h3 =bh x b x b, there exists a subsequence (Sn(k))k for which

(7.18) (Xop (6)s A5, (8), CX, ) (6)) —>kvoo (Y, U, V)

weakly in L2(P, h3).

Set M = {(n, An, Cn):n € LZ(P, h)}. Then 9 is a linear manifold of L2(P,
h3) closed with respect to the strong topology. In fact, suppose that ((17,, A1y,
Cnn))n 1s a sequence of elements of 91 that converges to (11, 172, 73) in L2(P, h3).
Hence there exists a subsequence ((17,(jy, Anu(j)» Cnn(j)))j converging almost
surely to (11, n2, n3). Therefore n; € D(C) and 13 = Cny by C is closed. Using
A€ £((D(C), - llc). b) gives m2 = An;.

For any k € N, (X, (§), AXy, ) (), CXj,, (§)) belongs to IN. Since M is a
closed linear manifold of L2 (P, h3), (7.18) implies (Y, U, V) € 9; see, for exam-
ple, Section III.1.6 of [27]. Combining the dominated convergence theorem with
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E(supgepo.r+17 1 X5 (€)1?) < 0o we get that E[| X, ,, (§) — X, (§)||* converges to 0.
Thus Y = X;(§), and so U = AX;(§). Hence AXj, ,, (§) converges to AX;(§)
weakly in L>(P, ). O

Second, we show that the probabilistic representation of the right-hand side of
(4.4) is continuous as a function from [0, +oo[ to C.

LEMMA 7.16. Let Hypothesis 2 hold. Fix & € LZC(P, h) and A € £(h). Then,
the function that maps each t in [0, +oo[ fo the complex number E(GX,(§),
AX(8)) +E(X:(§), AGX((§)) + 232 E(Li X1 (§), ALk X(§)) is continuous.

PROOF. Let (#,), be a sequence of nonnegative real numbers such that ¢, con-
verges to t. Since ]E(supse[o’tﬂ] 1 X (8)]1?) < oo (see, e.g., Theorem 4.2.5 of [36]),

AX; () —no00 AXs(§) in L2 (P, h). Hence Lemma 7.15 yields
(7.19) Jim E(GX,,(5), AX,, (§)) =E(GX,(§), AX,(8));

see, for example, Section II1.1.7 of [27]. By (7.19) with A replaced by A*, f —
E(A*X, (&), GX,(&)) is continuous, then so is t — E(X, (&), AGX,(§)).

We now focus on Y 2 | E(LiX;(§), ALi X (§)). Taking A = I in (7.19) we get
ER(X;,(6), GX1,(§)) = n—soo EN(X;(§), GX;(§)). Thus condition (H2.2) leads
to

(7.20) Y EILk X, E)* —n00 3 EILe X, (8)]I
k=1 k=1

Using (7.20) we will deduce that L; X, (§) converges strongly in L2(P, h) to
Ly X;(&) as n — oo. Conversely, suppose that for a given j € N,

(7.21) limsupE||L; X, (6)|* > E|IL; X, (&)
n—oo
Since B[ Ly X, (£)]1? < liminf,_, o E|| Lt X;, (€)||?, Fatou’s lemma shows
(7.22) Y EILeX, (&) < ljggicgfz El|Li Xy, (€))%
k+j k+#j

According to (7.20) and (7.21) we have

o0
l;lrgggfg E|lLiX,, I = kZlEnLkXt(s)uz —limsupE|| L X, (§)I”
] =

<Y EILX:(®)],
k#j
contrary to (7.22), and so
(7.23) limsupE[|L; X, (E)* <E|L;X, &)

n—oo
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Applying Lemma 7.15 we get that L;X, (§) converges weakly in L%(P, ) to
LiX:;(&) as n — oo, and so (7.23) leads to LiX;,(§) —>n—soc0 LiX(§) in
L*(P. b).

From condition (H2.2) it follows that Y} _ E(LyX,(§), ALt X,(§)) converges
to Y20 E(LiX:(§), ALk X/(§)) as n — oo uniformly on any finite interval.
Since E(Li Xy, (§), ALLX;, (6)) —>nsoo BALLX; (§), ALL X, (£)), the map 7 >
Yoo  E(Lk X (&), ALk X (§)) is continuous. [J

Third, we deal with basic properties of the probabilistic representation of the
right-hand side of (4.3).

LEMMA 7.17. Let Hypothesis 2 hold. For any & € ch(IP’, h), we define

L&, 1) =EIGX, WX | +EIX,ENGX ()| + ) EILL X () (Li X, (§)].
k=1

Then Ly(E,t) is a trace-class operator on b whose trace-norm is uniformly
bounded with respect to t on bounded time intervals; the series involved in the
definition of Ly converges in £1(h).

PROOF. By condition (H2.2), using (7.7) and Lemma 7.3 we get

IEIG X, (E) (X )1 + IEIX (NG X )l + Y NEILe X, (6)) (L X, (§)] 1

k=1

<AE(IX: G NGX (&) < K\/EIISIIZ\/EIIXz(E)HzC,
where the last inequality follows from G € £((D(C), || - llc), ). U

Applying Lemmata 7.3 and 7.16 we easily obtain Lemma 7.18.

LEMMA 7.18. Adopt the assumptions and notation of Lemma 7.17, together
with A € £(h). Then, the trace of AL (€, 1) is equal to

E(X;(§), AGX(5)) + E(GX(5), AX,(§)) + ) E(Li X1 (§), ALy X, (5)),
k=1

and t — tr(AL4 (&, 1)) is continuous as a function from [0, oo[ to C.

We proceed to prove that E|X;(§))(X;(§)] satisfies an integral version of (1.1).
To this end, we combine the regularity of X (§) with It6’s formula.

LEMMA 7.19. Adopt Hypothesis 2 together with & € L%(IP’, h). Then

t
(7.24) pi(EIE)(ED =E[§)(&] +/O L&, 5)ds,
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where t > 0 and L (&, s) is as in Lemma 7.17; we understand the above integral
in the sense of Bochner integral in £1(h).

PROOF. Our proof is based on arguments given in Section 1.5. Fix x € b,
and choose 7, = inf{s > 0: || X(§)| > n}, with n € N. Applying the complex Itd
formula we obtain that

(7.25) (Xm,,(é),X)szn(%)=(§,x)%‘+E/O Tan(Xs(%‘))derMt,

where M; = 302, "™ (X(8), x) Li X (§) + (LiX,(§), x)X,(§))dWEK, and
Ly(z) =(z,x)Gz+(Gz,x)z+ > 7= (Lkz, x)Liz for any z € D(C). According to
condition (H2.2) we have

0 AT,
EY [T I 0 LX) + LX), 1 X )12 ds
k=1
<an’lxPE "G, ds.
0

Therefore EM; = 0 by G belongs to £((D(C), || - lIc), h), and so (7.25) yields

tAT,
(7.26)  E(Xtar, (§), %) Xiag, (§) =E(§, x)§ -HE/O Ly(Xs(§))ds.

We will take the limit as n — oo in (7.26). Since X (£) has continuous sam-
ple paths, 7, /-0 00. By (H2.1) and (H2.2), applying the dominated con-
vergence yields limy,— oo E ;"™ Ly (X;(§))ds = E [§ L+ (X;(§))ds. Combinig
E(supgepo. 1417 1 Xs(§ )||?) < oo with the dominated convergence theorem gives
limy,— 00 E(X1n1, (§), X) X1 g, (§) = E(X;(§), x) X;(§). Then, letting first n — oo
in (7.26) and then using Fubini’s theorem, we get

t
(7.27) IE(X,(K;‘),x)X,(é):IE(g,x)g+/O EL.(Xs(8)).
By condition (H2.2), the dominated convergence theorem leads to
E Y (LiXs(), X)L Xs(§) = D E(Li X (§), x) Li X (&),
k=1 k=1
and so Lemma 7.3 yields EL, (Xs(&)) = L. (&, s)x, hence

t t
(7.28) /O ELy (X, (€)) = /0 Lo(€,5)x ds.

Since the dual of £1(h) consists in all linear maps o — tr(Ap) with A € £(b),
Lemma 7.18 implies that t — L, (£, ¢) is measurable as a function from [0, oo[
to £1(h). Furthermore, using Lemma 7.17 we get that t — L, (&, t) is a Bochner
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integrable £1(h)-valued function on bounded intervals. Then (7.27), together with
(7.28), gives (7.24). U

We are in position to show (4.3) and (4.4) with the help of Hypothesis 3.

PROOF OF THEOREM 4.4. By Theorem 3.1, o = E|£)(§]| for certain & €
LZC(IP’, h). Theorem 3.2 now gives AGp;(0) = E|AGX;(§))(X:(§)|. Applying
Hypothesis 3 we get that G*, L], L3, ... are densely defined and G**, L7*, ...
coincide with the closures of G, Ly, ..., respectively; see, for example, Theo-
rem I11.5.29 of [27]. Theorem 3.2 yields Ap,(0)G* = E|AX,(§))(GX,(§)| and
ALkpi(0) Ly =E|ALkX;(§))(LrX:(§)|. Therefore

(7.29) L5, 1) =Gpi(0) + p(0)G* + Y Lipi ()L,
k=1

where L, (&, 1) is as in Lemma 7.17. Combining (7.29) with Lemma 7.19 we get
(4.3), and so tr(Ap;(0)) = tr(Ap) + fé tr(AL« (&, 5))ds for all r+ > 0. Using the
continuity of £, (&, -) we obtain (4.4). [

7.8. Proof of Theorem 4.5. 'We first obtain the existence of a solution of (1.1)
in the semigroup sense, without Hypothesis 3.

LEMMA 7.20. Under Hypothesis 2, p is a semigroup C-solution of (1.1).

PRrROOF. By Theorem 4.3, (p;);>0 is a semigroup of bounded operators on
£1(h) that satisfies property (i) of Definition 4.1. Fix o = |x){x]|, with x € D(C).
Thus g is a C-regular operator, and so (4.2) leads to property (ii). Finally, using
Lemmata 7.18 and 7.19 we get property (iii). [

We next make it legitimate to use in our context the duality relation between
quantum master equations and adjoint quantum master equations.

LEMMA 7.21. Let Hypothesis 2 hold. Suppose that A € £(h) and that (p;);>0
is a semigroup C-solution of (1.1). Then (p; (A));>0 is a C-solution of (1.2) with
initial datum A, where (p]);>0 is the adjoint semigroup of (p;);>0 (see, e.g., [34]),
that is, (P} )i>0 is the unique semigroup of bounded operators on £(4) such that
forall B e £(h) and o € £1(h),

(7.30) tr(pr (0) B) = tr(p; (B)o).
PROOF. Using (7.30) we get that for all vectors x, y € h whose norm is 1,

(v, 7 (A)x)| = |tr(p; (A x) (yDI = tr(|p; (Ix) (YD AD
< I1AINNA: L ece, oy tr( 1) (YD
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We conclude from (7.7) that tr(||x)(y||) = 1, hence that [(y, 5;"(A)x)| < [|A| x
102l 2cg, (), and finally that

(7.31) 157 (A)llew) < IANID N 2cei m)-

Applying property (i) of Definition 4.1 gives property (b) of Definition 2.2.

In order to verify property (a), we will prove the continuity of 7 = (x, o/ (A)y)
for any x, y € h. As in the proof of Lemma 7.2, we define R, = n(n + C)~! for
n € N. According to (7.30) we have

(Rux, B (A)Ryx) = tr(p; (A)| Rux) (Rux]) = tr(p; (| Rux) (Rux ) A).

Since R,x € D(C), property (ii) of Definition 4.1 implies the continuity of the
function ¢ = (R,x, p; (A)R,x). By (7.31),

[{x, p; (A)x) — (x, oy (A)x)|
=< (Rux, ﬁt*(A)Rnx> — (Rux, ﬁ:(A)Ran
+ 211 AN(I15r L 2ce, @y + 1185 Lece, ) IxHllx — Ryx |l

Using R,x — ;-0 X We deduce that the map ¢ — (x, p;(A)x) is continuous, so
ist — (x, p;(A)y) by the polarization identity.

Assume that x € D(C). By (7.30), combining o/, (A) = p; (p; (A)) with prop-
erty (iii) of Definition 4.1 yields

: 1 ~k ~x
Jim (e, P (A)x) = x, 77 (A)x)

1
= lim —(tr(5s(|Ix)(x])p; (A)) — tr(|x){x|p; (A)))
s—>0+ §
= L(p; (A),x)
with LB (A),x) = (x, 5F(A)Gx) + (Gx, o (A)x) + L3 (Lex, B (A) Lyx).
Thus

_l’_

d
(7.32) 7 (x, 5 (A)x) = L(p; (A), x).

From (7.31) and condition (H2.2) we get that >_7>  (Lxx, p;(A)Lxx) is uniformly
convergent on bounded intervals, and so 7 — Y 72, (Lx, p;(A)Lix) is contin-
uous, and hence the application ¢ — %+(x, Py (A)x) is continuous. Therefore
(x, p/(A)x) is continuously differentiable (see, e.g., Section 2.1 of [34]). Prop-
erty (a) of Definition 2.2 now follows from (7.32). [

We are in position to show our second main theorem.

PROOF OF THEOREM 4.5. Let (p;);>0 be a semigroup C-solution of (1.1).
Consider the adjoint semigroup (p;);>0 of (0;):>0, and let (7;(A));>¢ be given by
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Theorem 2.1. Combining Lemma 7.21 with Theorem 2.1 we obtain p; (A) = 7;(A)
forallt >0and A € £(h).Ifp € Stc(h) and A € £(h), then applying (7.30) and
Lemma 7.7 yields

tr(p(0)A) = tr(7;(A)o) = tr(p; (A)o) = tr(p; (@) A)

and so p;(0) = pr(0). Lemma 7.10 now implies that p,;(0) = p; (o) for all ¢ be-
longing to 2;’([)), hence p; = p;. Finally, Lemma 7.20 completes the proof. [J

7.9. Proof of Theorem 4.6. From [19] we have that Hypothesis 2 holds with
C = P2 + Q2. Hence Theorem 4.5 yields our first assertion.

Suppose that A = P or A = Q. Using, for instance, the spectral theorem, we
deduce the existence of a sequence A, of bounded self-adjoint operators in f such
that for all f € D(A) we have |A, fIl < |Af|l and A, f — o0 Af. Applying
Theorems 3.2 and 4.4 (or better Lemmata 7.18 and 7.19) gives

tr(An 01 (0))

t
(7.33) =tr(A,0) + fo (E(Aan(é), GX:(8) +E(GX:(5), AnXi(8))

+ ) E(Li X1 (§), Ay L X, (§)) dS>,

k=1

where ¢ = E|&)(&| with E(||C&||> + ||£]|?) < oo. By the dominated convergence
theorem, letting n — oo we obtain

tr(Ap;(0))

t
(7.34) =tr(Ap) + /0 (E<AXz (6), GX:(§)) + E(GX(§), AX:(§))

+ ZE(LkXt(S),ALkXt(S))dS)-
k=1

Let f € C°(R,C). Using [P, Q] = —il we get that L(P) f =i[H, P]f and
L(Q)f =i[H, Q]f. Therefore

(Af.Gf)+(Gf. Af)+ > (Lt f. ALk f)
k=1
_ { (f, Pf)/m, if A= 0,
—2¢c(f, Of), if A=P.

Since C°(R, C) is a core for C = P2 + 02, combining a limit procedure with,
for instance, Lemma 12 of [19] we get that (7.35) holds for all f € D(C). Then,
(7.34) leads to (4.5).

(7.35)
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7.10. Proof of Theorem 5.1. Let & be distributed according to 6. Set (@ =
X7 &) - P, with 7' > 0. For any 7 € [0, T], we choose Y, = X, (&)/11X: &)
if X,(§) # 0 and ¥, = 0 otherwise; let BX = WK — [ X <s>||2 d[Wk, X (&)] for
any k € N. Proceeding along the same lines as in the proof of Proposition 1 of
[32] we obtain that (Q, (Y/)sef0.77. (Bf)}&(o. 1) is a C-solution of (1.3) with initial
law 6. By Remark 5.1, (1.3) has a unique C-solution with initial distribution 6.
Therefore the distribution of ¥; with respect to @ coincides with the distribution
of Y; under Q. From [19] we have that (||X,||2),e[o,r] is a martingale, and hence
forany x e hand r € [0, T],

Eql(x, Yi)[* = Egl(x, ¥)I* = Ep(/(x, V1) PI1 X, (E)IIP) = Ep|(x, X, (5)) .

Applying (4.1) and the polarization identity gives p;(0) = E|Y;)(Y:|.

7.11. Proof of Theorem 5.2. Let (Q, (Y;)r>0, (Bt):>0) be the C-solution of
(1.3) with initial distribution I'; see Remark 5.1. Choose 0o = E|Yy)(Yo|. Then,
Theorem 5.1 shows that p;(0c0) = E|Y;)(Y;| for all £ > 0.

As in the proof of Theorem 3 of [32], applying techniques of well-posed mar-
tigale problems we obtain the Markov property of the C-solutions of (1.3) under
Hypothesis 2. Hence for any x e hand t > 0

(L eyt YPP) =E( J R )P (Fo.dy)).

On the other hand, using (5.1) we deduce that
E(Ly, 12 (1 (x. Y0)*)) _/(/ Lo o2y (. WP Pz, dy))F(dz)

Now, combining [|Y;|| = 1 with i (fy Lo 2y (14X, V)P Pr(z, dy)T (d2) =
E(fh [0, 1x 21 (H{x, V)2 P (Yo, dy)) we get E|(x, Yo)|> = E|(x, ¥;)|>. This gives
ElY;)(Y:| = E|Yo) (Yol and s0 pr(000) = Oco-

7.12. Proof of Theorem 6.1. Since D(G) = D(N*), from Remark 2.3 we have
that G is a closable operator satisfying G € £((D(NP), || - [Inr), b). Fix x € h such
that x, := (e,, x) is equal to O for all n € Z except a finite number. An easy
computation shows that 20t (N?”x, Gx) + Yl INPLgx |? is equal to the sum of
4p(asl® — laal?) Xp2o n*P x> and

281 Y N+ 1((n+ D — n?P)R(xpXg1) + Y f ()]xal?,
n=1 n=0

where f is a 2p-degree polynomial whose coefficients depend on |o|> with k =
1,2,4,5. Hence N?” satisfies Hypothesis 5 whenever |a4| > |as|. From [19] it
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follows that N7 fulfills condition (H2.3) of Hypothesis 2, and so Theorems 4.4
and 4.5 lead to statement (i).

From Theorem 8 of [32] we have the existence of an invariant probability mea-
sure I for (1.3) that satisfies the properties given in Hypothesis 4 with C = N?.
Using Theorem 5.2 yields statement (ii).
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