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PHASE SEPARATION IN RANDOM CLUSTER MODELS II:
THE DROPLET AT EQUILIBRIUM, AND LOCAL

DEVIATION LOWER BOUNDS

BY ALAN HAMMOND1

University of Oxford

We study the droplet that results from conditioning the planar subcrit-
ical Fortuin–Kasteleyn random cluster model on the presence of an open
circuit �0 encircling the origin and enclosing an area of at least (or ex-
actly) n2. We consider local deviation of the droplet boundary, measured in
a radial sense by the maximum local roughness, MLR(�0), this being the
maximum distance from a point in the circuit �0 to the boundary ∂ conv(�0)

of the circuit’s convex hull; and in a longitudinal sense by what we term
maximum facet length, namely, the length of the longest line segment of
which the polygon ∂ conv(�0) is formed. We prove that there exists a con-
stant c > 0 such that the conditional probability that the normalised quantity
n−1/3(logn)−2/3 MLR(�0) exceeds c tends to 1 in the high n-limit; and that
the same statement holds for n−2/3(logn)−1/3 MFL(�0). To obtain these
bounds, we exhibit the random cluster measure conditional on the presence
of an open circuit trapping high area as the invariant measure of a Markov
chain that resamples sections of the circuit boundary. We analyse the chain
at equilibrium to prove the local roughness lower bounds. Alongside com-
plementary upper bounds provided in [14], the fluctuations MLR(�0) and
MFL(�0) are determined up to a constant factor.
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1. Introduction. The theory of phase separation is concerned with the geom-
etry of the random boundary between populations of distinct spins in a statisti-
cal mechanical model such as percolation, the Potts model or the random cluster
model. For example, if the two-dimensional Ising model at supercritical inverse
temperature β > βc in a large box with negative boundary conditions is condi-
tioned by the presence of a significant excess of plus signs, then those excess signs
typically gather together in a single droplet having the opposite magnetisation to
its exterior. The object of study of phase separation is then the droplet boundary.
As explained in [4] and [14], a close relative of this problem is that of the behaviour
of the circuit that arises by conditioning a subcritical random cluster model on the
presence of a circuit encircling the origin and trapping a high area.

Wulff [24] proposed that the profile of such constrained circuits would macro-
scopically resemble a dilation of an isoperimetrically optimal curve that now bears
his name. For the Ising problem, this claim was first verified rigorously in [11]
at low temperature, the derivation being extended up to the critical temperature
by [16]. Fluctuations from this profile have been classified into global or long-
wave effects, measured by the deviation (in the Hausdorff metric) of the convex
hull of the circuit from an optimally placed dilate of the Wulff shape. Local fluctua-
tions have been measured by the inward deviation of the circuit from the boundary
of its convex hull.

In this article, we prove lower bounds on the local fluctuations of the outermost
open circuit in a subcritical random cluster model, when this circuit is conditioned
to entrap a large area.
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We recall the definition of the random cluster model.

DEFINITION 1.1. For � ⊆ Z
2, let E(�) denote the set of nearest-neighbour

edges whose endpoints lie in � and write ∂int(�) for the interior vertex boundary
of �, namely, the subset of � each of whose elements is an endpoint of some
element of E(�)c. Fix a choice of � ⊆ Z

2 that is finite. The free random cluster
model on � with parameters p ∈ [0,1] and q > 0 on � is the probability space
over η :E(�) → {0,1} with measure

φf
p,q(η) = 1

Zp,q

p
∑

e η(e)(1 − p)
∑

e(1−η(e))qk(η),

where k(η) denotes the number of connected components in the subgraph of
(�,E(�)) containing all vertices and all edges e such that η(e) = 1. (The con-
stant Zp,q is a normalization.) The wired random cluster model φw

p,q is defined
similarly, with k(η) now denoting the number of such connected components none
of whose edges touch ∂int(�).

For parameter choices p ∈ [0,1] and q ≥ 1, either type of random cluster mea-
sure P satisfies the FKG inequality: suppose that f,g : {0,1}E(�) → R are in-
creasing functions with respect to the natural partial order on {0,1}E(�). Then
EP (fg) ≥ EP (f )EP (g), where EP denotes expectation with respect to P .

Consequently, we define the infinite-volume free and wired random cluster mea-
sures P f and P w as limits of the finite-volume counterparts taken along any in-
creasing sequence of finite sets � ↑ Z

2. The measures P f and P w are defined on
the space of functions η :E(Z2) → {0,1} with the product σ -algebra. In a realiza-
tion η, the edges e ∈ E(Z2) such that η(e) = 1 are called open; the remainder are
called closed. A subset of E(Z2) will be called open (or closed) if all of its ele-
ments are open (or closed). We will record a realization in the form ω ∈ {0,1}E(Z2),
where the set of coordinates that are equal to 1 under ω is the set of open edges un-
der η. Any ω ∈ {0,1}E(Z2) will be called a configuration. For x,y ∈ Z

d , we write
x ↔ y to indicate that x and y lie in a common connected component of open
edges.

Set β ∈ (0,∞) according to p = 1 − exp{−2β}. In this way, the infinite volume
measures are parameterised by P w

β,q and P f
β,q with β > 0 and q ≥ 1. For any

q ≥ 1, P w
β,q = P f

β,q for all but at most countably many values of β [12]. We may
thus define

β1
c = inf{β > 0 : P ∗

β,q(0 ↔ ∞) > 0}
obtaining the same value whether we choose ∗ = w or ∗ = f .

There is a unique random cluster model for each subcritical β < β1
c [12], that

we will denote by Pβ,q .
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DEFINITION 1.2. Let β̂c denote the supremum over β > 0 such that the fol-
lowing holds: letting � = {−N, . . . ,N}2, there exist constants C > c > 0 such
that, for any N ,

P w
β,q(0 ↔ Z

2 \ �N) ≤ C exp{−cN}.
In the two-dimensional case that is the subject of this article, it has been estab-

lished that β1
c = β̂c for q = 1, q = 2 and for q sufficiently high, by [5] and, respec-

tively, [1, 2] and [18]. A recent advance [6] showed that, on the square lattice, in
fact, β1

c = β̂c holds for all q ≥ 1. The common value, which is 2−1 log(1 + √
q),

we will denote by βc.
The droplet boundary is now defined:

DEFINITION 1.3. A circuit � is a nearest-neighbour path in Z
2 whose end-

point coincides with its start point, but for which no other vertex is visited twice.
We set E(�) equal to the set of nearest-neighbour edges between successive ele-
ments of �. For notational convenience, when we write �, we refer to the closed
subset of R

2 given by the union of the topologically closed intervals corresponding
to the elements of E(�). We set V (�) = � ∩ Z

2.
Let ω ∈ {0,1}E(Z2). A circuit � is called open if E(�) is open. For any circuit �,

we write INT(�) ⊆ R
2 for the bounded component of R

2 \�, that is, for the set of
points in R

2 enclosed by �. The notation | · |, when applied to subsets of R
2, will

denote Lebesgue measure.
An open circuit � is called outermost if any open circuit �′ satisfying INT(�) ⊆

INT(�′) is equal to �. Note that, if a point z ∈ R
2 is enclosed by a positive but

finite number of open circuits in a configuration ω ∈ {0,1}E(Z2), it is enclosed by
a unique outermost open circuit.

We write �0 for the outermost open circuit � for which 0 ∈ INT(�), taking
�0 = ∅ if no such circuit exists.

REMARK. Under any subcritical random cluster measure P = Pβ,q , with β <

βc and q ≥ 1, there is an exponential decay in distance for the probability that two
points lie in the same open cluster. (See Theorem A of [7].) As such, P -a.s., no
point in R

2 is surrounded by infinitely many open circuits, so that �0 exists (and
is nonempty) whenever 0 is surrounded by an open circuit.

Our object of study is the subcritical random cluster model given the event
|INT(�0)| ≥ n2, with n ∈ N high. The resulting circuit �0 has a local geometry
given by the Gaussian fluctuations of a subcritical path conditioned between two
points. Globally, however, this geometry is constrained by curvature. To focus on
the interplay between these local fluctuation and global curvature effects, it is nat-
ural to consider the curve near a given point, rescaled by n2/3 longitudinally and
n1/3 radially. We prove lower bounds on the greatest deviations present in the cir-
cuit on these scales. The two notions of maximum fluctuation are now given.
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DEFINITION 1.4. We write conv(�0) for the convex hull of V (�0),

conv(�0) = {z ∈ R
2 :∃x,y ∈ V (�0) for which z ∈ [x,y]}.

The maximum local roughness MLR(�0) is defined to be the maximal distance of
an element of V (�0) to the boundary of the convex hull: that is,

MLR(�0) = sup{d(x, ∂ conv(�0)) : x ∈ V (�0)},
where d : R2 → [0,∞) denotes the Euclidean distance. We will denote by max-
imum facet length MFL(�0) the length of the longest line segment of which the
polygon ∂ conv(�0) is comprised.

It is proved in [22] that Pp(MLR(�0) ≥ n1/3(logn)−2/3||INT(�0)| ≥ n2) → 1
as n → ∞, with Pp , p ∈ (0,1/2), denoting subcritical bond percolation on Z

2.
The power-law term here was expected to be sharp. For a broad class of sub-
critical models, local roughness was proved in [4] to be bounded above by
O(n1/3(logn)2/3) in an L1-sense, validating the sharpness of the power-law term
for an averaged form of local roughness.

Our central conclusion for radial local deviation is the following lower bound
on maximum local roughness.

THEOREM 1.1. Let P = Pβ,q , with β < βc and q ≥ 1. For any ε > 0, there
exists δ > 0 such that

P
(
MLR(�0) < δn1/3(logn)2/3∣∣|INT(�0)| ≥ n2) ≤ exp{−n1/13−ε}.

Maximum facet length was not an object explicitly considered by K. Alexander
and H. Uzun, but it plays a central role in our approach. The conclusion is the
following theorem.

THEOREM 1.2. Let P = Pβ,q , with β < βc and q ≥ 1. There exists ε > 0
and a function φ : (0, ε) → (0,∞) satisfying limc↓0 φ(c) = ∞ such that, for all
c ∈ (0, ε), and for n ∈ N sufficiently high,

P
(
MFL(�0) < cn2/3(logn)1/3∣∣|INT(�0)| ≥ n2) ≤ n−φ(c).

The article [14] proves upper bounds that complement Theorems 1.1 and 1.2.
Taken together, our conclusion is the following.

COROLLARY 1. Let P = Pβ,q , with β < βc and q ≥ 1. Then there exist con-
stants 0 < c < C < ∞ such that

P

(
c ≤ MLR(�0)

n1/3(logn)2/3 ≤ C
∣∣∣|INT(�0)| ≥ n2

)
→ 1 as n → ∞

and

P

(
c ≤ MFL(�0)

n2/3(logn)1/3 ≤ C
∣∣∣|INT(�0)| ≥ n2

)
→ 1 as n → ∞.
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That is, the techniques of this paper and its counterpart [14] are sufficient to de-
rive the conjectured exponents for the power-laws in radial and longitudinal local
deviation, and to identify and prove exponents for the logarithmic correction for
these quantities.

An important ingredient in obtaining these results is an understanding that
the conditioned circuit is highly regular, with little backtracking from its overall
progress. The third article [15] in the series presents such a result, on the renewal
structure of the conditioned circuit. We will state its main conclusion as Theo-
rem 2.1. Equipped with this tool, it is straightforward to derive the results under a
conditioning on a fixed area.

THEOREM 1.3. Theorems 1.1, 1.2 and Corollary 1 are valid (with verbatim
statements) under the conditional measure P(·||INT(�0)| = n2).

The proof of Theorem 1.3 appears in [14].

1.1. Techniques and relations. To prove Theorem 1.1, we will introduce a
random resampling procedure that updates the circuit under the conditional mea-
sure along a segment of length n1/3(logn)2/3. We design this procedure so that it
leaves invariant the conditional distribution. As such, the conditional measure may
be viewed as the equilibrium of a process of updates, in which the circuit is up-
dated along successive stretches of length n1/3(logn)2/3. We prove Theorem 1.1
by analysing the behaviour of this updating process at equilibrium: the updating
occasionally produces configurations realizing the lower bound on MLR(�0) that
subsequent resamplings are not likely to undo. The technique of proof has interest
from a probabilistic point of view, because it analyses a measure by regarding it as
the equilibrium of a random process that is introduced for this purpose. Arguments
in which a convenient Markov chain is defined and analysed have previously been
used to prove such results as correlation inequalities in percolation [23]: see [13]
for a review. Of course, the Metropolis algorithm is very commonly used to sam-
ple approximately a measure (as reviewed in Chapter 3 of [19]). In our case, the
process of resampling might also be adapted to sample the conditional measure.

Of the numerous definitions of boundary fluctuation, we believe that local devi-
ation is of particular interest. We briefly explain why. As we have mentioned, the
radial n1/3 and longitudinal n2/3 scalings for this deviation are also characterized
as being that scale in which the competition between locally Gaussian fluctuation
in the circuit and its global need to curve takes place on a roughly equal foot-
ing. Rescaling the interface by these radial and longitudinal factors, we obtain a
random function similar to a Brownian excursion conditioned on the event of cap-
turing an area of at least a certain random quantity, where the law of this quantity
has been chosen so that the event of trapping this amount in area has typically a
bounded probability of being satisfied. The distribution of the area under a unit-
time Brownian excursion, known as the Airy distribution, has been computed in
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[10] and [20]. This law is derived nonrigorously in [21] as the limiting law of the
maximum height of a kinetic interface in the KPZ universality class [17]. In seek-
ing to understand the relationship between the random geometry of the droplet
boundary in models of phase separation, and the functionals universal in models
of interfaces subject to smoothing and random roughening, it thus seems very nat-
ural to make local deviation, and such functionals as its maximum, the object of
attention. See [14] for further discussion of this theme.

1.2. The structure of the paper. In Section 2, notation is established and some
tools from [14] and [15] are recalled. Among these is the regeneration structure
theorem of [15]. This result requires some definitions related to centering of the
circuit under the conditional measure. Thus, after introducing general notation in
Section 2.1, we explain in Section 2.2 the notation for centering used for the regen-
eration structure theorem, which is stated in Section 2.3. This preliminary section
also concludes with a large deviations’ statement for the macroscopic profile of
the circuit in Section 2.4 and the statement of upper bounds on maximum local
deviation from [14], since we will need these assertions in the proofs.

In Section 3, we present the principal proof in this paper, that of Theorem 1.1.
Given Theorem 1.1, and by means of surgical techniques presented in [14], the
proof of Theorem 1.2 is fairly straightforward. We explain why and present the
argument at the end of Section 3. Section 4 presents some technical proofs deferred
from the proof of Theorem 1.1. The concluding Section 5 discusses some questions
posed by our approach, including how the decay rates in Theorems 1.1 and 1.2
might be improved.

REMARK. In order that the reader may recall readily the notation that we will
use, a glossary of such notation appears at the end of the paper (see Section 6).

2. Notation and tools.

2.1. Notation.

DEFINITION 2.1. Elements of R
2 will be denoted by boldface symbols. By a

discrete path, we mean a list of elements of Z
2, each being a nearest-neighbour of

the preceding one, and without repetitions. In referring to a path, we mean a subset
of R

2 given by the union of the topologically closed edges formed from the set
of consecutive pairs of vertices of some discrete path. (As such, a path is defined
to be self-avoiding, including at its vertices.) In a similar vein, any subset of R

2

that is introduced as a connected set is understood to be a union of closed intervals
[u,v] corresponding to nearest-neighbour edges (u,v). For such a set A, we write
V (A) = A ∩ Z

2 and E(A) for the set of edges of which A is comprised.
For a general subset A ⊆ R

2, we write E(A) for the set of nearest-neighbour
edges (u,v) ∈ E(Z2) such that [u,v] ⊆ A. (This is of course consistent with the
preceding definition.)
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DEFINITION 2.2. For x,y ∈ Z
2, y �= x, we write 
x,y for the planar line con-

taining x and y, and 
+
x,y for the semi-infinite line segment that contains y and has

endpoint x. We write [x,y] for the line segment whose endpoints are x and y. We
write T0,x,y for the closed triangle with vertices 0, x and y. For x,y ∈ R

2, we write
∠(x,y) ∈ [0, π] for the angle between these two vectors. Borrowing complex no-
tation, we write arg(x) for the argument of x. In many derivations, the cones, line
segments and points in question all lie in a cone, rooted at the origin, whose aper-
ture has angle strictly less than 2π . As such, it is understood that arg denotes a
continuous branch of the argument that is defined throughout the region under
consideration.

Sometimes we wish to specify a cone by a pair of boundary points, and some-
times by the argument-values of its boundary lines.

DEFINITION 2.3. For x,y ∈ Z
2, arg(x) < arg(y), write

Ax,y = {z ∈ R
2 : arg(x) ≤ arg(z) ≤ arg(y)} ∪ {0}.

To specify a cone by the argument-values of its boundary lines, take v ∈ Z
2 and

c ∈ [0, π), and let

Wv,c = {z ∈ R
2 : arg(v) − c ≤ arg(z) ≤ arg(v) + c} ∪ {0}(2.1)

denote the cone of points whose angular displacement from v is at most c. Extend-
ing this notation, for any x ∈ Z

2 and c ∈ [0, π), we write Wv,c(x) = x + Wv,c. We
also write, for x ∈ R

2 and c ∈ (0,2π),

W+
x,c = {z ∈ R

2 : arg(x) ≤ arg(z) ≤ arg(x) + c} ∪ {0}
and

W−
x,c = {z ∈ R

2 : arg(x) − c ≤ arg(z) ≤ arg(x)} ∪ {0}.
DEFINITION 2.4. Write S1 ⊆ R

2 for the boundary of the unit ball in the Eu-
clidean metric. For v ∈ R

2, let v⊥ ∈ S1 denote the vector obtained by a counter-
clockwise turn of π/2 from the direction of v.

DEFINITION 2.5. For P a probability measure on {0,1}E(Z2) and for ω′ ∈
{0,1}A for some A ⊆ E(Z2), we write Pω′ for the conditional law of P given
ω|A = ω′. We will also write P(·|ω′) for Pω′ .

DEFINITION 2.6. Given a subset A ⊆ R
2, two elements x,y ∈ Z

2 ∩ A, we

write {x A↔ y} for the subset of ω ∈ {0,1}E(A) for which there exists an ω-open
path from x to y all of whose edges lie in E(A). By the (ω-)open cluster of x in A,
we mean the connected subset of A whose members lie in an edge belonging to
some (ω-)open path in E(A) that begins at x.

Throughout, the notation ‖ · ‖ and d(·, ·) refers to the Euclidean metric on R
2.

For K > 0, we set BK = {x ∈ R
2 :‖x‖ ≤ K}.
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2.2. The Wulff shape and circuit centering. We require an assertion on the
profusion of regeneration sites in the conditioned circuit, for which some prelim-
inaries are needed. The macroscopic profile of the conditioned circuit is given by
the boundary of the Wulff shape.

DEFINITION 2.7. We define the inverse correlation length: for x ∈ R
2,

ξ(x) = − lim
k→∞k−1 log Pβ,q(0 ↔ �kx�),

where �y� ∈ Z
2 is the component-wise integer part of y ∈ R

2.

DEFINITION 2.8. The unit-area Wulff shape Wβ is the compact set given by

Wβ = λ
⋂

u∈S1

{t ∈ R
2 : (t,u) ≤ ξ(u)},

where (·, ·) denotes the scalar product on R
2, and where the dilation factor λ > 0

is chosen to ensure that |Wβ | = 1.

The following appears in Theorem B of [7].

LEMMA 2.1. Let P = Pβ,q with β < βc and q ≥ 1. Then Wβ has a locally
analytic, strictly convex boundary.

Global deviations of the conditioned circuit from the Wulff shape may be mea-
sured in the following way.

DEFINITION 2.9. Let � ⊆ R
2 denote a circuit. Define its global distortion

GD(�) (from a factor n dilate of the Wulff shape boundary) by means of

GD(�) = inf
z∈Z2

dH (n∂Wβ + z,�),(2.2)

where dH denotes the Hausdorff distance on sets in R
2.

(In a general context, this would be a peculiar definition. However, we will work
with this quantity only in the case of circuits that are conditioned to trap an area of
at least, or exactly, n2.)

To formulate a statement regarding the presence of radial regeneration sites, it
is natural to work with circuits that are centred at the origin in a sense that we now
specify.

DEFINITION 2.10. Let � ⊆ R
2 denote a circuit. The lattice point z attaining

the minimum in (2.2) will be called the centre cen(�) of �. In the case that the
minimum is not uniquely attained, we take z to be the lexicographically minimal
among those points in Z

2 that attain the minimum.
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In fact, we may adopt any deterministic rule for breaking ties in the definition
of cen(�). The stated rule has been given simply for definiteness.

DEFINITION 2.11. We write AREA0,n2 for the event {|INT(�0)| ≥ n2} ∩
{cen(�0) = 0}.

2.3. Radial regeneration structure. We are now ready to state the assertion on
circuit regularity which we need.

DEFINITION 2.12. Let q ∈ (0, π/2) and c ∈ (0, π).
The q-forward cone CF

π/2−q(v) denotes the set of vectors w ∈ R
2 for which

∠(w − v,v⊥) ≤ π/2 − q . The q-backward cone CB
π/2−q(v) denotes the set of vec-

tors w ∈ R
2 for which ∠(w − v,−v⊥) ≤ π/2 − q .

Let � denote a circuit for which 0 ∈ INT(�). A site v ∈ � is called a (q, c)−�-
regeneration site (of �) if

� ∩ Wv,c ⊆ CF
π/2−q(v) ∪ CB

π/2−q(v).(2.3)

See Figure 1. Clearly, any (q, c) − �-regeneration site v has the property that
the semi-infinite line from the origin through v cuts � only at v. As we will see,
this absence of backtracking will permit us to perform surgery on circuit segments
bounded by such regeneration sites. The form of the definition of regeneration sites
also entails that the two parts of the circuit near such a site are well-separated, in a

FIG. 1. A (q0, c0) − �-regeneration site r and the nearby circuit. We write CF = CF
π/2−q0

(r) and

CB = CB
π/2−q0

(r) and highlight these cones in dotted and dashed lines. Inside the cone Wr,c0 , the
circuit remains within them.
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sense that will be more apparent when we come to discuss the ratio-weak-mixing
property in Section 2.6.

DEFINITION 2.13. From now on, we fix q0 > 0 and c0 ∈ (0, q0/2) to be
two small constants. (The precise requirements that they must satisfy are given
in Definition 2.11 of [15]. In addition to these requirements, we impose that
q0 < 3c1/(4C1), where c1 and C1 are specified in the upcoming Lemma 3.3.) Let �

denote a circuit for which 0 ∈ INT(�). We write RG(�) for the set of (q0, c0)−�-
regeneration sites. We write θMAX

RG (�) ∈ [0,2π ] for the angle of the largest angular
sector rooted at the origin that contains no element of RG(�). That is,

θMAX
RG (�) = sup{r ∈ [0,2π) :∃a ∈ S1,Wa,r/2(0) ∩ RG(�) = ∅}.(2.4)

Theorem 2.1 of [15] states the following.

THEOREM 2.1. Let P = Pβ,q with β < βc and q ≥ 1. There exist c > 0 and
C > 0 such that

P
(
θMAX

RGq0,c0
(�0) > u/n|AREA0,n2

) ≤ exp{−cu}
for n ∈ N and C logn ≤ u ≤ cn.

An alternative and stronger definition of regeneration site arises by instead con-
sidering the open cluster to which �0 belongs. We denote this set by �0. We define
the set RG(�0) of cluster regeneration sites according to (2.3) (with c = c0 and
q = q0 understood), in which � is replaced by �0 and θMAX

RGq0,c0
(�0) by (2.4) with

the same change. We have Theorem 1.2 of [15].

THEOREM 2.2. Let P = Pβ,q with β < βc and q ≥ 1. There exist c > 0 and
C > 0 such that, for C logn ≤ u ≤ cn, and for n ∈ N,

P
(
θMAX

RGq0,c0
(�0) > u/n

∣∣|INT(�0)| ≥ n2) ≤ exp{−cu}.

2.4. Large deviations of global distortion. A large deviations’ estimate
(Proposition 1 of [14]) on the macroscopic profile of the conditioned circuit will
be valuable.

PROPOSITION 1. Let P = Pβ,q with β < βc and q ≥ 1. There exists c > 0
and n0 : (0, c) → (0,∞) such that, for any ε ∈ (0, c), and for all n ≥ n0(ε),

P
(
GD(�0) > εn

∣∣|INT(�0)| ≥ n2) ≤ exp{−cεn}.(2.5)

Under this measure, cen(�0) ∈ INT(�0) except with probability that is expo-
nentially decaying in n. Moreover, (2.5) holds under the conditional measure
P(·|AREA0,n2).
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We mention that an analogue of this result in dimensions d ≥ 3 is much more
subtle. Proofs of such analogues have been undertaken by [8] and [9].

The following is an immediate consequence of Proposition 1.

LEMMA 2.2. There exist ε > 0, c1 > 0 and C1 > 0 such that, for n ∈ N,

P
(
�0 ⊆ BC1n \ Bc1n

∣∣|INT(�0)| ≥ n2) ≥ 1 − exp{−εn}.
The same statement holds under P(·|AREA0,n2).

2.5. The upper bounds on maximum local deviation. We will need to control
from above maximum local roughness and maximum facet length by means of the
main conclusions Theorems 1.1 and 1.2 of [14].

THEOREM 2.3. Let P = Pβ,q , with β < βc and q ≥ 1. Then there exist C >

c > 0 and t0 ≥ 1 such that, for t ≥ t0, t = O(n5/36(logn)−C),

P
(
MLR(�0) ≥ n1/3(logn)2/3t

∣∣|INT(�0)| ≥ n2) ≤ exp{−ct6/5 logn}.

THEOREM 2.4. Let P = Pβ,q , with β < βc and q ≥ 1. There exist 0 < c <

C < ∞ such that, for t ≥ C, t = o(n1/3(logn)−5/6),

P
(
MFL(�0) ≥ n2/3(logn)1/3t

∣∣|INT(�0)| ≥ n2) ≤ exp{−ct3/2 logn}.

2.6. Hypotheses on the configuration measure P . Most arguments in this pa-
per and in [14] and [15] depend on weaker hypotheses than being a subcritical
random cluster measure P = Pβ,q , with β < βc and q ≥ 1. See Section 2.6 of
[14] for a discussion. In this paper, we will sometimes refer to three properties that
are satisfied by any P = Pβ,q , with β < βc and q ≥ 1. We now introduce these
properties.

Exponential decay of connectivity. The measure P satisfies exponential decay
of connectivity if there exists c > 0 such that Pω(0 ↔ ∂Bn) ≤ exp{−cn} for all
n ∈ N and ω ∈ {0,1}E(Z2)\E(Bn). In this case, the property is satisfied by P = Pβ,q ,
with β < βc and q ≥ 1 due to Theorem 1.2 in [5].

Bounded energy. The following property is trivially shown to be satisfied by
P = Pβ,q , with β < βc and q ≥ 1.

DEFINITION 2.14. A probability measure P on {0,1}E(Z2) satisfies the
bounded energy property if there exists a constant c > 0 such that, for any

ω′ ∈ {0,1}E(Z2) and an edge e ∈ E(Z2), the conditional probability that ω(e) = 1
given the marginal ω′|E(Z2)\{e} is bounded between c and 1 − c.
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Ratio-weak-mixing. The following spatial decorrelation property is well-
suited to analysing the conditioned circuit.

DEFINITION 2.15. A probability measure P on {0,1}E(Z2) is said to satisfy
the ratio-weak-mixing property if, for some C,λ > 0, and for all sets D,F ⊆
E(Z2),

sup
{∣∣∣∣ P(E ∩ F)

P (E)P (F )
− 1

∣∣∣∣ :E ∈ σD,F ∈ σF ,P (E)P (F ) > 0
}

(2.6)
≤ C

∑
x∈V (D),y∈V (F )

e−λ|x−y|,

whenever the right-hand side of this expression is less than one. Here, for A ⊆
E(Z2), σA denotes the set of configuration events measurable with respect to the
variables {ω(e) : e ∈ A}.

The ratio-weak-mixing property is satisfied by any P = Pβ,q , with β < βc and
q ≥ 1, by Theorem 3.4 of [3]. We will make use of the property on only one oc-
casion in the present article. We mention, however, that it has an important role
to play in the surgeries performed in [14] and [15]. Indeed, by making a def-
inition of regeneration site that was a little stronger than the mere requirement
that the circuit visit the radial line through the site only once, we obtain a use-
ful quasi-independence for the configuration on either side of a regeneration site.
This is because the regions CF and CB shown in Figure 1 are well-separated, in
the sense that the sum on the right-hand side of (2.6) is bounded when the choice
D = E(CF ) and F = E(CB) is made. This means that the cone between two re-
generation sites is comparatively unsullied by the details of conditioning in the
exterior of the cone, making the cone a useful region for circuit surgery.

2.7. Convention regarding constants. An upper case C will be used for large
positive constants, and a lower case c for small positive constants. The values of
these two constants may change from line to line. Some constants are fixed in all
arguments: in particular, c0 and q0 in the Definition 2.12 of �0-regeneration site, as
well as c1 and C1 in Lemma 2.2 (and a closely related Lemma 3.3 to be presented
later).

3. The main argument. In this section, we present the proof of Theorem 1.1.
We will begin by discussing the ideas of the proof, the considerations that deter-
mine the form of resampling of the circuit that we will undertake, and the out-
comes of resampling that will provide the lower bound on maximum local rough-
ness. With these elements motivated and formally introduced, we will then give the
actual proof of Theorem 1.1. Theorem 1.2 follows from Theorem 1.1 by a straight-
forward application of surgical techniques developed in [14]. Its proof is presented
at the end of the section.
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3.1. The approach in outline. We begin by describing the idea of the proof.
More accurately, we will describe what would seem to be a natural way to trying
to obtain Theorem 1.1, before mentioning some difficulties that will motivate some
variations on the outlined approach. Let n ∈ N. We set

θn = χn−1/3(logn)1/3,(3.1)

where χ denotes a constant that will eventually be fixed at a sufficiently small
value. We partition R

2 into a set of consecutive sectors, An
j := Ajθn,(j+1)θn , 1 ≤

j ≤ mn := �2π/θn�−1, rooted at the origin, of angle θn. (In fact, the partition may
include a narrower sector bordering the x-axis in the fourth quadrant. However, we
will not make use of this sector.) Note that

mn ∼ 2π

χ
n1/3(logn)−1/3 as n → ∞.(3.2)

For each sector, we seek to define a random replacement procedure {0,1}E(Z2) →
{0,1}E(Z2), which, in acting on a configuration having the measure P(·|
AREA0,n2), keeps the configuration in the complement of the sector, and re-
samples the sector configuration subject to maintaining the condition AREA0,n2 .
By definition, for each sector, the associated procedure leaves the measure
P(·|AREA0,n2) invariant. In outline, we will begin with a sample of the condi-
tioned measure, and apply the procedure associated to the sectors in order, running
through all of them. At the end, we will still have a copy of the conditioned mea-
sure, which we will analyse. We will argue that each sector resampling has a
probability of producing a section of the circuit �0 that realizes the desired lower
bound on MLR(�0) that is decaying as n−ε , for a small ε > 0. There being a
polynomial number of sectors, such a circumstance will arise often in the over-
all procedure. We will further argue that, once such a favourable configuration
has arisen, the subsequent resamplings, further around the circle, cannot undo it,
so that, to establish Theorem 1.1, we require only one favourable resampling to
occur.

To implement this plan, note the following difficulties. In insisting that the sec-
tor resampling leaves invariant the law P(·|AREA0,n2), we have no a priori way
to describe the law of the resampled configuration inside the sector. We want to
have an explicit description. To satisfy this wish, a natural suggestion is to attempt
the resampling only if the two boundary lines of the sector in question cut through
regeneration points [i.e., elements of RG(�0)] of the circuit �0 in the input. The
updated configuration in the sector would then appear in essence to be given by
conditioning on the sector containing an open path between this pair of points
in such a way that the circuit of which this path forms a part traps an area of at
least n2.

A second difficulty is that the requirement that the circuit be centred at the
origin, in the sense of Definition 2.10, makes it difficult to describe the law of
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the resampled configuration, because this requirement imposes a constraint on the
new open path in the sector that is difficult to express in a simple explicit form. To
resolve this problem, we alter the definition of centering for a circuit in such a way
that the centre is computed from data that we never resample: we will use only
information in the left-hand half-plane to define the centre, and we will change
our proposed resampling so as only to use sectors in the right-hand half-plane.
This will permit us to describe the law of the resampled configuration in a sector
without the distraction caused by the details of centering.

3.2. Southwest centering and its relationship with the usual centering. We
now give the alterative definition of centering.

DEFINITION 3.1. For any circuit or path �, let SW(�) ∈ Z
2 denote the el-

ement of V (�) that is minimal in the lexicographical ordering on Z
2, in other

words, whose y-coordinate is minimal among those vertices in V (�) having min-
imal x-coordinate. Let csw denote the element v ∈ Z

2 for which P(SW(�0) =
v|AREA0,n2) is maximal. (If there are several elements at which the maximum is
attained, we choose for v the lexicographically minimal among these.) Note that,
by the second statement of Lemma 2.2, this probability is at least cn−2, where
c = 1

2πC2
1

.

We say that a circuit � is southwest-centred at x ∈ Z
2 if SW(�) = x. Write

AREAsw
n2,x for the event that there exists an open circuit � satisfying |INT(�)| ≥ n2

and SW(�) = x. We further set AREAsw
n2 = AREAsw

n2,csw
. Let ω ∈ AREAsw

n2 be a

configuration in which no point in R
2 is enclosed by infinitely many open circuits

(a condition which, as remarked after Definition 1.3, is satisfied P -a.s. whenever
P = Pβ,q , with β < βc and q ≥ 1). We set �(sw) = �(sw)(ω) equal to the outermost
open circuit southwest-centred at csw. [Note that �(sw) is well defined, because it
is given by the circuit � for which INT(�) is the union of INT(φ) over all open
circuits φ that are southwest-centred at csw.] We write �(sw) for the open cluster
in which �(sw) is contained. Note that �(sw) and �(sw) implicitly depend on the
configuration ω ∈ AREAsw

n2 . We make this dependence explicit only when doing
so eliminates an ambiguity.

There are some matters to take care of in switching from conditioning on
AREA0,n2 to conditioning on AREAsw

n2 . We discuss these before continuing the
proof. The proofs of the lemmas stated here will be given in Section 4.

We will work by conditioning P on the event AREAsw
n2 , establishing the state-

ment of Theorem 1.1 for the conditional measure P(·|AREAsw
n2 ). This done, we

must infer the actual statement of Theorem 1.1. The device that we will use for
this last step is now presented.
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LEMMA 3.1. A set M of circuits is said to be translation-invariant if � ∈ M
and v ∈ Z

2 imply that � + v ∈ M. There exist constants C > c > 0 such that, for
any translation-invariant subset M of circuits, and for all n ∈ N,

P
(
�0 ∈ M

∣∣|INT(�0)| ≥ n2) ≤ Cn4P
(
�(sw) ∈ M|AREAsw

n2

) + exp{−cn}.

We also need to exploit information about the circuit under the conditional mea-
sure known from [14]. There, results are stated for the circuit �0 under the measure
P(·||INT(�0)| ≥ n2), whereas the present proof will consider the circuit �(sw) un-
der the measure P(·|AREAsw

n2 ). The following lemma will be used to translate from
the first framework into the second.

LEMMA 3.2. There exist constants C > c > 0 such that, for any translation-
invariant subset M of circuits,

P
(
�(sw) ∈ M|AREAsw

n2

) ≤ Cn4P
(
�0 ∈ M

∣∣|INT(�0)| ≥ n2) + exp{−cn}.

We will also use the following lemma, in which the conditional probability of a
collection of circuits that is not translation-invariant is considered.

LEMMA 3.3. There exist constants c1, C1 and c′ > 0 such that

P
(
�(sw) ⊆ BC1n \ Bc1n,0 ∈ INT

(
�(sw)

)|AREAsw
n2

) ≥ 1 − exp{−c′n}.

In Lemma 3.3, we retain the use of the notation c1 and C1 for the two constants
from the analogous Lemma 2.2, although a change of value in the constants may
be required to do so.

3.3. The use of cluster regeneration sites in resampling. In light of the discus-
sion so far, a natural proposal is to define the resampling procedure associated to a
sector so as to leave invariant the law P(·|AREAsw

n2 ), and not to attempt to resam-
ple (i.e., to choose the resampling operation to act identically) unless the sector
boundary lines intersect the input circuit �(sw) at elements of RG(�(sw)). There
are unwanted complications in defining the resampling even now, however. See
Figure 2. The sector boundary lines run through x0 and y0, each of which lies in
RG(�(sw)). The input-configuration cluster �(sw) intersects these boundary lines
also at x1 and y1. The sector resampling will be defined to map AREAsw

n2 to itself,
so that, its output, for the input depicted, must contain a circuit that traps area at
least n2 and is southwest-centred at csw. This eventuality will be effected by the
new randomness of the resampling forging an open path across the sector that re-
connects the fragment of the existing large circuit in the complement of the sector.
In the case depicted, this circumstance may arise not only by an open path from
x0 to y0 but also by such a path from, for example, x1 to y1. We prefer to work
with a definition that eliminates these different cases, since this makes the law
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FIG. 2. A schematic depiction of the input for a sector-resampling. The solid is shown with the
cluster �(sw), with the circuit �(sw) ⊆ �(sw) highlighted in bold. The sector boundary lines (that
are shown as dotted lines) intersect RG(�(sw)) at x0,x1,y0 and y1. The dashed lines indicate the

boundaries of CF
π/2−q0/2(x0) ∪ CB

π/2−q0/2(x0) and CF
π/2−q0/2(y0) ∪ CB

π/2−q0/2(y0). If we chose

to perform a resampling procedure for a sector such as this, a new path might be forged between x0
and y0, or between x0 and y1, for example. To avoid this ambiguity, we prefer not to resample such
a configuration. We resample only if x0 and y0 are cluster regeneration sites, which, in the depicted
case, they are not.

of the resampled configuration easier to describe. Recall the paragraph following
Theorem 2.1. The solution that we adopt is to attempt the sector resampling only
under the stronger condition that the sector boundaries cut the circuit �(sw) at clus-
ter regeneration points. Since x0,y0 /∈ RG(�(sw)) in the depicted case, the sector
resampling will not attempt a resampling for the input configuration in question,
thereby eliminating the problem. We will need a version of the cluster regeneration
structure Theorem 2.2 valid for the cluster �(sw) under the measure P(·|AREAsw

n2 ).

THEOREM 3.1. Let P = Pβ,q with β < βc and q ≥ 1. There exist c > 0 and
C > 0 such that

P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n|AREAsw

n2

) ≤ exp{−cu}(3.3)

for C logn ≤ u ≤ cn.

REMARK. In considering cluster regeneration sites of �(sw), we will al-
ways use the parameter values q0/2 and c0/2. As such, we set RG(�(sw)) =
RGq0/2,c0/2(�(sw)).
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The set of regeneration sites of a circuit depends on the choice of origin and
is not translation-invariant. This means that Theorem 3.1 is not implied by Theo-
rem 2.2 by means of Lemma 3.2. We will present a different argument in Section 4.

3.4. Defining the resampling procedure in a sector. To specify the sector-
resampling procedure, we make the following definition.

DEFINITION 3.2. Let x,y ∈ Z
2 satisfy arg(x) < arg(y). Let ω ∈ {0,1}E(Z2)

realize the events that x
Ax,y↔ y and that the common cluster of x and y in Ax,y

is finite. We define the outermost open path from x to y in Ax,y to be the open
path τ from x to y in Ax,y such that the bounded component of Ax,y \ τ is maxi-
mal. We denote this path by γx,y = γx,y(ω). (Note that there is only one bounded
component, because a path is, by our definition, self-avoiding.) We further write
γ x,y = γ x,y(ω) for the common ω-open cluster of x and y in Ax,y.

REMARK. Note that γx,y is almost surely well defined under P given x
Ax,y↔ y,

with P = Pβ,q , β < βc and q ≥ 1, since all open clusters are finite P -a.s. (as
implied by the remark after Definition 1.3). Note also that there is no difficulty in
regard to the uniqueness of γx,y, because we have decided to identify any path with
the subset of R

2 given by the union of the edges contained in the corresponding
discrete path.

We are now ready to specify the sector-resampling procedure.

DEFINITION 3.3. Let x,y ∈ Z
2 lie in the right-hand half-plane and sat-

isfy arg(x) < arg(y) < arg(x) + c0/2. We define the circuit resampling opera-
tion ψx,y : AREAsw

n2 → {0,1}E(Z2). If the input ω ∈ AREAsw
n2 is such that x /∈

RG(�(sw)), or y /∈ RG(�(sw)), or 0 /∈ INT(�(sw)), then ψx,y(ω) = ω. If x,y ∈
RG(�(sw)) and 0 ∈ INT(�(sw)), then ψx,y(ω) is taken to coincide with ω on
E(Z2) \ E(Ax,y). On E(Ax,y), ψx,y(ω) is chosen to be random, independently
of ω|E(Ax,y), having the conditional distribution of the marginal of P on E(Ax,y)

given ω|E(Z2)\E(Ax,y)
and the following events: x

Ax,y↔ y, γ x,y ⊆ CF
π/2−q0/2(x) ∩

CB
π/2−q0/2(y) and |INT((�(sw) ∩ Ac

x,y) ∪ γx,y)| ≥ n2.

REMARK (The two-step formation of ψx,y). For later use, we introduce the
following notation for describing the definition of ψx,y|E(Ax,y), in the case that it
acts nontrivially. In step A, we condition the marginal of P on E(Ax,y) by the

data ω|E(Z2)\E(Ax,y)
and the event that x

Ax,y↔ y. In step B , we further condition

the marginal P on E(Ax,y) by the events |INT((�(sw) ∩ Ac
x,y) ∪ γx,y)| ≥ n2 and

γ x,y ⊆ CF
π/2−q0/2(x) ∩ CB

π/2−q0/2(y).
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REMARK. Note that, in the case that ψx,y acts nontrivially, the intersection of
the three events on which we condition necessarily has positive probability. This is
because the input ω satisfies each of the conditions, and any so any configuration
in E(Ax,y) that coincides with ω in a large finite neighbourhood of 0 will also do
so.

LEMMA 3.4. Let x,y ∈ Z
2 lie in the right-hand half-plane and satisfy

arg(x) < arg(y) < arg(x) + c0/2. The map ψx,y leaves invariant the law P(·|
AREAsw

n2 ). If ω ∈ AREAsw
n2 is an input on which ψx,y acts nonidentically, that is, if

x,y ∈ RG(�(sw)(ω)) and 0 ∈ INT(�(sw)(ω)), then, writing ω′ = ψx,y(ω), we have
that

�(sw)(ω
′) = (

�(sw)(ω) ∩ Ac
x,y

) ∪ γx,y(ω
′).

The map ψx,y has been designed to ensure that this lemma holds. Verifying that
the lemma holds requires some care in working with the definition of southwest-
centering. The proof appears in Section 4.1.

For each sector An
j , we will select appropriate xj ,yj ∈ An

j , and apply ψxj ,yj
. We

must have a chance of a favourable outcome that decays as a slow power. Specif-
ically, we must have a means of choosing xj and yj that ensures that both belong
to RG(�(sw)) in the input with such a probability. For this purpose, deterministic
choices of xj and yj appear not to suffice. Our definition of the sector-resampling
procedure including the random search for its parameters is now given. The param-
eter ε that appears is fixed at a value in (0,2/3) and will be specified in estimates
in the proof of Theorem 1.1.

DEFINITION 3.4. Let j ∈ {1, . . . ,mn} be such that An
j lies in the right-hand

half-plane. We define a random resampling RESj : AREAsw
n2 → {0,1}E(Z2). Given

ω ∈ AREAsw
n2 , let U−

j and U+
j denote random variables whose respective laws

are uniform on the intervals [jθn + θn/4 − nε−1, jθn + θn/4] and [(j + 1)θn −
θn/4, (j + 1)θn − θn/4 + nε−1]. These random variables are independent of each
other and of ω. If 0 /∈ INT(�(sw)), set RESj (ω) = ω. If 0 ∈ INT(�(sw)), let v−

j

denote the first edge in �(sw) encountered on the line emanating from 0 at polar
angle U−

j , and let xj denote the endpoint of v−
j of greater argument. Let v+

j be

defined correspondingly with angle U+
j in place of U−

j , and let yj denote the

endpoint of v+
j of smaller argument. We then set RESj (ω) = ψxj ,yj

(ω). We will
denote by (�, F ,P) the probability space in which RESj acts on an input having
the distribution of P(·|AREAsw

n2 ).

We require that:
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LEMMA 3.5. If j ∈ {1, . . . ,mn} is such that An
j lies in the right-hand half-

plane, then the law P(·|AREAsw
n2 ) is invariant under the map RESj .

For the proof, we need the following.

LEMMA 3.6. Let x,y, arg(x) < arg(y), lie in the right-hand half-plane. Under
the conditional measure P(·|AREAsw

n2 ∩ {x,y ∈ RG(�(sw))} ∩ {0 ∈ INT(�(sw))}),
the set �(sw) ∩ Ac

x,y is equal to the outermost open path from x to y in Ac
x,y that is

southwest-centred at csw.

PROOF. This statement is supplied during the proof of Lemma 3.4 in Sec-
tion 4.1. See the paragraph following (4.5). �

PROOF OF LEMMA 3.5. Let u,v ∈ An
j be such that P(xj = u,yj = v) > 0.

Set �u,v = AREAsw
n2 ∩ {u,v ∈ RG(�(sw))} ∩ {0 ∈ INT(�(sw))}. Let ω0 ∈ {0,

1}E(Z2)\E(Au,v) take the form ω0 = ω|E(Z2)\E(Au,v)
for some ω ∈ {0,1}E(Z2) re-

alizing �u,v.
By the first assertion of Lemma 3.4, it suffices to show that, for any such ω0,

the conditional distribution of ω|E(Au,v) is the same under
P(·|ω|E(Z2)\E(Au,v)

= ω0,ω ∈ �u,v,xj = u,yj = v) and under
P(·|ω|E(Z2)\E(Au,v)

= ω0,ω ∈ �u,v).
(3.4)

(Under the first conditional measure, as elsewhere when an operation is acting, ω ∈
{0,1}E(Z2) denotes the input of the operation, in this case, RESj .) To see (3.4), note
that Lemma 3.6 implies that, under P(·|ω|E(Z2)\E(Au,v)

= ω0,ω ∈ �u,v), the set
�(sw)(ω)∩Ac

u,v is determined by the data ω0. Let φ1 denote the nearest-neighbour
edge in �(sw)(ω) ∩ Ac

u,v that touches u (and is closer to the origin, if there is more
than one). Let φ2 denote the edge in this set that touches v, and is closer to the
origin. It is easily seen that the collection φ′

1 of points w ∈ φ1 that are visible from
the origin by an observer of �(sw)(ω), that is, for which [0,w] ∩ �(sw)(ω) = {w},
is a subinterval of φ1 having u as an endpoint. Let arg(φ′

1) denote the interval of
argument-values of the elements of φ′

1. The interval φ′
2 ⊆ φ2, defined correspond-

ingly, has an endpoint at v. Then, under P(·|ω|E(Z2)\E(Au,v)
= ω0,ω ∈ �u,v), the

event {xj = u}∩ {yj = v} is given by {U−
j ∈ arg(φ′

1)}∩ {U+
j ∈ arg(φ′

2)}. However,
this latter event is, under the same conditional measure, expressible in terms of the
data ω0 and the independent randomness that generates U−

j and U+
J . Hence, we

obtain (3.4), as required. �

DEFINITION 3.5. Let j ∈ {1, . . . ,mn} be such that An
j lies in the right-hand

half-plane. If, in acting on an input ω ∈ {0,1}E(Z2) for which 0 ∈ INT(�(sw)), the
pair (xj ,yj ) located by RESj satisfies xj ,yj ∈ RG(�(sw)), we say that RESj se-
lects (xj ,yj ) successfully.
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LEMMA 3.7. If ω ∈ {0,1}E(Z2) satisfies {θMAX
RGq0/2,c0/2

(�(sw)) ≤ nε−1/2} ∩
{�(sw) ⊆ BC1n \ Bc1n}, and j ∈ N is such that An

j lies in the right-hand half-
plane, then the conditional probability that RESj in acting on ω selects (xj ,yj )

successfully is at least (4C1)
−2 sin2(q0/2)n−2ε .

PROOF. Recall that [jθn + θn/4 − nε−1, jθn + θn/4] is the angular interval
in which the direction U−

j used by RESj is chosen. The smaller interval [jθn +
θn/4 − nε−1/2, jθn + θn/4] necessarily contains at least one argument value of an
element of RG(�(sw)). Select any such regeneration site and label it r−. Similarly,
let r+ denote a regeneration site whose argument lies in the interval [(j + 1)θn −
θn/4, (j + 1)θn − θn/4 + nε−1/2].

There are either one or two edges in E(�(sw)) whose endpoint of greater argu-
ment equals r−. Let v− ∈ E(�(sw)) denote the edge among these that is closer to
the origin. We will argue that there exists a subinterval 
− of v− having an end-
point at r− such that an observer who stands at the origin and views �(sw) sees all
of 
−, with this subinterval occupying an angle of at least sin(q0/2)

2C1n
in the observer’s

field of vision. That is, writing 
− = [r−
0 , r−], then v ∈ 
−, v �= r−

0 implies that

[0,v] ∩ �(sw) = {v} and ∠(r−, r−
0 ) ≥ sin(q0/2)

2C1n
.(3.5)

We defer momentarily the derivation of (3.5). From this statement, we find that,
if U−

j is chosen so that its argument lies in [arg(r−
0 ), arg(r−)), then the choice of

xj = r− would be made by RESj . Since U−
j is chosen on an angular interval of

length nε−1 that, by the construction of r−, includes the angular interval occupied
by 
−, this eventuality occurs with probability at least 1

2C1
sin(q0/2)n−ε . A coun-

terpart to (3.5) shows that RESj independently makes a choice for U+
j that leads to

yj = r+ with a probability that satisfies the same bound. This yields the statement
of the lemma.

To derive (3.5), suppose that the edge v− is vertical, so that v− = [r− − e2, r−],
with (e1, e2) denoting the Cartesian unit vectors. See Figure 3. By r− ∈ RG(�(sw))

and �(sw) ⊆ �(sw), we know that

�(sw) ∩ W−
r−,c0/2 ⊆ CB

q0/2(r
−).(3.6)

Let 
∗ denote that one among the pair of semi-infinite boundary line segments of
CB

q0/2(r
−) that attains the closer approach to 0. Let q denote the point of intersec-

tion of 
∗ and the line segment {r− − e2 − te1 : t ≥ 0}. The observer at 0 who looks
in a direction with argument in the interval (arg(q), arg(r−)) sees no point of �(sw)

on the near-side of the line 
∗ [by (3.6)], while, beyond 
∗, the first part of �(sw)

in the line of sight of the observer lies in v−, by construction. That is, the observer
viewing �(sw) from 0 sees the edge v− in this angular interval.
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FIG. 3. Verifying (3.5).

Setting r−
0 to be the point in v− of argument arg(q), it remains to confirm the

inequality in (3.5). Set q′ equal to the point in 
0,r− that is closest to q. Since
r−, q′ and q form the vertices of a right-angled triangle, we have that ‖q′ − q‖ =
‖r− − q‖ sin(q0/2). Note that ‖r− − q‖ ≥ ‖r− − (r− − e2)‖ = 1, so that ‖q′ −
q‖ ≥ sin(q0/2). We have then that ∠(q, r−) ≥ ‖q′ −q‖/‖q‖ = ‖q′ −q‖/‖r−‖(1+
o(1)), where the error term arises because r− ∈ �(sw) ⊆ Bc

c1n
is distant from the

origin, and because ‖r− − q‖ ≤ csc(q0/2). From r− ∈ �(sw) ⊆ BC1n, we obtain
∠(q, r−) ≥ sin(q0/2)

2C1n
, as required to complete the derivation of (3.5) in the case that

v− is vertical. The case that this edge is horizontal is very similar, and is omitted.
�

3.5. Explaining the choice of sector angle θn. To explain why the choice (3.1)
is natural, consider a circle C of radius n, such as the one depicted in Figure 4, as
a simple example playing the role of the circuit �(sw). Let x,y ∈ C have angular
displacement θn, where recall that θn = θn(χ). In this paragraph, for functions f,g

of n and χ , we write f = �(g) to indicate that 0 < c ≤ f/g ≤ C < ∞ for all n ∈ N

and for χ ∈ (0, δ), with c and C not depending on χ , and with δ > 0 some small
constant.

It is readily verified that the maximum distance dx,y from a point in Ax,y ∩ C to
[x,y] is χ2�(n1/3(logn)2/3). Describing the formation of ψx,y as in the remark
following Definition 3.3, the path γx,y in step A has an n−ε probability of fluctu-
ating from [x,y] away from the origin by φ(ε)‖x − y‖1/2(log‖x − y‖)1/2, where
φ(ε) > 0 is a small constant (this is due to moderate deviations [7] of conditioned
point-to-point connections in subcritical random cluster models having Gaussian
behaviour). This last expression equals φ(ε)χ1/2�(n1/3(logn)2/3). For χ small,
this fluctuation exceeds dx,y, so that the area condition in step B of the forma-
tion of ψx,y is satisfied. So θn has been tuned so that the resampling has a slow



PHASE SEPARATION IN RANDOM CLUSTER MODELS 943

FIG. 4. The competition of fluctuation and curvature, heuristically illustrated: when x and y on a
circle of radius n have angular separation given by θn = θn(χ) as in (3.1), the Gaussian orthogonal
fluctuation of a subcritical path from x to y has a polynomially decaying probability of exceeding the
orthogonal displacement of the circle between x and y. If χ > 0 is small, such fluctuations may be
expected to appear often, among the order n1/3 such sectors along the circle.

power-decaying probability that the point-to-point conditioned connection in step
A actually fluctuates enough to satisfy the area requirement of step B . That is, the
value of θn resides on the scale at which the competition of local fluctuation and
global curvature is finely balanced. Of course, we want a similar analysis without
the heuristic assumption that the input circuit �(sw) for RESj is circular.

3.6. Finding a sufficient condition for the resampling to capture enough area.
We want to find an explicit criterion under which, given γxj ,yj

in step A, the addi-
tional conditioning ∣∣INT

((
�(sw) ∩ Ac

xj ,yj

) ∪ γxj ,yj

)∣∣ ≥ n2(3.7)

appearing in step B is satisfied. To this end, note that

INT
((

�(sw) ∩ Ac
xj ,yj

) ∪ γxj ,yj

)
= INT(γxj ,yj

∪ [0,xj ] ∪ [0,yj ])(3.8)

∪ INT
((

�(sw) ∩ Ac
xj ,yj

) ∪ [0,xj ] ∪ [0,yj ]),
since, if RESj is acting nonidentically on ω, then 0 ∈ INT(�(sw)(ω)) and
�(sw)(ω) ∩ 
+

0,z = {z} for z = x,y.
In the decomposition for INT(�(sw)) analogous to (3.8), the first term on the

right-hand side of (3.8) should be replaced by INT(�(sw)) ∩ Axj ,yj
. In defining

RESj , we consider only input ω satisfying |INT(�(sw)(ω))| ≥ n2. The condition
(3.7) is thus implied by

|INT(γxj ,yj
∪ [0,xj ] ∪ [0,yj ])| ≥

∣∣INT
(
�(sw)

) ∩ Axj ,yj

∣∣.
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We want to find an upper bound on the right-hand side, to be used in a criterion
sufficient for (3.7) to be satisfied. We will use the following lemma. Although
xj and yj are described as generic points in the statement, they will otherwise
continue to denote the points selected in the Definition 3.4 of the map RESj .

LEMMA 3.8. Let ω ∈ {0,1}E(Z2) be such that 0 ∈ INT(�(sw)). Let j ∈
{0, . . . ,mn}. Write zj for the element of ∂ conv(�(sw)) of argument jθn. Let 
j de-
note the tangent line of ∂ conv(�(sw)) at zj . [If zj is an extremal point, we choose

j to be any line for which 
j ∩∂ conv(�(sw)) = {zj }.] Let xj ,yj ∈ �(sw) ∩Azj ,zj+1 .
Let Ej be the pentagonal region bounded by the lines 
xj ,yj

, 
0,xj
, 
j , 
j+1

and 
0,yj
.

Then

INT
(
�(sw)

) ∩ Axj ,yj
⊆ T0,xj ,yj

∪ Ej ,(3.9)

where recall that T0,xj ,yj
denotes the closed triangular region with vertices 0, xj

and yj .

PROOF. See Figure 5. The region T0,xj ,yj
∪ Ej is the bounded component B

of Axj ,yj
\ (
j ∪ 
j+1). However, (Axj ,yj

\ B) ∩ conv(�(sw)) = ∅. �

FIG. 5. Illustrating Lemma 3.8. The boundary of the pentagon Ej is drawn as a bold dotted line,

as is the line segment Ej ∩ 
zj ,zj+1 which divides Ej into E0
j (below) and E1

j (above).
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The following criterion is therefore also sufficient for (3.7):

|INT(γxj ,yj
∪ [0,xj ] ∪ [0,yj ])| ≥ |T0,xj ,yj

| + |Ej |.(3.10)

It is natural then to seek an upper bound on |Ej |. We write Ej = E0
j ∪ E1

j , where

E0
j denotes those elements in Ej lying on the same side of the line 
zj ,zj+1 as

does 0, and where E1
j = Ej \ E0

j .

For |E1
j |, we have:

LEMMA 3.9. Let ω ∈ {0,1}E(Z2) be such that 0 ∈ INT(�(sw)) and �(sw) ⊆
BC1n. Let wj denote the tangent vector of ∂ conv(�(sw)) at zj that points in the
counterclockwise sense. The index set of sectors with moderate boundary turning
is defined by

MBT = {
j ∈ {1, . . . ,mn} :‖zj+1 −zj‖ ≤ 40πC1n/mn,∠(wj+1,wj ) ≤ 40π/mn

}
.

Then |MBT| ≥ 9mn/10. We have that j ∈ MBT implies that |E1
j | ≤ 5382C2

1χ3n ×
logn.

PROOF. Let Tj denote the triangle bounded by the lines 
zj ,zj+1 , 
j and 
j+1.
Note that E1

j ⊆ Tj . We prove the statement of the lemma with Tj in place of E1
j .

Note that the sum of the angles of Tj at zj and at zj+1 is equal to ∠(wj+1,wj ).
Provided that ∠(wj+1,wj ) ≤ π/2 (which holds if j ∈ MBT), Tj is contained in
a right-angled triangle with hypotenuse [zj , zj+1] and another side contained in

j+1. Hence, if j ∈ MBT,

|Tj | ≤ 1
2‖zj+1 − zj‖2 sin∠(wj+1,wj ) ≤ 1

2‖zj+1 − zj‖2∠(wj+1,wj ).(3.11)

Note that
∑mn

i=1 ‖zi+1 − zi‖ is the arclength of the convex set spanned by
{z1, . . . , zm}, which is contained in BC1n (since this ball contains each zi ). (In
fact, we have omitted one side from consideration. This does not matter, since
we are finding an upper bound on the sum.) It is readily verified that the ar-
clength of the boundary of a convex set is at most that of any circle in whose
interior the set is contained. Thus,

∑mn

i=1 ‖zi+1 − zi‖ ≤ 2πC1n. Note also that∑mn−1
i=1 ∠(wi+1,wi) ≤ 2π . By definition, each element of {1, . . . ,mn} \ MBT cor-

responds either to a long line segment, or a big angle (or both): the preceding two
inequalities show that there are at most mn/20 long line segments, and at most
mn/20 big angles. Thus, |MBT| ≥ 9mn/10. By (3.11) and (3.2), for all j ∈ MBT,

|Tj | ≤ 1

2
(40)2π2C2

1n2 40π

m3
n

≤ 1

2

(40)3

8
C2

1χ3n logn.(3.12)

Recalling that E1
j ⊆ Tj completes the proof. �

We control |E0
j | from above only if the circuit is close to its convex boundary

in the sector An
j . To quantify the hypothesis, we introduce some definitions.
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DEFINITION 3.6. For u ∈ �(sw), define the local roughness LR(u,�(sw)) of
�(sw) at u by means of LR(u,�(sw)) = d(u, ∂ conv(�(sw))).

DEFINITION 3.7. Let u(χ) > 0 be chosen as a function of χ > 0 in such
a way that u(χ) = o(χ1/2) as χ → 0. Let ω ∈ AREAsw

n2 . For χ > 0 at a fixed
value to be specified later, we say that the sector An

j is favourable under ω if

there exists u ∈ �(sw) ∩An
j such that LR(u,�(sw)) ≥ u(χ)n1/3(logn)2/3. We define

UNFAV = UNFAV(ω,χ) ⊆ {1, . . . ,mn} to be the set of indices j such that An
j is

not favourable under ω.

LEMMA 3.10. Suppose that �(sw) ∩ Bc1n = ∅. For j ∈ MBT ∩ UNFAV,
|E0

j | ≤ 40C1u(χ)χn logn.

PROOF. Let Hj denote the component of R
2 \ 
zj ,zj+1 containing 0. If xj ,

yj ∈ Hj , then the set E0
j is the quadrilateral bounded by the lines 
zj ,zj+1 , 
0,xj

,


0,yj
and 
xj ,yj

. If neither point lies in Hj , then E0
j = ∅ and there is nothing

to prove. If exactly one point does, then E0
j is a triangle, and the ensuing proof

applies almost verbatim to this case. Assume then that xj ,yj ∈ Hj (which is true
in Figure 5). In a coordinate frame in which [zj , zj+1] lies on the x-axis, with
0 (and E0

j ) in the upper-half-plane, E0
j has its longest intersection with any line

{y = c} at {y = 0}. Thus,

|E0
j | ≤ ‖zj+1 − zj‖max{d(yj , [zj , zj+1]), d(xj , [zj , zj+1])}.(3.13)

We now show that

d(z, [zj , zj+1]) ≤ LR
(
z,�(sw)

)
for z ∈ {xj ,yj }.(3.14)

Indeed, write LR(xj ,�(sw)) = d(xj ,v) with v ∈ ∂ conv(�(sw)). If v ∈ An
j , then

there exists v′ ∈ [xj ,v] ∩ [zj , zj+1], since ∂ conv(�(sw)) ∩ An
j is separated from 0

by 
zj ,zj+1 . Hence, LR(xj ,�(sw)) ≥ d(xj ,v′) ≥ d(xj , [zj , zj+1]). If, on the other
hand, v /∈ An

j , then ∠(v,xj ) ≥ θn/8 because jθn + θn/8 ≤ arg(xj ) < arg(yj ) ≤
(j + 1)θn − θn/8. (It was in order to arrange this angular separation that we chose
to search for xj and yj away from the boundaries of the sector An

j .) We have then
that

‖xj − v‖ ≥ ‖xj‖ sin(θn/8) ≥ 4−1π−1c1χn2/3(logn)1/3

by the use of ‖xj‖ ≥ c1n, which follows from xj ∈ �(sw). Hence, LR(xj ,�(sw))

exceeds the right-hand side of the last displayed equation. This contradicts j ∈
UNFAV [the lower bound on LR(xj ,�(sw)) is much too large], and completes the
derivation of (3.14) for z = xj . (The case that z = yj is identical.)

For i ∈ MBT∩UNFAV, ‖zi+1 −zi‖ ≤ 40πC1nm−1
n . We apply this and (3.14) in

(3.13), and then bound LR(xj ,�(sw)) and LR(yj ,�(sw)) by means of j ∈ UNFAV,
and use (3.2), to obtain the statement in the case that xj ,yj ∈ Hj . �
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Recall that (3.10) is sufficient for (3.7). Bringing together Lemma 3.8, Ej =
E0

j ∪ E1
j , Lemmas 3.9 and 3.10, we find that if ω ∈ AREAsw

n2 satisfies 0 ∈
INT(�(sw)) and �(sw) ⊆ BC1n \ Bc1n, and j ∈ {1, . . . ,mn} satisfies j ∈ MBT ∩
UNFAV, then a sufficient condition on the path γxj ,yj

for (3.7) to be satisfied is

|INT(γxj ,yj
∪ [0,xj ] ∪ [0,yj ])| − |T0,xj ,yj

|
(3.15)

≥ (
5382C2

1χ3 + 40C1u(χ)χ
)
n logn.

3.7. Securing enough area and local deviation under sector resampling. We
will successively apply the maps RESj , seeking to obtain an output that is
favourable for the associated sector. The next two definitions will be used to define
the event in terms of the resampling performed by RESj that we will show secures
a favourable output.

DEFINITION 3.8. Let x,y ∈ Z
2 and let ε > 0. Let the set GAC(x,y, ε) of ε-

good area capture configurations in Ax,y denote the subset of ω ∈ {0,1}E(Ax,y) such
that the following conditions apply:

• x
Ax,y↔ y under ω,

• γ xj ,yj
⊆ CF

π/2−q0/2(xj ) ∩ CB
π/2−q0/2(yj ),

• diam(γx,y) ≤ 2‖x − y‖,
• writing Ix,y(γx,y) ⊆ R

2 for the bounded component of Ax,y \ γx,y,

|Ix,y(γx,y)| ≥ |T0,x,y| + ε‖x − y‖3/2(log‖x − y‖)1/2,

where T0,x,y is specified in Definition 2.2.

DEFINITION 3.9. Let x,y ∈ Z
2, and let γ ⊆ Ax,y denote a connected set for

which {x} ∪ {y} ⊆ γ . Let δ > 0. We say that γ has δ-significant inward deviation
if there exists z ∈ γ for which d(z,Ac

x,y) ≥ ‖x − y‖ sin(q0)/3 and

d
(
z, ∂ conv([0,x] ∪ [0,y] ∪ γ )

) ≥ δ‖x − y‖1/2(log‖x − y‖)1/2.

We write SID(x,y, δ) for the subset of configurations ω ∈ {0,1}E(Ax,y) in E(Ax,y)

such that x
Ax,y↔ y under ω, and for which the outermost open path γx,y from x to y

in Ax,y has δ-significant inward deviation.

DEFINITION 3.10. Let ω ∈ {0,1}E(Z2). We fix ε0 > 0 at a small value to be
specified later. We say that RESj acts successfully on ω if RESj selects the pair
(xj ,yj ) successfully, and if the resampling ψxj ,yj

applied by RESj realizes the
event GAC(xj ,yj , ε0) ∩ SID(xj ,yj , ε0).
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Note that, if RESj acts successfully on an input ω for which �(sw) ∩ Bc1n = ∅,
then

∠(xj ,yj ) ≥ θn/4.(3.16)

Indeed, any successfully selected pair (xj ,yj ) satisfies this bound. To see this,
recall from Definition 3.4 that this pair are selected by choosing two directions U−

j

and U+
j , with an angle between the two directions of at least θn/2. We then pivot

about the origin counterclockwise from direction U−
j until the endpoint of the edge

v−
j is reached, to find the point xj . An analogous clockwise turning is made from

direction U+
j in order to find yj . The angle through which the respective turnings

are made is bounded above by the angular width as viewed from 0 of v−
j , or of v+

j .
Each of these edges is disjoint from Bc1n, so that each has an angular width of at
most 2(c1n)−1. Hence, ∠(xj ,yj ) ≥ θn/2 − 4(c1n)−1, so that (3.16) follows from
the definition of θn in (3.1).

The resamplings RESj have a slow power decaying probability of acting suc-
cessfully, as long as j ∈ MBT ∩ UNFAV.

LEMMA 3.11. Let j ∈ N be such that An
j lies in the right-hand half-plane.

Suppose that ε ∈ (0,2/3). Let ω ∈ {0,1}E(Z2) satisfy

AREAsw
n2 ∩ {

θMAX
RGq0/2,c0/2

(
�(sw)

) ≤ nε−1/2
} ∩ {

MLR
(
�(sw)

) ≤ n2/3}
∩ {

�(sw) ⊆ BC1n \ Bc1n

} ∩ {
0 ∈ INT

(
�(sw)

)}
,

and let j ∈ MBT ∩ UNFAV. Then there exists a constant C2 > 0 such that RESj

acts successfully with probability at least (4C1)
−2 sin2(q0/2)n−2ε−C2ε

2
0 .

PROOF. Successful selection (xj ,yj ) is dealt with by Lemma 3.7. It remains
to show that, given xj and yj , RESj acts successfully with probability at least

n−C2ε
2
0 . We adopt the terminology of the remark following Definition 3.3, with the

choice x = xj and y = yj being made. The path γxj ,yj
produced by the condition-

ing in step A realizes the event GAC(xj ,yj , ε0)∩ SID(xj ,yj , ε0) with probability

at least n−C2ε
2
0 . This is a consequence of the bound presented in the following

lemma, with the choice of x = xj and y = yj being made. The proof of Lem-
ma 3.12 will be given after the present one is completed. Moreover, there is a little
work required to show that the hypotheses (3.17) and (3.18) are satisfied for the
choice x = xj and y = yj . We will finish the rest of the proof of Lemma 3.11
before justifying that these hypotheses are satisfied.

LEMMA 3.12. Let P = Pβ,q , with β < βc and q ≥ 1. There exists C2 > 0
and n0 : (0,∞) → (0,∞) such that the following holds. Let δ > 0 and let n ∈ N
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satisfy n ≥ n0(δ). Let x,y ∈ Z
2 satisfy arg(x) < arg(y), ‖x‖,‖y‖ ≤ C2n, ‖y−x‖ ≥

C2 logn,

y ∈ CF
π/2−q0

(x)(3.17)

and

x ∈ CB
π/2−q0

(y).(3.18)

Let ω ∈ {0,1}E(Z2)\E(Ax,y) be arbitrary. Then

Pω

(
GAC(x,y, δ) ∩ SID(x,y, δ)

) ≥ n−C2δ
2
P

(
x

Ax,y↔ y
)
.

We now argue that the event on which we condition in step B of the formation
of the law ψxj ,yj

(ω) is automatically satisfied, if the γxj ,yj
that arises in step A

realizes the event GAC(xj ,yj , ε0) ∩ SID(xj ,yj , ε0). This suffices for the lemma,
because it shows that the probability that γxj ,yj

realizes this event is at least as
high after step B as at the end of step A. We must verify the two requirements of
step B . For the area bound, recall the sufficient criterion (3.15).

By (3.1), (3.16) and xj ,yj /∈ Bc1n, it follows that

‖xj − yj‖ ≥ c1χ

π
n2/3(logn)1/3.(3.19)

Thus, by the occurrence of GAC(xj ,yj , ε0), the left-hand side of (3.15) exceeds

1
2(2/3)1/2(c1/π)3/2ε0χ

3/2n logn.

By our choice u(χ) = o(χ1/2) as χ → 0, we see that (3.15) may be ensured by
fixing χ > 0 small enough.

Note that the other condition in step B , that γ xj ,yj
⊆ CF

π/2−q0/2(xj ) ∩
CB

π/2−q0/2(yj ), is satisfied, is implied by the occurrence of GAC(xj ,yj , ε0).
It remains to demonstrate that the pair (xj ,yj ) does satisfy the hypotheses of

Lemma 3.12. This is straightforward, except for the hypotheses (3.17) and (3.18).
Regarding these, note firstly that we know that these two statements hold, with
q0/2 in place of q0, from xj ,yj ∈ RG(�(sw)) and ∠(xj ,yj ) ≤ θn ≤ c0/2. The
statements (3.17) and (3.18) are stronger than this, however. It is in order to obtain
them that we have introduced the hypothesis that MLR(�(sw)) ≤ n2/3.

Indeed, suppose that (3.17) fails for the choice x = xj and y = yj . [The case in-
volving (3.18) is similar.] We will show that this is inconsistent with our hypothe-
ses on �(sw). Before discussing the peculiarities to be found in the circuit �(sw) un-
der our assumption, we make an observation regarding the circuit’s convex bound-
ary. Let z ∈ ∂ conv(�(sw)), and let wz denote the tangent vector of ∂ conv(�(sw)) at
z (that points in the counterclockwise direction along the curve). Then we claim
that

∠(wz,−z) ≥ c1

C1
.(3.20)
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Indeed, the tangent line tz to ∂ conv(�(sw)) at z cannot meet Bc1n, because all of
�(sw) lies on one side of tz, and so tz ∩ Bc1n �= ∅ would force the circuit �(sw)

into Bc1n, since this circuit encircles the origin. We are assuming, however, that
�(sw) ∩ Bc1n = ∅. The point v of closest approach of tz to 0 satisfies

‖v‖ = ‖z‖ sin∠(wz,−z) ≤ ‖z‖∠(wz,−z).

Hence, ‖v‖ ≥ c1n and z ∈ conv(�(sw)) ⊆ BC1n imply that (3.20) indeed holds.
Turning to consider �(sw) under the assumption that (3.17) fails, note that ‖xj −

yj‖ ≥ 2π−1c1nθn/4, by means of (3.16) and xj ,yj ∈ �(sw) ⊆ Bc
c1n

. By (3.1), then

‖xj − yj‖ ≥ cn2/3(logn)1/3.(3.21)

By MLR(�(sw)) ≤ n2/3 and xj ,yj ∈ �(sw) (which is implied by xj and yj be-
ing cluster regeneration points of �(sw)), we may locate x′,y′ ∈ ∂ conv(�(sw))

for which max{‖x′ − xj‖,‖y′ − yj‖} ≤ n2/3. In view of (3.21), we have that
∠(yj − xj ,y′ − x′) ≤ C(logn)−1/3.

We are assuming that (3.17) fails for the choice x = xj and y = yj . From this,
the inequality that we have just derived, ‖x′ − xj‖ = o(n) and ‖xj‖ ≥ c1n, we
learn that

y′ /∈ CF
π/2−4q0/3(x

′)(3.22)

for n sufficiently high. Without loss of generality, y′ lies on the side of
CF

π/2−4q0/3(x
′) for which

[0,y′] ∩ CF
π/2−4q0/3(x

′) = ∅.(3.23)

The counterclockwise-pointing tangent vector wy′ satisfies ∠(wy′,−y′) ≤ ∠(y′ −
x′,−y′), due to the counterclockwise turning of the circuit �(sw) as it is traversed
counterclockwise from x′ to y′. However,

∠(y′ − x′,−y′) ≤ ∠(y′ − x′,−x′) + ∠(x′,y′) ≤ 4q0/3 + O(n−1/3(logn)1/3).

In the latter inequality, the bound on ∠(y′ − x′,−x′) is due to (3.22) and (3.23)
and that on ∠(x′,y′) is an easy consequence of (3.1), the definition of x′ and y′,
and xj ,yj /∈ Bc1n. From the condition q0 < 3c1

4C1
that we imposed on q0 in Def-

inition 2.13, we see that this contradicts (3.20). This establishes (3.17) with the
choice x = xj and y = yj , and completes the proof of Lemma 3.11. �

PROOF OF LEMMA 3.12. A proof of the statement for the quantity
Pω(GAC(x,y, δ)) is given, in essence, in Lemma 3.1 of [14]. (This statement
is qualified, because the second condition in the present definition of the event
GAC(x,y, δ) is absent in [14].) The event SID(x,y, δ) requires a deviation toward
the origin on the part of γx,y, and, as such, it appears to be negatively correlated
with GAC(x,y, δ). Nonetheless, the lemma follows by a variation of the proof of
Lemma 3.1 of [14] that we now describe.
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FIG. 6. Illustrating the proof of Lemma 3.12. The fives circles are the boundaries of the radius-K
balls about the successive points y = x0 on the left up to x = x4 on the right. The four dia-
mond-shaped regions each enclosing a line segment [xi ,xi+1] are the Ri for i = 0,1,2,3 from
left to right. The dotted curve that surrounds the union of the segments [xi ,xi+1] is the boundary of
the region N . An instance of γ x,y that realizes the event OUTFLUC is depicted.

We will make use of a coordinate frame for R
2 in which 
x,y is horizontal,

with origin equal to y and with x having positive x-coordinate, and with 0 in the
usual coordinates lying in the lower half-plane. Set h = ‖y − x‖. (We omit integer-
rounding from our notation, and assume that h and related quantities are integers.)
Using the new coordinate system, we write x1 = (h/4,10δ

√
h(logh)1/2), x2 =

(h/2,5δ
√

h(logh)1/2) and x3 = (3h/4,10δ
√

h(logh)1/2). Further set x0 = y and
x4 = x.

For i ∈ {0,1,2,3}, let Ri = Wxi+1−xi ,q0/4(xi ) ∩ Wxi−xi+1,q0/4(xi+1). Note that
we may find K ∈ N such that there exists an infinite simple (lattice) path from 0
in BK ∪ W , for every aperture-q0/2 cone W with apex at 0. We fix K ∈ N at such
a value, independently of the value of h. Set B0 = BK(x0) ∩ Ax,y, B1 = BK(x1),
B2 = BK(x2), B3 = BK(x3) and B4 = BK(x4)∩Ax,y. For such i, let Hi denote the
event that xi ↔ xi+1 in Bi ∪Ri ∪Bi+1, with the common connected component γ i

of xi and xi+1 in Bi ∪Ri ∪Bi+1 intersecting ∂(Bi ∪Ri ∪Bi+1) only in ∂(Bi ∪Bi+1)

and satisfying

sup{d(v, [xi ,xi+1]) : v ∈ γ i} ≤ 10‖xi+1 − xi‖1/2.
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Let J denote the event that γ x,y ∩ BK(x) ⊆ CF
π/2−q0/2(x) and γ x,y ∩ BK(y) ⊆

CB
π/2−q0/2(x).
Set OUTFLUC = H0 ∩ H1 ∩ H2 ∩ H3 ∩ J .
Set L equal to the union of the line segments [xi ,xi+1] for 0 ≤ i ≤ 3. Let N

denote the 10h1/2-neighbourhood of L. Note that OUTFLUC implies that x
Ax,y↔ y,

with xi ∈ γ x,y for 1 ≤ i ≤ 3. Moreover, γ x,y ⊆ N . Hence,

Ix,y(L) ⊆ Ix,y(γx,y) ∪ N.

Let Q denote the rectangle that, in the chosen coordinates, has the form Q =
[h/4,3h/4]×[0,5δh1/2(logh)1/2]. We have that the sets T0,x,y and Q are disjoint,
each of them being a subset of Ix,y(L). Noting that |N | ≤ 20h3/2, and that |Q| =
(5/2)δh3/2(logh)1/2, it follows that, for n high enough,

|Ix,y(γx,y)| ≥ |T0,x,y| + δh3/2(logh)1/2

since h = ‖x − y‖ → ∞ as n → ∞. To confirm OUTFLUC ⊆ GAC(x,y, δ), it
remains to verify the second condition listed in Definition 3.8. To this end, set B =⋃3

i=0(Ri ∪ Bi) ∪ R4. Note that OUTFLUC entails that γ x,y ⊆ B , and hence that
γx,y ⊆ B . From (3.17) and (3.18) and the definitions of the constituent sets of B ,
any point in B \ (B0 ∪ B4) makes an angle with both of x and y of at least q0/2.
Hence, γ x,y satisfies the containment in this second condition except possibly in
B0 ∪ B4, in this region, the containment is assured by the occurrence of J . Hence,
indeed, we have the second condition listed in Definition 3.8.

We will now verify that

OUTFLUC ⊆ SID(x,y, δ).(3.24)

By OUTFLUC ⊆ {γx,y ⊆ B}, we may, if OUTFLUC occurs, find zi ∈ Bi ∩ γx,y

for i ∈ {1,2,3}, since x and y are not connected in any of the sets B \ Ri , for
i = 1,2,3.

We will check that z2 realizes the event SID(x,y, δ).
Note that

conv([0,x] ∪ [x, z1] ∪ [z1, z3] ∪ [z3,y] ∪ [0,y]) ⊆ conv([0,x] ∪ γx,y ∪ [0,y])
since z1, z3 ∈ γx,y. Note further that z2 belongs to the left-hand side of this inclu-
sion, by construction, and that its distance to the boundary of this set is attained on
the interval [z1, z3]. Hence,

d
(
z2, ∂ conv([0,x] ∪ γx,y ∪ [0,y])) ≥ d(z2, [z1, z3]).

Now, d(z2, [z1, z3]) ≥ 5δh1/2(logh)1/2 − 2K . Hence,

d
(
z2, ∂ conv([0,x] ∪ γx,y ∪ [0,y])) ≥ 4δh1/2(logh)1/2.

To confirm (3.24), it remains to check that

d(z2,A
c
x,y) ≥ ‖x − y‖ sin(q0)/3.(3.25)
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Let z′ denote the midpoint of [x,y]. Note that

d(z2, z′) ≤ 5δh1/2(logh)1/2 + K.(3.26)

Note that, since x ∈ CB
π/2−q0

(y), the line segment [x,y] makes an angle of at
least q0 with 
0,y. From z′ ∈ [x,y], we find that d(z′, 
0,y) ≥ d(z′,y) sin(q0) =
d(x,y) sin(q0)/2. By (3.26), we obtain, for n sufficiently high, [since d(x,y) =
h → ∞ as n → ∞],

d(z2, 
0,y) ≥ d(x,y) sin(q0)/2.

By this, and the same inequality on d(z2, 
0,x), we obtain (3.25), and hence (3.24).
The following assertion is analogous to (3.21) in [14], and may be obtained by

the argument leading to that result. There exist constants C > c > 0 such that, for
n sufficiently high,

Pω(OUTFLUC) ≥ ch−Cδ2
h−3/2P(x ↔ y).(3.27)

(The occurrence of J is not stipulated in the definition of OUTFLUC made in the
argument in [14]. However, J has a positive K-dependent probability, given the
occurrence of the other events in the present definition of OUTFLUC.)

Similarly to the paragraph that follows (3.21) in [14], we could conclude now,
if the factor of n−3/2 were absent on the right-hand side of (3.27), since h ≤ 2C2n.
This factor arises due to three “local limit theorem” factors of order n−1/2 arising
from the insistence that, under OUTFLUC, γ x,y pass through the three bounded
neighbourhoods B1,B2 and B3 at the x-coordinates h/4, h/2 and 3h/4. We may
consider variants of OUTFLUC, in which the vertical coordinates of each of x1,
x2 and x3, assumes a value differing from its original one by at most h1/2. By con-
sidering only choices in which these vertical differences are multiples of 2K + 1,
we obtain disjoint events, numbering on the order of h3/2, each of which satisfies
the bound (3.27), and is contained in GAC(x,y, δ) ∩ SID(x,y, δ). This completes
the proof. �

We now show that successful action of RESj gives rise to a favourable outcome
in the associated sector.

LEMMA 3.13. Let j ∈ {1, . . . ,mn}, and let ω ∈ {0,1}E(Z2) satisfy AREAsw
n2 ∩

{�(sw) ∩ Bc1n = ∅}. Fix χ > 0 in (3.1) at a sufficiently small value. Then, if RESj

acts successfully on {0,1}E(Z2), its output is favourable in the sector An
j .

PROOF. Write ω′ = RESj (ω). Under SID(xj ,yj , ε0), there exists z ∈
γxj ,yj

(ω′) such that

d
(
z, ∂ conv

([0,xj ] ∪ [0,yj ] ∪ γxj ,yj
(ω′)

)) ≥ ε0‖xj − yj‖1/2(log‖xj − yj‖)1/2.
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By Lemma 3.4, �(sw)(ω
′) = (�(sw)(ω) ∩ Ac

xj ,yj
) ∪ γxj ,yj

(ω′). Note that

d
(
z, ∂ conv

(
�(sw)(ω

′)
))

= d
(
z, ∂ conv

((
�(sw)(ω) ∩ Ac

xj ,yj

) ∪ γxj ,yj
(ω′)

))
= min

{
d
(
z, ∂ conv

((
�(sw)(ω) ∩ Ac

xj ,yj

) ∪ γxj ,yj
(ω′)

) ∩ Axj ,yj

)
,

d
(
z, ∂ conv

((
�(sw)(ω) ∩ Ac

xj ,yj

) ∪ γxj ,yj
(ω′)

) ∩ Ac
xj ,yj

)}
.

The first quantity in the minimum is at least d(z, ∂ conv([0,xj ] ∪ [0,yj ] ∪
γxj ,yj

(ω′))), because the replacement of [0,xj ] ∪ [0,yj ] by �(sw)(ω) ∩ Ac
xj ,yj

in
conv(· ∪ γxj ,yj

(ω′)) cannot cause this set to become smaller. The second quantity
is at least d(z,Ac

xj ,yj
) which exceeds ‖xj − yj‖ sin(q0)/3, by assumption. Hence,

d
(
z, ∂ conv

((
�(sw)(ω) ∩ Ac

xj ,yj

) ∪ γxj ,yj
(ω′)

))
≥ min{ε0‖xj − yj‖1/2(log‖xj − yj‖)1/2,‖xj − yj‖ sin(q0)/3}

≥ 1

2

(
2c1

3π

)1/2

ε0χ
1/2n1/3(logn)2/3,

the second inequality by (3.19). From u(χ) = o(χ1/2), we know that u(χ) <

(1/2)(2c1/(3π))1/2ε0χ
1/2 holds if we choose χ > 0 to be small enough, so that

z ∈ �(sw)(ω
′) ∩ An

j ensures that An
j is favourable under ω′ = RESj (ω). �

3.8. Local deviation cannot be undone by resampling distant sectors. As we
progressively apply the maps RESj in counterclockwise order, we need to check
that a favourable outcome returned by one map cannot be undone by a later one.
For this purpose, it is convenient to impose that MFL(�(sw)) is unusually high in
neither the input nor the output configuration of RESj .

LEMMA 3.14. Let s1(n) ∈ {1, . . . ,mn}, and let s2(n) ∈ (0,∞) satisfy s2(n) <
χ
2 s1(n). Set s3(n) = s1(n) + 1. Let k, j ∈ {1, . . . ,mn} satisfy |j − k| ≥ s3(n). Let

ω ∈ {0,1}E(Z2) satisfy AREAsw
n2 and �(sw)(ω) ⊆ Bc

c1n
. Set ω′ = RESj (ω). Suppose

that

max
{
MFL

(
�(sw)(ω)

)
,MFL

(
�(sw)(ω

′)
)} ≤ s2(n)n2/3(logn)1/3.

Then the sector An
k is favourable under ω if and only if it is favourable under ω′.

The following two lemmas are convenient tools for the proof of Lemma 3.14.
The quantities s1(n), s2(n) and s3(n) are fixed as in the statement of Lemma 3.14.

LEMMA 3.15. Suppose that �(sw) satisfies �(sw) ∩Bc1n = ∅. If a line segment
[u,v] of ∂ conv(�(sw)) intersects two sectors An

k and An
l for which |k − l| ≥ 2, then

‖v − u‖ ≥ (χ/2)|k − l|n2/3(logn)1/3.
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PROOF. Since u,v ∈ �(sw) and �(sw) ∩ Bc1n = ∅, we find that ‖v − u‖ ≥
2π−1∠(u,v)c1n. From u ∈ An

k and v ∈ An
l , we find that ∠(u,v) ≥ |k − l −

1|χn−1/3(logn)1/3, as required. �

LEMMA 3.16. Let k, j ∈ {1, . . . ,mn} satisfy |j − k| ≥ s1(n). Let ω ∈
{0,1}E(Z2) satisfy AREAsw

n2 . Set ω′ = RESj (ω) and further suppose that

max
{
MFL

(
�(sw)(ω)

)
,MFL

(
�(sw)(ω

′)
)} ≤ s2(n)n2/3(logn)1/3.

Then

∂ conv
(
�(sw)(ω

′)
) ∩ An

k = ∂ conv
(
�(sw)(ω)

) ∩ An
k.

PROOF. We assume that j ≤ k − s1(n) without loss of generality. Let [w,w′]
[with arg(w) < arg(w′)] denote that edge in the polygon ∂ conv(�(sw)(ω)) that
intersects the clockwise boundary of An

k . By Lemma 3.15, the hypothesis on
MFL(�(sw)(ω)), and (χ/2)s1(n) > s2(n), we have that w ∈ ⋃k−1

l=j+1 An
l . If

�(sw)(ω
′) ∩ An

j ∩ 
w,w′ = ∅,(3.28)

then conv(�(sw)(ω
′)) is unchanged from conv(�(sw)(ω)) counterclockwise

to w, so that the statement of the lemma holds. If (3.28) does not hold, then
∂ conv(�(sw)(ω

′)) contains a line segment [v,v′] with v ∈ An
j and arg(v′) ≥

arg(w′), so that v′ ∈ An
k′ for some k′ ≥ k. This circumstance is depicted in Fig-

ure 7. By Lemma 3.15 and (χ/2)s1(n) > s2(n), we obtain MFL(�(sw)(ω
′)) ≥

‖v − v′‖ > s2(n)n2/3(logn)1/3, which contradicts the hypothesis. �

PROOF OF LEMMA 3.14. By Lemma 3.16,

∂ conv
(
�(sw)(ω

′)
) ∩ (An

k−1 ∪ An
k ∪ An

k+1)
(3.29)

= ∂ conv
(
�(sw)(ω)

) ∩ (An
k−1 ∪ An

k ∪ An
k+1).

Suppose that An
k is not favourable under ω. We wish to show that any v ∈

An
k ∩ �(sw)(ω

′) satisfies LR(v,�(sw)(ω
′)) ≤ u(χ)n1/3(logn)2/3. Let v′ ∈

∂ conv(�(sw)(ω)) satisfy d(v′,v) = LR(v,�(sw)(ω)). We have that v′ ∈ An
k−1 ∪

An
k ∪ An

k+1, for otherwise

d(v′,v) ≥ ‖v‖ sin∠(v′,v) ≥ ‖v‖ sin(χn−1/3(logn)1/3)
(3.30)

≥ 2π−1c1χn2/3(logn)1/3

[the third inequality by �(sw)(ω) ⊆ Bc
c1n

]. This bound is impossible, since

d(v′,v) = LR
(
v,�(sw)(ω)

) ≤ u(χ)n1/3(logn)2/3,
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FIG. 7. An illustration of the case that �(sw)(ω
′) ∩ An

j ∩ 
w,w′ �= ∅ in the proof of Lemma 3.16.

The bold resampled circuit segment in An
j cuts across 
w,w′ to create a modified convex boundary

(shown as bold dotted) that contains a line segment [v,v′] intersecting both An
j and An

k .

due to An
k being favourable under ω. By (3.29), v′ ∈ ∂ conv(�(sw)(ω

′)), so
that, since v ∈ �(sw)(ω

′), we indeed have LR(v,�(sw)(ω
′)) ≤ d(v′,v) ≤ u(χ) ×

n1/3(logn)2/3. We find then that An
k is not favourable under ω′.

Suppose that An
k is favourable under ω. Let v ∈ An

k ∩ �(sw)(ω) satisfy
LR(v,�(sw)(ω)) ≥ u(χ)n1/3(logn)2/3. Note that v ∈ �(sw)(ω

′), because �(sw)(ω
′)

coincides with �(sw)(ω) in the complement of An
j . We wish to show that

LR(v,�(sw)(ω
′)) ≥ u(χ)n1/3(logn)2/3, because this will demonstrate that An

k

is favourable under ω′. Let v′ ∈ ∂ conv(�(sw)(ω
′)) satisfy d(v′,v) = LR(v,

�(sw)(ω
′)). If v′ /∈ An

k−1 ∪ An
k ∪ An

k+1, then (3.30) certainly shows that d(v′,v)

is greater than u(χ)n1/3(logn)2/3. In the other case, v′ ∈ ∂ conv(�(sw)(ω))

by (3.29), so that d(v′,v) ≥ LR(v,�(sw)(ω)), which we know to be at least
u(χ)n1/3(logn)2/3. Thus, An

k is indeed favourable under ω′. �

3.9. Considerations for defining the complete resampling procedure. The
naive approach would be to define the overall resampling procedure RES by itera-
tively applying each of the maps RESj in a counterclockwise order. However, we
have already noted that we must insist that the sectors An

j be in the right-hand half-
plane. There are two further problems. First, favourable outcomes in a sector are
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known by Lemma 3.14 to be locked in for the long term only if s3(n) further sec-
tors are treated without destroying the favourable outcome. Secondly, Lemma 3.11
provides a lower bound on a favourable outcome in a sector only if the sector has
a low local roughness in the input. We do not control the outcome if the maxi-
mal local roughness in the sector is higher, and, even though this is the favourable
property that we seek, it could, in principle, be consistently destroyed by the re-
sampling. One might object that, if maximum local roughness is high enough in
the input, we already have the desired conclusion, making a random resampling,
or, indeed, any other argument, unnecessary. However, a problematic case is one in
which, given AREAsw

n2 , with fifty percent probability, the maximal local roughness

in sector An
j exceeds u(χ)n1/3(logn)2/3 for all j , and, in the rest of the condi-

tional probability space, MLR(�(sw)) ≤ u(χ)n1/3(logn)2/3. Under a resampling
of every sector successively, the first part of the space might be mapped into the
second (and vice versa), however far-fetched this may seem. Our solution to this
difficulty is to define RES by attempting to resample sectors only with a positive
probability, so that sectors already realizing the lower bound on MLR(�(sw)) may
be preserved in the final output.

3.10. The proof of Theorem 1.1. We are now ready to formally define our
complete resampling procedure RES and to analyse its action.

Let m′
n denote the number of j , 1 ≤ j ≤ mn, such that An

j lies in the first quad-
rant. Note that, by (3.2),

m′
n ∼ π

2χ
n1/3(logn)−1/3.(3.31)

It is this initial segment of the sequence of sectors that we will use to define RES.
The operation RES will be defined in terms of the parameters s1(n), s2(n) and
s3(n) from Lemma 3.14, with their form being specified later.

Let (�, F ,P) denote a probability space on which are defined a random con-
figuration φ having the law P(·|AREAsw

n2 ), and the operations RESj , 1 ≤ j ≤ m′
n,

each of these acting independently. (The use of the notation P extends its original
use in Definition 3.4.) A further independent sequence of length m′

n of biased coins
with probability 1/s3(n) of landing heads is provided under (�, F ,P). The opera-
tion RES is defined under (�, F ,P) as follows. The input ω0 is taken to be φ. The
operation has m′

n further stages. At the j th stage, 1 ≤ j ≤ m′
n, with probability

1/s3(n) (using the j th coin), procedure RESj acts on the present configuration, so
that the configuration ωj at the end of stage j is given by ωj = RESj (ωj−1). In
the other case, we take ωj = ωj−1, and say that no action is taken. Fixing nota-
tion, let �(sw)(j) = �(sw)(ωj ) and �(sw)(j) = �(sw)(ωj ). Set MBTj = MBT(ωj )

and UNFAVj = UNFAV(ωj ).
By Lemma 3.5, the law P(·|AREAsw

n2 ) is invariant under RES. We will analyse
the measure P(·|AREAsw

n2 ) by considering it as the law of the output ωm′
n

of RES
under the measure P.



958 A. HAMMOND

The analysis of the action will be made under the condition that the realization
of RES lies in a space G of “good” outcomes. To define this, for 0 ≤ i ≤ m′

n, set

G1,i = {
MFL

(
�(sw)(i)

) ≤ s2(n)n2/3(logn)1/3}
,

G2,i = {
MLR

(
�(sw)(i)

) ≤ n2/3}
,

G3,i = {
θMAX

RGq0/2,c0/2

(
�(sw)(i)

) ≤ nε−1/2
}

and

G4,i = {
�(sw)(i) ⊆ BC1n \ Bc1n

} ∩ {
0 ∈ INT

(
�(sw)(i)

)}
.

[Recall that ε ∈ (0,2/3) was introduced in Definition 3.4.] We also set Gi =⋂4
j=1 Gj,i , and G(i) = ⋂i

j=0 Gj . We then define G = G(m′
n). We make a definition

of the set of good outcomes so that this event is probable: with ε1 ∈ (0,2/3), we
write (with integer-rounding omitted)

s3(n) = nε1 and s2(n) = χ

4
nε1,(3.32)

so that these quantities satisfy the hypotheses stated in Lemma 3.14. As we derive
after completing the rest of the proof, if ε ∈ (0,1/6), then

P(Gc) ≤ exp{−cn3ε1/2 logn} + exp{−cnε}.(3.33)

LEMMA 3.17. For 1 ≤ j ≤ m′
n − s3(n), the occurrence of G implies that

UNFAVj ∩ {j + s3(n), . . . ,m′
n} = UNFAV0 ∩ {j + s3(n), . . . ,m′

n}(3.34)

and that

MBTj ∩ {j + s3(n), . . . ,m′
n} = MBT0 ∩ {j + s3(n), . . . ,m′

n}.(3.35)

PROOF. Let the pair (j, k), j, k ∈ {1, . . . ,m′
n} satisfy j + s3(n) ≤ k ≤ m′

n.
The occurrence of G means that Lemma 3.14 may be applied to each of the first
j stages of the formation of RES. It tells us that An

k is favourable under ωj if
and only if it is favourable under ω0. This is (3.34). Note that, for such (j, k), the
condition k ∈ MBTj is determined by the data ∂ conv(�(sw)(j)) ∩ An

k . However,
∂ conv(�(sw)(j))∩An

k = ∂ conv(�(sw)(0))∩An
k , because Lemma 3.16 is also appli-

cable to each of the first j stages of the formation of RES. Thus, we obtain (3.35).
�

Recall from Lemma 3.9 that, if �(sw)(0) ⊆ BC1n and 0 ∈ INT(�(sw)(0)), then
|MBT0| ≥ 9mn/10, for large n. For such an input, we also have that |MBT0 ∩
{1, . . . ,m′

n}| ≥ m′
n/2, since m′

n ≥ (mn/4)(1 + o(1)). By the occurrence of G4,0,
we may thus find define a subset MBT0 ⊆ MBT0 ∩ {1, . . . ,m′

n} with the follow-
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ing properties: |MBT0| ≥ m′
n

4s3(n)
, and each pair of consecutive elements of MBT0

differ by at least 2s3(n) + 1. We enumerate the two sets MBT0 ∩ UNFAV0 =
{p1, . . . , pr1} and MBT0 ∩ UNFAVc

0 = {q1, . . . , qr2}, where r1 + r2 = |MBT0|. For
1 ≤ r ≤ r1, let Pr denote the event that, in the action of RES, at stage pr , RESpr is
chosen to act, and that it acts successfully, while at the s3(n) stages preceding, and
at the s3(n) stages following, the pr th stage, no action is taken. For 1 ≤ r ≤ r2, let
Qr denote the event that, in the action of RES, at stage qr , RESqr does not act, and
neither does it do so at the s3(n) stages preceding, and the s3(n) stages following,
the qr th stage.

We claim the following.

CLAIM A. For each r ∈ {1, . . . , r1}, G ∩ Pr entails RES returning an output
ωm′

n
under which An

pr
is favourable.

CLAIM B. For r ∈ {1, . . . , r2}, G ∩ Qr entails RES returning an output ωm′
n

under which An
qr

is favourable.

PROOF OF CLAIM A. Note that, by Lemma 3.17, pr ∈ UNFAVpr−s3(n) ∩
MBTpr−s3(n), since pr ∈ MBT0 ∩ UNFAV0. Given Pr , then, we have that pr ∈
UNFAVpr−1 ∩ MBTpr−1, because ωpr−1 = ωpr−s3(n). Applying Lemma 3.13 to
the successful action of RESpr on ωpr−1, we find that An

pr
is favourable under ωpr .

On the event Pr , this remains the case under ωpr+s3(n), because ωpr+s3(n) = ωpr .
That An

pr
is now favourable in the configuration is now permanent: indeed, we

may show that An
pr

is favourable under ωj for pr + s3(n) ≤ j ≤ m′
n inductively.

The j -indexed inductive step is trivial if RESj does not act. If it does act, then
Lemma 3.14 applies to this action to give the inductive step. Lemma 3.14 is appli-
cable because |INT(�(sw)(j))| ≥ n2 holds for j = 0 by assumption on ω0, and, for
j > 0, by the construction of RESj , while the other hypotheses are satisfied by the
occurrence of G . �

PROOF OF CLAIM B. As in the preceding proof, we have that qr /∈
UNFAVqr−s3(n). The inaction of RESj in stages between qr − s3(n) and qr + s3(n)

means that qr /∈ UNFAVqr+s3(n). Lemma 3.14 is then applicable as in the earlier
case. �

Claims A and B imply that(
r1⋃

i=1

Pi ∪
r2⋃

i=1

Qi

)
∩ G

(3.36)
⊆ {

MLR
(
�(sw)(m

′
n)

) ≥ u(χ)n1/3(logn)2/3}
.
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Note then that(
r1⋃

i=1

Pi ∪
r2⋃

i=1

Qi

)c

∩ G ⊆
m′

n/(8s3(n))⋂
i=1

({r1 ≥ i} ∩ P c
i ∩ G(pi−s3(n))

)
(3.37)

∪
m′

n/(8s3(n))⋂
i=1

({r2 ≥ i} ∩ Qc
i ∩ G(qi−s3(n))

)

since, as we have noted, G implies that r1 + r2 ≥ m′
n/(4s3(n)).

We claim that, for any K ∈ N, given {r1 ≥ K} ∩ G(pK−s3(n)) and the val-
ues of 1P1, . . . ,1PK−1 , the conditional probability that PK occurs is at least

(4C1)
−2 sin2(q0/2)n−2ε−C2ε

2
0s3(n)−1(1 − 1/s3(n))2s3(n). Indeed, the event on

which we condition here is measurable with respect to {ω0, . . . ,ωpK−s3(n)}, and,
if it occurs, then ωpK−s3(n) satisfies the event in the hypothesis of Lemma 3.11.
The claim then follows by this lemma, since, similarly to the proof of Claim A,
we have that pK ∈ UNFAVpK−s3(n) ∩ MBTpK−s3(n) under the event on which we
condition, with pK ∈ UNFAVpK−1 ∩ MBTpK−1 if no action is taken at stages
pK − s3(n), . . . , pK − 1. From this claim, we find that

P

(m′
n/(8s3(n))⋂

i=1

{r1 ≥ i} ∩ P c
i ∩ G(pi−s3(n))

)

≤ (
1 − (4C1)

−2 sin2(q0/2)(3.38)

× n−2ε−C2ε
2
0s3(n)−1(

1 − 1/s3(n)
)2s3(n))m′

n/(8s3(n))
.

A similar assertion for the sequence of events {Qi} yields

P

(m′
n/(8s3(n))⋂

i=1

{r2 ≥ i} ∩ Qc
i ∩ G(qi−s3(n))

)

(3.39)
≤ (

1 − (
1 − 1/s3(n)

)2s3(n)+1)m′
n/(8s3(n))

.

Recall that the entire resampling procedure, whose law we indicate by P, begins
with a copy of P(·|AREAsw

n2 ) as the input ω0, and ends up, after its numerous
attempted modifications, spitting out another copy of P(·|AREAsw

n2 ). Bearing this
in mind, we now reach the equation summarising our approach, of viewing the
conditional measure P(·|AREAsw

n2 ) as the output of the complete resampling RES:

P
(
MLR

(
�(sw)

) ≥ u(χ)n1/3(logn)2/3|AREAsw
n2

)
= P

(
MLR

(
�(sw)(m

′
n)

) ≥ u(χ)n1/3(logn)2/3)
(3.40)

≥ 1 − P
(

Gc) − P

((
r1⋃

i=1

Pi ∪
r2⋃

i=1

Qi

)c

∩ G
)
.
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The inequality is due to (3.36).
By using (3.31)–(3.33), (3.37)–(3.39),

P
(
MLR

(
�(sw)

)
< u(χ)n1/3(logn)2/3|AREAsw

n2

)
≤ exp{−cn3ε1/2 logn} + exp{−cnε}

(3.41)
+ exp{−cn1/3−2ε−2ε1−C2ε

2
0 (logn)−1/3}

+ exp{−cn1/3−ε1(logn)−1/3}.
The minimum

min
{

3ε1

2
, ε,1/3 − 2ε − 2ε1 − C2ε

2
0

}

is attained by choosing ε = 1
13 − 3C2

13 ε2
0 and ε1 = 2ε

3 . The quantity ε0 > 0, intro-
duced in Definition 3.10, may be fixed at an arbitrarily small value. Hence, for any
ε > 0, and for n ∈ N sufficiently high,

P
(
MLR

(
�(sw)

)
< u(χ)n1/3(logn)2/3|AREAsw

n2

) ≤ exp{−n1/13−ε}.(3.42)

Recall that u(χ) > 0 is a fixed positive number, specified by making a suffi-
ciently small choice of χ > 0 (in terms of ε0). In this way, the statement of Theo-
rem 1.1 is the analogue of (3.42) for the circuit �0 under the conditional measure
P(·||INT(�0)| ≥ n2). We obtain this statement from (3.41) by applying Lemma 3.1
with the choice M = {� : MLR(�) < u(χ)n1/3(logn)2/3}.

It remains to establish (3.33). Note that

P(Gc) ≤
m′

n∑
i=0

4∑
j=1

P(Gc
j,i) = (m′

n + 1)

4∑
j=1

P(Gc
j,0)(3.43)

the equality due to Lemma 3.5. Note that

P(Gc
1,0) = P

(
MFL

(
�(sw)

)
> s2(n)n2/3(logn)1/3|AREAsw

n2

)
.

The probability of the analogous event for �0 under P(·||INT(�0)| ≥ n2) appears
in [14] and has been quoted as Theorem 2.4. By setting M = {� : MFL(�) >

tn2/3(logn)1/3}, we may apply Lemma 3.2 to Theorem 2.4 to learn that the state-
ment of this theorem holds for the circuit �(sw) under the measure P(·|AREAsw

n2 ).
We also have that

P(Gc
2,0) = P

(
MLR

(
�(sw)

) ≤ n2/3|AREAsw
n2

) ≤ exp{−n1/6(logn)−C}.
In this case, we apply Lemma 3.2 to Theorem 2.3 with the maximum possible
choice t = O(n5/36(logn)−C).

We have that

P(Gc
3,0) = P

(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> nε−1|AREAsw

n2

)
.
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For any choice of ε ∈ (0,1), Theorem 3.1 yields

P(Gc
3,0) ≤ exp{−cnε}.

Finally,

P(Gc
4,0) = P

({
�(sw) �⊆ BC1n \ Bc1n

} ∪ {
0 /∈ INT

(
�(sw)

)}|AREAsw
n2

)
is bounded in Lemma 3.3. Substituting these bounds into (3.43), and using (3.31),
we obtain that P(Gc) is at most

Cn1/3(logn)−1/3(
exp{−cs2(n)3/2 logn} + exp{−n1/6(logn)−C}

+ exp{−cnε} + exp{−c′n}).
From s2(n) = nε1 with ε1 > 0 and ε ∈ (0,1/6), we obtain (3.33).

3.11. The lower bound on maximum facet length. This is, in essence,
a straightforward corollary of Theorem 1.1. We discuss the argument in out-
line before reaching the formal proof. A more detailed heuristic discussion of
the same ideas may be found in Section 1.2.2 of [14]. Given the lower bound
MLR(�0) ≥ cn1/3(logn)2/3, the occurrence of MFL(�0) = o(n2/3(logn)1/3)

would force the existence of a facet in the convex boundary ∂ conv(�0) of length
o(n2/3(logn)1/3) but for which the subpath τ of �0 running from one endpoint
of this facet to the other deviates from the facet by at least cn1/3(logn)2/3. (To
find such a facet, we consider that facet for which the corresponding section of the
circuit contains the point attaining maximum local roughness.) The subpath τ is
a subcritical open path that deviates from the line segment interpolating its end-
points to such a degree that this fluctuation lies in a superpolynomially small part
of the probability space of a point-to-point connection between these endpoints.
(Such connections have Gaussian fluctuation [7].) As such, it is probabilistically
cheaper to form an alternative subcritical path from one endpoint of the facet to
another, because an open path between the two points with a typical fluctuation
will trap enough area.

Formally, the apparatus required to give the proof of Theorem 1.2 has been set
up in [14]. The proof of Theorem 1.1 of [14] uses the information that MFL(�0)

cannot be too large to deduce that MLR(�0) is also not too large. Equally, it may
be used to show that, if MFL(�0) has even a slight probability of being small, then
so does MLR(�0).

PROOF OF THEOREM 1.2. This is a matter of modifying a few details in
the proof of Theorem 1.1 of [14], that appears in Section 5. Consider the inclu-
sion [14]: (5.67), with the appearance of t2−δ on the right-hand side being re-
placed by t2+δ , and where now we take t > 0 to be small. The analogue of [14]:
(5.69) is the assertion that there exists t0 > 0 such that, for 0 < t < t0, for which
[14]: (5.69) holds, with δ replaced by −δ. Applying the analogue of [14]: (5.69),
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the inequality MLRF(�0) ≤ MFL(�0), the deduction made after [14]: (5.80) that
A = ∅, [14]: (5.82) and Lemma 2.2 to the analogue of [14]: (5.67), we obtain

P
(
MLR(�0) ≥ n1/3(logn)2/3t,AREA0,n2

)
≤ P

(
MFL(�0) ≥ n1/3(logn)2/3t2+δ,AREA0,n2

)
(3.44)

+ (
n2/3(logn)1/3t2+δ exp{−c min{t−δ logn,n1/3}}

+ exp{−cn1/6})P(AREA0,n2).

At this stage, we require the version of Theorem 1.1 for the measure P(·|
AREA0,n2). This version follows from Theorem 1.1 and the bound

P
(
AREA0,n2

∣∣|INT(�0)| ≥ n2) ≥ (1/2)π−1C−2
1 n−2.(3.45)

This last bound is valid, because, as Proposition 1 states, cen(�0) ∈ INT(�0) is
highly probable under P(·||INT(�0)| ≥ n2); moreover, �0 ⊆ BC1n is also proba-
ble, by Lemma 2.2. These have the consequence that a translate of a typical realiza-
tion of P(·||INT(�0)| ≥ n2) by some vector v ∈ Z

2 ∩ BC1n will realize AREA0,n2 ,
whence (3.45).

Setting t in (3.44) to be sufficiently small, dividing this inequality by
P(AREA0,n2) and applying our new version of Theorem 1.1, we find that the
left-hand side of the resulting inequality is close to one. In this way, we obtain
the statement of the theorem under the conditional measure P(·|AREA0,n2). Lem-
ma 2.8 of [14], that translates upper bounds for events under P(·||INT(�0)| ≥ n2)

in terms of the corresponding quantity under P(·|AREA0,n2), provides the means
to obtain the theorem. �

4. The technical tools. The proofs of several elements of our approach have
been deferred and appear in this section.

4.1. The circuits after resampling.

PROOF OF LEMMA 3.4. Set Bx,y ⊆ {0,1}E(Z2), Bx,y = AREAsw
n2 ∩ {x,y ∈

RG(�(sw))} ∩ {0 ∈ INT(�(sw))}. We must show that the law P(·|Bx,y) is invariant
under ψx,y. To this end, let ω ∈ Bx,y, and write ω′ = ψx,y(ω). Recall that γ x,y(ω)

denote the common ω-open cluster of x and y in Ax,y, and γx,y(ω) the outermost
ω-open path from x to y in Ax,y. We also use these notations for the configura-
tion ω′. To derive

�(sw)(ω
′) = (

�(sw)(ω) ∩ Ac
x,y

) ∪ γx,y(ω
′),(4.1)

we will begin by showing that

�(sw)(ω
′) = (

�(sw)(ω) ∩ Ac
x,y

) ∪ γ x,y(ω
′).(4.2)
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To this end, note that x,y ∈ RG(�(sw)(ω)) implies that


+
0,z ∩ �(sw)(ω) = {z} for z = x,y.(4.3)

From �(sw)(ω) ⊆ �(sw)(ω), (4.3) and 0 ∈ INT(�(sw)(ω)), we find that �(sw)(ω) ∩
Ac

x,y is a path from x to y, and hence is connected. By this, (4.3), �(sw)(ω) ⊆
�(sw)(ω) and the connectedness of �(sw)(ω), we find that �(sw)(ω) ∩ Ac

x,y is
connected. Using this alongside ω′|E(Z2)\E(Ax,y)

= ω|E(Z2)\E(Ax,y)
, we find that

the ω′-open cluster of csw in Ac
x,y equals �(sw)(ω) ∩ Ac

x,y. The ω′-open cluster
�(sw)(ω

′) of csw therefore contains �(sw)(ω) ∩ Ac
x,y; it also contains γ x,y(ω

′),
by (4.3). However, since γ x,y(ω

′) ⊆ CF
π/2−q0/2(x) ∩ CB

π/2−q0/2(y) implies that

γ x,y(ω
′) ∩ ∂Ax,y = {x,y}, the set �(sw)(ω

′) has no further elements. Thus, (4.2).
To establish (4.1), we will firstly confirm that

�(sw)(ω
′) ∩ ∂Ax,y = {x,y} and that

(4.4)
�(sw)(ω

′) intersects the interior of Ax,y.

We know that �(sw)(ω) ∩ Ac
x,y is an open path from x to y under ω′|E(Z2)\E(Ax,y)

,
since ω′|E(Z2)\E(Ax,y)

= ω|E(Z2)\E(Ax,y)
. This implies that the right-hand side of

(4.1) is an ω′-open circuit. It is southwest-centred at csw: indeed,

csw = SW
(
�(sw)(ω)

) = SW
((

�(sw)(ω) ∩ Ac
x,y

) ∪ γx,y(ω
′)

)
by the definition of �(sw)(ω) in the first equality, and each point in Ax,y ⊆ {z ∈
R

2 : z1 ≥ 0} being lexicographically greater than csw, as well as γx,y(ω
′) ⊆ Ax,y.

The right-hand side of (4.1) traps 0 in its interior. Therefore, so must �(sw)(ω
′),

since INT(�(sw)(ω
′)) contains the interior of any ω′-open circuit that is southwest-

centred at csw.
That 0 ∈ INT(�(sw)(ω

′)) forces �(sw)(ω
′) to intersect the interior of Ax,y.

From (4.2), we know that 
+
0,z ∩ �(sw)(ω

′) = {z} for z = x,y. By �(sw)(ω
′) ⊆

�(sw)(ω
′) and 0 ∈ INT(�(sw)(ω

′)), we infer that �(sw)(ω
′) ∩ ∂Ax,y = {x,y}. We

have derived (4.4).
By (4.4), and each point in Ax,y being lexicographically at least csw, we see that

�(sw)(ω
′) ∩ Ax,y is the outermost ω′-open path from x to y in Ax,y, that is,

�(sw)(ω
′) ∩ Ax,y = γx,y(ω

′).(4.5)

Let ζω denote the outermost ω-open path ζ from x to y in Ac
x,y for which

SW(ζ ) = csw, and write ζω′ analogously. Then note that, by (4.4), �(sw)(ω
′) ∩

Ac
x,y = ζω′ . By ω′|E(Z2)\E(Ax,y)

= ω|E(Z2)\E(Ax,y)
, we see that ζω′ = ζω. However,

ζω = �(sw)(ω)∩Ac
x,y, since, as we have seen, �(sw)(ω)∩Ac

x,y is a path from x to y.
That is, �(sw)(ω

′) ∩ Ac
x,y = �(sw)(ω) ∩ Ac

x,y, which, alongside (4.5), gives (4.1).
We record the formulae

�(sw)(ω) = (
�(sw)(ω) ∩ Ac

x,y
) ∪ γx,y(ω)(4.6)
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and

�(sw)(ω) = (
�(sw)(ω) ∩ Ac

x,y
) ∪ γ x,y(ω)(4.7)

that are analogous to (4.1) and (4.2).
To verify that P(·|Bx,y) is invariant under ψx,y, let ω0 ∈ {0,1}E(Z2)\E(Ax,y) be

of the form ω0 = ω|E(Z2)\E(Ax,y)
for some ω ∈ Bx,y. It suffices to check that

P
(·∣∣Bx,y,ω|E(Z2)\E(Ax,y)

= ω0
)

(4.8)
= (P ◦ ψ−1

x,y)
(·∣∣Bx,y,ω|E(Z2)\E(Ax,y)

= ω0
)
.

Under the measure on the left-hand side of (4.8), ω|E(Ax,y) has the condi-
tional distribution of the marginal of P in E(Ax,y) given ω|E(Z2)\E(Ax,y)

=
ω0 and {x Ax,y↔ y} ∩ {γ x,y ⊆ CF

π/2−q0/2(x) ∩ CB
π/2−q0/2(y)} ∩ {|INT((�(sw)(ω0) ∩

Ac
x,y) ∪ γx,y(ω))| ≥ n2}. This is true for the following two reasons. First, given

ω|E(Z2)\E(Ax,y)
= ω0, the event {x Ax,y↔ y} ∩ {γ x,y ⊆ CF

π/2−q0/2(x) ∩ CB
π/2−q0/2(y)}

is characterized by {x,y ∈ RG(�(sw))} ∩ {0 ∈ INT(�(sw))}, [this by virtue of
the definition of RG(�(sw)), (4.7), arg(y) < arg(x) + c0/2 and CF

π/2−q0/2(x) ∩
CB

π/2−q0/2(y) ⊆ Ax,y]. Second, by the use of (4.6). Under the measure on the right-
hand side, ω|E(Ax,y) has exactly the same conditional distribution: this is proved by
use of (4.1) and (4.2) alongside the definition of ψx,y (which was designed to en-
sure this property). �

4.2. Proofs related to recentering the circuit. We present here the proofs of
Lemmas 3.1, 3.2 and 3.3. We start with a simple assertion.

LEMMA 4.1. There exist 0 < c,C < ∞ such that

P
(
�(sw) �⊆ BCn|AREAsw

n2

) ≤ exp{−cn}.

PROOF. We begin by arguing that there exists c > 0 for which P(AREAsw
n2 ) ≥

exp{−cn}. Let � denote any circuit for which |INT(�)| ≥ n2 and SW(�) = csw.
By definition, we have that P(AREAsw

n2 ) is at least the probability that � is open.
Such a � may be chosen so that |E(�)| has order n. Hence, the bounded energy
property of P implies that indeed P(AREAsw

n2 ) ≥ exp{−cn} for some c > 0.
It suffices then to argue that

P
(
�(sw) �⊆ BCn

) ≤ exp{−C′n}(4.9)

for all n sufficiently high, where C′ > 0 may be chosen so that C′ → ∞ as
C → ∞. It readily follows from Lemma 2.2 that ‖csw‖ ≤ C1n. As such, for
C > C1, the event {�(sw) �⊆ BCn} entails the existence of an open path of length
at least (C − C1)n that contains an element of BC1n. Setting C = 2C1, we see
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that P(�(sw) �⊆ B2C1n) ≤ 2π(C1n)2 exp{−cC1n}, by use of the exponential decay
of connectivity property satisfied by P (with the constant c > 0 being from the
statement of this property in Section 2.6). In this way, we obtain (4.9). �

PROOF OF LEMMA 3.1. Let v ∈ Z
2 be such that

pv := P
(
SW(�0) = csw + v

∣∣|INT(�0)| ≥ n2,�0 ∈ M
)

is maximal. It is a consequence of Lemma 2.2 that either pv ≥ 1
2πC2

1n2 or

P
(
�0 ∈ M

∣∣|INT(�0)| ≥ n2) ≤ exp{−cn}(4.10)

for some small constant c > 0. Indeed, suppose that the latter alternative fails for
c = ε/2, where ε > 0 is specified in Lemma 2.2. Then we learn from Lemma 2.2
that

P
(
�0 �⊆ BC1n

∣∣|INT(�0)| ≥ n2,�0 ∈ M
) ≤ exp{−(ε/2)n}.

Under the law P(·||INT(�0)| ≥ n2,�0 ∈ M), the random vertex SW(�0) is thus
likely to lie in BC1n, whence pv ≥ 1

2πC2
1n2 .

The form of the statement of the lemma permits us to exclude the case that
(4.10) holds. For any ω ∈ {0,1}E(Z2) and x ∈ Z

2, we write ωx := ω(· + x) for
the translation of ω by −x. Note that if ω ∈ {SW(�0) = csw + v} ∩ {|INT(�0)| ≥
n2}∩{�0 ∈ M}, then ωv ∈ AREAsw

n2 ∩{�(sw) ∈ M}, because, as is readily verified,
�(sw)(ωv) = �0(ω) − v. From this, and the translation-invariance of P , we learn
that

P
(
AREAsw

n2 ∩ {
�(sw) ∈ M

})
≥ P

({SW(�0) = csw + v} ∩ {|INT(�0)| ≥ n2} ∩ {�0 ∈ M}).
By the assumed bound on pv,

P
(
AREAsw

n2 ∩ {
�(sw) ∈ M

})
(4.11)

≥ 1

2πC2
1

n−2P
({|INT(�0)| ≥ n2} ∩ {�0 ∈ M}).

We divide (4.11) by P(AREAsw
n2 ) and use

P(AREAsw
n2 ) ≤ 10πC2

1n2P
(|INT(�0)| ≥ n2)

(4.12)

to obtain

10πC2
1n2P

(
�(sw) ∈ M|AREAsw

n2

) ≥ 1

2πC2
1

n−2P
(
�0 ∈ M

∣∣|INT(�0)| ≥ n2)
,

which yields the statement of the lemma in the case that remains [when (4.10)
fails].
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It remains to verify (4.12). By Lemma 4.1, we have that

P(AREAsw
n2 ) ≤ 2P

(
AREAsw

n2 ,�(sw) ⊆ BC1n

)
.

The event on the right-hand side entails that the ball BC1n contain a circuit that
traps an area of at least n2. For any such configuration, some translate, by an integer
vector of norm at most C1n, will realize |INT(�0)| ≥ n2. Thus, the bound (4.12)
follows from the translation invariance of P . �

PROOF OF LEMMA 3.2. The proof is very similar to that of Lemma 3.1. In
place of (4.12), we use

P(AREAsw
n2 ) ≥ 1

2πC2
1n2

P
(|INT(�0)| ≥ n2)

,(4.13)

which follows from

P
(
AREAsw

n2

∣∣|INT(�0)| ≥ n2) ≥ P
(
SW(�0) = csw

∣∣|INT(�0)| ≥ n2) ≥ 1

2πC2
1n2

,

where the second inequality is due to the Definition 3.1 of csw. �

The next two lemmas give Lemma 3.3.

LEMMA 4.2. There exists c > 0 such that, for any ε ∈ (0, c), and for all n ∈ N

sufficiently high,

P
(
GD

(
�(sw)

) ≥ εn|AREAsw
n2

) ≤ exp{−cεn}.
Under this conditional measure, cen(�(sw)) ∈ INT(�(sw)) except with exponen-
tially decaying probability in n.

PROOF. The result follows from Proposition 1 and Lemma 3.2. �

LEMMA 4.3. For all c′ > 0, there exists c′′ > 0 such that, for n sufficiently
high,

P
(
cen

(
�(sw)

)
/∈ Bc′n|AREAsw

n2

) ≤ exp{−c′′n}.
PROOF. We parametrize the Wulff curve by the polar angle, writing ∂Wβ(θ)

for the unique element of ∂Wβ of argument θ (for θ ∈ [0,2π)). We claim that, for
all δ > 0, there exists ε > 0 such that, for n sufficiently high, and for any circuit �

satisfying cen(�) ∈ INT(�) and GD(�) ≤ εn, we have that

‖SW(�) − cen(�) − n∂Wβ(π)‖ ≤ δn.(4.14)

Indeed, there exists a constant C∗ > 0 such that

� − cen(�) ⊆ (n + C∗εn)Wβ \ (n − C∗εn)Wβ.(4.15)
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(In essence, this follows from the definition of GD(�) and the convexity of Wβ .
A detailed proof of (4.15) is given in Lemma 3.3 of [15].) From (4.15), we see
that � − cen(�), being a circuit whose interior contains 0, contains a point of x-
coordinate at most −(n − C∗εn)‖∂Wβ(π)‖ but no point of x-coordinate at most
−(n + C∗εn)‖∂Wβ(π)‖. Hence,

−(n + C∗εn)‖∂Wβ(π)‖ ≤ SW(�)1 − cen(�)1 ≤ −(n − C∗εn)‖∂Wβ(π)‖.
By the strict convexity of ∂Wβ (Lemma 2.1), for all δ > 0, there exists ε > 0, such
that (

(n + C∗εn)Wβ \ (n − C∗εn)Wβ

)
∩ {(x, y) ∈ R

2 :x ≤ −(n − C∗εn)‖∂Wβ(π)‖}
⊆ {(x, y) ∈ R

2 : |y| < δn/2}.
Hence, ‖SW(�) − cen(�) − n∂Wβ(π)‖ ≤

√
(2C∗ε)2 + (δ/2)2n, which implies

(4.14), if we impose that ε < δ
4C∗ .

Note that Lemma 4.2, (4.14) and the Definition 3.1 of csw imply that

‖csw − n∂Wβ(π)‖ ≤ δn.

Note that, by (4.14), any circuit � for which cen(�) /∈ Bc′n, cen(�) ∈ INT(�)

and GD(�) ≤ εn satisfies ‖SW(�) − n∂W(π)‖ ≥ c′n − δn. Hence, if c′ > 2δ, the
events {GD(�(sw)) ≤ εn} ∩ {cen(�(sw)) ∈ INT(�(sw))} and {cen(�(sw)) /∈ Bc′n} are
disjoint. For this reason, Lemma 4.2 implies the result. �

Note that Lemma 3.3 follows from Lemmas 4.1 and 4.3, with a relabelling of
constants.

4.3. Regeneration structure and recentering. We now explain how to derive
Theorem 3.1 from Theorem 2.2. The centre cen(�(sw)) of the circuit �(sw) arising
from the measure P(·|AREAsw

n2 ) is not necessarily 0, but it is nearby to 0. We
establish this as a preliminary to the proof of Theorem 3.1:

LEMMA 4.4. Let c2 > 0 satisfy 3πc2
c1

< min{q0, c0}. For x ∈ Z
2 and q, c > 0,

we use the notation RGq,c,x(�) to denote x + RGq,c(� − x). Let � be a circuit
such that � ∩ Bc1n = ∅. Let x ∈ Z

2 satisfy ‖x‖ ≤ c2n. Then

RGq0,c0(�) ⊆ RGq0/2,c0/2,x(�).

PROOF. We begin with a useful claim.
Let v,x ∈ Z

2 satisfy ‖x‖ ≤ c2n and ‖v‖ ≥ c1n. We claim that

(x + Wv−x,c0/2) ∩ Bc
c1n

⊆ Wv,c0 .(4.16)
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FIG. 8. Illustrating the derivation of (4.16).

Let 
1 and 
2 denote the clockwise and counterclockwise boundaries of Wx,c0 .
Let 
∗

1 and 
∗
2 denote the corresponding boundaries of x + Wv−x,c0/2. Write

w1,w2,w∗
1,w∗

2, for the intersections of 
1, 
2, 

∗
1, 


∗
2 with ∂Bc1n. For (4.16), it suf-

fices to show that

arg(w1) < arg(w∗
1) < arg(w∗

2) < arg(w2)(4.17)

and that

(
∗
1 ∪ 
∗

2) ∩ (
1 ∪ 
2) ∩ Bc
c1n

= ∅.(4.18)

Set q1 equal to the point of intersection 
+
0,v ∩ ∂Bc1n and q2 equal to the point


+
x,v ∩ ∂Bc1n. To show (4.17), we begin by bounding ∠(q1,q2). By consider-

ing the triangle T0,v,q2 , we have that ∠(q1,q2) + ∠(v,v − x) = ∠(q2,q2 − x).
Hence, ∠(q1,q2) ≤ ∠(q2,q2 − x). However, sin∠(q2,q2 − x) ≤ ‖x‖

‖q2‖ ≤ c2
c1

, so
that ∠(q2,q2 − x) ≤ πc2

2c1
. Thus, ∠(q1,q2) ≤ πc2

2c1
.

Next, we bound ∠(q2,w∗
1). We have that

∠(q2,w∗
1) ≤ ∠(q2,q2 − x) + ∠(q2 − x,w∗

1 − x) + ∠(w∗
1 − x,w∗

1).(4.19)
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Note that, for any u satisfying ‖u‖ ≥ c1n,

∠(u,u − x) ≤ πc2

2c1
.(4.20)

Since ‖q2‖,‖w∗
1‖ = c1n, we may use this, alongside ∠(q2 − x,w∗

1 − x) = c0/2, to
obtain from (4.19) that ∠(q2,w∗

1) ≤ c0/2 + πc2/c1. We also have that arg(w1) =
arg(q1) − c0. Hence,

arg(w∗
1) ≥ arg(q2) − c0/2 − πc2

2c1
≥ arg(q1) − ∠(q1,q2) − c0/2 − πc2

2c1

= arg(w1) + c0 − 3πc2

2c1
− c0/2 > arg(w1)

since 3πc2 < c0c1. We similarly have that arg(w2) > arg(w∗
2). Note that ‖x‖ < c1n

implies that arg(w∗
1) < arg(w∗

2). Hence, we have (4.17).
We may now derive the statement of the lemma. Let v1, v2, v∗

1, v∗
2 denote the

direction vectors of 
1 and 
2 (away from 0) and 
∗
1 and 
∗

2 (away from x). Given
(4.17), it suffices for (4.18) that

arg(v1) ≤ arg(v∗
1) ≤ arg(v∗

2) ≤ arg(v2).(4.21)

Note that arg(v1) = arg(v) − c0. Note further that |arg(v∗
1) − arg(v)| ≤ |arg(v∗

1) −
arg(v − x)|+∠(v,v − x). However, |arg(v∗

1)− arg(v − x)| = c0/2, while ∠(v,v −
x) ≤ πc2

2c1
by (4.20) and ‖v‖ ≥ c1n. Hence,

arg(v∗
1) ≥ arg(v) − c0/2 − πc2

2c1
≥ arg(v1) + c0/2 − πc2

2c1
.

Hence, arg(v∗
1) ≥ arg(v1) follows from πc2 ≤ c0c1. The other inequalities being

derived either identically or trivially, we obtain (4.21).
Let v ∈ RGq0,c0(�). We must show that

� ∩ (x + Wv−x,c0/2)
(4.22)

⊆ (
x + CF

π/2−q0/2(v − x)
) ∪ (

x + CB
π/2−q0/2(v − x)

)
.

Let y ∈ � ∩ (x + Wv−x,c0/2). By (4.16) and � ∩ Bc
c1n

= ∅, we find that y ∈ � ∩
Wv,c0 . From v ∈ RGq0,c0(�), we obtain y ∈ CF

π/2−q0
(v) ∪ CB

π/2−q0
(v).

For (4.22), it suffices then to show that CF
π/2−q0

(v) ⊆ x + CF
π/2−q0/2(v − x)

and CB
π/2−q0

(v) ⊆ x + CB
π/2−q0/2(v − x). These two statements are implied by

∠(v,v − x) ≤ q0/2. This follows from (4.20), ‖v‖ ≥ c1n and πc2 < q0c1. �

PROOF OF THEOREM 3.1. By Lemma 4.3 and the form of (3.3), we may
suppose that there exists v ∈ Bc′n such that

P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n, cen

(
�(sw)

) = v|AREAsw
n2

)
(4.23)

≥ 1

2πc′2n2 P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n|AREAsw

n2

)
,
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where c′ > 0 is an arbitrary constant. For u ∈ Z
2, recall that �u denotes the outer-

most open circuit whose interior contains u. We write �u for the open cluster in
which �u is contained, analogously to the notation �(sw). We claim that, given{

θMAX
RGq0/2,c0/2

(
�(sw)

)
> u/n, cen

(
�(sw)

) = v,AREAsw
n2

}
,(4.24)

the conditional probability that �v is equal to �(sw) is bounded away from zero,
uniformly in n. Indeed, conditionally on (4.24), �v = �(sw) provided that there is
no open cluster disjoint from �(sw) that encircles �(sw). To see this, for x ∈ Z

d ,
let C(x) denote the event that there exists an infinite closed path emanating from
x whose lexicographically maximal element is x. Let H+

x ⊆ Z
2 denote the set of

vertices whose lexicographical order is at least that of x. We assert that there exists
c > 0 such that, for each x ∈ Z

2 and for all ω′ ∈ {0,1}E(H+
x ),

P
(
C(x)

∣∣ω|E(H+
x ) = ω′) ≥ c.(4.25)

The proof of (4.25) is outlined in Figure 9 and the accompanying text. Note that,
conditionally on (4.24), the event C(SW(�(sw))− e1) ensures that there is no open
cluster disjoint from �(sw) that encircles �(sw). (Recall that e1 denotes the unit
vector in the positive x-direction.) As such, to prove the claim made involving

FIG. 9. A sketch that sketches the proof of (4.25). To see that the unconditioned probability P(C(x))

is positive, we divide the indicated wedge Q into a series of dyadic scales. We insist that, for each
one of these, a vertical closed path crosses the scale, and a horizontal closed path crosses the scale
and its neighbours. By exponential decay of connectivity, the absence of such paths has a probability
that decays exponentially in the index of the scale. However, the presence of all such paths ensures
a closed infinite path emanating from x that avoids H+

x . The probability of the intersection of the
events for the different scales is at least the product of the probabilities by the FKG inequality,
so that the intersection has positive probability, as required. Moreover, the same argument may be
undertaken in the presence of conditioning on data in E(H+

x ), due to the ratio-weak-mixing property
enjoyed by P (that was recalled in Section 2.6). This is because the edge-set regions E(Q) and
E(H+

x ) are “well-separated” in the spirit of Definition 2.15, making what goes on inside one close
to independent of what happens in the other.
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(4.24), it suffices to establish that C(SW(�(sw))−e1) given (4.24) has a probability
that is bounded below uniformly in the conditioning. This, however, follows from
(4.25) with the choice of x = SW(�(sw))− e1 being made, since the event (4.24) is
measurable with respect to the configuration in E(H+

SW(�(sw))−e1
). This completes

the proof of the claim involving (4.24).
We make use of the following result, whose proof appears after the end of the

argument.

LEMMA 4.5. For v ∈ Z
2 and ω ∈ {0,1}E(Z2), let ωv := ω(v + ·) denote the

configuration ω translated by −v.
Let v ∈ Z

2 satisfy ‖v‖ ≤ c3n, with c3 = min{c1 sin(q0/2), c1q0/(2π),
c1c0/(5π),C1}.

(i) Suppose that ω realizes the event{
c0/2 > θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n, cen

(
�(sw)

) = v,

(4.26)
AREAsw

n2 ,�v = �(sw),�(sw) ⊆ BC1n \ Bc1n

}
.

Then

ωv ∈
{
θMAX

RGq0,c0
(�0) >

c1 sin(q0/8)u

πC1n
, |INT(�0)| ≥ n2

}
.

(ii) Suppose that ω realizes the event{
θMAX

RGq0/2,c0/2

(
�(sw)

) ≥ c0/2, cen
(
�(sw)

) = v,

AREAsw
n2 ,�v = �(sw),�(sw) ∩ Bc1n = ∅

}
.

Then

ωv ∈
{
θMAX

RGq0,c0
(�0) >

c0

4
, |INT(�0)| ≥ n2

}
.

By the two parts of Lemma 4.5 and the translation invariance of P ,

P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n, cen

(
�(sw)

) = v,

AREAsw
n2 ,�v = �(sw),�(sw) ⊆ BC1n \ Bc1n

)
≤ P

(
θMAX

RGq0,c0
(�0) >

c1 sin(q0/8)u

πC1n
, |INT(�0)| ≥ n2

)
,

where we choose c′ = c3 so that v ∈ Z
2 is a permissible choice for the application

of Lemma 4.5. Hence,

P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n, cen

(
�(sw)

) = v|AREAsw
n2

)
≤ 2πC2

1n2CP

(
θMAX

RGq0,c0
(�0) >

c1 sin(q0/8)u

πC1n

∣∣∣|INT(�0)| ≥ n2
)

+ exp{−cn}

≤ Cn2 exp{−cu},
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where the first inequality used (4.13), the statement involving (4.24), Lemma 3.3
and Theorem 2.2. The second inequality used Theorem 2.2 and u ≤ cn. By (4.23),
we obtain

P
(
θMAX

RGq0/2,c0/2

(
�(sw)

)
> u/n|AREAsw

n2

) ≤ 4π2C2
1c′2n4 exp{−cu}

as required. �

PROOF OF LEMMA 4.5. Note firstly that, by Lemma 4.4 and v ∈ Bc3n,
πc3/c1 < min{q0, c0},

RGq0,c0,v
(
�(sw)

) ⊆ RGq0/2,c0/2
(
�(sw)

)
.(4.27)

(i) Let r1, r2 ∈ RGq0/2,c0/2(�(sw)) satisfy arg(r1) < arg(r2). We claim that

v ∈ Bc1 sin(q0/2)n implies that arg(r1 − v) < arg(r2 − v).(4.28)

It suffices to prove (4.28) for r1, r2 ∈ RGq0/2,c0/2(�(sw)) that are adjacent as
viewed from 0, that is, for which Ar1,r2 ∩ RGq0/2,c0/2(�(sw)) = {r1, r2}. By
θMAX

RGq0/2,c0/2
(�(sw)) < c0/2, we have that arg(r2) − arg(r1) < c0/2, so that r2 ∈

RGq0/2,c0/2(�(sw)) implies that r1 ∈ CB
π/2−q0/2(r2). This implies that arg(r1 −

w) < arg(r2 − w) for any w lying in the component of R
2 \ (CF

π/2−q0/2(r2) ∪
CB

π/2−q0/2(r2)) containing 0. Note that the point of closest approach to 0 in

∂(CF
π/2−q0/2(r2) ∪ CB

π/2−q0/2(r2)) has distance from 0 at least ‖r2‖ sin(q0/2) ≥
c1 sin(q0/2)n, the inequality due to r2 ∈ �(sw) ⊆ Bc

c1n
. We have verified (4.28).

By θMAX
RGq0/2,c0/2

(�(sw)) > u/n, we may find r, r∗ ∈ RGq0/2,c0/2(�(sw)), with

arg(r∗) > arg(r) + u/n, such that Ar,r∗ ∩ RGq0/2,c0/2(�(sw)) = {r, r∗}. The cyclic
ordering of the elements of RGq0/2,c0/2(�(sw)) being the same whether these ele-
ments are viewed from 0 or from v ∈ Bc1 sin(q0/2)n [by (4.28)], we find that

(v + Ar−v,r∗−v) ∩ RGq0/2,c0/2
(
�(sw)

) = {r, r∗}.
By (4.27), then,

(v + Ar−v,r∗−v) ∩ RGq0,c0,v
(
�(sw)

) ⊆ {r, r∗}
implying that

θMAX
RGq0,c0

(
�(sw) − v

) ≥ ∠(r − v, r∗ − v).(4.29)

We wish to bound from below the right-hand side. To this end, note that

‖r∗ − r‖ ≥ 2π−1c1n∠(r, r∗) ≥ 2π−1c1u,(4.30)

the first inequality by r, r∗ ∈ �(sw) ⊆ Bc
c1n

and the second by ∠(r, r∗) ≥ u/n. We
claim that

r − v ∈ CB
π/2−q0/4(r

∗ − v).(4.31)
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Indeed, by θMAX
RGq0/2,c0/2

(�(sw)) < c0/2, we have that arg(r) > arg(r∗)− c0/2, so that

r∗ ∈ RGq0/2,c0/2(�(sw)) yields

r ∈ CB
π/2−q0/2(r

∗).(4.32)

From (4.32), it suffices for (4.31) to show that

∠(r∗, r∗ − v) ≤ q0/4.(4.33)

From v ∈ Bc3n and ‖r∗‖ ≥ c1n, we have that sin∠(r∗, r∗ − v) ≤ c3/c1, and thus
∠(r∗, r∗ − v) ≤ πc3/(2c1), so that (4.33) follows from c3 ≤ 2π−1c1q0/4. By
(4.30), (4.31) and the upcoming Lemma 4.6, we obtain

∠(r∗ − v, r − v) ≥ 2c1 sin(q0/8)u

π‖r∗ − v‖ .

By r∗ ∈ �(sw) ⊆ BC1n and v ∈ Bc3n ⊆ BC1n, we learn that

∠(r∗ − v, r − v) ≥ c1 sin(q0/8)u

πC1n
.

From (4.29), then, we obtain

θMAX
RGq0,c0

(
�(sw) − v

) ≥ c1 sin(q0/8)u

πC1n
.

This implies the first statement of the lemma.
(ii) First, note that

r ∈ �(sw) �⇒ ∠(r, r − v) <
c0

8
.(4.34)

Indeed, r ∈ �(sw) implies that ‖r‖ ≥ c1n, so that sin∠(r, r − v) ≤ ‖v‖/‖r‖ ≤
c3/c1, whence ∠(r, r − v) ≤ πc3

2C1
< c0/8.

Let r, r′ ∈ RGq0/2,c0/2(�(sw)) satisfy arg(r′) − arg(r) = θMAX
RGq0/2,c0/2

(�(sw)), with

RGq0/2,c0/2(�(sw)) containing no element whose argument value lies between
arg(r) and arg(r′).

Let A∗ denote the cone with apex at v whose clockwise boundary 
 has argu-
ment arg(r − v) + c0/8, and whose counterclockwise boundary 
′ has argument
arg(r′ − v) − c0/8.

Note first that

arg(
′) − arg(
) = arg(r′ − v) − arg(r − v) − c0/4 ≥ arg(r′) − arg(r) − c0/2,

since ∠(s, s − v) ≤ c0/4 for s = r, r′, by (4.34). Thus,

θMAX
RGq0,c0

(
�(sw) − v

)
>

c0

4
(4.35)

will follow from the claim that

the interior of A∗ is disjoint from RGq0,c0,v
(
�(sw)

)
.(4.36)
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To see this, consider any s ∈ RGq0,c0,v(�(sw)). By (4.27), we know that s ∈
RGq0/2,c0/2(�(sw)), so that arg(s) /∈ [arg(r), arg(r′)]. Suppose that arg(s) ≤ arg(r).
Note then that arg(s − v) ≤ arg(s) + c0/8 ≤ arg(r) + c0/8, the first inequality by
(4.34). That is, viewed from the vantage point of v, s lies clockwise of 
, the
clockwise boundary of A∗. Likewise, any such s for which arg(s) ≥ arg(r′) lies
counterclockwise to 
′. This establishes (4.36) and thus (4.35), and so concludes
the proof of the second part of the lemma. �

We used the following straightforward result, Lemma 2.3 of [14].

LEMMA 4.6. Let q > 2c > 0. If x,y ∈ R
2 satisfy ∠(x,y) ≤ c and y ∈

CF
π/2−q(x) ∪ CB

π/2−q(x), then ‖y − x‖ ≤ csc(q/2)‖x‖∠(x,y).

5. Concluding remarks. We conclude by briefly discussing some questions
raised by our approach.

5.1. Rates of convergence to equilibrium. We introduced a time-inhomoge-
neous Markov chain RES that successively resamples sections of the conditioned
circuit. The individual steps of the resampling, as described by the two-step for-
mation appearing in the remark after Definition 3.3, act, in effect, by forming a
subcritical point-to-point connection between the endpoints of the circuit section
where a modification is proposed, and then testing the result to see if the new cir-
cuit traps enough area. As we discussed in Section 3.5, the value of the sector angle
θn given in (3.1) is tuned so that these proposed point-to-point connections have a
slow power-law decay probability of being accepted. This tuning of an acceptance
probability to within a desired range is reminiscent of mixing time analysis of the
Metropolis algorithm, where a rapid approach to the invariant measure is often
achieved by tuning the acceptance rate to be �(1). It would be interesting to try to
determine the mixing time of such procedures as RES for sampling the measure
P(·||INT(�0)| ≥ n2), and to show that choices of θn of the order of n−1/3+o(1)

achieve an optimal rate of convergence.

5.2. Rates of decay for the probability of small maximum local deviation. The
decay rate appearing in Theorem 1.1 is almost certainly not optimal. The appear-
ance of the term 1/13 is a consequence of our controlling such quantities as MFL
from above for the purpose of understanding the action of RES. It is natural to try
to improve this decay rate. In this regard, it would be sensible to weaken the defi-
nition of the space G of good configurations for the action of RES that appears in
Section 3.10. After all, one long facet in the convex boundary only really prevents
us from analysing the action of RES in a neighbourhood of that facet. An alterna-
tive is to control from above not MFL, but only the sum of the lengths of all long
facets. Similar comments apply to controlling angular gaps in the circuit regenera-
tion structure. Theorems 2.2 and 2.4 would again provide the needed control, with
some additional effort.
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The polynomial decay rate in Theorem 1.2 is also an artefact of the method
of proof. It would not be difficult to obtain a stretched exponential bound: each
instance of local roughness of at least cn1/3(logn)2/3 being realized by a point
whose argument-value lies in the interval of argument-values given by a convex
boundary facet of length o(n2/3(logn)1/3) entails a polynomial cost, as we saw
in the proof of Theorem 1.2. These costs may be multiplied if there are many
instances of local roughness taking at least this value, and the proof of Theorem 1.1
may be adapted to show that indeed there are.

6. Glossary of notation. Here, we list much of the article’s notation, and pro-
vide a summarising phrase for each item, as well as the page number at which the
concept is introduced.
� a generic circuit 924
INT(�) the area trapped by � 924
�0 the outermost open circuit enclosing 0 924
conv(�0) the convex hull of �0 925
MLR(�0) maximum local roughness 925
MFL(�0) maximum facet length 925
T0,x,y the triangle with vertices 0, x and y 928
Ax,y the sector with apex 0 bounded by x and y 928
Wv,c the cone about v with apex 0 and aperture 2c 928
Wβ the unit-area Wulff shape 929
GD(�0) global distortion (from the Wulff shape) 929
cen(�) the centre of a circuit 929

AREA0,n2 the event of n2-area capture by a centred circuit 930

CF
π/2−q(v) the q-forward cone with apex v 930

CB
π/2−q(v) the q-backward cone with apex v 930

RG(�0) the set of circuit regeneration sites 931

RG(�0) the set of cluster regeneration sites 931

θMAX
RGq0,c0

(�0) the maximal angular separation of cluster regeneration sites 931

SW(�) the southwest corner of a circuit 935

AREAsw
n2 the event of n2-area capture by a southwest-centred circuit 935

�(sw) the outermost open circuit as defined by southwest-centering 935

�(sw) the outermost open cluster as defined by southwest-centering 935
γx,y the outermost open path in Ax,y from x to y 938
γ x,y the open cluster of x and y in Ax,y 938
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Ix,y(γx,y) the bounded component of Ax,y \ γx,y 947
RESj the resampling procedure in the j th sector An

j 939
MBT the index-set of sectors with moderate boundary turning 945

u(χ) a function of χ for which u(χ) = o(χ1/2) 946
UNFAV the index-set of unfavourable sectors (having low local

roughness)
946

GAC(x,y, ε) configurations in Ax,y realizing ε-good area capture 947
SID(x,y, ε) ε-significant inward deviation (of a connected set in Ax,y

from x to y)
947

RES the complete resampling procedure 956
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