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GELATION FOR MARCUS–LUSHNIKOV PROCESS

BY FRAYDOUN REZAKHANLOU1,2

University of California, Berkeley

The Marcus–Lushnikov process is a simple mean field model of coagu-
lating particles that converges to the homogeneous Smoluchowski equation
in the large mass limit. If the coagulation rates grow sufficiently fast as the
size of particles get large, giant particles emerge in finite time. This is known
as gelation, and such particles are known as gels. Gelation comes in different
flavors: simple, instantaneous and complete. In the case of an instantaneous
gelation, giant particles are formed in a very short time. If all particles coag-
ulate to form a single particle in a time interval that stays bounded as total
mass gets large, then we have a complete gelation. In this article, we describe
conditions which guarantee any of the three possible gelations with explicit
bounds on the size of gels and the time of their creations.

1. Introduction. The Smoluchowski equation is a coupled system of differen-
tial equations that describes the evolving densities (or concentrations) of a system
of particles (or clusters) that are prone to coagulate in pairs. A sequence of func-
tions fn : [0,∞) → [0,∞), n ∈ N, is a solution of the (discrete and homogeneous)
Smoluchowski equation (SE) if it satisfies

d

dt
fn(t) = Qn(f )(t)(1.1)

with Qn = Q+
n − Q−

n , where

Q+
n (f )(t) = 1

2

n−1∑
m=1

α(m,n − m)fm(t)fn−m(t),

Q−
n (f )(t) =

∞∑
m=1

α(n,m)fn(t)fm(t).

The function fn represents the density of particles of size n, and the symmetric
function α : N × N → (0,∞) denotes the coagulation rate. Formally we have

d

dt

∑
n

ψ(n)fn = 1

2

∑
m,n

α(m,n)fm(t)fn(t)
(
ψ(m + n) − ψ(m) − ψ(n)

)
(1.2)
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for any function ψ . An important choice for ψ is ψ(n) = n with the sum
∑

n nfn

interpreted as the total mass of particles. For such a choice the right-hand side of
(1.2) is 0 and this is consistent with our intuition; the total mass for coagulating
particles is conserved. In reality equation (1.2) is not valid, and in the case of
ψ(n) = n we only have

d

dt

∑
n

nfn ≤ 0.(1.3)

Analytically speaking, we cannot interchange the differentiation with the summa-
tion in (1.2), and such an interchange can take place only if some suitable restric-
tions on the size of the coagulation rate α(m,n) is imposed as m and n get large.
The strict inequality in (1.3) does not contradict the conservation of mass; for
the sufficiently fast growing α, particles of infinite size—the so-called gels—are
formed, and the sum

∑
n nfn no longer represents the total mass. More precisely,

if we write gn = nfn for the total mass of particles of size n, then what we really
have is

d

dt

( ∞∑
n=1

gn + g∞
)

= 0.(1.4)

A Marcus–Lushnikov process (MLP) is formulated as a simple microscopic
model to study coagulation and gelation phenomena. MLP is a Markov process
which is defined on a finite state space EN given by

EN =
{

L = (L1,L2, . . . ,Ln, . . .) :
∑
n

nLn = N,0 ≤ Ln ∈ Z for each n

}
.

What we have in mind is that Ln is the total number of particles of size n, and
the condition

∑
n nLn = N means that N is indeed the total mass of particles.

The process (L(N)(t) = L(t) : t ∈ [0,∞)) is a Markov process with infinitesimal
generator A = ∑∞

m,n=1 Am,n, where

Am,nF (L) = 1

2N
α(m,n)

(
LmLn − 1(m = n)Lm

)(
F(Lm,n) − F(L)

)
.

When m �= n, Lm,n is obtained from L = (L1,L2, . . .) by replacing Ln,Lm and
Ln+m with Ln − 1,Lm − 1 and Ln+m + 1, respectively; when m = n, Lm,n is
obtained from L = (L1,L2, . . .) by replacing Ln and L2n with Ln −2 and L2n +1,
respectively. In words, with rate α(m,n)/N , a pair of particles of sizes m and n is
replaced with a single particle of size m + n. Note that the number of such pairs is
LmLn if n �= m, and this number becomes Ln(Ln − 1) if m = n. Also note that we
intentionally have chosen a coagulation rate proportional to N−1. The reason for
this has to do with the fact that all pairs of particles are prone to coagulate, and,
as a result, a typical particle undergoes a huge number of coagulations in one unit
of time as N gets large. Our rescaling of α guarantees that, on average, a single
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particle experiences only a finite number of coagulations. The probability measure
and the expectation associated with the Markov process L(t) are denoted by PN

and EN , respectively.
The connection between MLP and SE is that the large N limit fn := limN L

(N)
n /

N is expected to exist and satisfy SE. For this, however, suitable assumptions on
α are needed. Before stating these conditions and a precise theorem relating MLP
to SE, let us make some preparations. Set

E =
{

f = (f1, f2, . . . , fn, . . .) :
∑
n

nfn ≤ 1, fn ≥ 0 for each n

}
⊂ E′ = [0,∞)N.

We equip E′ with the product topology. Evidently, E is a compact subset of E′.
Let us write D = D([0, T ];E) for the Skorohod space of functions from the inter-
val [0, T ] into E. The space D is equipped with Skorohod topology. The Markov
process (L(t) : t ∈ [0, T ]) induces a probability measure PN on D via the transfor-
mation L 
→ f, where f = (fn :n ∈ N), with fn = Ln/N . We are now ready to state
our first result.

THEOREM 1.1. Assume

sup
n,m

α(m,n)

m + n
< ∞,(1.5)

and that initially

lim
k→∞ lim sup

N→∞
EN

1

N

∑
n≥k

nLn(0) = 0, lim
N→∞ EN

∣∣∣∣Ln(0)

N
− f 0

n

∣∣∣∣ = 0.(1.6)

Then the sequence of probability measures {PN } is tight, and if P is a limit point
of {PN }, then P is concentrated on the unique solution to SE subject to the initial
condition f(0) = f0.

REMARK 1.1. The existence of a unique solution to SE under (1.5) has been
established in Ball and Carr [2]. Even though we have not been able to find a
proof of Theorem 1.1 in the literature, we skip the proof because a straightforward
adaption of [2] can be used to prove Theorem 1.1.

We now turn to the question of gelation which is the primary purpose of this
article. We first recall a result of Escobedo at al. [4] on solutions to SE. We set
M(t) = M(f, t) = ∑

n nfn(t).

THEOREM 1.2. Assume that α(m,n) ≥ (mn)a , for some a > 1
2 . Then there

exists a constant C0(a) such that for any solution f of SE,∫ ∞
0

M(t)2 dt ≤ C0(a)M(0).(1.7)

In particular, gelation occurs sometime before T0 = C0(a)/M(0). That is, for
t > T0, we have M(t) < M(0).
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We now discuss the microscopic analog of Theorem 1.2 for MLP. For this, let
us define stopping times

τ (N)(b, c, δ) = τ(b, c, δ) = inf
{
t :N−1

∑
n≥cNb

nLn(t) ≥ δ

}
.(1.8)

The following was established by Jeon [10].

THEOREM 1.3. Assume that α(m,n) ≥ (mn)a , for some a > 1
2 . Then for every

b and δ ∈ (0,1) and c > 0,

sup
N

ENτ(b, c, δ) < ∞.(1.9)

REMARK 1.2. (i) Section 2 is devoted to the proof of Theorem 1.3. Even
though we are not introducing any new idea and employing the same approach as
in [10], our proof is shorter, more straightforward and simpler.

(ii) A weaker form of Theorem 1.3 was established by Aldous [1] for a special
class of coagulation rates α.

Note that if the assumption of Theorem 1.3 holds, then condition (1.5) is no
longer true, and, in fact, we need to modify SE if the sol–gel interaction is signifi-
cant. It turns out that if

lim
m→∞

α(m,n)

m
=: ᾱ(n)(1.10)

exists for every n, then it is not hard to figure out what the corrected SE looks
like. Under (1.10), we still have (1.1), but now with a modified loss term. More
precisely, Qn = Q+

n − Q̂−
n , where the modified loss term Q̂−

n reads as

Q̂−
n (f )(t) =

∞∑
m=1

β(m,n)gm(t)gn(t) + β(n,∞)gn(t)g∞(t)(1.11)

with gn = nfn, β(n,m) = α(n,m)/(mn), and β(n,∞) measures the amount of
coagulation between particles of size n and gels. When the condition of Theorems
1.2 or 1.3 holds, we have that g∞(t) > 0 for t > Tgel. In fact, if (1.10) holds, then
β(n,∞) is simply given by

β(n,∞) = ᾱ(n)

n
.(1.12)

The analog of Theorem 1.1 in this case is Theorem 1.4.

THEOREM 1.4. Assume (1.10). Then the sequence of probability measures
{PN } is tight. Moreover, if P is a limit point of {PN }, then P is concentrated on
the space of solutions to the modified SE with the loss term given by (1.11) and
(1.12) and g∞ = 1 − ∑

n gn.
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REMARK 1.3. (i) Theorem 1.1 under the stronger condition ᾱ(n) = β(n,

∞) = 0 was established in [10]. This condition does not exclude gelation. How-
ever, even though a fraction of the density comes from gels (i.e., g∞ > 0) after the
gelation time, the sol–gel interaction is sufficiently weak that can be ignored in the
macroscopic description of the model.

(ii) The continuous analog of ML model has been studied in Norris [12] and
Fournier–Giet [6]. In the continuous variant of ML the cluster sizes take values
in (0,∞) and all m summations in SE (1.1), and modified SE are replaced with
dm integrations. In the continuous case, Theorem 1.1 under the stronger condition
ᾱ(n) = 0 was established in [12] and under the assumption (1.10) in [6]. As is
stated in [6], the modified SE has already been predicted by Flory [5]. See also
Fournier and Laurencot [7] where a variant of continuous ML with cutoff has been
studied.

(iii) It is not hard to understand why a condition like (1.10) facilitates the deriva-
tion of the modified Smoluchowski’s equation. The main idea is that even though
the function f 
→ ∑

m α(m,n)fm is not a continuous function with respect to the
product topology whenever ᾱ(n) �= 0, the function f 
→ ∑

m(α(m,n) − mᾱ(n))fm

is continuous. This can be easily used to establish Theorem 1.4 by standard argu-
ments, providing a rather more direct proof of Theorem 1.4 than the one appeared
in [6].

(iv) If the condition (1.10) fails and instead we have the weaker property

sup
m

α(m,n)/m < ∞,

it is not clear what macroscopic equation, if any describes the evolution of densi-
ties.

We next address the question of instantaneous gelation. We first recall a result
of Carr and da Costa [3].

THEOREM 1.5. Assume that for some q > 1, we have that α(m,n) ≥ mq +nq .
Then M(t) < M(0) for every solution of SE and every t > 0. In words, gelation
occurs instantaneously.

We now state a theorem that is the microscopic analog of Theorem 1.5. To this
end, let us define

Tk(δ) = inf
{
t :N−1

∑
n≥k

nLn(t) ≥ δ

}
, T̂

(N)
A (δ) = T̂A(δ) = TA logN/ log logN(δ).

THEOREM 1.6. Assume that α(m,n) ≥ mq +nq , for some q ∈ (1,2). Then for
every positive δ < 1, A < q(2 − q)−1(6 − q)−1 and θ < η̄, there exists a constant
C2 = C2(q, θ,A), such that

ENT̂A(δ) ≤ C2(1 − δ)−1(logN)−θ .(1.13)

Here η̄ = η̄(q,A) = min((q − 1)/4, s̄ + q − 2) with s̄ given by (3.5) below.
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REMARK 1.4. (i) Note that the condition of Theorem 1.6 is stronger than what
we assume in Theorem 1.3 because mq + nq ≥ 2(mn)q/2.

(ii) Theorem 1.6 is more satisfactory than Theorem 1.5 for three reasons. On
one hand in Theorem 1.5 we only claim that if there exists a solution to SE, then
such a solution experiences an instantaneous gelation. In other words, we are only
showing that there is no mass-conserving solution; however, it is not known if,
under the assumption of Theorem 1.5, a solution exists. On the other hand, the
macroscopic densities coming from MLP cannot satisfy (1.1) and (1.11) because
β(n,∞) = ∞, and presumably a suitable modification of SE would be necessary.
Finally, in Theorem 1.6 we are giving a bound on the time of the formation of a
large particle. That is, we are giving more information about how instantaneous the
gelation is. We should mention though that our Lemma 3.2 in Section 3 is partly
inspired by the proof of Carr and da Costa in [3].

(iii) We note that under the assumption of Theorem 1.3, the quickest way for
gelation is to wait first for the creation of several large particles, and then large par-
ticles coagulate among themselves to produce even larger particles very quickly.
After all if both m and n are of order 	, then α is at least of order 	2a with 2a > 1.
However, under the assumption of Theorem 1.6, gelation is the result of the co-
agulations of a large particle with any other particle. Note that for a particle of
size 	 to coagulate with another particle, it takes a short time of order O(	−q),
and

∑
	>	0

	−q is small if 	0 is large. This explains why in Theorem 1.6 we have
instantaneous gelation; once a single large particle is formed, this large particle
coagulates almost immediately with the others to grow even larger.

(iv) For instantaneous gelation, we only need α(n,m) ≥ η(m) + η(n) with η

satisfying
∑

n η(n)−1 < ∞. A similar comment applies to Theorem 1.7 below.
(v) For simplicity, we avoided the case q ≥ 2. In fact when q = 2, (1.13) is

valid with no restriction on A and η̄ = 1/2; see Remark 3.1 in Section 3. The
condition q > 2 leads to instantaneous complete gelation that will be discussed in
Theorem 1.7 below.

We finally turn to the question of complete gelation. Define

τ̃ (N) = τ̃ = inf{t :LN(t) = 1}.
THEOREM 1.7. Assume that α(m,n) ≥ mqn + nqm, for some q > 1. Then

there exists a constant C3 = C3(q) such that

EN τ̃ ≤ C3

(
log logN

logN

)q−1

.(1.14)

REMARK 1.5. In Jeon [11] it has been shown that a complete instantaneous
gelation occurs if the requirement of Theorem 1.7 is satisfied. No bound on the
time of complete gelation is provided in [11], and we believe that our proof is
simpler.
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Even though our assumption on α as it appears in Theorem 1.3 is the most com-
monly used condition to guarantee gelation, we now argue that it is the assumption
of Theorem 1.6 that is more physically relevant. In a more realistic model for the
coagulation phenomenon we would allow spatial dependence for particles. We
are now interested on the evolution of particle density f(x, t) = (fn(x, t) :n ∈ N)

where x ∈ R
d represents the spatial position. The homogeneous SE is now re-

placed with the inhomogeneous SE,

∂

∂t
fn(x, t) = 1

2
d(n)�xfn(x, t) + Qn(f )(x, t),

where d(n) denotes the diffusion coefficient of particles of size n, the operator
�x denotes the Laplace operator in x variable and Q(f ) has the same form as in
the homogeneous SE. Microscopically, particles have positions, masses and radii.
Each particle travels as a Brownian motion with diffusion coefficient d(m) where
m denotes the mass of the particle. Particles may coagulate only when they are
sufficiently close. For example, the coagulation occurs between particles of po-
sitions x and x′ only when |x − x′| is of order ε(r + r ′) where r and r ′ are the
radii of particles, and ε is a small parameter. When the dimension d is 3 or more,
the initial number of particles is of order O(N) with N = ε2−d . When particles are
close, they coagulate randomly with a rate that is proportional to α(m,n). This mi-
croscopic coagulation rate α is not the macroscopic coagulation rate that appears
in SE. One can calculate the macroscopic coagulation rate α̂ from the microscopic
coagulation rate α and the diffusion coefficient d(·) after some potential theory.
We refer the reader to [8, 9] and [13] for more details on this model and a precise
formula of α̂. In this model of coagulating Brownian particles, a large microscopic
coagulation rate would not lead to gelation. Instead, the radii of particles are what
matter when it comes to the issue of gelation. Indeed, if the relationship between
the mass m of a particle and its radius r is given by r = mχ , then for a gelation
we need a condition of the form χ > (d − 2)−1. This is quite understandable in
view of Theorem 1.5 because for a uniformly positive α, the macroscopic coagula-
tion rate α̂(m,n) behaves like (d(m) + d(m))(mχ + nχ)2−d as m and n get large;
see [13]. As a result, if the diffusion coefficients (d(n), n ∈ N) are uniformly pos-
itive and χ > (d − 2)−1, then α̂ has a super-linear growth as the size of particles
get large. Based on this we conjecture that an instantaneous gelation would occur
if χ > (d − 2)−1.

We end this Introduction with the outline of the paper: Section 2 is devoted to
the proof of Theorem 1.3. Theorem 1.6 will be established in Section 3. Section 4
is devoted to the proof of Theorem 1.7.

2. Simple gelation.

PROOF OF THEOREM 1.3. For (1.9). it suffices to show that for every b ∈
((2a)−1,1) and positive δ, there exist constants C0(a, b, δ) and C′

0(a, b, δ) such
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that

sup
N

ENτ(b,C0(a, b, δ), δ) ≤ C′
0(a, b, δ).(2.1)

Explicit expressions for the constants C0 and C′
0 are given in (2.5) below.

Pick β > 0, and set δi = δ + c2−iβ with the constant c ∈ (0,1 − δ] so that we
always have δi ≤ 1. Define the stopping time

Tk = inf
{
t :

∑
n≥2i

nLn(t) ≥ δiN for i = 0,1, . . . , k

}

for each k ∈ N. Evidently Tk ≤ Tk+1. We also define

Fk(L) = 1

N

∑
n≥2k+1

nLn.

By the strong Markov property,

ENFk(L(Tk+1)) = ENFk(L(Tk)) + EN

∫ Tk+1

Tk

AFk(L(t)) dt.(2.2)

Note that if Tk ≤ t < Tk+1, then∑
n≥2k

nLn(t) ≥ δkN,
∑

n≥2k+1

nLn(t) < δk+1N,

1

N

2k+1−1∑
n=2k

nLn(t) ≥ δk − δk+1.

Let us simply write L = L(t) with t satisfying Tk ≤ t < Tk+1. For such a configu-
ration L we have that AFk(L) equals

1

2N2

∑
m,n

α(m,n)Lm

(
Ln − 1(m = n)

)

× [(m + n)1(m + n ≥ 2k+1) − m1(m ≥ 2k+1) − n1(n ≥ 2k+1)]
≥ 1

2N2

∑
m,n

(mn)aLm

(
Ln − 1(m = n)

)

× [(m + n)1(m + n ≥ 2k+1) − m1(m ≥ 2k+1) − n1(n ≥ 2k+1)]
= 1

2N2

∑
m,n

(mn)aLmLn[(m + n)1(m + n ≥ 2k+1)

− m1(m ≥ 2k+1) − n1(n ≥ 2k+1)]
− 1

2N2

∑
m

m2aLm[(2m)1(2m ≥ 2k+1) − 2m1(m ≥ 2k+1)]
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≥ 1

2N2

∑
m,n

(mn)aLmLn(m + n)1(m + n ≥ 2k+1 > m,n)

− 1

2N2

∑
m

m2aLm(2m)1(2m ≥ 2k+1 > m)

= 1

2N2

∑
m,n

(mn)aLmLn(m + n)1(m + n ≥ 2k+1 > m,n)

− 1

N2

2k+1−1∑
m=2k

m2a+1Lm

≥ 1

N2

(2k+1−1∑
m=2k

ma+1Lm

)(2k+1−1∑
n=2k

naLn

)
− 1

N2

2k+1−1∑
m=2k

m2a+1Lm

≥ 1

N2 2ka2k(a−1)2−(a−1)−
(2k+1−1∑

m=2k

mLm

)2

− 1

N2 22(k+1)a

(2k+1−1∑
m=2k

mLm

)

≥ 2k(2a−1)2−(a−1)−(δk − δk+1)
2 − 1

N
22a+2ak

= c2(1 − 2−β)2(2k)2a−1−2β2−(a−1)− − 1

N
22a(2k)2a.

First we want to make sure that the negative term does not cancel the positive term.
For example, we may try to have

c2

2
(1 − 2−β)2(2k)2a−1−2β2−(a−1)− ≥ 1

N
22a(2k)2a.

For this it is suffices to assume

2k ≤ (
c2(1 − 2−β)22−2a−(a−1)−−1)1/(1+2β)

N1/(1+2β).

For such integer k we use (2.2) to deduce

1 ≥ ENFk(L(Tk+1)) ≥ c2

2
(1 − 2−β)2(2k)2a−1−2β2−(a−1)−

EN(Tk+1 − Tk).

Hence,

EN(Tk+1 − Tk) ≤ 2c−2(1 − 2−β)−22(a−1)−(2k)−(2a−1−2β).

Summing these inequalities over k yields

ENT	 ≤ 2c−2(1 − 2−β)−22(a−1)−
	−1∑
k=0

(2k)−(2a−1−2β)

≤ 2c−2(1 − 2−β)−22(a−1)−(
1 − 2−(2a−1−2β))−1
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provided that β < a − 1
2 and

2	 ≤ (
c2(1 − 2−β)22−(a−1)−2−2a−1)1/(1+2β)

N1/(1+2β).(2.3)

If 	 is the largest integer for which (2.3) holds, then

2	 ≥ 2−1(
c2(1 − 2−β)22−(a−1)−2−2a−1)1/(1+2β)

N1/(1+2β)

=: C(c, a,β)N1/(1+2β).

From this we deduce

ENτ ′
β ≤ 2c−2(1 − 2−β)−22(a−1)−(

1 − 2−(2a−1−2β))−1 =: C′(c, a,β),(2.4)

where τ ′
β is the first time

N−1
∑
n≥k

nLn(t) ≥ δ

with k = C(c, a,β)N1/(1+2β). Since β ∈ (0, a − 1
2) is arbitrary, b = (1 + 2β)−1

can take any value in the interval ((2a)−1,1). Finally we choose c = 1−δ to derive
(2.1) from (2.4) with

C0(a, b, δ) = C
(
1 − δ, a, (b−1 − 1)/2

)
,

(2.5)
C′

0(a, b, δ) = C′(1 − δ, a, (b−1 − 1)/2
)
. �

3. Instantaneous gelation. This section is devoted to the proof of Theo-
rem 1.6. The main ingredient for the proof of Theorem 1.6 is Theorem 3.1.

THEOREM 3.1. Assume that α(m,n) ≥ mq + nq , for some q ∈ (1,2). There
exist positive constants C1 = C1(q, s, η, ν) and k0 = k0(q, s, η) such that if s >

2 − q , η ∈ (0, (q − 1)/4), δ ∈ (0,1), and ν > 1, then

ENTk(δ) ≤ 4(2 − q)−1k−s+2−q + 8ks(k−1)+3−qN−1

+ C1(1 − δ)−1k−η(log k)1−η(3.1)

+ C1(1 − δ)−1k3−q/2(log k)3N−q/(2s(k−1))

for every k satisfying k > k0 and

k(k−1)s+2 ≤ N ≤ ekν

, 2k−s ≤ 1.(3.2)

REMARK 3.1. For simplicity, we avoided the case q = 2. In fact when q = 2,
(3.1) is valid if we replace the first term on the right-hand side with 4k−s log k [see
(3.18) below].
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We first demonstrate how Theorem 3.1 implies Theorem 1.6.

PROOF OF THEOREM 1.6. Set k = A logN/ log logN in Theorem 3.1. We
note that (3.2) is satisfied for large N if sA < 1. Let us first look at the second
term on the right-hand side of (3.1). In fact the second term decays like a negative
power of N if sA < 1. This is because

ks(k−1)+3−qN−1 ≤ c0N
sA−1(logN)c1(3.3)

for some constants c0 and c1. To see this, take the logarithm of both sides to write

sk log k + (3 − q − s) log k ≤ log c0 + sA logN + c1 log logN.

First select c1 large enough so that

(3 − q − s) logk ≤ (3 − q − s)(logA + log logN) ≤ c1 log logN.

Then observe that if N satisfies log logN ≥ A, then

sk log k ≤ sk log logN = sA logN.

This completes the proof of (3.3) with c0 = 1, provided that N satisfies log logN ≥
A. Finally we adjust the constant c0 to have the inequality (3.3) even when N

satisfies log logN < A.
We now turn to the last term on the right-hand side of (3.1). By taking the

logarithm of the last term, it is not hard to show that for a positive constant c2,

k3−q/2(log k)3N−q/(2s(k−1)) ≤ c2(logN)3−q/2−q/(2sA)(log logN)q/2.

The right-hand side of (3.1) goes to 0 as N → ∞, if

s > 2 − q, sA <

(
q

6 − q

)
∧ 1.

Now (3.1) implies

ENTk(δ) ≤ c3(1 − δ)−1[(logN)−η + (logN)−η′ + (logN)−η′′ ]
(3.4)

× (log logN)γ

with

η′ = s + q − 2, η′′ = q

2sA
+ q

2
− 3, γ = max(1, s + q − 2).

We now try to optimize (3.4) over s. By our assumption on A, we know that (2 −
q)(6 − q) < q/A. Choose s = s̄, where

η′ = s̄ + q − 2 = q

2s̄A
+ q

2
− 3 = η′′.
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Hence,

s̄ = (√
(1 + q/2)2 + 2q/A − 1 − q/2

)
/2,

(3.5)
(s̄ − 2 + q)(2s̄ + 6 − q) = q/A + (2 − q)(q − 6) > 0.

As a result s̄ > 2 − q , η′ = η′′ > 0, and we can easily see

s̄A = q

2(s̄ + 1 + q/2)
<

q

6 − q
∧ 1

is also valid. In summary,

ENTk(δ) ≤ 3c3(1 − δ)−1(logN)−(η∧η′)(log logN)γ ,(3.6)

where η′ = s̄ + q − 2 with s̄ as in (3.5). Finally observe that η ∧ η′ in (3.6) can be
chosen to be any positive number θ < η̄. By decreasing θ a little bit, we can forget
about the double logarithm and deduce (1.13). �

It remains to establish (3.1). The main ingredients for the proof of Theorem 3.1
are Lemmas 3.1 and 3.2. Before stating these lemmas and explaining that how they
imply Theorem 3.1, let us provide some heuristics. Perhaps the best way to moti-
vate our strategy is by taking a solution f of (1.1) and establishing an instantaneous
gelation for it. This is exactly what Carr and da Costa proved in [3]. However, we
offer an alternative proof that is flexible enough to be carried out microscopically.
The bottom line is that we would like to show that very quickly a good fraction
of particles are large. We may start with the worst case scenario initially, namely
when all particles are of size 1. That is, f1(0) = 1 and fn(0) = 0 for n > 1. We
then use (1.2) to show that if Mk(t) = ∑

n≥k nfn(t), then

dMk+1(t)

dt
≥ kq−1Mk(t)

(
1 − Mk+1(t)

)
.

(See the proof of Lemma 3.1 below.) Note that if θ(δ, k) is the first time Mk+1(t) ≥
δ, then for t < θ(δ, k),

dMk+1(t)

dt
≥ kq−1Mk(t)(1 − δ).

The point is that staring from M1(t) = 1 and Mk(0) = 0 for k > 1, we can use
induction to deduce

Mk+1(t) ≥ (k!)q−2(
(1 − δ)t

)k := δ̄k+1(t)(3.7)

provided that t < θ(δ, k). What we learn from this is that it takes a short time to
have δ̄k fraction of mass constituting of particles of sizes at least k, provided that
we choose δk positive but super-exponentially small as k gets larger. As we try to
carry out this argument for L, we encounter two difficulties: the discrete nature of
the ML model introduces an additional error coming from coagulations between
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two particles of the same size (a microscopic coagulation rate L2
n − Ln instead

of L2
n), and the noise in the system. However, the inductive nature of the above

argument allows us to handle these difficulties and establish a variant of (3.7) in
Lemma 3.1.

Lemma 3.1 gives us a weak lower bound on the total mass of large particles be-
cause δ̄k in (3.7) is very small for large k. To see how such a weak lower bound can
be improved, let us recall that as in [3] we may look at moments Rp = ∑

n npfn

and show that in fact
dRp(t)

dt
≥ pRp(t)1+βM1(t)

with β = (q − 1)/(p − 1). If t is before the gelation time, then M1(t) = 1 and we
learn that Rp(t) blows up at a finite time tp which is very small if p is very large.
Because of the randomness in our ML model, we do not know how to work out
a microscopic variant of [3] argument. Instead we switch to the moments of large
particles Mp,	 = ∑

n≥	 npfn and observe that now

dMp,	+1(t)

dt
≥ pMp,	(t)

1+β(
1 − M	(t)

)
M	(t)

−β,

and if t < θ(δ, 	 − 1), then

dMp,	+1(t)

dt
≥ pMp,	(t)

1+β(1 − δ)δ−β.(3.8)

The point is that now the right-hand side of (3.8) depends on the previous Mp,	,
and therefore an inductive argument can be used to show that Mp,	(t) can get
very large for a time t that is small and p that is large. In other words, instead of
showing that Rp becomes infinite at a time tp that is small, we would rather show
that Mp,	(t) gets extremely large very quickly. The inductive nature of (3.8) makes
it very useful in its microscopic form. More precisely, in the case of ML process
we can show that a variant of (3.8) is true for the L process provided that we take
the expectation of both sides. Then by induction on 	 we can show that Mp,	(t)

gets very large very quickly. This is exactly the role of Lemma 3.2 below. In fact
the induction starts from 	 = k, and we use Lemma 3.1 to argue that Mp,k(t) is
already large for some small t provided that p is sufficiently large. With the aid
of Lemma 3.2, we show that if we wait for another short period of time, either a
good fraction of particles are large, or else the high moments of density become
super-exponentially large in k. Then a crude bound on moments of particle density
demonstrates that the second alternative cannot occur, and hence gels have already
been formed.

To prepare for the statement of the first lemma, we take a sequence (δ	 :	 =
1, . . . , k), and define

σ	 = inf
{
t :

1

N

∑
n≥r

nLn(t) ≥ δr for r = 1,2, . . . , 	

}
.
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LEMMA 3.1. For every decreasing sequence (δ	 :	 = 1, . . . , k) which satisfies

δ1 = 1, 2δ2 ≤ 1 and
8k

N
≤ δk,(3.9)

we have

ENσk ≤ 4
k−1∑
	=1

	1−q
δ′
	+1

δ	

,(3.10)

where δ′
	+1 = δ	+1 + 2	N−1.

Define

Tp,r(A) = inf
{
t :

1

N

∑
n≥r

npLn(t) ≥ A

}
.

Recall that we simply write Tr(A) for Tp,r(A) when p = 1.

LEMMA 3.2. Let {m	 :k ≤ 	 ≤ h} be an increasing sequence, and pick p ≥ 2,
δ > 0. Assume that Nm	+1 ≥ p	p for every 	, and write τr for Tp,r (mr) ∧ Tk(δ).
Then for h > k,

EN(τh − τk) ≤ 2

1 − δ

h−1∑
	=k

[
δβm	+1

pm
β+1
	

+ 	2
(

p	

Nm	+1

)q/(p−1)]
,(3.11)

where β = (q − 1)/(p − 1) with q as in the statement of Theorem 1.6.

PROOF OF LEMMA 3.1. To bound the stopping time σ	, we use the strong
Markov property to write

ENG′
	+1(L(σ	+1)) = ENG′

	+1(L(σ	)) + EN

∫ σ	+1

σ	

AG′
	+1(L(t)) dt,(3.12)

where G′
	+1(L) = G	+1(L) ∧ δ′

	+1, with

Gk(L) = 1

N

∑
n≥k

nLn.

Assume that σ	 < σ	+1, and set

�m,n = (m + n)1(m + n ≥ 	 + 1) − n1(n ≥ 	 + 1) − m1(m ≥ 	 + 1).

We certainly have that AG′
	+1(L) is bounded below by

1

2N2

∑
m,n

(mq + nq)Ln

(
Lm − 1(m = n)

)
1
(
G	+1(L) + N−1�m,n ≤ δ′

	+1
)
�m,n

≥ 1

N2

∑
m,n

(mq + nq)Ln

(
Lm − 1(m = n)

)

× 1
(
G	+1(L) + (m + 	)/N ≤ δ′

	+1
)
m1(n ≥ 	 ≥ m).
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Here we restricted the summation to the cases n ≥ 	 ≥ m and m ≥ 	 ≥ n and
used symmetry to consider the former case only. We note that if n ≥ 	 ≥ m, then
either �m,n = m or m + 	. Also note that if L = L(t) for some t ∈ (σ	, σ	+1) and
n ≥ 	 ≥ m, then G	+1(L) ≤ δ	+1 and G	+1(L) + (m + 	)/N ≤ δ′

	+1. Hence for
such a configuration L,

AG′
	+1(L) ≥ 1

N2

∑
m,n

(mq + nq)m1(n ≥ 	 ≥ m)LmLn − 2

N2 	q+1L	

≥ 1

N2

(∑
n≥	

nqLn

)( ∑
m<	+1

mLm

)
− 2	q

N2

∑
m

mLm

≥ 	q−1G	(L)
(
1 − G	+1(L)

) − 2	q

N
.

If σ	 ≤ t < σ	+1, then G	(L(t)) ≥ δ	, and 1 − G	+1(L(t)) ≥ 1 − δ	+1 ≥ 1/2 for
	 ≥ 1, because by our assumption (3.9), δ	+1 ≤ 1/2. Hence

AG′
	+1(L) ≥ 1

2	q−1δ	 − 2	qN−1 ≥ 1
4	q−1δ	,

where we have used assumption (3.9) for the second inequality. From this and
(3.12) we deduce

1
4	q−1δ	EN(σ	+1 − σ	) ≤ EN [G′

	+1(L(σ	+1)) − G′
	+1(L(σ	))] ≤ δ′

	+1.

As a result,

1
4	q−1δ	EN(σ	+1 − σ	) ≤ δ′

	+1,

Hence

EN(σ	+1 − σ	) ≤ 4	1−q
δ′
	+1

δ	

.

Summing this inequality over 	 and remembering that σ1 = 0, leads to (3.10). �

PROOF OF LEMMA 3.2. Step 1. We note that since m	 < m	+1, we have that
τ	 ≤ τ	+1. Fix some positive n0 ∈ R, and write θ for the first time Ln �= 0 for some
n ≥ n0. We also set τ ′

	+1 = τ	+1 ∧ (θ ∨ τ	). We use the strong Markov property to
write

ENM ′
p,	+1(L(τ ′

	+1)) = ENM ′
p,	+1(L(τ	))

(3.13)

+ EN

∫ τ ′
	+1

τ	

AM ′
p,	+1(L(t)) dt,

where

Mp,r(L) = 1

N

∑
n≥r

npLn, M ′
p,r (L) = Mp,r(L) ∧ (2mr).
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Write

�m,n := N−1[(m + n)p − np − mp] ≥ N−1pnp−1m =: �′
m,n.

(Here we have used our assumption p ≥ 2.) We certainly have that the expression
AM ′

p,	+1(L) is bounded below by

1

2N

∑
m,n

(mq + nq)Ln

(
Lm − 1(m = n)

)
1(m ≥ 	 > n or n ≥ 	 > m)

× [(Mp,	+1 + �m,n) ∧ (2m	+1) − Mp,	+1 ∧ (2m	+1)]

≥ 1

N

∑
m,n

(mq + nq)LnLm1(n ≥ 	 > m)

× [(Mp,	+1 + �′
m,n) ∧ (2m	+1) − Mp,	+1 ∧ (2m	+1)]

≥ 1

N2

∑
m,n

(mq + nq)pnp−1mLmLn1(n ≥ 	 > m)

× 1(Mp,	+1 + �′
m,n ≤ 2m	+1).

We now assume that m < 	 and that L = L(t) for some τ	 < t < τ ′
	+1. For such m

and L, we have

Mp,	+1(L) + �′
m,n ≤ m	+1 + N−1pn

p−1
0 	 ≤ 2m	+1

provided that we choose

n0 =
(

Nm	+1

p	

)1/(p−1)

.

For such choices of L and n0, we deduce

AM ′
p,	+1(L) ≥ p

N2

(∑
n≥	

np+q−1Ln

)(∑
m<	

mLm

)

≥ pMp+q−1,	(L)
(
1 − G	(L)

)
.

If t < Tk(δ) and k ≤ 	, then G	(L(t)) ≤ Gk(L(t)) < δ, and 1 − G	(L(t)) ≥ 1 − δ.
Hence

AM ′
p,	+1(L) ≥ p(1 − δ)Mp+q−1,	(L),(3.14)

whenever L = L(t) for some t < Tk(δ). On the other hand, by Hölder’s inequality,

Mp+q−1,	(L) = 1

N

∑
n≥	

np+q−2nLn ≥ G	(L)−βM
1+β
p,	 ,
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where β = (q − 1)/(p − 1). From this and (3.14) we deduce that if L = L(t) for
some t satisfying t ∈ (τ	, τ

′
	+1), then

AM ′
p,	+1(L) ≥ p(1 − δ)δ−βM

β+1
p,	 (L) ≥ p(1 − δ)δ−βm

β+1
	 .

Here we have used the fact that if τ	 < τ ′
	+1, then τ	 = Tp,	(m	). [Simply because

if τ	 �= Tp,	(m	), then we must have that Tk(δ) < Tp,	(m	), which implies that
τ ′
	+1 = τ	 = Tk(δ), τ ′

	+1 − τ	 = 0.] This and (3.13) imply

p(1 − δ)δ−βm
β+1
	 EN(τ ′

	+1 − τ	) ≤ EN [M ′
p,	+1(L(τ ′

	+1)) − M ′
p,	+1(L(τ	))]

≤ 2m	+1.

Therefore,

EN(τ ′
	+1 − τ	) ≤ 2δβ

p(1 − δ)

m	+1

m
β+1
	

.

Hence for (3.11) it suffices to establish

EN(τ	+1 − τ ′
	+1) ≤ 2	2

1 − δ

(
Nm	+1

p	

)−q/(p−1)

.(3.15)

Step 2. To establish (3.15), observe that if τ	+1 > τ ′
	+1, then the configuration

L(τ ′
	+1) has at least one particle of size n ≥ n0. Let us mark one such particle and

follow its interaction with other particles for t ≥ τ ′
	+1. When this particle coag-

ulates with any other particle of size a, then we increase its size n(t) by a and
remove the other particle from the system. We write β1 < β2 < · · · for the con-
secutive coagulation times of the marked particle with particles of sizes m < 	.
Let us define an auxiliary process (Z(t),K(t)) that is defined for t ≥ τ ′

	+1 with
Z(τ ′

	+1) = K(τ ′
	+1) = 0 and each time our marked particle coagulates with a par-

ticle of size m < 	, the value of K increases by 1, and the value of Z increases
by pn

p−1
0 N−1. So, the process K simply counts the number of such coagulations,

and Z(t) = pn
p−1
0 N−1K(t). Since at such a coagulation, the expression Mp,	+1

increases by �m,n(t) ≥ pn
p−1
0 mN−1 ≥ pn

p−1
0 N−1, with n denoting the size of the

marked particle, we have

Mp,	+1(L(βj )) ≥ jpn
p−1
0 N−1 = jm	+1	

−1.

The right-hand side is m	+1 if j = 	. As a result, β	 ≥ Tp,	+1(m	+1) and (3.15)
would follow if we can show

EN(τ	+1 − τ ′
	+1) ≤ EN

(
β	 ∧ Tk(δ) − τ ′

	+1
)

(3.16)

≤ 2	2

1 − δ

(
Nm	+1

p	

)−q/(p−1)

.
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For this, use the Markov property to write

	 = EN

(
K(β	) − K(τ ′

	+1)
) ≥ EN

(
K

(
β	 ∧ Tk(δ)

) − K(τ ′
	+1)

)
= EN

∫ β	∧Tk(δ)

τ ′
	+1

1

2N

∑
m<	

α(m,n(t))
(
Lm(t) − 1(n(t) = m)

)
dt

= EN

∫ β	∧Tk(δ)

τ ′
	+1

1

2N

∑
m<	

α(m,n(t))Lm(t) dt

≥ EN

∫ β	∧Tk(δ)

τ ′
	+1

n
q
0

2	N

∑
m<	

mLm(t) dt

≥ n
q
0

2	

∫ β	∧Tk(δ)

τ ′
	+1

(
1 − G	(L(t))

)
dt

≥ (1 − δ)n
q
0

2	
EN

(
β	 ∧ Tk(δ) − τ ′

	+1
)
,

where n(t) denotes the size of the marked particle. Here the third equality requires
an explanation: Recall that by our assumption Nm	+1 ≥ p	p , which implies that
n(t) ≥ n0 ≥ 	 and 1(n(t) = m) = 0 for m < 	. Hence (3.16) is true, and this com-
pletes the proof of (3.11). �

We are now ready to prove Theorem 3.1.

PROOF OF THEOREM 3.1. Step 1. There are various parameters in Lemmas
3.1 and 3.2 that we need to choose to serve our goal. We start from specifying the
sequence {δ	 :	 = 1, . . . , k}. We are going to choose δ	 = k−s(	−1). Note that the
conditions in (3.9) hold if

8ksk−s+1 ≤ N, 2k−s ≤ 1.(3.17)

By (3.10),

ENσk ≤ 4k−s
k−1∑
	=1

(	1−q + 2N−1	2−qks	)

(3.18)
≤ 4(2 − q)−1k−s+2−q + 8ks(k−2)+3−qN−1,

because δ	+1/δ	 = k−s .
Step 2. We now would like to apply Lemma 3.2. For this we first specify p to

be 2s(k − 1) + 1. We note that p > 2 because k > 1 + (2s)−1 follows from the
condition 2k−s ≤ 1 of (3.17). Also note that if L = L(σk), then

Mp,k(L) = 1

N

∑
n≥k

npLn ≥ kp−1δk = kp−1−s(k−1) = ks(k−1).(3.19)
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Because of this, we are going to set mk = ks(k−1), so that Tp,k(mk) ≤ σk . We then

specify m	 for 	 > k. We require that m	+1m
−β−1
	 = 	−η for some η ∈ (0,1). This

requirement leads to the formula

m	 = m
(β+1)	−k

k

	−1∏
r=k

r−η(β+1)	−r−1
.(3.20)

In order to apply Lemma 3.2, we need to check that {m	 :k ≤ 	 ≤ h} is an
increasing sequence and that Nm	+1 ≥ p	p . We establish this assuming that
h = Ak log k, and k is sufficiently large. Since m	+1/m	 = m

β
	 	−η, we only need

to show that m
β
	 > 	η for the monotonicity of m	. Note that for m

β
k > kη, we need

to assume that η < (q − 1)/2. As we will see shortly, for m
β
	 > 	η for k ≤ 	 ≤ h,

with h = Ak log k we need to assume more; it suffices to have η < (q − 1)/4.
Observe

logm	 = (β + 1)	−k

[
logmk − η

	−1∑
r=k

(β + 1)k−r−1 log r

]
.

Let us write a = log(β + 1). Note that for sufficiently large k > k1((q − 1)/s), the
function r 
→ e−(r+1)a log r is decreasing over the interval [k,∞). As a result,

	−1∑
r=k

(β + 1)k−r−1 log r =
	−1∑
r=k

e(k−r−1)a log r ≤ eka
∫ ∞
k

e−ra log(r − 1) dr

≤ eka
∫ ∞
k

e−ra log r dr

= a−1 log k + a−1eka
∫ ∞
k

e−rar−1 dr(3.21)

= a−1 log k + a−1eka
∫ ∞
ak

e−r r−1 dr

≤ a−1 log k + a−1eka(
log+(ak)−1 + c2

)
,

where c2 = ∫ ∞
1 e−r r−1 dr . Here we integrated by parts for the second equality.

Recall that a = log(β + 1) with β = (q − 1)/(p − 1) and p − 1 = 2s(k − 1). As a
result, ak is bounded and bounded away from 0, and

lim
k→∞

a−1 log k + a−1eka(log+(ak)−1 + c2)

k log k
= 2s

q − 1
.

From all this we learn

lim inf
k→∞ (β + 1)−(	−k) logm	

k log k
≥ s − 2ηs

q − 1
.(3.22)
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We choose η ∈ (0, (q − 1)/2) so that the left-hand side is positive. For such η,
choose γ such that

s

(
1 − 2η

q − 1

)
> γ > 0.

Hence, for sufficiently large k > k2(q, s, γ ) and every 	 > k,

logm	 ≥ γ (β + 1)	−kk log k,(3.23)

which implies

β logm	 ≥ γ (q − 1)

2s
(β + 1)	−k log k.(3.24)

Note that k2 is independent of 	 because (3.22) follows from (3.21) and the right-
hand side of (3.21) is independent of 	. For the monotonicity of the sequence
{m	 :k ≤ 	 ≤ h}, we need to show that β logm	 > η log	. By (3.24), it suffices to
have

β logm	 ≥ γ (q − 1)

2s
(β + 1)	−k logk > η logh ≥ η log	.(3.25)

Since h = Ak log k, it suffices to have

γ (q − 1)

2s
(β + 1)	 log k > η(β + 1)k[logk + log log k + logA]

for 	 ≥ k. This is true if k > k3(q, s, γ, η,A) for a suitable k3 and γ (q −1)/(2s) >

η. As a result, we need to select γ such that

s

(
1 − 2η

q − 1

)
> γ >

2sη

q − 1
.(3.26)

Such a number γ exists if η ∈ (0, (q − 1)/4). So, let us assume that η ∈ (0, (q −
1)/4) and choose γ = s/2. In summary, there exists a constant k4 = k4(q, s, η,A)

such that if k > k4 and h = Ak log k, then the sequence (m	 :	 = k, . . . , h) is in-
creasing.

Step 3. So far we know that m	 is increasing. In order to apply Lemma 3.2, we
still need to check that Nm	+1 ≥ p	p for 	 satisfying k ≤ 	 ≤ h. We establish this
by induction on 	. If 	 = k, then what we need is

Nmk+1 = Nmkm
β
k k−η = Nks(k−1)k(q−1)/2k−η ≥ pkp

= (
2s(k − 1) + 1

)
k2s(k−1)+1.

Since (q − 1)/2 > η, it suffices to have

N ≥ ks(k−1)+2(3.27)

and k ≥ k5(q, s, η).
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We now assume that Nm	 ≥ p(	−1)p is valid and try to deduce Nm	+1 ≥ p	p .
Indeed

Nm	+1 = Nm	m
β
	 	−η ≥ p(	 − 1)pm

β
	 	−η

by induction hypothesis, and this is greater than p	p , if

m
β
	 ≥ 	η

(
1 + 1

	 − 1

)p

or β logm	 ≥ η log	 + p log
(

1 + 1

	 − 1

)
.

Since p = 2s(k − 1) + 1, the second term on the right-hand side is bounded, and
we only need to verify

β logm	 ≥ η logh + c3 ≥ η log	 + c3(3.28)

for a constant c3. Except for the extra constant c3, this is identical to (3.25)
and we can readily see that condition (3.26) would guarantee (3.28) if k ≥
k6(q, s, γ, η,A). In summary, Nm	+1 ≥ p	p is valid for 	 satisfying k ≤ 	 ≤ h,
provided that k is sufficiently large, and (3.27) is satisfied. We observe that (3.27)
implies the first inequality in (3.17) for k ≥ 8.

Step 4. We assume that η ∈ (0, (q − 1)/4) and that γ = s/2. As before, we set
τr = Tp,r(mr) ∧ Tk(δ). Since τk ≤ Tp,k(mk) ≤ σk , we may apply Lemma 3.2 to
assert,

EN(τh − σk) ≤ 2δβ

p(1 − δ)

h−1∑
	=k

	−η + 2N−q/(p−1)

(1 − δ)

h−1∑
	=k

	2
(

p	

m	+1

)q/(p−1)

≤ 2δβ

p(1 − δ)(1 − η)
h1−η + 2(mkN)−q/(p−1)

(1 − δ)

h−1∑
	=k

	2(p	)q/(p−1)

≤ 2

p(1 − δ)(1 − η)
h1−η + 2(mkN)−q/(p−1)

(1 − δ)
h3(ph)q/(p−1).

Hence

EN(τh − σk) ≤ 2
(
p(1 − δ)(1 − η)

)−1
h1−η

(3.29)
+ 2(1 − δ)−1k−q/2N−q/(2s(k−1))h3(ph)q/(p−1).

Our strategy is to choose h sufficiently large so that τh = Tk(δ), because we
are interested in bounding Tk(δ). We have the trivial bound Mp,h ≤ Np−1 be-
cause N−1 ∑

n nLn = 1. Hence if h is sufficiently large so that mh > Np−1, then
Tp,h(mh) = ∞ and as a result τh = Tk(δ). For mh > Np−1, we need

logmh > (p − 1) logN = 2s(k − 1) logN.(3.30)

By (3.23),

logmh ≥ γ (β + 1)h−kk logk
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for k > k2(q, s, γ ) and γ = s/2. As a result, the condition mh > Np−1 is realized
if

γ (β + 1)h−kk log k ≥ 2sk logN

or equivalently

logγ + Ak log(β + 1) log k − k log(β + 1) + log logk ≥ log(2s) + log logN.

Since limk k log(β + 1) = (q − 1)/(2s), as k goes to infinity, we pick μ ∈ (0, (q −
1)/2s) and choose k7((q − 1)/s) so that if k > k7, then k log(β + 1) > μ. For
such k, we only need to have

μ(A logk − 1) + log logk ≥ log
2s

γ
+ log logN = log 4 + log logN

to guarantee (3.30). Again for large k > k8(μ), we have μ + log 4 ≤ log log k, and
we only need to have

kμA ≥ logN.(3.31)

In summary, there exists a constant k9 = k9(q, s,μ,A) such that (3.29) is valid
with τh = Tk(δ) if k > k9, h = Ak log k and k satisfies (3.17), (3.27) and (3.31)
with μ ∈ (0, (q − 1)/2s).

Final step. From (3.29) and (3.18) we learn

ENTk(δ) ≤ 4(2 − q)−1k−s+2−q + 8ks(k−1)+3−qN−1

+ 2
(
p(1 − δ)(1 − η)

)−1
h1−η(3.32)

+ 2(1 − δ)−1k−q/2N−q/(2s(k−1))h3(ph)q/(p−1),

because τh = Tk(δ). Condition (3.31) combined with (3.17) and (3.27) yield

kμA ≥ logN ≥ (sk − s + 2) log k, 2k−s ≤ 1.(3.33)

For this to be plausible for large k, it suffices to have ν := μA > 1. Since μ ∈
(0, (q − 1)/(2s)), we pick some

A >
2s

q − 1

and select μ ∈ (A−1, (q − 1)/(2s)). Since h = Ak log k and p = 2s(k − 1) + 1,
bound (3.32) implies

ENTk(δ) ≤ 4(2 − q)−1k−s+2−q + 8ks(k−1)+3−qN−1

+ c4(1 − δ)−1k−η(log k)1−η

+ c4(1 − δ)−1k3−q/2(log k)3N−q/(2s(k−1)),

because (ph)q/(p−1) is uniformly bounded in k. This completes the proof of (3.1)
because (3.33) is exactly (3.2). �



1828 F. REZAKHANLOU

4. Complete gelation. This section is devoted to the proof of Theorem 1.7.
Lemma 4.1 below and Theorem 1.6 are the main ingredients for the proof of The-
orem 1.7.

LEMMA 4.1. Assume that α(m,n) ≥ mqn + nqm for some q > 1. Set

σ = inf
{
t : LN/2(t) > 0

}
, σ̂ = min

{
σ,Tk(δ)

}
.

Then

EN(σ − σ̂ ) ≤ 4δ−1k1−q .(4.1)

PROOF. Define K(L) = ∑
n Ln. By strong Markov property,

ENK
(
L(σ )

) = ENK
(
L(σ̂ )

) + EN

∫ σ

σ̂
AK

(
L(t)

)
dt.(4.2)

If σ > σ̂ and L = L(t) for some t ∈ (σ̂ , σ ), then

−AK(L) = 1

2N

∑
m,n

α(m,n)Lm

(
Ln − 1(m = n)

)

≥ 1

2N

∑
m,n

nqmLm

(
Ln − 1(m = n)

)
1(n ≥ k)

= 1

2N

∑
m,n

nqmLmLn1(n ≥ k) − 1

2N

∑
n

nq+1Ln1(N/2 ≥ n ≥ k)

≥ 1

2N

(∑
n≥k

nqLn

)(∑
m

mLm

)
− 1

4

∑
n

nqLn1(N/2 ≥ n ≥ k)

= 1

2

∑
n≥k

nqLn − 1

4

∑
n≥k

nqLn = 1

4

∑
n≥k

nqLn ≥ 1

4
Nδkq−1.

From this and (4.2) we deduce

N ≥ ENK
(
L(σ̂ )

) ≥ 1
4Nδkq−1

EN(σ − σ̂ ),

as desired. �

PROOF OF THEOREM 1.7. Let T̂ = T̂A(1/2) be as in Theorem 1.6, with A a
positive constant satisfying A < q(2 − q)−1(6 − q)−1. Pick θ ∈ (0, η̄) so that by
(1.13),

ENT̂ ≤ c1(logN)−θ(4.3)

for a constant c1. Use Lemma 4.1 for k = A logN/ log logN to assert

EN

(
σ − min{T̂ , σ }) ≤ c2(logN/ log logN)1−q
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for a constant c2. From this and (4.3) we deduce

ENσ ≤ c3(logN/ log logN)1−q(4.4)

for a constant c3. Recall that at time σ , we already have a particle of size at least
h = N/2. We mark one such particle and keep track of its size N̄(t) at later times
t ≥ σ . We also define an auxiliary process (K(t) : t ≥ σ	) by the following rules:
K(σ) = 0 and K increases by 1 each time the marked particle coagulates with
another particle. We would like to use this marked particle to produce a complete
gelation. Define the stopping time

Sr = inf
{
t : N̄(t) ≥ r

}
.

Our goal is bounding Sr+1 − Sr . Note that if Sr+1 − Sr �= 0, then N̄(t) = r for
every t ∈ (Sr , Sr+1), and

K(Sr+1) − K(Sr) = 1,

because any coagulation of the marked particle results in N̄ ≥ r + 1. As before we
write A for the generator of the augmented process L̂(t) = (L(t),K(t)) and abuse
the notation to write K for the function that maps L̂ to its second component K .
Note that if L̂ = L̂(t) for some t ∈ (Sr , Sr+1), then

AK(L̂) = 1

N

∑
m

α(r,m)
[
Lm − 1(m = r)

] ≥ 1

N

∑
m

(
rqm + mqr

)[
Lm − 1(m = r)

]

≥ 1

N

∑
m

mrq[
Lm − 1(m = r)

] =
(

1 − r

N

)
rq.

From this and strong Markov property

1 ≥ EN

(
K(Sr+1) − K(Sr)

) = EN

∫ Sr+1

Sr

AK
(
L̂(t)

)
dt,

we deduce

EN(Sr+1 − Sr) ≤
(

1 − r

N

)−1

r−q.

Summing this over r yields

EN(SN − Sh) ≤
N−1∑
r=h

(
1 − r

N

)−1

r−q ≤ N

hq

N−1∑
r=h

(N − r)−1

≤ N

hq

[
log(N − h) + 1

] ≤ Nh−q(1 + logN).

From this and (4.4) we learn that if τ̃ denotes the time of the complete gelation,
then

EN τ̃ ≤ c3(logN/ log logN)1−q + 2−q(1 + logN)N1−q

≤ c4(logN/ log logN)1−q .

This completes the proof of (1.14). �
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