THE STOCHASTIC REFLECTION PROBLEM ON AN INFINITE DIMENSIONAL CONVEX SET AND BV FUNCTIONS IN A GELFAND TRIPLE ${ }^{1}$

By Michael Röckner, Rong-Chan Zhu and Xiang-Chan Zhu
University of Bielefeld, Chinese Academy of Sciences and University of Bielefeld, and Peking University and University of Bielefeld

Abstract

In this paper, we introduce a definition of BV functions in a Gelfand triple which is an extension of the definition of BV functions in [Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 (2010) 405-414] by using Dirichlet form theory. By this definition, we can consider the stochastic reflection problem associated with a self-adjoint operator A and a cylindrical Wiener process on a convex set Γ in a Hilbert space H. We prove the existence and uniqueness of a strong solution of this problem when Γ is a regular convex set. The result is also extended to the nonsymmetric case. Finally, we extend our results to the case when $\Gamma=K_{\alpha}$, where $K_{\alpha}=$ $\left\{f \in L^{2}(0,1) \mid f \geq-\alpha\right\}, \alpha \geq 0$.

1. Introduction. A definition of BV functions in abstract Wiener spaces has been given by Fukushima in [9], Fukushima and Hino in [10], based upon Dirichlet form theory. In this paper, we introduce BV functions in a Gelfand triple, which is an extension of BV functions in a Hilbert space defined in [2]. Here, we use a version of the Riesz-Markov representation theorem in infinite dimensions proved by Fukushima using the quasi-regularity of the Dirichlet form (see [13]) to give a characterization of BV functions.

In this paper, we consider the Dirichlet form

$$
\mathcal{E}^{\rho}(u, v)=\frac{1}{2} \int_{H}\langle D u, D v\rangle \rho(z) \mu(d z)
$$

(where μ is a Gaussian measure in H and ρ is a BV function) and its associated process. By using BV functions, we obtain a Skorohod-type representation for the associated process, if $\rho=I_{\Gamma}$ and Γ is a convex set.

As a consequence of these results, we can solve the following stochastic differential inclusion in the Hilbert space H :

$$
\left\{\begin{array}{l}
d X(t)+\left(A X(t)+N_{\Gamma}(X(t))\right) d t \ni d W(t), \tag{1.1}\\
X(0)=x,
\end{array}\right.
$$

[^0]where our solution is strong (in the probabilistic sense), if Γ is regular. Here $A: D(A) \subset H \rightarrow H$ is a self-adjoint operator. $N_{\Gamma}(x)$ is the normal cone to Γ at x and $W(t)$ is a cylindrical Wiener process in H. The precise meaning of the above inclusion will be defined in Section 5.2. The solution to (1.1) is called distorted (if $\rho=I_{\Gamma}$, reflected) Ornslein-Uhlenbek (OU for short)-process.

Equation (1.1) was first studied (strongly solved) in [15], when $H=L^{2}(0,1)$, A is the Laplace operator with Dirichlet or Neumann boundary conditions and Γ is the convex set of all nonnegative functions of $L^{2}(0,1)$; see also [23]. In [5], the authors study the situation when Γ is a regular convex set with nonempty interior. They get precise information about the corresponding Kolmogorov operator, but did not construct a strong solution to (1.1).

In this paper, we consider a convex set Γ. If Γ is a regular convex set, we show that I_{Γ} is a BV-function and thus obtain existence and uniqueness results for (1.1). By a modification of [9] and using [6], we obtain the existence of an (in the probabilistic sense) weak solution to (1.1). Then, we prove pathwise uniqueness. Thus, by a version of the Yamada-Watanabe Theorem (see [12]), we deduce that (1.1) has a unique strong solution. We also consider the case when $\Gamma=K_{\alpha}$, where $K_{\alpha}=\left\{f \in L^{2}(0,1) \mid f \geq-\alpha\right\}, \alpha \geq 0$, and prove our result about Skorohod-type representation and that $I_{K_{\alpha}}$ is a BV function, if $\alpha>0$.

The solution of the reflection problem is based on an integration by parts formula. The connection to BV functions is given in Theorem 3.1 below, which is a key result of this paper. It asserts that the integration by parts formula for $\rho \cdot \mu$ gives a characterization of BV functions ρ, in the case where μ is a Gaussian measure. This is an extension of the characterization of BV functions in finite dimension. But an integration by parts formula is in fact enough for the reflection problem. This we show in Section 6, exploiting the beautiful integration by parts formula for $K_{\alpha}, \alpha \geq 0$, proved in [23], which in case $\alpha=0$, that is, $K_{0}=\left\{f \in L^{2}(0,1): f \geq 0\right\}$, is with respect to a non-Gaussian measure, namely a Bessel bridge. Theorem 3.1 applies to prove that $I_{K_{\alpha}}$ is a BV function, but only if $\alpha>0$.

This paper is organized as follows. In Section 2, we consider the Dirichlet form and its associated distorted OU-process. We introduce BV functions in Section 3, by which we can get the Skorohod type representation for the OU-process. In Section 4, we analyze the reflected OU-process. In Section 5, we get the existence and uniqueness of the solution for (1.1) if Γ is a regular convex set. We also extend these results to the nonsymmetric case. In Section 6, we consider the case when $\Gamma=K_{\alpha}$, where $K_{\alpha}=\left\{f \in L^{2}(0,1) \mid f \geq-\alpha\right\}, \alpha \geq 0$.

Finally, we would like to mention that apart from contributing to develop the theory of BV functions on infinite dimensional spaces, one main motivation of this paper is to provide the probabilistic counterpart to results in [5] and [6], by exploiting Dirichlet form theory and its associated potential theory.
2. The Dirichlet form and the associated distorted OU-process. Let H be a real separable Hilbert space (with scalar product $\langle\cdot, \cdot\rangle$ and norm denoted by $|\cdot|$). We denote its Borel σ-algebra by $\mathcal{B}(H)$. Assume that:

Hypothesis 2.1. $A: D(A) \subset H \rightarrow H$ is a linear self-adjoint operator on H such that $\langle A x, x\rangle \geq \delta|x|^{2} \forall x \in D(A)$ for some $\delta>0$ and A^{-1} is of trace class.

Since A^{-1} is trace class, there exists an orthonormal basis $\left\{e_{j}\right\}$ in H consisting of eigen-functions for A with corresponding eigenvalues $\alpha_{j} \in \mathbb{R}, j \in \mathbb{N}$, that is,

$$
A e_{j}=\alpha_{j} e_{j}, \quad j \in \mathbb{N}
$$

Then $\alpha_{j} \geq \delta$ for all $j \in \mathbb{N}$.
Below $D \varphi: H \rightarrow H$ denotes the Fréchet-derivative of a function $\varphi: H \rightarrow \mathbb{R}$. By $C_{b}^{1}(H)$ we shall denote the set of all bounded differentiable functions with continuous and bounded derivatives. For $K \subset H$, the space $C_{b}^{1}(K)$ is defined as the space of restrictions of all functions in $C_{b}^{1}(H)$ to the subset $K . \mu$ will denote the Gaussian measure in H with mean 0 and covariance operator

$$
Q:=\frac{1}{2} A^{-1}
$$

Since A is strictly positive, μ is nondegenerate and has full topological support. Let $L^{p}(H, \mu), p \in[1, \infty]$, denote the corresponding real L^{p}-spaces equipped with the usual norms $\|\cdot\|_{p}$. We set

$$
\lambda_{j}:=\frac{1}{2 \alpha_{j}} \quad \forall j \in \mathbb{N}
$$

so that

$$
Q e_{j}=\lambda_{j} e_{j} \quad \forall j \in \mathbb{N}
$$

For $\rho \in L_{+}^{1}(H, \mu)$ we consider

$$
\mathcal{E}^{\rho}(u, v)=\frac{1}{2} \int_{H}\langle D u, D v\rangle \rho(z) \mu(d z), \quad u, v \in C_{b}^{1}(F)
$$

where $F:=\operatorname{Supp}[\rho \cdot \mu]$ and $L_{+}^{1}(H, \mu)$ denotes the set of all nonnegative elements in $L^{1}(H, \mu)$. Let $\mathrm{QR}(H)$ be the set of all functions $\rho \in L_{+}^{1}(H, \mu)$ such that $\left(\mathcal{E}^{\rho}, C_{b}^{1}(F)\right)$ is closable on $L^{2}(F, \rho \cdot \mu)$. Its closure is denoted by $\left(\mathcal{E}^{\rho}, \mathcal{F}^{\rho}\right)$. We denote by \mathcal{F}_{e}^{ρ} the extended Dirichlet space of $\left(\mathcal{E}^{\rho}, \mathcal{F}^{\rho}\right)$, that is, $u \in \mathcal{F}_{e}^{\rho}$ if and only if $|u|<\infty \rho \cdot \mu$-a.e. and there exists a sequence $\left\{u_{n}\right\}$ in \mathcal{F}^{ρ} such that $\mathcal{E}^{\rho}\left(u_{m}-u_{n}, u_{m}-u_{n}\right) \rightarrow 0$ as $n \geq m \rightarrow \infty$ and $u_{n} \rightarrow u \rho \cdot \mu$-a.e. as $n \rightarrow \infty$.

THEOREM 2.2. Let $\rho \in \mathrm{QR}(H)$. Then $\left(\mathcal{E}^{\rho}, \mathcal{F}^{\rho}\right)$ is a quasi-regular local Dirichlet form on $L^{2}(F ; \rho \cdot \mu)$ in the sense of [13], Chapter IV, Definition 3.1.

Proof. The assertion follows from the main result in [21].
By virtue of Theorem 2.2 and [13], there exists a diffusion process $M^{\rho}=$ ($\Omega, \mathcal{M},\left\{\mathcal{M}_{t}\right\}, \theta_{t}, X_{t}, P_{z}$) on F associated with the Dirichlet form $\left(\mathcal{E}^{\rho}, \mathcal{F}^{\rho}\right) . M^{\rho}$ will be called distorted OU-process on F. Since constant functions are in \mathcal{F}^{ρ} and $\mathcal{E}^{\rho}(1,1)=0, M^{\rho}$ is recurrent and conservative. We denote by \mathbf{A}_{+}^{ρ} the set of all positive continuous additive functionals (PCAF in abbreviation) of M^{ρ}, and define $\mathbf{A}^{\rho}:=\mathbf{A}_{+}^{\rho}-\mathbf{A}_{+}^{\rho}$. For $A \in \mathbf{A}^{\rho}$, its total variation process is denoted by $\{A\}$. We also define $\mathbf{A}_{0}^{\rho}:=\left\{A \in \mathbf{A}^{\rho} \mid E_{\rho \cdot \mu}\left(\{A\}_{t}\right)<\infty \forall t>0\right\}$. Each element in \mathbf{A}_{+}^{ρ} has a corresponding positive \mathcal{E}^{ρ}-smooth measure on F by the Revuz correspondence. The set of all such measures will be denoted by S_{+}^{ρ}. Accordingly, $A_{t} \in \mathbf{A}^{\rho}$ corresponds to a $v \in S^{\rho}:=S_{+}^{\rho}-S_{+}^{\rho}$, the set of all \mathcal{E}^{ρ}-smooth signed measure in the sense that $A_{t}=A_{t}^{1}-A_{t}^{2}$ for $A_{t}^{k} \in \mathbf{A}_{+}^{\rho}, k=1,2$, whose Revuz measures are $v^{k}, k=1,2$, and $v=v^{1}-v^{2}$ is the Hahn-Jordan decomposition of v. The element of \mathbf{A}^{ρ} corresponding to $v \in S^{\rho}$ will be denoted by A^{ν}.

Note that for each $l \in H$ the function $u(z)=\langle l, z\rangle$ belongs to the extended Dirichlet space \mathcal{F}_{e}^{ρ} and

$$
\begin{equation*}
\mathcal{E}^{\rho}(l(\cdot), v)=\frac{1}{2} \int\langle l, D v(z)\rangle \rho(z) d \mu(z) \quad \forall v \in C_{b}^{1}(F) \tag{2.1}
\end{equation*}
$$

On the other hand, the $\mathrm{AF}\left\langle l, X_{t}-X_{0}\right\rangle$ of M^{ρ} admits a unique decomposition into a sum of a martingale $\mathrm{AF}\left(M_{t}\right)$ of finite energy and $\operatorname{CAF}\left(N_{t}\right)$ of zero energy. More precisely, for every $l \in H$,

$$
\begin{equation*}
\left\langle l, X_{t}-X_{0}\right\rangle=M_{t}^{l}+N_{t}^{l} \quad \forall t \geq 0 P_{z} \text {-a.s. } \tag{2.2}
\end{equation*}
$$

for \mathcal{E}^{ρ}-q.e. $z \in F$.
Now for $\rho \in L^{1}(H, \mu)$ and $l \in H$, we say that $\rho \in \mathrm{BV}_{l}(H)$ if there exists a constant $C_{l}>0$,

$$
\begin{equation*}
\left|\int\langle l, \operatorname{Dv}(z)\rangle \rho(z) d \mu(z)\right| \leq C_{l}\|v\|_{\infty} \quad \forall v \in C_{b}^{1}(F) \tag{2.3}
\end{equation*}
$$

By the same argument as in [10], Theorem 2.1, we obtain the following theorem.
THEOREM 2.3. Let $\rho \in L_{+}^{1}$ and $l \in H$.
(1) The following two conditions are equivalent:
(i) $\rho \in \mathrm{BV}_{l}(H)$.
(ii) There exists a (unique) signed measure v_{l} on F of finite total variation such that

$$
\begin{equation*}
\frac{1}{2} \int\langle l, D v(z)\rangle \rho(z) d \mu(z)=-\int_{F} v(z) v_{l}(d z) \quad \forall v \in C_{b}^{1}(F) \tag{2.4}
\end{equation*}
$$

In this case, ν_{l} necessarily belongs to $S^{\rho+1}$.
Suppose further that $\rho \in \mathrm{QR}(H)$. Then the following condition is also equivalent to the above:
(iii) $N^{l} \in \mathbf{A}_{0}^{\rho}$.

In this case, $v_{l} \in S^{\rho}$ and $N^{l}=A^{v_{l}}$.
(2) M^{l} is a martingale $A F$ with quadratic variation process

$$
\begin{equation*}
\left\langle M^{l}\right\rangle_{t}=t|l|^{2}, \quad t \geq 0 \tag{2.5}
\end{equation*}
$$

REMARK 2.4. Recall that the Riesz representation theorem of positive linear functionals on continuous functions by measures is not applicable to obtain Theorem 2.3, (i) \Rightarrow (ii), because of the lack of local compactness. However, the quasi-regularity of the Dirichlet form provides a means to circumvent this difficulty.

In the rest of this section, we shall introduce a special class of $\rho \in \mathrm{QR}(H)$, which will be used in Section 4 below.

A nonnegative measurable function $h(s)$ on \mathbb{R}^{1} is said to possess the Hamza property if $h(s)=0 d s$-a.e. on the closed set $\mathbb{R}^{1} \backslash R(h)$ where

$$
R(h)=\left\{s \in \mathbb{R}^{1}: \int_{s-\varepsilon}^{s+\varepsilon} \frac{1}{h(r)} d r<\infty \text { for some } \varepsilon>0\right\}
$$

We say that a function $\rho \in L_{+}^{1}(H, \mu)$ satisfies the ray Hamza condition in direction $l \in H$ ($\rho \in \mathbf{H}_{l}$ in notation) if there exists a nonnegative function $\tilde{\rho}_{l}$ such that

$$
\tilde{\rho}_{l}=\rho \mu \text {-a.e. and } \tilde{\rho}_{l}(z+s l) \text { has the Hamza property in } s \in \mathbb{R}^{1} \text { for each } z \in H
$$

We set $\mathbf{H}:=\bigcap_{k} \mathbf{H}_{e_{k}}$, where e_{k} is as in Hypothesis 2.1. A function in the family \mathbf{H} is simply said to satisfy the ray Hamza condition. By [1] $\mathbf{H} \subset \mathrm{QR}(H)$, and thus we always have $\rho+1 \in \mathrm{QR}(H)$, since clearly $\rho+1 \in \mathbf{H}$.

Next, we will present some explicit description of the Dirichlet form $\left(\mathcal{E}^{\rho}, \mathcal{F}^{\rho}\right)$ for $\rho \in \mathbf{H}$.

For $e_{j} \in H$ as in Hypothesis 2.1, we set $H_{e_{j}}=\left\{s e_{j}: s \in \mathbb{R}^{1}\right\}$. We then have the direct sum decomposition $H=H_{e_{j}} \oplus E_{e_{j}}$ given by

$$
z=s e_{j}+x, \quad s=\left\langle e_{j}, z\right\rangle
$$

Let π_{j} be the projection onto the space $E_{e_{j}}$ and $\mu_{e_{j}}$ be the image measure of μ under $\pi_{j}: H \rightarrow E_{e_{j}}$, that is, $\mu_{e_{j}}=\mu \circ \pi_{j}^{-1}$. Then we see that for any $F \in$ $L^{1}(H, \mu)$

$$
\begin{equation*}
\int_{H} F(z) \mu(d z)=\int_{E_{e_{j}}} \int_{\mathbb{R}^{1}} F\left(s e_{j}+x\right) p_{j}(s) d s \mu_{e_{j}}(d x), \tag{2.6}
\end{equation*}
$$

where $p_{j}(s)=\left(1 / \sqrt{2 \pi \lambda_{j}}\right) e^{-s^{2} / 2 \lambda_{j}}$. Thus by [1], Theorem 3.10, for all $u, v \in$ $D\left(\mathcal{E}^{\rho}\right)$,

$$
\begin{equation*}
\mathcal{E}^{\rho}(u, v)=\sum_{j=1}^{\infty} \mathcal{E}^{\rho, e_{j}}(u, v) \tag{2.7}
\end{equation*}
$$

where

$$
\begin{align*}
\mathcal{E}^{\rho, e_{j}}(u, v)=\frac{1}{2} \int_{E_{e_{j}}} \int_{R\left(\rho\left(\cdot e_{j}+x\right)\right)} & \frac{d \tilde{u}_{j}\left(s e_{j}+x\right)}{d s} \times \frac{d \tilde{v}_{j}\left(s e_{j}+x\right)}{d s} \tag{2.8}\\
& \times \rho\left(s e_{j}+x\right) p_{j}(s) d s \mu_{e_{j}}(d x),
\end{align*}
$$

and u, \tilde{u}_{j} satisfy $\tilde{u}_{j}=u \rho \mu$-a.e. and $\tilde{u}_{j}\left(s e_{j}+x\right)$ is absolutely continuous in s on $R\left(\rho\left(\cdot e_{j}+x\right)\right)$ for each $x \in E_{e_{j}} . v$ and \tilde{v}_{j} are related in the same way.
3. BV functions and distorted OU -processes in \boldsymbol{F}. As in [10], we introduce some function spaces on H. Let

$$
A_{1 / 2}(x):=\int_{0}^{x}(\log (1+s))^{1 / 2} d s, \quad x \geq 0
$$

and let ψ be its complementary function, namely,

$$
\psi(y):=\int_{0}^{y}\left(A_{1 / 2}^{\prime}\right)^{-1}(t) d t=\int_{0}^{y}\left(\exp \left(t^{2}\right)-1\right) d t
$$

Define

$$
\begin{array}{r}
L(\log L)^{1 / 2}(H, \mu):=\left\{f: H \rightarrow \mathbb{R} \mid f \text { Borel measurable, } A_{1 / 2}(|f|) \in L^{1}(H, \mu)\right\}, \\
L^{\psi}(H, \mu):=\left\{g: H \rightarrow \mathbb{R} \mid g \text { Borel measurable, } \psi(c|g|) \in L^{1}(H, \mu)\right. \\
\text { for some } c>0\} .
\end{array}
$$

From the general theory of Orlicz spaces (cf. [20]), we have the following properties:
(i) $L(\log L)^{1 / 2}$ and L^{ψ} are Banach spaces under the norms

$$
\begin{aligned}
\|f\|_{L(\log L)^{1 / 2}} & =\inf \left\{\alpha>0 \mid \int_{H} A_{1 / 2}(|f| / \alpha) d \mu \leq 1\right\} \\
\|g\|_{L^{\psi}} & =\inf \left\{\alpha>0 \mid \int_{H} \psi(|g| / \alpha) d \mu \leq 1\right\}
\end{aligned}
$$

(ii) For $f \in L(\log L)^{1 / 2}$ and $g \in L^{\psi}$, we have

$$
\begin{equation*}
\|f g\|_{1} \leq 2\|f\|_{L(\log L)^{1 / 2}}\|g\|_{L^{\psi}} \tag{3.1}
\end{equation*}
$$

(iii) Since μ is Gaussian, the function $x \mapsto\langle x, l\rangle$ belongs to L^{ψ}.

Let $c_{j}, j \in \mathbb{N}$, be a sequence in $[1, \infty)$. Define

$$
H_{1}:=\left\{x \in H \mid \sum_{j=1}^{\infty}\left\langle x, e_{j}\right\rangle^{2} c_{j}^{2}<\infty\right\}
$$

equipped with the inner product

$$
\langle x, y\rangle_{H_{1}}:=\sum_{j=1}^{\infty} c_{j}^{2}\left\langle x, e_{j}\right\rangle\left\langle y, e_{j}\right\rangle
$$

Then clearly $\left(H_{1},\langle\cdot, \cdot\rangle_{H_{1}}\right)$ is a Hilbert space such that $H_{1} \subset H$ continuously and densely. Identifying H with its dual we obtain the continuous and dense embeddings

$$
H_{1} \subset H\left(\equiv H^{*}\right) \subset H_{1}^{*}
$$

It follows that

$$
H_{1}\langle z, v\rangle_{H_{1}^{*}}=\langle z, v\rangle_{H} \quad \forall z \in H_{1}, v \in H,
$$

and that $\left(H_{1}, H, H_{1}^{*}\right)$ is a Gelfand triple. Furthermore, $\left\{\frac{e_{j}}{c_{j}}\right\}$ and $\left\{c_{j} e_{j}\right\}$ are orthonormal bases of H_{1} and H_{1}^{*}, respectively.

We also introduce a family of H-valued functions on H by

$$
\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}:=\left\{G: G(z)=\sum_{j=1}^{m} g_{j}(z) l^{j}, z \in H, g_{j} \in C_{b}^{1}(H), l^{j} \in D(A) \cap H_{1}\right\}
$$

Denote by D^{*} the adjoint of $D: C_{b}^{1}(H) \subset L^{2}(H, \mu) \rightarrow L^{2}(H, \mu ; H)$. That is
$\operatorname{Dom}\left(D^{*}\right):=\left\{G \in L^{2}(H, \mu ; H) \mid\right.$

$$
\left.C_{b}^{1} \ni u \mapsto \int\langle G, D u\rangle d \mu \text { is continuous with respect to } L^{2}(H, \mu)\right\} .
$$

Obviously, $\left(C_{b}^{1}\right)_{D(A) \cap H_{1}} \subset \operatorname{Dom}\left(D^{*}\right)$. Then

$$
\begin{align*}
\int_{H} D^{*} G(z) f(z) \mu(d z)=\int_{H}\langle G(z), & D f(z)\rangle \mu(d z) \tag{3.2}\\
\forall G & \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}, f \in C_{b}^{1}(H) .
\end{align*}
$$

For $\rho \in L(\log L)^{1 / 2}(H, \mu)$, we set

$$
V(\rho):=\sup _{G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1},\|G\|_{H_{1}} \leq 1}} \int_{H} D^{*} G(z) \rho(z) \mu(d z)
$$

A function ρ on H is called a BV function in the Gelfand triple $\left(H_{1}, H, H_{1}^{*}\right)$ [$\rho \in \mathrm{BV}\left(H, H_{1}\right)$ in notation], if $\rho \in L(\log L)^{1 / 2}(H, \mu)$ and $V(\rho)$ is finite. When $H_{1}=H=H_{1}^{*}$, this coincides with the definition of BV functions defined in [2] and clearly $\mathrm{BV}(H, H) \subset \mathrm{BV}\left(H, H_{1}\right)$. We can prove the following theorem by a modification of the proof of [9], Theorem 3.1.

REMARK 3.0. The introduction of BV functions in a Gelfand triple is natural and originates from standard ideas when working with infinite dimensional state spaces. The intersection of $\mathrm{BV}_{l}(H)$, when l runs through $D(A) \cap H_{1}$, describes functions which are "componentwise of bounded variation" in the sense that their weak partial derivatives are measures. In contrast to finite dimensions, this does not give rise to vector-valued measures representing their total weak derivatives or gradients. Therefore, one introduces an appropriate "tangent space" H_{1}^{*} to H, in which these total derivatives can be represented as a H_{1}^{*}-valued measure. This approach substantially extends the applicability of the theory of BV functions on Hilbert spaces. We document this by including the well-studied case of linear SPDE with reflection, more precisely, the randomly vibrating Gaussian string, forced to stay above a level $\alpha \geq 0$ (see [15, 23]), which (in the case of $\alpha>0$) is then just a special case of our general approach.

THEOREM 3.1. (i) $\mathrm{BV}\left(H, H_{1}\right) \subset \bigcap_{l \in D(A) \cap H_{1}} \mathrm{BV}_{l}(H)$.
(ii) Suppose $\rho \in \mathrm{BV}\left(H, H_{1}\right) \cap L_{+}^{1}(H, \mu)$, then there exist a positive finite measure $\|d \rho\|$ on H and a Borel-measurable map $\sigma_{\rho}: H \rightarrow H_{1}^{*}$ such that $\left\|\sigma_{\rho}(z)\right\|_{H_{1}^{*}}=1\|d \rho\|-a . e,\|d \rho\|(H)=V(\rho)$,

$$
\begin{align*}
& \int_{H} D^{*} G(z) \rho(z) \mu(d z)=\int_{H} H_{1}\left\langle G(z), \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}} \| d \rho \|(d z) \tag{3.3}\\
& \forall G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}
\end{align*}
$$

and $\|d \rho\| \in S^{\rho+1}$.
Furthermore, if $\rho \in \mathrm{QR}(H),\|d \rho\|$ is \mathcal{E}^{ρ}-smooth in the sense that it charges no set of zero \mathcal{E}_{1}^{ρ}-capacity. In particular, the domain of integration H on both sides of (3.3) can be replaced by F, the topological support of $\rho \mu$.

Also, σ_{ρ} and $\|d \rho\|$ are uniquely determined, that is, if there are σ_{ρ}^{\prime} and $\|d \rho\|^{\prime}$ satisfying relation (3.3), then $\|d \rho\|=\|d \rho\|^{\prime}$ and $\sigma_{\rho}(z)=\sigma_{\rho}^{\prime}(z)$ for $\|d \rho\|$-a.e. z.
(iii) Conversely, if equation (3.3) holds for $\rho \in L(\log L)^{1 / 2}(H, \mu)$ and for some positive finite measure $\|d \rho\|$ and a map σ_{ρ} with the stated properties, then $\rho \in$ $\mathrm{BV}\left(H, H_{1}\right)$ and $V(\rho)=\|d \rho\|(H)$.
(iv) Let $W^{1,1}(H)$ be the domain of the closure of $\left(D, C_{b}^{1}(H)\right)$ with norm

$$
\|f\|:=\int_{H}(|f(z)|+|D f(z)|) \mu(d z)
$$

Then $W^{1,1}(H) \subset \mathrm{BV}(H, H)$ and equation (3.3) is satisfied for each $\rho \in W^{1,1}(H)$. Furthermore,

$$
\|d \rho\|=|D \rho| \cdot \mu, \quad V(\rho)=\int_{H}|D \rho| \mu(d z), \quad \sigma_{\rho}=\frac{1}{|D \rho|} D \rho I_{\{|D \rho|>0\}}
$$

Proof. (i) Let $\rho \in \operatorname{BV}\left(H, H_{1}\right)$ and $l \in D(A) \cap H_{1}$. Take $G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}$ of the type

$$
\begin{equation*}
G(z)=g(z) l, \quad z \in H, g \in C_{b}^{1}(H) \tag{3.4}
\end{equation*}
$$

By (3.2)

$$
\begin{aligned}
\int_{H} D^{*} G(z) f(z) \mu(d z)= & \int_{H}\langle G(z), D f(z)\rangle \mu(d z) \\
= & -\int_{H}\langle l, D g(z)\rangle f(z) \mu(d z) \\
& +2 \int_{H}\langle A l, z\rangle g(z) f(z) \mu(d z) \quad \forall f \in C_{b}^{1}(H)
\end{aligned}
$$

consequently,

$$
\begin{equation*}
D^{*} G(z)=-\langle l, D g(z)\rangle+2 g(z)\langle A l, z\rangle . \tag{3.5}
\end{equation*}
$$

Accordingly,

$$
\begin{align*}
\int_{H}\langle l, D g(z)\rangle \rho(z) \mu(d z)= & -\int_{H} D^{*} G(z) \rho(z) \mu(d z) \tag{3.6}\\
& +2 \int_{H}\langle A l, z\rangle g(z) \rho(z) \mu(d z)
\end{align*}
$$

For any $g \in C_{b}^{1}(H)$, satisfying $\|g\|_{\infty} \leq 1$, by (3.1) the right-hand side is dominated by

$$
V(\rho)\|l\|_{H_{1}}+4\|\rho\|_{L(\log L)^{1 / 2}}\|\langle A l, \cdot\rangle\|_{L^{\psi}}<\infty
$$

hence, $\rho \in \mathrm{BV}_{l}(H)$.
(ii) Suppose $\rho \in L_{+}^{1}(H, \mu) \cap \operatorname{BV}\left(H, H_{1}\right)$. By (i) and Theorem 2.3 for each $l \in D(A) \cap H_{1}$, there exists a finite signed measure v_{l} on H for which equation (2.4) holds. Define

$$
D_{l}^{A} \rho(d z):=2 v_{l}(d z)+2\langle A l, z\rangle \rho(z) \mu(d z)
$$

In view of (3.6), for any G of type (3.4), we have

$$
\begin{equation*}
\int_{H} D^{*} G(z) \rho(z) \mu(d z)=\int_{H} g(z) D_{l}^{A} \rho(d z) \tag{3.7}
\end{equation*}
$$

which in turn implies

$$
\begin{equation*}
V\left(D_{l}^{A} \rho\right)(H)=\sup _{g \in C_{b}^{1}(H),\|g\|_{\infty} \leq 1} \int_{H} g(z) D_{l}^{A} \rho(d z) \leq V(\rho)\|l\|_{H_{1}} \tag{3.8}
\end{equation*}
$$

where $V\left(D_{l}^{A} \rho\right)$ denotes the total variation measure of the signed measure $D_{l}^{A} \rho$.

For the orthonormal basis $\left\{\frac{e_{j}}{c_{j}}\right\}$ of H_{1}, we set

$$
\begin{align*}
\gamma_{\rho}^{A} & :=\sum_{j=1}^{\infty} 2^{-j} V\left(D_{e_{j} / c_{j}}^{A} \rho\right), \\
v_{j}(z) & :=\frac{d D_{e_{j} / c_{j}}^{A} \rho(z)}{d \gamma_{\rho}^{A}(z)}, \quad z \in H, j \in \mathbb{N} . \tag{3.9}
\end{align*}
$$

γ_{ρ}^{A} is a positive finite measure with $\gamma_{\rho}^{A}(H) \leq V(\rho)$ and v_{j} is Borel-measurable. Since $D_{e_{j} / c_{j}}^{A} \rho$ belongs to $S^{\rho+1}$, so does γ_{ρ}^{A}. Then for

$$
\begin{equation*}
G_{n}:=\sum_{j=1}^{n} g_{j} \frac{e_{j}}{c_{j}} \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}, \quad n \in \mathbb{N}, \tag{3.10}
\end{equation*}
$$

by (3.7) the following equation holds:

$$
\begin{equation*}
\int_{H} D^{*} G_{n}(z) \rho(z) \mu(d z)=\sum_{j=1}^{n} \int_{H} g_{j}(z) v_{j}(z) \gamma_{\rho}^{A}(d z) \tag{3.11}
\end{equation*}
$$

Since $\left|v_{j}(z)\right| \leq 2^{j} \gamma_{\rho}^{A}$-a.e. and $C_{b}^{1}(H)$ is dense in $L^{1}\left(H, \gamma_{\rho}^{A}\right)$, we can find $v_{j, m} \in$ $C_{b}^{1}(H)$ such that

$$
\lim _{m \rightarrow \infty} v_{j, m}=v_{j} \quad \gamma_{\rho}^{A} \text {-a.e. }
$$

Substituting

$$
\begin{equation*}
g_{j, m}(z):=\frac{v_{j, m}(z)}{\sqrt{\sum_{k=1}^{n} v_{k, m}(z)^{2}+1 / m}} \tag{3.12}
\end{equation*}
$$

for $g_{j}(z)$ in (3.10) and (3.11) we get a bound

$$
\sum_{j=1}^{n} \int_{H} g_{j, m}(z) v_{j}(z) \gamma_{\rho}^{A}(d z) \leq V(\rho)
$$

because $\left\|G_{n}(z)\right\|_{H_{1}}^{2}=\sum_{j=1}^{n} g_{j, m}(z)^{2} \leq 1 \forall z \in H$. By letting $m \rightarrow \infty$, we obtain

$$
\int_{H} \sqrt{\sum_{j=1}^{n} v_{j}(z)^{2}} \gamma_{\rho}^{A}(d z) \leq V(\rho) \quad \forall n \in \mathbb{N}
$$

Now we define

$$
\begin{equation*}
\|d \rho\|:=\sqrt{\sum_{j=1}^{\infty} v_{j}(z)^{2} \gamma_{\rho}^{A}(d z)} \tag{3.13}
\end{equation*}
$$

and $\sigma_{\rho}: H \rightarrow H_{1}^{*}$ by

$$
\sigma_{\rho}(z)= \begin{cases}\sum_{j=1}^{\infty} \frac{v_{j}(z)}{\sqrt{\sum_{k=1}^{\infty} v_{k}(z)^{2}}} \cdot c_{j} e_{j}, & \text { if } z \in\left\{\sum_{k=1}^{\infty} v_{k}(z)^{2}>0\right\} \tag{3.14}\\ 0, & \text { otherwise }\end{cases}
$$

Then

$$
\begin{equation*}
\|d \rho\|(H) \leq V(\rho), \quad\left\|\sigma_{\rho}(z)\right\|_{H_{1}^{*}}=1 \quad\|d \rho\| \text {-a.e. } \tag{3.15}
\end{equation*}
$$

$\|d \rho\|$ is $S^{\rho+1}$-smooth and σ_{ρ} is Borel-measurable. By (3.11) we see that the desired equation (3.3) holds for $G=G_{n}$ as in (3.10). It remains to prove (3.3) for any G of type (3.4), that is, $G=g \cdot l, g \in C_{b}^{1}(H), l \in D(A) \cap H_{1}$. In view of (3.6), equation (3.3) then reads

$$
\begin{gather*}
-\int_{H}\langle l, D g(z)\rangle \rho(z) \mu(d z)+2 \int_{H} g(z)\langle A l, z\rangle \rho(z) \mu(d z) \tag{3.16}\\
\quad=\int_{H} g(z)_{H_{1}}\left\langle l, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}\|d \rho\|(d z)
\end{gather*}
$$

We set

$$
k_{n}:=\sum_{j=1}^{n}\left\langle l, e_{j}\right\rangle e_{j}=\sum_{j=1}^{n}\left\langle l, \frac{e_{j}}{c_{j}}\right\rangle_{H_{1}} \frac{e_{j}}{c_{j}}, \quad G_{n}(z):=g(z) k_{n} .
$$

Thus, $k_{n} \rightarrow l$ in H_{1} and $A k_{n} \rightarrow A l$ in H as $n \rightarrow \infty$. But then also

$$
\lim _{n \rightarrow \infty} \int_{H}\left\langle D g, k_{n}\right\rangle \rho d \mu=\int_{H}\langle D g, l\rangle \rho d \mu
$$

and

$$
\begin{aligned}
& \left|\int_{H} g(z)\left\langle A k_{n}, z\right\rangle \rho(z) \mu(d z)-\int_{H} g(z)\langle A l, z\rangle \rho(z) \mu(d z)\right| \\
& \quad \leq 2\|g\|_{\infty}\|\rho\|_{L(\log L)^{1 / 2}\left\|\left\langle A k_{n}-A l, \cdot\right\rangle\right\|_{L^{\psi}} .}
\end{aligned}
$$

Furthermore,

$$
\lim _{n \rightarrow \infty} \int_{H} g(z)_{H_{1}}\left\langle k_{n}, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}\|d \rho\|(d z)=\int_{H} g(z)_{H_{1}}\left\langle l, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}\|d \rho\|(d z)
$$

So letting $n \rightarrow \infty$ yields (3.16).
If $\rho \in \mathrm{QR}(H)$, we can get the claimed result by the same arguments as above.
Uniqueness follows by the same argument as [10], Theorem 3.9.
(iii) Suppose $\rho \in L(\log)^{1 / 2}(H, \mu)$ and that equation (3.3) holds for some positive finite measure $\|d \rho\|$ and some map σ_{ρ} with the properties stated in (ii). Then clearly

$$
V(\rho) \leq\|d \rho\|(H)
$$

and hence $\rho \in \mathrm{BV}\left(H, H_{1}\right)$. To obtain the converse inequality, set

$$
\sigma_{j}(z):=\left\langle c_{j} e_{j}, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}=H_{H_{1}}\left\langle\frac{e_{j}}{c_{j}}, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}, \quad j \in \mathbb{N} .
$$

Fix an arbitrary n. As in the proof of (ii), we can find functions

$$
v_{j, m} \in C_{b}^{1}(H), \quad \lim _{m \rightarrow \infty} v_{j, m}(z)=\sigma_{j}(z) \quad\|d \rho\| \text {-a.e. }
$$

Define $g_{j, m}(z)$ by (3.12). Substituting $G_{n, m}(z):=\sum_{j=1}^{n} g_{j, m}(z) \frac{e_{j}}{c_{j}}$ for $G(z)$ in (3.3) then yields

$$
\sum_{j=1}^{n} \int_{H} g_{j, m}(z) \sigma_{j}(z)\|d \rho\|(d z) \leq V(\rho)
$$

By letting $m \rightarrow \infty$, we get

$$
\int_{H} \sqrt{\sum_{j=1}^{n} \sigma_{j}(z)^{2}}\|d \rho\|(d z) \leq V(\rho) \quad \forall n \in \mathbb{N}
$$

We finally let $n \rightarrow \infty$ to obtain $\|d \rho\|(H) \leq V(\rho)$.
(iv) Obviously the duality relation (3.2) extends to $\rho \in W^{1,1}(H)$ replacing $f \in$ $C_{b}^{1}(H)$. By defining $\|d \rho\|$ and $\sigma_{\rho}(z)$ in the stated way, the extended relation (3.2) is exactly (3.3).

THEOREM 3.2. Let $\rho \in \mathrm{QR}(H) \cap \mathrm{BV}\left(H, H_{1}\right)$ and consider the measure $\|d \rho\|$ and σ_{ρ} from Theorem 3.1(ii). Then there is an \mathcal{E}^{ρ}-exceptional set $S \subset F$ such that $\forall z \in F \backslash S$ under P_{z} there exists an \mathcal{M}_{t}-cylindrical Wiener process W^{z}, such that the sample paths of the associated distorted $O U$-process M^{ρ} on F satisfy the following: for $l \in D(A) \cap H_{1}$

$$
\begin{align*}
\left\langle l, X_{t}-X_{0}\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle+\frac{1}{2} \int_{0}^{t} H_{1}\left\langle l, \sigma_{\rho}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\|d \rho\|} \tag{3.17}\\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad \forall t \geq 0 P_{z} \text {-a.s. }
\end{align*}
$$

Here $L_{t}^{\|d \rho\|}$ is the real valued PCAF associated with $\|d \rho\|$ by the Revuz correspondence.

In particular, if $\rho \in \mathrm{BV}(H, H)$, then $\forall z \in F \backslash S, l \in D(A) \cap H$

$$
\begin{array}{r}
\left\langle l, X_{t}-X_{0}\right\rangle=\int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle+\frac{1}{2} \int_{0}^{t}\left\langle l, \sigma_{\rho}\left(X_{s}\right)\right\rangle d L_{s}^{\|d \rho\|}-\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \\
\forall t \geq 0 P_{z}-a . s .
\end{array}
$$

Proof. Let $\left\{e_{j}\right\}$ be the orthonormal basis of H introduced above. Define for all $k \in \mathbb{N}$

$$
\begin{align*}
W_{k}^{z}(t):= & \left\langle e_{k}, X_{t}-z\right\rangle-\frac{1}{2} \int_{0}^{t} H_{1}\left\langle e_{k}, \sigma_{\rho}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\|d \rho\|} \tag{3.18}\\
& +\int_{0}^{t}\left\langle A e_{k}, X_{s}\right\rangle d s
\end{align*}
$$

By (2.1) and (3.16), we get for all $k \in \mathbb{N}$

$$
\begin{array}{r}
\mathcal{E}^{\rho}\left(e_{k}(\cdot), g\right)=\int_{H} g(z)\left\langle A e_{k}, z\right\rangle \rho(z) \mu(d z)-\frac{1}{2} \int_{H} g(z)_{H_{1}}\left\langle e_{k}, \sigma_{\rho}(z)\right\rangle_{H_{1}^{*}}\|d \rho\|(d z) \\
\forall g \in C_{b}^{1}(H)
\end{array}
$$

By Theorem 2.3, it follows that for all $k \in \mathbb{N}$

$$
\begin{equation*}
N_{t}^{e_{k}}=\frac{1}{2} \int_{0}^{t} H_{1}\left\langle e_{k}, \sigma_{\rho}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\|d \rho\|}-\int_{0}^{t}\left\langle A e_{k}, X_{s}\right\rangle d s \tag{3.19}
\end{equation*}
$$

Here we get from (3.18), (3.19) and the uniqueness of decomposition (2.2) that for \mathcal{E}^{ρ}-q.e. $z \in F$,

$$
W_{k}^{z}(t)=M_{t}^{e_{k}} \quad \forall t \geq 0 P_{z} \text {-a.s. }
$$

where the \mathcal{E}^{ρ}-exceptional set and the zero measure set does not depend on e_{k}. Indeed, we can choose the capacity zero set $S=\bigcup_{j=1}^{\infty} S_{j}$, where S_{j} is the $\mathcal{E}^{\rho_{-}}$ exceptional set for e_{j}, and for $z \in F \backslash S$, we can use the same method to get a zero measure set independent of e_{k}. By Dirichlet form theory, we get $\left\langle M^{e_{i}}, M^{e_{j}}\right\rangle_{t}=$ $t \delta_{i j}$. So for $z \in F \backslash S, W_{k}^{z}$ is an \mathcal{M}_{t}-Wiener process under P_{z}. Thus, with W^{z} being an \mathcal{M}_{t}-cylindrical Wiener process given by $W^{z}(t)=\left(W_{k}^{z}(t) e_{k}\right)_{k \in \mathbb{N}},(3.17)$ is satisfied for P_{z}-a.e., where $z \in F \backslash S$.
4. Reflected OU-processes. In this section, we consider the situation where $\rho=I_{\Gamma} \in \operatorname{BV}\left(H, H_{1}\right)$, where $\Gamma \subset H$ and

$$
I_{\Gamma}(x)= \begin{cases}1, & \text { if } x \in \Gamma \\ 0, & \text { if } x \in \Gamma^{c}\end{cases}
$$

Denote the corresponding objects $\sigma_{\rho},\left\|d I_{\Gamma}\right\|$ in Theorem 3.1(ii) by $-\mathbf{n}_{\Gamma},\|\partial \Gamma\|$, respectively. Then formula (3.3) reads

$$
\int_{\Gamma} D^{*} G(z) \mu(d z)=-\int_{F} H_{1}\left\langle G(z), \mathbf{n}_{\Gamma}\right\rangle_{H_{1}^{*}}\|\partial \Gamma\|(d z) \quad \forall G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}
$$

where the domain of integration F on the right-hand side is the topological support of $I_{\Gamma} \cdot \mu . F$ is contained in $\bar{\Gamma}$, but we shall show that the domain of integration on the right-hand side can be restricted to $\partial \Gamma$. We need to use the associated distorted OU-process $M^{I_{\Gamma}}$ on F, which will be called reflected OU-process on Γ.

First, we consider a μ-measurable set $\Gamma \subset H$ satisfying

$$
\begin{equation*}
I_{\Gamma} \in \mathrm{BV}\left(H, H_{1}\right) \cap \mathbf{H} \tag{4.1}
\end{equation*}
$$

REmark 4.1. We emphasize that if Γ is a convex closed set in H, then obviously $I_{\Gamma} \in \mathbf{H}$. Indeed, for each $z, l \in H$ the set $\{s \in \mathbb{R} \mid z+s l \in \Gamma\}$ is a closed interval in \mathbb{R}, whose indicator function hence trivially has the Hamza property. Hence, in particular, $I_{\Gamma} \in \mathrm{QR}(H)$.

By a modification of [9], Theorem 4.2, we can prove the following theorem.
THEOREM 4.2. Let $\Gamma \subset H$ be μ-measurable satisfying condition (4.1). Then the support of $\|\partial \Gamma\|$ is contained in the boundary $\partial \Gamma$ of Γ, and the following generalized Gauss formula holds:

$$
\begin{align*}
\int_{\Gamma} D^{*} G(z) \mu(d z)=-\int_{\partial \Gamma} H_{1}\left\langle G(z), \mathbf{n}_{\Gamma}\right\rangle_{H_{1}^{*}}\|\partial \Gamma\| & (d z) \tag{4.2}\\
& \forall G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}} .
\end{align*}
$$

Proof. For any G of type (3.4), we have from (2.1), (3.5) and (3.7) that

$$
\begin{equation*}
\mathcal{E}^{I_{\Gamma}}(l(\cdot), g)-\int_{\Gamma} g(z)\langle A l, z\rangle \mu(d z)=-\frac{1}{2} \int_{F} g(z) D_{l}^{A} I_{\Gamma}(d z) . \tag{4.3}
\end{equation*}
$$

Since the finite signed measure $D_{l}^{A} I_{\Gamma}$ charges no set of zero $\mathcal{E}_{1}^{I_{\Gamma}}$-capacity, equation (4.3) readily extends to any $\mathcal{E}^{I_{\Gamma}}$-quasicontinuous function $g \in \mathcal{F}_{b}^{I_{\Gamma}}:=\mathcal{F}^{I_{\Gamma}} \cap$ $L^{\infty}(\Gamma, \mu)$.

Denote by Γ^{0} the interior of Γ. Then $\Gamma^{0} \subset F \subset \bar{\Gamma}$. In view of the construction of the measure $\left\|d I_{\Gamma}\right\|$ in Theorem 3.1, it suffices to show that for $\frac{e_{j}}{c_{j}} \in D(A) \cap H_{1}$

$$
V\left(D_{e_{j} / c_{j}}^{A} I_{\Gamma}\right)\left(\Gamma^{0}\right)=0
$$

By linearity and since positive constants interchange with sup, it suffices to show that

$$
\begin{equation*}
V\left(D_{e_{j}}^{A} I_{\Gamma}\right)\left(\Gamma^{0}\right)=0 \tag{4.4}
\end{equation*}
$$

Take an arbitrary $\varepsilon>0$ and set

$$
U:=\left\{z \in H: d\left(z, H \backslash \Gamma^{0}\right)>\varepsilon\right\}, \quad V:=\left\{z \in H: d\left(z, H \backslash \Gamma^{0}\right) \geq \varepsilon\right\}
$$

where d is the metric distance of the Hilbert space H. Then $\bar{U} \subset V$ and V is a closed set contained in the open set Γ^{0}. We define a function h by

$$
\begin{equation*}
h(z):=1-E_{z}\left(e^{-\tau_{V}}\right), \quad z \in F, \tag{4.5}
\end{equation*}
$$

where τ_{V} denotes the first exit time of $M^{I_{\Gamma}}$ from the set V. The nonnegative function h is in the space $\mathcal{F}_{b}^{I_{\Gamma}}$ and furthermore it is $\mathcal{E}^{I_{\Gamma}}$-quasicontinuous because it is $M^{I_{\Gamma}}$ finely continuous.

Moreover,

$$
\begin{equation*}
h(z)>0 \quad \forall z \in U, \quad h(z)=0 \quad \forall z \in F \backslash V . \tag{4.6}
\end{equation*}
$$

Set

$$
\begin{equation*}
v_{j}(d z):=h(z) D_{e_{j}}^{A} I_{\Gamma}(d z) \tag{4.7}
\end{equation*}
$$

and

$$
\begin{equation*}
I_{g}^{j}:=\mathcal{E}^{I_{\Gamma}}\left(e_{j}(\cdot), g h\right)-\int_{\Gamma} g(z) h(z)\left\langle A e_{j}, z\right\rangle \mu(d z) \tag{4.8}
\end{equation*}
$$

Then equation (4.3) with the $\mathcal{E}^{I_{\Gamma}}$-quasicontinuous function $g h \in \mathcal{F}_{b}^{I_{\Gamma}}$ replacing g implies

$$
I_{g}^{j}=-\frac{1}{2} \int_{F} g(z) v_{j}(d z)
$$

In order to prove (4.4), it is enough to show that $I_{g}^{j}=0$ for any function $g(z)$ of the type

$$
\begin{equation*}
g(z)=f\left(\left\langle e_{j}, z\right\rangle,\left\langle l_{2}, z\right\rangle, \ldots,\left\langle l_{m}, z\right\rangle\right) ; \quad l_{2}, \ldots, l_{m} \in H, f \in C_{0}^{1}\left(R^{m}\right) \tag{4.9}
\end{equation*}
$$

for we have then $v_{j}=0$.
On account of (2.8), we have the expression

$$
\begin{align*}
\mathcal{E}^{I_{\Gamma}}\left(e_{j}(\cdot), g h\right) & =\mathcal{E}^{I_{\Gamma}, e_{j}}\left(e_{j}(\cdot), g h\right) \\
& =\frac{1}{2} \int_{E_{e_{j}}} \int_{R_{x}} \frac{d(g \tilde{h})\left(s e_{j}+x\right)}{d s} p_{j}(s) d s \mu_{e_{j}}(d x), \tag{4.10}
\end{align*}
$$

where $R_{x}=R\left(I_{\Gamma}\left(\cdot e_{j}+x\right)\right), F_{x}:=\left\{s: s e_{j}+x \in F\right\}$ for $x \in E_{e_{j}}$ and \tilde{h} is a $I_{\Gamma} \cdot \mu$ version of h appearing in the description of (2.8). For $x \in E_{e_{j}}$, set

$$
V_{x}:=\left\{s: s e_{j}+x \in V\right\}, \quad \Gamma_{x}^{0}:=\left\{s: s e_{j}+x \in \Gamma^{0}\right\}
$$

We then have the inclusion $V_{x} \subset \Gamma_{x}^{0} \subset R_{x} \cap F_{x}$. By (4.6), $h\left(s e_{j}+x\right)=0$ for any $x \in E_{e_{j}}$ and for any $s \in R_{x} \backslash V_{x}$. On the other hand, there exists a Borel set $N \subset E_{e_{j}}$ with $\mu_{e_{j}}(N)=0$ such that for each $x \in E_{e_{j}} \backslash N$,

$$
h\left(s e_{j}+x\right)=\tilde{h}\left(s e_{j}+x\right) \quad d s \text {-a.e. }
$$

Here we set $h \equiv 0$ on $H \backslash F$. Since $\tilde{h}\left(\cdot e_{j}+x\right)$ is absolutely continuous in s, we can conclude that

$$
\tilde{h}\left(s e_{j}+x\right)=0 \quad \forall x \in E_{e_{j}} \backslash N, \forall s \in R_{x} \backslash V_{x}
$$

Fix $x \in E_{e_{j}} \backslash N$ and let I be any connected component of the one dimensional open set R_{x}. Furthermore, for any function g of type (4.9) we denote the support of $g\left(\cdot e_{j}+x\right)$ by K_{x} (which is a compact set) and choose a bounded open interval J containing K_{x}. Then $I \cap V_{x} \cap K_{x}$ is a closed set contained in the bounded open interval $I \cap J$ and

$$
g \tilde{h}\left(s e_{j}+x\right)=0 \quad \forall s \in(I \cap J) \backslash\left(I \cap V_{x} \cap K_{x}\right)
$$

Therefore, an integration by part gives

$$
\int_{I \cap J} \frac{d(g \tilde{h})\left(s e_{j}+x\right)}{d s} p_{j}(s) d s=\int_{I \cap J} \frac{1}{\lambda_{j}}(g \tilde{h})\left(s e_{j}+x\right) s p_{j}(s) d s
$$

Combining this with (4.8) and (4.10), we arrive at

$$
\begin{aligned}
I_{g}^{j}= & \int_{E_{e_{j}}} \int_{R_{x}} \frac{1}{2 \lambda_{j}}(g \tilde{h})\left(s e_{j}+x\right) s p_{j}(s) d s \mu_{e_{j}}(d x) \\
& -\int_{H} g(z) h(z)\left\langle A e_{j}, z\right\rangle I_{\Gamma}(z) \mu(d z)=0
\end{aligned}
$$

Now we state Theorem 3.2 for $\rho=I_{\Gamma}$.
THEOREM 4.3. Suppose $\Gamma \subset H$ is a μ-measurable set satisfying condition (4.1). Then there is an \mathcal{E}^{ρ}-exceptional set $S \subset F$ such that $\forall z \in F \backslash S$, under P_{z} there exists an \mathcal{M}_{t}-cylindrical Wiener process W^{z}, such that the sample paths of the associated reflected $O U$-process M^{ρ} on F with $\rho=I_{\Gamma}$ satisfy the following: for $l \in D(A) \cap H_{1}$

$$
\begin{align*}
\left\langle l, X_{t}-X_{0}\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle-\frac{1}{2} \int_{0}^{t} H_{1}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\|\partial \Gamma\|} \tag{4.11}\\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad P_{z} \text {-a.s. }
\end{align*}
$$

Here, $L_{t}^{\|\partial \Gamma\|}$ is the real valued PCAF associated with $\|\partial \Gamma\|$ by the Revuz correspondence, which has the following additional property: $\forall z \in F \backslash S$

$$
\begin{equation*}
I_{\partial \Gamma}\left(X_{s}\right) d L_{s}^{\|\partial \Gamma\|}=d L_{s}^{\|\partial \Gamma\|} \quad P_{z} \text {-a.s. } \tag{4.12}
\end{equation*}
$$

In particular, if $\rho \in \mathrm{BV}(H, H)$, then $\forall z \in F \backslash S, l \in D(A) \cap H$

$$
\begin{aligned}
\left\langle l, X_{t}-X_{0}\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle d L_{s}^{\|\partial \Gamma\|} \\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad \forall t \geq 0 P_{z} \text {-a.s. }
\end{aligned}
$$

Proof. All assertions except for (4.12) follow from Theorem 3.2 for $\rho:=I_{\Gamma}$. Equation (4.12) follows by Theorem 4.2 and [11], Theorem 5.1.3.
5. Stochastic reflection problem on a regular convex set. In this section, we consider Γ satisfying [5], Hypothesis 1.1(ii), with $K:=\Gamma$, that is:

HYpOTHESIS 5.1. There exists a convex C^{∞} function $g: H \rightarrow \mathbb{R}$ with $g(0)=$ $0, g^{\prime}(0)=0$, and $D^{2} g$ strictly positive definite, that is, $\left\langle D^{2} g(x) h, h\right\rangle \geq \gamma|h|^{2} \forall h \in$ H for some $\gamma>0$, such that

$$
\Gamma=\{x \in H: g(x) \leq 1\}, \quad \partial \Gamma=\{x \in H: g(x)=1\}
$$

Moreover, we also suppose that $D^{2} g$ is bounded on Γ and $\left|Q^{1 / 2} D g\right|^{-1} \in$ $\bigcap_{p>1} L^{p}(H, \mu)$.

REmark 5.2. By [5], Lemma 1.2, Γ is convex and closed and there exists some constant $\delta>0$ such that $|D g(x)| \leq \delta \forall x \in \Gamma$.
5.1. Reflected OU processes on regular convex sets. Under Hypothesis 5.1, by [6], Lemma A.1, we can prove that $I_{\Gamma} \in \mathrm{BV}(H, H) \cap \mathrm{QR}(H)$:

THEOREM 5.3. Assume that Hypothesis 5.1 holds. Then $I_{\Gamma} \in \mathrm{BV}(H, H) \cap$ QR(H).

Proof. We first note that trivially by Remark 4.1 we have that $I_{\Gamma} \in \mathrm{QR}(H)$. Let

$$
\rho_{\varepsilon}(x):=\exp \left(-\frac{(g(x)-1)^{2}}{\varepsilon} 1_{\{g \geq 1\}}\right), \quad x \in H
$$

Thus,

$$
\lim _{\varepsilon \rightarrow 0} \rho_{\varepsilon}=I_{\Gamma}
$$

Moreover,

$$
D \rho_{\varepsilon}=-\frac{2}{\varepsilon} \rho_{\varepsilon} 1_{\{g \geq 1\}} D g(g-1) \quad \mu \text {-a.e. }
$$

By [6], Lemma A.1, we have for $\varphi \in C_{b}^{1}(H)$

$$
\begin{gathered}
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{H} \varphi(x) 1_{\{g(x) \geq 1\}}(g(x)-1)\langle D g(x), z\rangle \rho_{\varepsilon}(x) \mu(d x) \\
\quad=\frac{1}{2} \int_{\partial \Gamma} \varphi(y)\langle n(y), z\rangle \frac{|D g(y)|}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\partial \Gamma}(d y)
\end{gathered}
$$

where $n:=D g /|D g|$ is the exterior normal to $\partial \Gamma$ at y and $\mu_{\partial \Gamma}$ is the surface measure on $\partial \Gamma$ induced by μ (cf. [5, 6, 14]), whereas by (3.2) for any $\varphi \in C_{b}^{1}(H)$ and $z \in D(A)$

$$
\begin{aligned}
\lim _{\varepsilon \rightarrow 0} & \frac{1}{\varepsilon} \int_{H} \varphi(x) 1_{\{g(x) \geq 1\}}(g(x)-1)\langle D g(x), z\rangle \rho_{\varepsilon}(x) \mu(d x) \\
& =-\lim _{\varepsilon \rightarrow 0} \frac{1}{2} \int_{H}\left\langle D \rho_{\varepsilon}(x), \varphi(x) z\right\rangle \mu(d x) \\
& =-\frac{1}{2} \lim _{\varepsilon \rightarrow 0} \int_{H} \rho_{\varepsilon}(x) D^{*}(\varphi z)(x) \mu(d x) \\
& =-\frac{1}{2} \int_{H} 1_{\Gamma}(x) D^{*}(\varphi z)(x) \mu(d x)
\end{aligned}
$$

Thus,

$$
\begin{align*}
& \int_{H} 1_{\Gamma}(x) D^{*}(\varphi z)(x) \mu(d x) \tag{5.1}\\
& \quad=-\int_{\partial \Gamma} \varphi(x)\langle n(x), z\rangle \frac{|D g(y)|}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\partial \Gamma}(d x) \quad \forall z \in D(A), \varphi \in C_{b}^{1}
\end{align*}
$$

By the proof of [6], Lemma A.1, we get that g is a nondegenerate map. So we can use the co-area formula (see [14], Theorem 6.3.1, Chapter V, or [6], (A.4)):

$$
\int_{H} f \mu(d x)=\int_{0}^{\infty}\left[\int_{g=r} f(y) \frac{1}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\Sigma_{r}}(d y)\right] d r
$$

By [14], Theorem 6.2, Chapter V, the surface measure is defined for all $r \geq 0$, moreover [14], Theorem 1.1, Corollary 6.3.2, Chapter V, imply that $r \mapsto \mu_{\Sigma_{r}}$ is continuous in the topology induced by $D_{r}^{p}(H)$ for some $p \in(1, \infty), r \in(0, \infty)$ (cf. [14]) on the measures on $(H, \mathcal{B}(H))$. Take $f \equiv 1$ in the co-area formula, then by the continuity property of the surface measure with respect to r we have that $\frac{1}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\Sigma_{r}}(d y)$ is a finite measure supported in $\{g=r\}$. By Remark 5.2 and since $\mu_{\partial \Gamma}=\mu_{\Sigma_{1}}$, we have that $\frac{|D g(y)|}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\partial \Gamma}$ is a finite measure. And hence by Theorem 3.1(iii), we get $I_{\Gamma} \in \mathrm{BV}(H, H)$.

Thus by Theorem 4.3, we immediately get the following.
THEOREM 5.4. Assume Hypothesis 5.1. Then there exists an \mathcal{E}^{ρ}-exceptional set $S \subset F$ such that $\forall z \in F \backslash S$, under P_{z} there exists an \mathcal{M}_{t}-cylindrical Wiener process W^{z}, such that the sample paths of the associated reflected $O U$-process M^{ρ} on F with $\rho=I_{\Gamma}$ satisfy the following: for $l \in D(A) \cap H_{1}$

$$
\begin{aligned}
\left\langle l, X_{t}-X_{0}\right\rangle=\int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle-\frac{1}{2} \int_{0}^{t}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle d L_{s}^{\|\partial \Gamma\|}-\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \\
\forall t \geq 0 P_{z} \text {-a.e. }
\end{aligned}
$$

where $\mathbf{n}_{\Gamma}:=\frac{D g}{|D g|}$ is the exterior normal to Γ and

$$
\|\partial \Gamma\|(d y)=\frac{|D g(y)|}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\partial \Gamma}(d y)
$$

where $\mu_{\partial \Gamma}$ is the surface measure induced by $\mu(c f .[5,6,14])$.
REMARK 5.5. It can be shown that for $x \in \partial \Gamma, \mathbf{n}_{\Gamma}(x)=\frac{D g}{|D g|}$ is the exterior normal to Γ, that is, the unique element in H of unit length such that

$$
\left\langle\mathbf{n}_{\Gamma}(x), y-x\right\rangle \leq 0 \quad \forall y \in \Gamma .
$$

5.2. Existence and uniqueness of solutions. Let $\Gamma \subset H$ and our linear operator A satisfy Hypotheses 5.1 and 2.1, respectively. Consider the following stochastic differential inclusion in the Hilbert space H,

$$
\left\{\begin{array}{l}
d X(t)+\left(A X(t)+N_{\Gamma}(X(t))\right) d t \ni d W(t) \tag{5.2}\\
X(0)=x
\end{array}\right.
$$

where $W(t)$ is a cylindrical Wiener process in H on a filtered probability space $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ and $N_{\Gamma}(x)$ is the normal cone to Γ at x, that is,

$$
N_{\Gamma}(x)=\{z \in H:\langle z, y-x\rangle \leq 0 \forall y \in \Gamma\} .
$$

DEFINITION 5.6. A pair of continuous $H \times \mathbb{R}$-valued and \mathcal{F}_{t}-adapted processes $(X(t), L(t)), t \in[0, T]$, is called a solution of (5.2) if the following conditions hold:
(i) $X(t) \in \Gamma$ for all $t \in[0, T] P$-a.s.;
(ii) L is an increasing process with the property that

$$
I_{\partial \Gamma}\left(X_{s}\right) d L_{s}=d L_{s} \quad P \text {-a.s. }
$$

and for any $l \in D(A)$ we have
$\left\langle l, X_{t}-x\right\rangle=\int_{0}^{t}\left\langle l, d W_{s}\right\rangle-\int_{0}^{t}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle d L_{s}-\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad \forall t \geq 0 P$-a.s., where \mathbf{n}_{Γ} is the exterior normal to Γ.

Remark 5.7. By Remark 5.5, we know that $\mathbf{n}_{\Gamma}(x) \in N_{\Gamma}(x)$ for all $x \in \partial \Gamma$. Hence by Definition 5.6(ii), it follows that Definition 5.6 is appropriate to define a solution for the multi-valued equation (5.2).

We denote the semigroup with the infinitesimal generator $-A$ by $S(t), t \geq 0$.

DEFINITION 5.8. A pair of continuous $H \times \mathbb{R}$ valued and \mathcal{F}_{t}-adapted processes $(X(t), L(t)), t \in[0, T]$, is called a mild solution of (5.2) if:
(i) $X(t) \in \Gamma$ for all $t \in[0, T] P$-a.s.;
(ii) L is an increasing process with the property

$$
I_{\partial \Gamma}\left(X_{s}\right) d L_{s}=d L_{s} \quad P \text {-a.s. }
$$

and

$$
X_{t}=S(t) x+\int_{0}^{t} S(t-s) d W_{s}-\int_{0}^{t} S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s} \quad \forall t \in[0, T] P-\text { a.s. }
$$

where \mathbf{n}_{Γ} is the exterior normal to Γ. In particular, the appearing integrals have to be well defined.

LEmma 5.9. The process given by

$$
\int_{0}^{t} S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s}
$$

is P-a.s. continuous and adapted to $\mathcal{F}_{t}, t \in[0, T]$. This especially implies that it is predictable.

Proof. As $\left|S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right)\right| \leq M_{T}\left|\mathbf{n}_{\Gamma}\left(X_{s}\right)\right|, s \in[0, T]$, the integrals $\int_{0}^{t} S(t-$ $s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s}, t \in[0, T]$, are well defined. For $0 \leq s \leq t \leq T$,

$$
\begin{aligned}
& \left|\int_{0}^{s} S(s-u) \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}-\int_{0}^{t} S(t-u) \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}\right| \\
& \quad \leq\left|\int_{0}^{s}[S(s-u)-S(t-u)] \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}\right|+\left|\int_{S}^{t} S(t-u) \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}\right| \\
& \quad \leq \int_{0}^{s}\left|[S(s-u)-S(t-u)] \mathbf{n}_{\Gamma}\left(X_{u}\right)\right| d L_{u}+\int_{s}^{t}\left|S(t-u) \mathbf{n}_{\Gamma}\left(X_{u}\right)\right| d L_{u},
\end{aligned}
$$

where the first summand converges to zero as $s \uparrow t$ or $t \downarrow s$, because

$$
\left|1_{[0, s)}(u)[S(s-u)-S(t-u)] \mathbf{n}_{\Gamma}\left(X_{u}\right)\right| \rightarrow 0 \quad \text { as } s \uparrow t \text { or } t \downarrow s
$$

For the second summand, we have

$$
\int_{s}^{t}\left|S(t-u) \mathbf{n}_{\Gamma}\left(X_{u}\right)\right| d L_{u} \leq M_{T}\left(L_{t}-L_{s}\right) \rightarrow 0 \quad \text { as } s \uparrow t \text { or } t \downarrow s
$$

By the same arguments as in [19], Lemma 5.1.9, we conclude that the integral is adapted to $\mathcal{F}_{t}, t \in[0, T]$.

THEOREM 5.10. $\quad\left(X(t), L_{t}\right), t \in[0, T]$, is a solution of (5.2) if and only if it is a mild solution.

Proof. $\quad(\Rightarrow)$ First, we prove that for arbitrary $\zeta \in C^{1}([0, T], D(A))$ the following equation holds:

$$
\begin{align*}
\left\langle X_{t}, \zeta_{t}\right\rangle= & \left\langle x, \zeta_{0}\right\rangle+\int_{0}^{t}\left\langle\zeta_{s}, d W_{s}\right\rangle-\int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}\left(X_{s}\right), \zeta_{s}\right\rangle d L_{s} \tag{5.3}\\
& +\int_{0}^{t}\left\langle X_{s},-A \zeta_{s}+\zeta_{s}^{\prime}\right\rangle d s \quad \forall t \geq 0 P \text {-a.s. }
\end{align*}
$$

If $\zeta_{s}=\eta f_{s}$ for $f \in C^{1}([0, T])$ and $\eta \in D(A)$, by Itô's formula we have the above relation for such ζ. Then by [19], Lemma G.0.10, and the same arguments as the proof of Proposition G.0.11 we obtain the above formula for all $\zeta \in C^{1}([0, T], D(A))$. As in [19], Proposition G.0.11, for the resolvent $R_{n}:=$
$(n+A)^{-1}: H \rightarrow D(A)$ and $t \in[0, T]$ choosing $\zeta_{s}:=S(t-s) n R_{n} \eta, \eta \in H$, we deduce from (5.3) that

$$
\begin{aligned}
&\left\langle X_{t}, n R_{n} \eta\right\rangle=\left\langle x, S(t) n R_{n} \eta\right\rangle+\int_{0}^{t}\left\langle S(t-s) n R_{n} \eta, d W_{s}\right\rangle \\
&-\int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}\left(X_{s}\right), S(t-s) n R_{n} \eta\right\rangle d L_{s} \\
&+\int_{0}^{t}\left\langle X_{s}, A S(t-s) n R_{n} \eta\right\rangle+\left\langle X_{s},-A S(t-s) n R_{n} \eta\right\rangle d s \\
&=\left\langle S(t) x+\int_{0}^{t} S(t-s) d W_{s}+\int_{0}^{t} S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s}, n R_{n} \eta\right\rangle \\
& \forall t \in[0, T] P \text {-a.s. }
\end{aligned}
$$

Letting $n \rightarrow \infty$, we conclude that $\left(X(t), L_{t}\right), t \in[0, T]$, is a mild solution.
(\Leftarrow) By Lemma 5.9 and [19], Theorem 5.1.3, we have

$$
\int_{0}^{t} S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s} \quad \text { and } \quad \int_{0}^{t} S(t-s) d W_{s}, \quad t \in[0, T]
$$

have predictable versions. And we use the same notation for the predictable versions of the respective processes. As $\left(X_{t}, L_{t}\right)$ is a mild solution, for all $\eta \in D(A)$ we get

$$
\begin{aligned}
\int_{0}^{t}\left\langle X_{s}, A \eta\right\rangle d s= & \int_{0}^{t}\langle S(s) x, A \eta\rangle d s \\
& -\int_{0}^{t}\left\langle\int_{0}^{s} S(s-u) \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}, A \eta\right\rangle d s \\
& +\int_{0}^{t}\left\langle\int_{0}^{s} S(s-u) d W_{u}, A \eta\right\rangle d s \quad \forall t \in[0, T] P \text {-a.s. }
\end{aligned}
$$

The assertion that $\left(X(t), L_{t}\right), t \in[0, T]$, is a solution of (5.2) now follows as in the proof of [19], Proposition G.0.9, because

$$
\begin{aligned}
& \int_{0}^{t}\left\langle\int_{0}^{s} S(s-u) \mathbf{n}_{\Gamma}\left(X_{u}\right) d L_{u}, A \eta\right\rangle d s \\
& \quad=\int_{0}^{t} \int_{0}^{s}\left\langle\mathbf{n}_{\Gamma}\left(X_{u}\right),-\frac{d}{d s} S(s-u) \eta\right\rangle d L_{u} d s \\
& \quad=-\left\langle\int_{0}^{t} S(t-s) \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s}, \eta\right\rangle+\left\langle\int_{0}^{t} \mathbf{n}_{\Gamma}\left(X_{s}\right) d L_{s}, \eta\right\rangle
\end{aligned}
$$

Below, we prove (5.2) has a unique solution in the sense of Definition 5.6.
THEOREM 5.11. Let $\Gamma \subset H$ satisfy Hypothesis 5.1. Then the stochastic inclusion (5.2) admits at most one solution in the sense of Definition 5.6.

Proof. Let (u, L^{1}) and (v, L^{2}) be two solutions of (5.2), and let $\left\{e_{k}\right\}_{k \in N}$ be the eigenbasis of A from above. We then have

$$
\begin{aligned}
& \left\langle e_{k}, u(t)-v(t)\right\rangle+\int_{0}^{t}\left\langle\alpha_{k} e_{k}, u(s)-v(s)\right\rangle d s+\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle d L_{s}^{1} \\
& \quad-\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle d L_{s}^{2}=0
\end{aligned}
$$

Setting $\phi_{k}(t):=\left\langle e_{k}, u(t)-v(t)\right\rangle$, we obtain

$$
\begin{aligned}
\phi_{k}^{2}(t)= & 2 \int_{0}^{t} \phi_{k}(s) d \phi_{k}(s) \\
= & -2\left(\int_{0}^{t}\left\langle\alpha_{k} e_{k}, u(s)-v(s)\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d s\right. \\
& +\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
& \left.-\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2}\right) \\
\leq & -2 \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
& +2 \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2} .
\end{aligned}
$$

By the dominated convergence theorem for all $t \geq 0$, we have P-a.s.

$$
\begin{aligned}
& \sum_{k \leq N} \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
& \quad \rightarrow \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(u(s)), u(s)-v(s)\right\rangle d L_{s}^{1} \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k \leq N} \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2} \\
& \quad \rightarrow \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(v(s)), u(s)-v(s)\right\rangle d L_{s}^{2} \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

Summing over $k \leq N$ in (5.4) and letting $N \rightarrow \infty$ yield that for all $t \geq 0 P$-a.s.

$$
\begin{aligned}
|u(t)-v(t)|^{2} \leq & 2 \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(u(s)), v(s)-u(s)\right\rangle d L_{s}^{1} \\
& +2 \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(v(s)), u(s)-v(s)\right\rangle d L_{s}^{2}
\end{aligned}
$$

By Remark 5.5 it follows that

$$
|u(t)-v(t)|^{2} \leq 0
$$

which implies

$$
u(t)=v(t)
$$

and thus

$$
L^{1}(t)=L^{2}(t)
$$

Combining Theorems 5.4 and 5.11 with the Yamada-Watanabe theorem, we now obtain the following theorem.

ThEOREM 5.12. If Γ satisfies Hypothesis 5.1, then there exists a Borel set $M \subset H$ with $I_{\Gamma} \cdot \mu(M)=\mu(\Gamma)$ such that for every $x \in M$, (5.2) has a pathwise unique continuous strong solution in the sense that for every probability space $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ with an \mathcal{F}_{t}-Wiener process W, there exists a unique pair of $\mathcal{F}_{t^{-}}$ adapted processes (X, L) satisfying Definition 5.6 and $P\left(X_{0}=x\right)=1$. Moreover, $X(t) \in M$ for all $t \geq 0 P$-a.s.

Proof. By Theorems 5.4 and 5.11, one sees that [12], Theorem 3.14(a) is satisfied for the solution (X, L). So, the assertion follows from [12], Theorem 3.14(b).

REMARK 5.13. Following the same arguments as in the proof of [22], Theorem 2.1, we can give an alternative proof of Theorem 5.12 for a stronger notion of strong solutions (see, e.g., [22]). Also, because of Theorem 5.10, by a modification of [16], Theorem 12.1, we can prove the Yamada Watanabe theorem for the mild solution in Definition 5.8, and then also a corresponding version of Theorem 5.12 for mild solutions for (5.2). This will be contained in forthcoming work.
5.3. The nonsymmetric case. In this section, we extend our results to the nonsymmetric case. For $\Gamma \subset H$ satisfying Hypothesis 5.1, we consider the nonsymmetric Dirichlet form,

$$
\begin{aligned}
& \mathcal{E}^{\Gamma}(u, v)=\int_{\Gamma}\left(\frac{1}{2}\langle D u(z), D v(z)\rangle+\langle B(z), D u(z)\rangle v(z)\right) \mu(d z) \\
& u, v \in C_{b}^{1}(\Gamma),
\end{aligned}
$$

where B is a map from Γ to H such that

$$
\begin{align*}
& B \in L^{\infty}(\Gamma \rightarrow H, \mu) \\
& \int_{\Gamma}\langle B, D u\rangle d \mu \geq 0 \quad \text { for all } u \in C_{b}^{1}(\Gamma), u \geq 0 \tag{5.5}
\end{align*}
$$

Then $\left(\mathcal{E}, C_{b}^{1}(\Gamma)\right)$ is a densely defined bilinear form on $L^{2}(\Gamma ; \mu)$ which is positive definite, since for all $u \in C_{b}^{1}(\Gamma)$

$$
\mathcal{E}^{\Gamma}(u, u)=\int_{\Gamma} \frac{1}{2}\left(\langle D u(z), D u(z)\rangle+\left\langle B(z), D u^{2}(z)\right\rangle(z)\right) \mu(d z) \geq 0 .
$$

Furthermore, by the same argument as [13], Section II.3.e, we have $\left(\mathcal{E}, C_{b}^{1}(\Gamma)\right)$ is closable on $L^{2}(\Gamma, \mu)$ and its closure $\left(\mathcal{E}^{\Gamma}, \mathcal{F}^{\Gamma}\right)$ is a Dirichlet form on $L^{2}(\Gamma, \mu)$. We denote the extended Dirichlet space of $\left(\mathcal{E}^{\Gamma}, \mathcal{F}^{\Gamma}\right)$ by \mathcal{F}_{e}^{Γ} : Recall that $u \in \mathcal{F}_{e}^{\Gamma}$ if and only if $|u|<\infty I_{\Gamma} \cdot \mu$-a.e. and there exists a sequence $\left\{u_{n}\right\}$ in \mathcal{F}^{Γ} such that $\mathcal{E}^{\Gamma}\left(u_{m}-u_{n}, u_{m}-u_{n}\right) \rightarrow 0$ as $n \geq m \rightarrow \infty$ and $u_{n} \rightarrow u I_{\Gamma} \cdot \mu$-a.e. as $n \rightarrow \infty$. This Dirichlet form satisfies the weak sector condition

$$
\left|\mathcal{E}_{1}^{\Gamma}(u, v)\right| \leq K \mathcal{E}_{1}^{\Gamma}(u, u)^{1 / 2} \mathcal{E}_{1}^{\Gamma}(v, v)^{1 / 2}
$$

Furthermore, we have the following theorem.
Theorem 5.14. Suppose $\Gamma \subset H$ satisfies Hypothesis 5.1. Then $\left(\mathcal{E}^{\Gamma}, \mathcal{F}^{\Gamma}\right)$ is a quasi-regular local Dirichlet form on $L^{2}(\Gamma ; \mu)$.

Proof. The assertion follows by [13], Section IV. 4b, and [23].
By virtue of Theorem 5.14 and [13], there exists a diffusion process $M^{\Gamma}=$ $\left(X_{t}, P_{z}\right)$ on Γ associated with the Dirichlet form $\left(\mathcal{E}^{\Gamma}, \mathcal{F}^{\Gamma}\right)$. Since constant functions are in \mathcal{F}^{Γ} and $\mathcal{E}^{\Gamma}(1,1)=0, M^{\Gamma}$ is recurrent and conservative. We denote by \mathbf{A}_{+}^{Γ} the set of all positive continuous additive functionals (PCAF in abbreviation) of M^{Γ}, and define $\mathbf{A}^{\Gamma}=\mathbf{A}_{+}^{\Gamma}-\mathbf{A}_{+}^{\Gamma}$. For $A \in \mathbf{A}^{\Gamma}$, its total variation process is denoted by $\{A\}$. We also define $\mathbf{A}_{0}^{\Gamma}=\left\{A \in \mathbf{A}^{\Gamma} \mid E_{I_{\Gamma} \cdot \mu}\left(\{A\}_{t}\right)<\infty \forall t>0\right\}$. Each element in \mathbf{A}_{+}^{Γ} has a corresponding positive \mathcal{E}^{Γ}-smooth measure on Γ by the Revuz correspondence. The totality of such measures will be denoted by S_{+}^{Γ}. Accordingly, \mathbf{A}^{Γ} corresponds to $S^{\Gamma}=S_{+}^{\Gamma}-S_{+}^{\Gamma}$, the set of all \mathcal{E}^{Γ}-smooth signed measure in the sense that $A_{t}=A_{t}^{1}-A_{t}^{2}$ for $A_{t}^{k} \in \mathbf{A}_{+}^{\rho}, k=1,2$, whose Revuz measures are $v^{k}, k=1,2$, and $v=v^{1}-v^{2}$ is the Hahn-Jordan decomposition of v. The element of \mathbf{A} corresponding to $v \in S$ will be denoted by A^{ν}.

Note that for each $l \in H$ the function $u(z)=\langle l, z\rangle$ belongs to the extended Dirichlet space \mathcal{F}_{e}^{Γ} and

$$
\begin{equation*}
\mathcal{E}^{\Gamma}(l(\cdot), v)=\int_{\Gamma}\left(\frac{1}{2}\langle l, D v(z)\rangle+\langle B(z), l\rangle v(z)\right) \mu(d z) \quad \forall v \in C_{b}^{1}(\Gamma) . \tag{5.6}
\end{equation*}
$$

On the other hand, the $\mathrm{AF}\left\langle l, X_{t}-X_{0}\right\rangle$ of M^{Γ} admits a decomposition into a sum of a martingale $\mathrm{AF}\left(M_{t}\right)$ of finite energy and CAF $\left(N_{t}\right)$ of zero energy. More precisely, for every $l \in H$

$$
\begin{equation*}
\left\langle l, X_{t}-X_{0}\right\rangle=M_{t}^{l}+N_{t}^{l} \quad \forall t \geq 0 P_{z} \text {-a.s. } \tag{5.7}
\end{equation*}
$$

for \mathcal{E}^{ρ}-q.e. $z \in \Gamma$.
Then we have the following theorem.

THEOREM 5.15. Suppose $\Gamma \subset H$ satisfies Hypothesis 5.1.
(1) The next three conditions are equivalent:
(i) $N^{l} \in A_{0}$.
(ii) $\left|\mathcal{E}^{\Gamma}(l(\cdot), v)\right| \leq C\|v\|_{\infty} \forall v \in C_{b}^{1}(\Gamma)$.
(iii) There exists a finite (unique) signed measure ν_{l} on Γ such that

$$
\begin{equation*}
\mathcal{E}^{\Gamma}(l(\cdot), v)=-\int_{\Gamma} v(z) v_{l}(d z) \quad \forall v \in C_{b}^{1}(\Gamma) \tag{5.8}
\end{equation*}
$$

In this case, ν_{l} is automatically smooth and

$$
N^{l}=A^{\nu_{l}} .
$$

(2) M^{l} is a martingale $A F$ with quadratic variation process

$$
\begin{equation*}
\left\langle M^{l}\right\rangle_{t}=t|l|^{2}, \quad t \geq 0 \tag{5.9}
\end{equation*}
$$

Proof. (1) By [17], Theorem 5.2.7, and the same arguments as in [8], we can extend Theorem 6.2 in [8] to our nonsymmetric case to prove the assertions.
(2) Since

$$
\mathcal{E}^{\Gamma}(u, v)=\int_{\Gamma}\left(\frac{1}{2}\langle D u(z), D v(z)\rangle+\langle B(z), D u(z)\rangle v(z)\right) \mu(d z), \quad u, v \in \mathcal{F}^{\Gamma}
$$

by [17], Theorem 5.1.5, for $u \in C_{b}^{1}(\Gamma), f \in \mathcal{F}^{\Gamma}$ bounded we have

$$
\begin{aligned}
\int \tilde{f}(x) & \mu_{\left\langle M^{[u]}\right\rangle}(d x) \\
= & 2 \mathcal{E}^{\Gamma}(u, u f)-\mathcal{E}^{\Gamma}\left(u^{2}, f\right) \\
= & 2 \int_{\Gamma}\left(\frac{1}{2}\langle D u(z), D(u \tilde{f})(z)\rangle+\langle B(z), D u(z)\rangle u(z) \tilde{f}(z)\right) \mu(d z) \\
& -\int_{\Gamma}\left(\frac{1}{2}\left\langle D\left(u(z)^{2}\right), D \tilde{f}(z)\right\rangle+\left\langle B(z), D\left(u^{2}\right)(z)\right\rangle \tilde{f}(z)\right) \mu(d z) \\
= & \int_{\Gamma}\langle D u(z), D u(z)\rangle \tilde{f}(z) \mu(d z)
\end{aligned}
$$

Here \tilde{f} denotes the \mathcal{E}^{Γ}-quasi-continuous version of $f, \mu_{\left\langle M^{[u]}\right\rangle}$ is the Reuvz measure for $\left\langle M^{[u]}\right\rangle$ and $M^{[u]}$ is the martingale additive functional in the Fukushima decomposition for $u\left(X_{t}\right)$. Hence, we have

$$
\mu_{\left\langle M^{[u]}\right\rangle}(d z)=I_{\Gamma}\langle D u(z), D u(z)\rangle \cdot \mu(d z)
$$

By [17], (5.1.3), we also have

$$
e\left(\left\langle M^{l}\right\rangle\right)=e\left(M^{l}\right)=\int_{\Gamma} \frac{1}{2}\langle l, l\rangle \mu(d z)
$$

where $e\left(M^{l}\right)$ is the energy of M^{l}. Then (5.9) easily follows.
By Theorem 3.1, we can now prove the following theorem.

THEOREM 5.16. Suppose $\Gamma \subset H$ satisfies Hypothesis 5.1. Then there is an \mathcal{E}^{Γ}-exceptional set $S \subset \Gamma$ such that $\forall z \in \Gamma \backslash S$, under P_{z} there exists an \mathcal{M}_{t} cylindrical Wiener process W^{z}, such that the sample paths of the associated $O U$ process M^{Γ} on Γ satisfy the following: for $l \in D(A) \cap H_{1}$

$$
\begin{align*}
\left\langle l, X_{t}-X_{0}\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}^{z}\right\rangle-\frac{1}{2} \int_{0}^{t} H_{1}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\|\partial \Gamma\|} \\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s-\int_{0}^{t}\left\langle l, B\left(X_{s}\right)\right\rangle d s \quad P_{z}-a . s . \tag{5.10}
\end{align*}
$$

Here, $L_{t}^{\|\partial \Gamma\|}$ is the real valued PCAF associated with $\|\partial \Gamma\|$ by the Revuz correspondence, which has the following additional property: $\forall z \in \Gamma \backslash S$

$$
\begin{equation*}
I_{\partial \Gamma}\left(X_{s}\right) d L_{s}^{\|\partial \Gamma\|}=d L_{s}^{\|\partial \Gamma\|} \quad P_{z} \text {-a.s. } \tag{5.11}
\end{equation*}
$$

Here $\mathbf{n}_{\Gamma}:=\frac{D g}{|D g|}$ is the exterior normal to Γ, and

$$
\|\partial \Gamma\|(d y)=\frac{|D g(y)|}{\left|Q^{1 / 2} D g(y)\right|} \mu_{\partial \Gamma}(d y)
$$

where $\mu_{\partial \Gamma}$ the surface measure induced by μ.
Proof. By (5.6) and (3.16), we have

$$
\begin{aligned}
\mathcal{E}^{\Gamma}(l(\cdot), v)= & \int_{\Gamma} \frac{1}{2}\langle l, D v(z)\rangle+\langle B(z), l\rangle v(z) \mu(d z) \\
= & \int_{\Gamma}\langle B(z), l\rangle v(z) \mu(d z)+\int_{\Gamma} v(z)\langle A l, z\rangle \mu(d z) \\
& +\frac{1}{2} \int_{\partial \Gamma} v(z)\left\langle l, \mathbf{n}_{\Gamma}(z)\right\rangle\|\partial \Gamma\|(d z)
\end{aligned}
$$

Thus, by Theorem 5.15

$$
\begin{aligned}
N_{t}^{l}= & -\left\langle A l, \int_{0}^{t} X_{s}(\omega) d s\right\rangle-\left\langle l, \int_{0}^{t} B\left(X_{s}(\omega)\right) d s\right\rangle \\
& -\frac{1}{2}\left\langle l, \int_{0}^{t} \mathbf{n}_{\Gamma}\left(X_{s}(\omega)\right) d L_{s}^{\|\partial \Gamma\|}(\omega)\right\rangle
\end{aligned}
$$

By Theorem 5.15 and the same method as in Theorem 3.2 one then proves the first assertion, and the last assertion follows by Theorems 5.3 and 5.4.

Let $\Gamma \subset H$ and our linear operator A satisfy Hypotheses 5.1 and 2.1, respectively. As in Section 5.2 we shall now prove the existence and uniqueness of a solution of the following stochastic differential inclusion on the Hilbert space H,

$$
\left\{\begin{array}{l}
d X(t)+\left(A X(t)+B(X(t))+N_{\Gamma}(X(t))\right) d t \ni d W(t) \tag{5.12}\\
X(0)=x
\end{array}\right.
$$

where B satisfies condition (5.5), $W(t)$ is a cylindrical Wiener process in H on a filtered probability space $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ and $N_{\Gamma}(x)$ is the normal cone to Γ at x, that is,

$$
N_{\Gamma}(x)=\{z \in H:\langle z, y-x\rangle \leq 0 \forall y \in \Gamma\}
$$

DEFINITION 5.17. A pair of continuous $H \times \mathbb{R}$-valued and \mathcal{F}_{t}-adapted processes $(X(t), L(t)), t \in[0, T]$, is called a solution of (5.12) if the following conditions hold:
(i) $X(t) \in \Gamma$ for all $t \in[0, T] P$-a.s.;
(ii) L is an increasing process with the property that

$$
I_{\partial \Gamma}\left(X_{s}\right) d L_{s}=d L_{s} \quad P \text {-a.s. }
$$

and for any $l \in D(A)$ we have

$$
\begin{aligned}
\left\langle l, X_{t}-x\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}\right\rangle-\int_{0}^{t}\left\langle l, \mathbf{n}_{\Gamma}\left(X_{s}\right)\right\rangle d L_{s}-\int_{0}^{t}\left\langle l, B\left(X_{s}\right)\right\rangle d s \\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad \forall t \geq 0 P \text {-a.s. }
\end{aligned}
$$

where \mathbf{n}_{Γ} is the exterior normal to Γ.
Below we prove (5.12) has a unique solution in the sense of Definition 5.17.
THEOREM 5.18. Let $\Gamma \subset H$ satisfy Hypothesis 5.1 and B satisfy the monotonicity condition

$$
\begin{equation*}
\langle B(u)-B(v), u-v\rangle \geq-\alpha|u-v|^{2} \tag{5.13}
\end{equation*}
$$

for all $u, v \in \operatorname{dom}(B)$, for some $\alpha \in[0, \infty)$ independent of u, v. The stochastic inclusion (5.12) admits at most one solution in the sense of Definition 5.17.

Proof. Let $\left(u, L^{1}\right)$ and (v, L^{2}) be two solutions of (5.12), and let $\left\{e_{k}\right\}_{k \in N}$ be the eigenbasis of A from above. We then have

$$
\begin{aligned}
& \left\langle e_{k}, u(t)-v(t)\right\rangle+\int_{0}^{t}\left\langle\alpha_{k} e_{k}, u(s)-v(s)\right\rangle d s+\int_{0}^{t}\left\langle e_{k}, B(u(s))-B(v(s))\right\rangle d s \\
& \quad+\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle d L_{s}^{1}-\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle d L_{s}^{2}=0
\end{aligned}
$$

Setting $\phi_{k}(t):=\left\langle e_{k}, u(t)-v(t)\right\rangle$, and we have

$$
\begin{align*}
\phi_{k}^{2}(t) & =2 \int_{0}^{t} \phi_{k}(s) d \phi_{k}(s) \\
& =-2\left(\int_{0}^{t}\left\langle\alpha_{k} e_{k}, u(s)-v(s)\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d s\right. \tag{5.14}
\end{align*}
$$

$$
\begin{aligned}
&+ \int_{0}^{t}\left\langle e_{k}, B(u(s))-B(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d s \\
&+ \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
&-\left.\int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2}\right) \\
& \leq-2 \int_{0}^{t}\left\langle e_{k}, B(u(s))-B(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d s \\
&-2 \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
&+2 \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2} .
\end{aligned}
$$

By the same argument as Theorem 5.11, we have the following P-a.s.:

$$
\begin{aligned}
& \sum_{k \leq N} \int_{0}^{t}\left\langle e_{k}, B(u(s))-B(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d s \\
& \quad \rightarrow \int_{0}^{t}\langle B(u(s))-B(v(s)), u(s)-v(s)\rangle d s \quad \text { as } N \rightarrow \infty \\
& \sum_{k \leq N} \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(u(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{1} \\
& \quad \rightarrow \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(u(s)), u(s)-v(s)\right\rangle d L_{s}^{1} \quad \text { as } N \rightarrow \infty
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{k \leq N} \int_{0}^{t}\left\langle e_{k}, \mathbf{n}_{\Gamma}(v(s))\right\rangle\left\langle e_{k}, u(s)-v(s)\right\rangle d L_{s}^{2} \\
& \quad \rightarrow \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(v(s)), u(s)-v(s)\right\rangle d L_{s}^{2} \quad \text { as } N \rightarrow \infty .
\end{aligned}
$$

Summing over $k \leq N$ in (5.14) and letting $N \rightarrow \infty$ yield that for all $t \geq 0, P$-a.s.

$$
\begin{aligned}
\mid u(t) & -\left.v(t)\right|^{2}+2 \int_{0}^{t}\langle B(u(s))-B(v(s)), u(s)-v(s)\rangle d s \\
& \leq 2 \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(u(s)), v(s)-u(s)\right\rangle d L_{s}^{1}+2 \int_{0}^{t}\left\langle\mathbf{n}_{\Gamma}(v(s)), u(s)-v(s)\right\rangle d L_{s}^{2}
\end{aligned}
$$

By Remark 5.5, it follows that

$$
|u(t)-v(t)|^{2}+2 \int_{0}^{t}\langle B(u(s))-B(v(s)), u(s)-v(s)\rangle d s \leq 0
$$

By (5.13) and Gronwall's lemma, it follows that

$$
u(t)=v(t)
$$

and thus

$$
L^{1}(t)=L^{2}(t)
$$

Combining Theorems 5.16 and 5.18 with the Yamada-Watanabe theorem, we obtain the following.

THEOREM 5.19. If Γ satisfies Hypothesis 5.1 and B in (5.12) satisfies (5.13), then there exists a Borel set $M \subset H$ with $I_{\Gamma} \cdot \mu(M)=\mu(\Gamma)$ such that for every $x \in$ M, (5.12) has a pathwise unique continuous strong solution in the sense that for every probability space $\left(\Omega, \mathcal{F}, \mathcal{F}_{t}, P\right)$ with an \mathcal{F}_{t}-Wiener process W there exists a unique pair of \mathcal{F}_{t}-adapted processes (X, L) satisfying Definition 5.17 and $P\left(X_{0}=\right.$ $x)=1$. Moreover, $X(t) \in M$ for all $t \geq 0 P$-a.s.

Proof. The proof is completely analogous to that of Theorem 5.12.
6. Reflected OU-processeses on a class of convex sets. Below for a topological space X we denote its Borel σ-algebra by $\mathcal{B}(X)$. In this section, we consider the case where $H:=L^{2}(0,1), \rho=I_{K_{\alpha}}$, where $K_{\alpha}:=\{f \in H \mid f \geq-\alpha\}, \alpha \geq 0$, and $A=-\frac{1}{2} \frac{d^{2}}{d r^{2}}$ with Dirichlet boundary conditions on (0,1). So in this case $e_{j}=\sqrt{2} \sin (j \pi r), j \in \mathbb{N}$, is the corresponding eigenbases. We recall that (cf. [23]) we have $\mu\left(C_{0}([0,1])\right)=1$. In [23], L. Zambotti proved the following integration by parts formulae in this situation:

- for $\alpha>0$,

$$
\begin{aligned}
& \int_{K_{\alpha}}\langle l, D \varphi\rangle d \mu \\
& \qquad \begin{aligned}
&=-\int_{K_{\alpha}} \varphi(x)\left\langle x, l^{\prime \prime}\right\rangle \mu(d x)-\int_{0}^{1} d r l(r) \int \varphi(x) \sigma_{\alpha}(r, d x) \\
& \forall l \in D(A), \varphi \in C_{b}^{1}(H),
\end{aligned}
\end{aligned}
$$

- for $\alpha=0$,

$$
\int_{K_{0}}\langle l, D \varphi\rangle d v
$$

$$
\begin{align*}
&=-\int_{K_{0}} \varphi(x)\left\langle x, l^{\prime \prime}\right\rangle \nu(d x)-\int_{0}^{1} d r l(r) \int(x) \sigma_{0}(r, d x) \tag{6.1}\\
& \forall l \in D(A), \varphi \in C_{b}^{1}(H),
\end{align*}
$$

where v is the law of the Bessel Bridge of dimension 3 over [0,1] which is zero at 0 and $1, \sigma_{\alpha}(r, d x)=\sigma_{\alpha}(r) \mu_{\alpha}(r, d x)$, and for $\alpha>0, \sigma_{\alpha}$ is a positive bounded function, and for $\alpha=0, \sigma_{0}(r)=\frac{1}{\sqrt{2 \pi r^{3}(1-r)^{3}}}$, where $\mu_{\alpha}(r, d x), \alpha \geq 0$, are probability kernels from $(H, \mathcal{B}(H))$ to $([0,1], \mathcal{B}([0,1]))$.

REMARK 6.1. Since each l in $D(A)$ has a second derivative in L^{2}, its first derivative is bounded, hence l goes faster than linear to zero at any point where l is zero, in particular at the boundary points $r=0$ and $r=1$. Hence, the second integral in the right-hand side of the above equality is well defined.

We know by (3.5) that for all $l \in D(A)$

$$
D^{*}(\varphi(\cdot) l)=-\langle l, D \varphi\rangle-\varphi\left\langle l^{\prime \prime}, \cdot\right\rangle
$$

Hence, for $\alpha>0$,

$$
\begin{align*}
& \int_{K_{\alpha}} D^{*}(\varphi(\cdot) l) d \mu=\int_{0}^{1} l(r) \int \varphi(x) \sigma_{\alpha}(r, d x) d r \\
& \forall l \in D(A), \varphi \in C_{b}^{1}(H) . \tag{6.2}
\end{align*}
$$

Now take

$$
c_{j}:= \begin{cases}(j \pi)^{1 / 2+\varepsilon}, & \text { if } \alpha>0 \tag{6.3}\\ (j \pi)^{\beta}, & \text { if } \alpha=0\end{cases}
$$

where $\varepsilon \in\left(0, \frac{3}{2}\right]$ and $\beta \in\left(\frac{3}{2}, 2\right]$, respectively, and define

$$
H_{1}:=\left\{x \in H \mid \sum_{j=1}^{\infty}\left\langle x, e_{j}\right\rangle^{2} c_{j}^{2}<\infty\right\}
$$

equipped with the inner product

$$
\langle x, y\rangle_{H_{1}}:=\sum_{j=1}^{\infty} c_{j}^{2}\left\langle x, e_{j}\right\rangle\left\langle y, e_{j}\right\rangle
$$

We note that $D(A) \subset H_{1}$ continuously for all $\alpha \geq 0$, since $\varepsilon \leq \frac{3}{2}, \beta \leq 2$. Furthermore, $\left(H_{1},\langle\cdot, \cdot\rangle_{H_{1}}\right)$ is a Hilbert space such that $H_{1} \subset H$ continuously and densely. Identifying H with its dual we obtain the continuous and dense embeddings

$$
H_{1} \subset H\left(\equiv H^{*}\right) \subset H_{1}^{*} .
$$

It follows that

$$
H_{1}\langle z, v\rangle_{H_{1}^{*}}=\langle z, v\rangle_{H} \quad \forall z \in H_{1}, v \in H
$$

and that $\left(H_{1}, H, H_{1}^{*}\right)$ is a Gelfand triple.

The following is the main result of this section.
THEOREM 6.2. If $\alpha>0$, then $I_{K_{\alpha}} \in \operatorname{BV}\left(H, H_{1}\right) \cap \mathbf{H}$.
Proof. First, for σ_{α} as in (6.2) we show that for each $B \in \mathcal{B}(H)$ the function $r \mapsto \sigma_{\alpha}(r, B)$ is in H_{1}^{*} and that the map $B \mapsto \sigma_{\alpha}(\cdot, B)$ is in fact an H_{1}^{*}-valued measure of bounded variation, that is,

$$
\sup \left\{\sum_{n=1}^{\infty}\left\|\sigma_{\alpha}\left(\cdot, B_{n}\right)\right\|_{H_{1}^{*}}: B_{n} \in \mathcal{B}(H), n \in \mathbb{N}, H=\bigcup_{n=1}^{\infty} B_{n}\right\}<\infty
$$

that is,

$$
\begin{array}{r}
\sup \left\{\sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}^{-2}\left(\int_{0}^{1} \sigma_{\alpha}\left(r, B_{n}\right) \sin (j \pi r) d r\right)^{2}\right)^{1 / 2}:\right. \\
\left.B_{n} \in \mathcal{B}(H), n \in \mathbb{N}, H=\bigcup_{n=1}^{\infty} B_{n}\right\}<\infty,
\end{array}
$$

where $\dot{\cup}_{n=1}^{\infty} B_{n}$ means disjoint union.
For $\alpha>0$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}^{-2}\left(\int_{0}^{1} \sigma_{\alpha}\left(r, B_{n}\right) \sin (j \pi r) d r\right)^{2}\right)^{1 / 2} \\
& \quad \leq \sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}^{-2}\left(\int_{0}^{1} \sigma_{\alpha}\left(r, B_{n}\right) d r\right)^{2}\right)^{1 / 2} \\
& \quad \leq C \sum_{n=1}^{\infty} \int_{0}^{1} \sigma_{\alpha}\left(r, B_{n}\right) d r \\
& \quad=C \int_{0}^{1} \sigma_{\alpha}(r) d r<\infty
\end{aligned}
$$

Thus, σ_{α} in (6.2) is of bounded variation as an H_{1}^{*}-valued measure. Hence by the theory of vector-valued measures (cf. [3], Section 2.1), there is a unit vector field $n_{\alpha}: H \rightarrow H_{1}^{*}$, such that $\sigma_{\alpha}=n_{\alpha}\left\|\sigma_{\alpha}\right\|$, where

$$
\left\|\sigma_{\alpha}\right\|(B):=\sup \left\{\sum_{n=1}^{\infty}\left\|\sigma_{\alpha}\left(\cdot, B_{n}\right)\right\|_{H_{1}^{*}}: B_{n} \in \mathcal{B}(H), n \in \mathbb{N}, B=\bigcup_{n=1}^{\infty} B_{n}\right\}
$$

is a nonnegative measure, which is finite by the above proof. So (6.2) becomes

$$
\int_{K_{\alpha}} D^{*}(\varphi(\cdot) l) d \mu=\int H_{1}\left\langle\varphi(x) l, n_{\alpha}(x)\right\rangle_{H_{1}^{*}}\left\|\sigma_{\alpha}\right\|(d x) \quad \forall l \in D(A), \varphi \in C_{b}^{1}(H),
$$

which by linearity extends to all $G \in\left(C_{b}^{1}\right)_{D(A) \cap H_{1}}$. Thus by Theorem 3.1(iii), we get that $I_{K_{\alpha}} \in \mathrm{BV}\left(H, H_{1}\right)$.
$I_{K_{\alpha}} \in \mathbf{H}$ follows by Remark 4.1.
REMARK 6.3. It has been proved by Guan Qingyang that $I_{K_{\alpha}}$ is not in $\mathrm{BV}(H, H)$.

THEOREM 6.4. For $\alpha=0$, then there exist a positive finite measure $\left\|\sigma_{0}\right\|$ on H and a Borel-measurable map $n_{0}: H \rightarrow H_{1}^{*}$ such that $\left\|n_{0}(z)\right\|_{H_{1}^{*}}=1\left\|\sigma_{0}\right\|$-a.e., and

$$
\begin{align*}
& -\int_{K_{0}}\langle l, D \varphi\rangle d v-\int_{K_{0}} \varphi(x)\left\langle x, l^{\prime \prime}\right\rangle \nu(d x) \\
& \quad=\int{ }_{H_{1}}\left\langle\varphi(x) l, n_{0}(x)\right\rangle_{H_{1}^{*}}\left\|\sigma_{0}\right\|(d x) \quad \forall l \in D(A), \varphi \in C_{b}^{1}(H) . \tag{6.4}
\end{align*}
$$

Proof. For $\alpha=0$ using that $|\sin (j \pi r)| \leq 2 j \pi r(1-r) \forall r \in[0,1]$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}^{-2}\left(\int_{0}^{1} \sigma_{0}\left(r, B_{n}\right) \sin (j \pi r) d r\right)^{2}\right)^{1 / 2} \\
& \quad \leq \sum_{n=1}^{\infty}\left(\sum_{j=1}^{\infty} c_{j}^{-2}\left(\int_{0}^{1} \sigma_{0}\left(r, B_{n}\right) 2 j \pi r(1-r) d r\right)^{2}\right)^{1 / 2} \\
& \quad \leq C \sum_{n=1}^{\infty} \int_{0}^{1} \sigma_{0}\left(r, B_{n}\right) r(1-r) d r \\
& \quad=C \int_{0}^{1} \sigma_{0}(r) r(1-r) d r<\infty
\end{aligned}
$$

Thus, σ_{0} in (6.1) is of bounded variation as an H_{1}^{*}-valued measure. Hence by the theory of vector-valued measures (cf. [3], Section 2.1), there is a unit vector field $n_{0}: H \rightarrow H_{1}^{*}$, such that $\sigma_{0}=n_{0}\left\|\sigma_{\alpha}\right\|$, where

$$
\left\|\sigma_{0}\right\|(B):=\sup \left\{\sum_{n=1}^{\infty}\left\|\sigma_{0}\left(\cdot, B_{n}\right)\right\|_{H_{1}^{*}}: B_{n} \in \mathcal{B}(H), n \in \mathbb{N}, B=\bigcup_{n=1}^{\infty} B_{n}\right\}
$$

is a nonnegative measure, which is finite by the above proof. So the result follows by (6.1).

Since here $\mu\left(K_{0}\right)=0$, we have to change the reference measure of the Dirichlet form. Consider

$$
\mathcal{E}^{K_{0}}(u, v)=\frac{1}{2} \int_{K_{0}}\langle D u, D v\rangle d v, \quad u, v \in C_{b}^{1}\left(K_{0}\right)
$$

Since $I_{K_{0}} \in \mathbf{H}$ by Remark 4.1, the closure of $\left(\mathcal{E}^{I_{K_{0}}}, C_{b}^{1}\left(K_{0}\right)\right)$ is also a quasi-regular local Dirichlet form on $L^{2}(F ; \rho \cdot v)$ in the sense of [13], Chapter IV, Definition 3.1. As before, there exists a diffusion process $M^{I_{K_{0}}}=\left(\Omega, \mathcal{M},\left\{\mathcal{M}_{t}\right\}, \theta_{t}, X_{t}, P_{z}\right)$ on F associated with this Dirichlet form. $M^{I_{K_{0}}}$ will also be called distorted OU-process on K_{0}. As before, $M^{I_{K}}$ is recurrent and conservative. As before, we also have the associated PCAF and the Revuz correspondence.

Combining these two cases: for $\alpha>0$ by Theorem 3.2 and for $\alpha=0$ by the same argument as Theorem 3.2, since we have (6.4), we have the following theorem.

THEOREM 6.5. Let $\rho:=I_{K_{\alpha}}, \alpha \geq 0$ and consider the measure $\left\|\sigma_{\alpha}\right\|$ and n_{α} appearing in Theorems 6.2 and 6.4. Then there is an \mathcal{E}^{ρ}-exceptional set $S \subset F$ such that $\forall z \in F \backslash S$, under P_{z} there exists an \mathcal{M}_{t}-cylindrical Wiener process W^{z}, such that the sample paths of the associated distorted $O U$-process M^{ρ} on F satisfy the following: for $l \in D(A)$

$$
\begin{align*}
\left\langle l, X_{t}-X_{0}\right\rangle= & \int_{0}^{t}\left\langle l, d W_{s}\right\rangle+\frac{1}{2} \int_{0}^{t} H_{1}\left\langle l, n_{\alpha}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\left\|\sigma_{\alpha}\right\|} \tag{6.5}\\
& -\int_{0}^{t}\left\langle A l, X_{s}\right\rangle d s \quad P_{z} \text {-a.e. }
\end{align*}
$$

Here $L_{t}^{\left\|\sigma_{\alpha}\right\|}$ is the real valued PCAF associated with $\left\|\sigma_{\alpha}\right\|$ by the Revuz correspondence with respect to M^{ρ}, satisfying

$$
\begin{equation*}
I_{\left\{X_{s}+\alpha \neq 0\right\}} d L_{s}^{\left\|\sigma_{\alpha}\right\|}=0 \tag{6.6}
\end{equation*}
$$

and for $l \in H_{1}$ with $l(r) \geq 0$ we have

$$
\begin{equation*}
\int_{0}^{t} H_{1}\left\langle l, n_{\alpha}\left(X_{s}\right)\right\rangle_{H_{1}^{*}} d L_{s}^{\left\|\sigma_{\alpha}\right\|} \geq 0 \tag{6.7}
\end{equation*}
$$

Furthermore, for all $z \in F$

$$
\begin{equation*}
P_{z}\left[X_{t} \in C_{0}[0,1] \text { for a.e. } t \in[0, \infty)\right]=1 \tag{6.8}
\end{equation*}
$$

Proof. For $\alpha>0$, the first part of the assertion follows by Theorem 3.2 and the uniqueness part of Theorem 3.1(ii). For $\alpha=0$, the assertion follows by the same argument as in Theorem 3.2. (6.6) and (6.7) follow by the property of σ_{α} in [23]. By [18], p. 135, Theorem 2.4, we have $C_{0}[0,1]$ is a Borel subset of $L^{2}[0,1]$. By [11], (5.1.13), we have

$$
E_{\rho \mu}\left[\int_{k-1}^{k} 1_{F \backslash C_{0}[0,1]}\left(X_{s}\right) d s\right]=\rho \mu\left(F \backslash C_{0}[0,1]\right)=0 \quad \forall k \in \mathbb{N}
$$

hence

$$
E_{\rho \mu}\left[\int_{0}^{\infty} 1_{F \backslash C_{0}[0,1]}\left(X_{s}\right) d s\right]=0
$$

Since $E_{x}\left[\int_{0}^{\infty} 1_{F \backslash C_{0}[0,1]}\left(X_{s}\right) d s\right]$ is a 0 -excessive function in $x \in K_{\alpha}$, it is finely continuous with respect to the process X. Then for $\mathcal{E}^{\rho}-$ q.e. $z \in F$,

$$
E_{z}\left[\int_{0}^{\infty} 1_{F \backslash C_{0}[0,1]}\left(X_{s}\right) d s\right]=0
$$

thus, for \mathcal{E}^{ρ}-q.e. $z \in F$,

$$
P_{z}\left[\int_{0}^{\infty} 1_{F \backslash C_{0}[0,1]}\left(X_{S}\right) d s=0\right]=1
$$

As a consequence, we have that $\Lambda_{0}:=\left\{X_{t} \in C_{0}[0,1]\right.$ for a.e. $\left.t \in[0, \infty)\right\}$ is measurable and for \mathcal{E}^{ρ}-q.e. $z \in F$

$$
P_{z}\left(\Lambda_{0}\right)=1
$$

As $\Lambda_{0}=\bigcap_{t \in \mathbb{Q}, t>0} \theta_{t}^{-1} \Lambda_{0}$ and since by [4] we have that the semigroup associated with X_{t} is strong Feller, by the Markov property as in [7], Lemma 7.1, we obtain that for any $z \in F, t \in \mathbb{Q}, t>0$,

$$
P_{z}\left(\theta_{t}^{-1} \Lambda_{0}\right)=1
$$

Hence, for any $z \in F$ we have

$$
P_{z}\left[X_{t} \in C_{0}[0,1] \text { for a.e. } t \in[0, \infty)\right]=1
$$

REMARK 6.6. We emphasize that in the present situation it was proved in [15], Theorem 1.3, that for all initial conditions $x \in H$, there exists a unique strong solution to (1.1). By [23], the solution in [15] is associated to our Dirichlet form, hence satisfies (6.5) by Theorem 6.5. Hence, it follows that the solution in [15], Theorem 1.3, is solution to an infinite-dimensional Skorohod problem.

Acknowledgments. The authors would like to thank Professor Zhiming Ma and Qingyang Guan for their helpful discussions and suggestions and also Giuseppe Da Prato and Ben Goldys for reaching an earlier version of this paper.

REFERENCES

[1] Albeverio, S. and Röckner, M. (1990). Classical Dirichlet forms on topological vector spaces-closability and a Cameron-Martin formula. J. Funct. Anal. 88 395-436. MR1038449
[2] Ambrosio, L., Da Prato, G. and Pallara, D. (2010). BV functions in a Hilbert space with respect to a Gaussian measure. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 21 405-414. MR2746092
[3] Ambrosio, L., Miranda, M. Jr., Maniglia, S. and Pallara, D. (2010). BV functions in abstract Wiener spaces. J. Funct. Anal. 258 785-813. MR2558177
[4] Ambrosio, L., Savaré, G. and Zambotti, L. (2009). Existence and stability for FokkerPlanck equations with log-concave reference measure. Probab. Theory Related Fields 145 517-564. MR2529438
[5] Barbu, V., Da Prato, G. and Tubaro, L. (2009). Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Ann. Probab. 37 1427-1458. MR2546750
[6] Barbu, V., Da Prato, G. and Tubaro, L. (2010). Kolmogorov equation associated to the stochastic reflection problem on a smooth convex set of a Hilbert space. Preprint.
[7] Da Prato, G. and Röckner, M. (2002). Singular dissipative stochastic equations in Hilbert spaces. Probab. Theory Related Fields 124 261-303. MR1936019
[8] FUKUShima, M. (1999). On semi-martingale characterizations of functionals of symmetric Markov processes. Electron. J. Probab. 432 (electronic). MR1741537
[9] Fukushima, M. (2000). BV functions and distorted Ornstein Uhlenbeck processes over the abstract Wiener space. J. Funct. Anal. 174 227-249. MR1761369
[10] Fukushima, M. and Hino, M. (2001). On the space of BV functions and a related stochastic calculus in infinite dimensions. J. Funct. Anal. 183 245-268. MR1837539
[11] Fukushima, M., Oshima, Y. and Takeda, M. (1994). Dirichlet Forms and Symmetric Markov Processes. de Gruyter Studies in Mathematics 19. de Gruyter, Berlin. MR1303354
[12] Kurtz, T. G. (2007). The Yamada-Watanabe-Engelbert theorem for general stochastic equations and inequalities. Electron. J. Probab. 12 951-965. MR2336594
[13] MA, Z. M. and Röckner, M. (1992). Introduction to the Theory of (Nonsymmetric) Dirichlet Forms. Universitext. Springer, Berlin. MR1214375
[14] Malliavin, P. (1997). Stochastic Analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 313. Springer, Berlin. MR1450093
[15] NUALART, D. and Pardoux, É. (1992). White noise driven quasilinear SPDEs with reflection. Probab. Theory Related Fields 93 77-89. MR1172940
[16] Ondreját, M. (2004). Uniqueness for stochastic evolution equations in Banach spaces. Dissertationes Math. (Rozprawy Mat.) 426 63. MR2067962
[17] Oshima, Y. (1988). Lectures on Dirichlet forms. Preprint.
[18] Parthasarathy, K. R. (1967). Probability Measures on Metric Spaces. Probab. Math. Statist. 3. Academic Press, New York. MR0226684
[19] Prévôt, C. and Röckner, M. (2007). A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Math. 1905. Springer, Berlin. MR2329435
[20] Rao, M. M. and Ren, Z. D. (1991). Theory of Orlicz Spaces. Monographs and Textbooks in Pure and Applied Mathematics 146. Dekker, New York. MR1113700
[21] Röckner, M. and Schmuland, B. (1992). Tightness of general $C_{1, p}$ capacities on Banach space. J. Funct. Anal. 108 1-12. MR1174156
[22] Röckner, M., Schmuland, B. and Zhang, X. (2008). Yamada-Watanabe theorem for stochastic evolution equations in infinite dimensions. Condens. Matter Phys. 54 247-259.
[23] Zambotti, L. (2002). Integration by parts formulae on convex sets of paths and applications to SPDEs with reflection. Probab. Theory Related Fields 123 579-600. MR1921014

M. RÖCKNER

Department of Mathematics
University of Bielefeld
D-33615 Bielefeld
Germany
E-MAIL: roeckner@mathematik.uni-bielefeld.de
R.-C. ZHU

Institute of Applied Mathematics
Academy of Mathematics and Systems
Science
Chinese Academy of Sciences
BEiJing 100190
China
AND
Department of Mathematics
University of Bielefeld
D-33615 Bielefeld
Germany
E-MAIL: zhurongchan@126.com
X.-C. Zhu

School of Mathematical Sciences
Peking University
Beijing 100871
China
AND
Department of Mathematics
University of Bielefeld
D-33615 Bielefeld
Germany
E-MAIL: zhuxiangchan@126.com

[^0]: Received September 2010; revised February 2011.
 ${ }^{1}$ Supported by 973 project, NSFC, key Lab of CAS, the DFG through IRTG 1132 and CRC 701 and the I. Newton Institute, Cambridge, UK.

 MSC2010 subject classifications. 60GXX, 31C25, 60G60, 26A45.
 Key words and phrases. Dirichlet forms, stochastic reflection problems, BV function, Gelfand triples, integration by parts formula in infinite dimensions.

