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Parameter estimation in astrophysics often requires the use of complex
physical models. In this paper we study the problem of estimating the pa-
rameters that describe star formation history (SFH) in galaxies. Here, high-
dimensional spectral data from galaxies are appropriately modeled as lin-
ear combinations of physical components, called simple stellar populations
(SSPs), plus some nonlinear distortions. Theoretical data for each SSP is pro-
duced for a fixed parameter vector via computer modeling. Though the pa-
rameters that define each SSP are continuous, optimizing the signal model
over a large set of SSPs on a fine parameter grid is computationally infeasi-
ble and inefficient. The goal of this study is to estimate the set of parameters
that describes the SFH of each galaxy. These target parameters, such as the
average ages and chemical compositions of the galaxy’s stellar populations,
are derived from the SSP parameters and the component weights in the signal
model. Here, we introduce a principled approach of choosing a small basis of
SSP prototypes for SFH parameter estimation. The basic idea is to quantize
the vector space and effective support of the model components. In addition
to greater computational efficiency, we achieve better estimates of the SFH
target parameters. In simulations, our proposed quantization method obtains
a substantial improvement in estimating the target parameters over the com-
mon method of employing a parameter grid. Sparse coding techniques are
not appropriate for this problem without proper constraints, while constrained
sparse coding methods perform poorly for parameter estimation because their
objective is signal reconstruction, not estimation of the target parameters.

1. Introduction. In astronomy and cosmology one is often challenged by the
complexity of the relationship between the physical parameters to be estimated
and the distribution of the observed data. In a typical application the mapping from
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the parameter space to the observed data space is built on sophisticated physical
theory or simulation models or both. These scientifically motivated models are
growing ever more complex and nuanced as a result of both increased computing
power and improved understanding of the underlying physical processes. At the
same time, data are progressively more abundant and of higher dimensionality as
a result of more sophisticated detectors and greater data collection capacity. These
challenges create opportunities for statisticians to make a large impact in these
fields.

In this paper we address one such challenge in the field of astrophysics. In-
formally, the setup can be described as follows. The observed data vector from
each source is appropriately modeled as a constrained linear combination of a set
of physical components, plus some nonlinear distortion and noise to account for
observational effects. Call this the signal model. One also has a computer model
capable of generating a dictionary of physical components under different settings
of the physical parameters. Using this dictionary of components, the signal model
can be fitted to observed data. The parameters of interest—which we will refer to
as target parameters—are, however, not the parameters explicitly appearing in the
signal model, but are derived from them. The target parameters capture the phys-
ical essence of each object under study. Our goal is to find accurate estimates of
these parameters given observed data and theoretic models of the basic compo-
nents. See (3.1) for the formal problem statement.

Our proposed methods choose small sets of prototypes from a large dictionary
of physical components to fit the signal model to the observed data from each ob-
ject of interest. Even though the data are truly generated as combinations of curves
from a continuous (or fine) grid of parameters, we obtain more accurate maxi-
mum likelihood estimates of the target parameters by using a smaller, principled
choice of prototype basis. This result is partially due to the fact that maximum
likelihood estimation (MLE) often fails when the parameters take values in an
infinite-dimensional space. In Geman and Hwang (1982), the authors suggest sal-
vaging MLE for continuous parameter spaces by a method of sieves [Grenander
(1981)], where one maximizes over a constrained subspace of the parameter space
and then relaxes the constraint as the sample size grows. Quantization is one such
method for constraining the parameter space, and the optimal number of quanta or
prototypes is then determined by the sample size; see Meinicke and Ritter (2002)
for an example of quantized density estimation with MLE. Our approach is based
on similar ideas but our final goal is parameter estimation rather than density esti-
mation. Although we do not directly tie the number of quanta to the sample size,
we do observe a similar phenomenon: In the face of limited, noisy data, gains can
be made by reducing the parameter space further prior to finding the MLE. By
deriving a small set of prototypes that effectively cover the support of the signal
model, we obtain a marked decrease in the variance of the final parameter esti-
mates, and only a slight increase in bias. Furthermore, by choosing a smaller set
of prototypes, the fitting procedure becomes computationally tractable.
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Our principal motivation for developing this methodology is to understand the
process of star formation in galaxies. Specifically, researchers in this field seek to
improve the physical models of galaxy evolution so that they more accurately ex-
plain the observed patterns of galaxy star formation history (SFH) in the Universe.
The principal idea is that each galaxy consists of a mixture of subpopulations of
stars with different ages and compositions. By estimating the proportion of each
constituent stellar subpopulation present, we can reconstruct the star formation rate
and composition as a function of time, throughout the life of that galaxy. This is
the approach of galaxy population synthesis [Bica (1988), Pelat (1997), Cid Fer-
nandes et al. (2001)], whereby the observed data from each galaxy are modeled as
linear combinations of a set of idealized simple stellar populations (SSPs, groups
of stars having the same age and composition) plus some parametrized, nonlin-
ear distortions. Equation (2.1) shows one such galaxy population synthesis model.
The fitted parameters from this signal model allow us to estimate the SFH tar-
get parameters of each galaxy, which are simple functions of the parameters in this
model. Astrophysicists can use the estimated SFHs of a large sample of galaxies to
better understand the physics governing the evolution of galaxies and to constrain
cosmological models. This modeling approach has produced compelling estimates
of cosmological parameters such as the cosmic star formation rate, the evolution
of stellar mass density, and the stellar initial mass function, which describes the
initial distribution of stellar masses in a population of stars [see Asari et al. (2007)
and Panter et al. (2007) for examples of such results].

SFH target parameter estimates from galaxy population synthesis are highly
dependent on the choice of SSP basis. Astronomers have the ability to theoretically
model simple stellar populations from fine parameter grids, but much care needs
to be taken to determine an appropriate basis to achieve accurate SFH parameter
estimates. In Richards et al. (2009a) it was shown that better parameter estimates
are achieved by exploiting the underlying geometry of the SSP disribution than by
using SSPs from regular parameter grids. In this paper we will further explore this
problem. Our main contributions are the following:

(1) to introduce prototyping as an approach to estimating parameters derived
from the signal model parameters and to show the effectiveness of quantizing the
vector space or support of the model data,

(2) to demonstrate that sparse coding does not work as a prototyping method
without the appropriate constraints and that constrained sparse coding methods do
not perform well for target parameter estimation, and

(3) to work out the details of the star formation history estimation problem and
obtain more accurate estimates of SFH for galaxies than the approaches used in
the astronomy and statistics literature.

There are several other fields where observed data are commonly modeled as
linear combinations of dictionaries of theoretical or idealized components (plus
some parametrized distortions), for example: remote sensing, both of the Earth
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[Roberts et al. (1998)] and other planets [Adams, Smith and Johnson (1986)],
where the observed spectrum of each area of land is modeled as a mixture
of pure spectral “endmembers;” computer vision and computational anatomy
[Allassonnière, Amit and Trouvé (2007), Sabuncu, Balci and Golland (2008)],
where data are modeled as mixtures of deformable templates; and compositional
modeling of asteroids [Clark et al. (2004), Hapke and Wells (1981)], where ob-
served asteroids are described as mixtures of pure minerals to determine their
composition. These applications can benefit from the methodology proposed here.
A related and important problem in theoretical physics is gravitational wave mod-
eling [Babak et al. (2006), Owen and Sathyaprakash (1999)], where large template
banks are used to estimate the parameters of observed compact binary systems
(such as neutron stars and black holes). In this particular problem, one is interpo-
lating between runs of the computer model, and not modeling the observed data as
superpositions of the model output, as we do in this paper.

There are strong connections between this work and ongoing research into the
design of computer experiments; see Santner, Williams and Notz (2003) and Levy
and Steinberg (2010) for an overview of the topic. The fundamental challenge in
that setting is to adequately characterize the relationship between input parameters
to a simulation model and the output that the model produces. The term “simu-
lation model” should be interpreted broadly to mean computer code which pro-
duces output as a function of input parameters; in situations of interest, this code is
a computationally-intensive model for a complex physical phenomenom. Hence,
one must carefully “design the computer experiment” by choosing the set of input
parameter vectors for which runs of the simulator will be made. Regression meth-
ods are then used to approximate the output of the simulator for other values of
the input parameters. As is the case in our application, the ultimate objective is to
compare observed data with the simulated output to constrain these input param-
eters. Research has largely focused on situations in which the output of interest
is scalar, but there has been recent work on functional outputs; see, for instance,
Bayarri et al. (2007). Here, we have the same goal of parameter estimation, but
instead of seeking to reduce the number of times the computer code must be run,
we instead work with the scientific details of the problem at hand and simplify the
code in a principled manner to reduce the computational burden.

1.1. Introductory example. To elucidate the challenges of this type of model-
ing problem, we begin with a simple example. Imagine our dictionary consists of
μ = 0 Gaussian functions generated over a fine grid of σ , such as those in Fig-
ure 1. We observe a set of objects, each producing data from a different function
constructed as a sparse linear combination of the dictionary of Gaussian functions.
The data from each object are sampled across a fixed grid with additive i.i.d. Gaus-
sian noise. The component weights are constrained to be nonnegative and sum to 1,
ensuring that all parameters are physically-plausible (e.g., σ̄ > 0).
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FIG. 1. Database of Gaussian curves used in the example in Section 1.1. Simulated data are gen-
erated as noisy random sparse linear combinations of these curves. As σ increases, it becomes more
difficult to distinguish the curves, especially in the presence of noise. A basis of prototypes for esti-
mation of the target parameter, σ̄ , should include a higher proportion of low-σ Gaussian curves.

Our ultimate goal is to estimate a set of target parameters for each observed data
point. In this example, our target is σ̄ , the weighted average σ of the component
Gaussian curves of each observed data vector. To this end, we model each ob-
served curve as a linear superposition of a set of prototypes and use the estimated
prototype weights to estimate σ̄ .

If our goal were to reconstruct each data point with as small of error as possi-
ble, then a prototyping approach that samples along the boundary of the convex
hull of the dictionary of Gaussian functions (such as archetypal analysis, see Sec-
tion 4.2.1) would be optimal. In this paper, the goal is to achieve small errors in
the target parameter estimates. A common approach for this problem is to sample
prototypes uniformly over the parameter space. However, this often leads to the
inclusion of many prototypes with nearly identical curves. Consider the Gaussian
curve example: for high values of σ , the curves do not change considerably with
respect to changes in σ . Under the presence of noise, curves with large σ are not
distinguishable. We are better off including a higher proportion of prototypes in
the low-σ range, where curves change more with respect to changes in σ .

This intuition leads us to a different approach: choose prototypes by quantiz-
ing the space of curves (see Section 4.1). We show in Section 5.1 that a method
that selects prototypes by quantizing the vector space of theoretical components
outperforms the method of choosing prototypes from a uniform grid of σ in the
estimation of σ̄ (see Figure 5). Additionally, judicious selection of a reduced pro-
totype basis is an effective regularization of an estimation problem that is subject
to large variance when the full range of theoretical components are utilized without
any smoothing. The simulation results shown below will display markedly reduced
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variances in the estimates of the parameters of interest relative to the same proce-
dures using larger libraries of basis functions.

Additionally, smaller prototype bases yield better parameter estimates than the
approach of using all of the theoretical components to model observed data, a phe-
nomenon that can be explained by the markedly reduced variance of parameter
estimates found by smaller, judiciously-chosen bases.

1.2. Paper organization. The paper is organized as follows. In Section 2 we
detail the problem of estimating star formation history parameters for galaxies
and explain how prototyping methods can be used to obtain accurate parameter
estimates. In Section 3 we formalize the problem of prototype selection for target
parameter estimation and in Section 4 describe several approaches. We apply those
methods to simulated data in Section 5 to compare their performances. In Section 6
we return to the astrophysics example, applying our methods to galaxy data from
the Sloan Digital Sky Survey. We end with some concluding remarks in Section 7.

2. Modeling galaxy star formation history. Galaxies are gravitationally-
bound objects containing 105–1010 stars, gas, dust and dark matter. The charac-
teristics of the light we detect from each galaxy primarily depend on the physical
parameters (e.g., age and composition) of its component stars as well as distortions
due to dust that resides in our line of sight to that galaxy, spectral distortions due
to the line-of-sight component of the orbital velocities of its component stars, and
the distance to the galaxy.

The physical mechanisms that govern galaxy formation and evolution are com-
plicated and poorly understood. Galaxies are complex, dynamic objects. The star
formation rate (SFR) of each galaxy tends to change considerably throughout its
lifetime and the patterns of SFR vary greatly between different galaxies. The SFR
for each galaxy depends on a countless number of factors, such as merger history,
the galaxy’s local environment (e.g., the matter density of its neighborhood, and
the properties of surrounding galaxies) and chemical composition. Astronomers
are interested in refining galaxy evolution models so that they match the observed
patterns of galaxy SFH in the Universe. It is imperative that we first have accu-
rate estimates of the star formation history parameters for each observed galaxy.
These SFH estimates are necessary to test competing physical models, alert to pos-
sible shortcomings in current models, and estimate cosmological parameters [for
an example of such an analysis, see Asari et al. (2007)].

2.1. Population synthesis model. A common technique in the astronomy liter-
ature, called empirical population synthesis, is to model each galaxy as a mixture
of stars from different simple stellar populations (SSPs), defined as groups of stars
with the same age and metallicity (Z, defined as the fraction of mass contributed
by any element heavier than helium). The principle behind this method is that each
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galaxy consists of multiple subpopulations of stars of different age and composi-
tion so that the integrated observed light from each galaxy is a mixture of the light
contributed by each SSP. Describing the data from each galaxy as a combination
of SSPs allows us to reconstruct the star formation and metallicity history of each
galaxy. This is because, for each galaxy, the component weight on an SSP cap-
tures the proportion of that galaxy’s stars that was created at the specific epoch
corresponding to the age of that SSP. Therefore, the full vector of SSP compo-
nent weights for each galaxy describes the star formation throughout the galaxy’s
lifetime.

Theoretical SSPs can be produced by physical models, that are in turn con-
strained by observational studies. These models typically start with a set of ini-
tial conditions and evolve the system forward in time based on sets of physically
motivated differential equations. The output produced by these models can be ex-
tremely detailed. In our study, we use a set of high-resolution, broad-band spectra
from the SSP models of Bruzual and Charlot (2003). See Figure 2 for an exam-
ple of some SSP spectra, plotted over the optical portion of the electromagnetic
spectrum.

FIG. 2. Two bases of SSP spectra of size K = 45, colored by log t . Each spectrum is normalized
to 1 at λ0 = 4020 Å. Top: basis of regular (t,Z) grid used in Cid Fernandes et al. (2005). Bottom:
diffusion K-means basis used in Richards et al. (2009a). The diffusion K-means basis shows a more
gradual sampling of spectral space than the regular grid basis, which over-samples spectra from
young stellar populations.
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The galaxy data we use to estimate SFH parameters are high-resolution, broad-
band spectra from the Sloan Digital Sky Survey [SDSS, York et al. (2000)] which
consist of light flux measurements over thousands of wavelength bins. To model
the data from each galaxy, we adopt the empirical population synthesis generative
model of a galaxy spectrum introduced in Cid Fernandes et al. (2004):

Yλ(γ ,Mλ0,AV , v∗, σ∗) = Mλ0

(
N∑

j=1

γj Xj,λrλ(AV )

)
⊗ G(v∗, σ∗),(2.1)

where Yλ is the light flux at wavelength λ. The components of model (2.1) are the
following:

• Xj is the j th SSP spectrum normalized at wavelength λ0. Each SSP has age
t (Xj ) and metallicity Z(Xj ). In the true generative model, X contains an infinite
number of SSP spectra over the continuous parameters of age and metallicity.

• γj ∈ [0,1], the component proportion of the j th SSP. The vector γ is the pop-
ulation vector of the galaxy, the principal parameter of interest for calculating
derived parameters describing the SFH of a galaxy.

• Mλ0 , the observed flux at wavelength λ0.
• rλ(AV ) accounts for the wavelength-dependent fraction of light that is either ab-

sorbed or scattered out of the line of sight by foreground dust. AV parametrizes
the amount of this dust extinction that occurs. We adopt the reddening model of
Cardelli, Clayton and Mathis (1989).

• Convolution, in wavelength, by the Gaussian kernel G(v∗, σ∗) describes spec-
tral distortions from Doppler shifts caused by the movement of stars within the
observed galaxy with respect to our line-of-sight, and is parametrized by a cen-
tral velocity v∗ and dispersion σ∗. Previous to the analysis, care was taken to
properly resample all spectra—both the observed and model spectra—to 1 mea-
surement per Ångström.4 This was done to ensure the reliability of the spectral
errors when used by the STARLIGHT spectral fitting software. More details are
available at http://www.starlight.ufsc.br/papers/Manual_StCv04.pdf.

2.2. SSP basis selection and SFH parameter estimation. For each galaxy, we
observe a flux, Oλ, at each spectral wavelength, λ, with corresponding standard
error, σ̂λ, estimated from photon counting statistics and characteristics of the tele-
scope and detector. To estimate the target SFH parameters for each galaxy, we use
the STARLIGHT5 software of Cid Fernandes et al. (2005), fitting model (2.1) us-
ing maximum likelihood. The code uses a Metropolis algorithm with simulated

4Note that the model SSP spectra are computed over a broader wavelength range than the observed
spectra to provide an essential wavelength cushion for the convolution.

5STARLIGHT can be downloaded at http://www.starlight.ufsc.br/.

http://www.starlight.ufsc.br/papers/Manual_StCv04.pdf
http://www.starlight.ufsc.br/
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annealing to minimize

χ2(γ ,Mλ0,AV , v∗, σ∗) =
Nλ∑
λ=1

(
Oλ − Yλ

σ̂λ

)2

,(2.2)

where Yλ is the model flux in (2.1). The optimization routine searches for the
maximum likelihood solution for the model Oλ ∼ N(Yλ, σ̂λ), i.i.d. for each λ. The
minimization of (2.2) is performed over N + 4 parameters: γ1, . . . , γN,Mλ0,AV ,
v∗, and σ∗. The speed of the algorithm scales as O(N2), so it is imperative to pick
a SSP basis with a small number of spectra.

In practice, we use a basis of K � N prototype SSP spectra, � = {�1, . . . ,

�K}—which can be a carefully chosen subset or a nontrivial combination of the
Xj ’s—and model each galaxy spectrum as

Yλ(β,Mλ0,AV , v∗, σ∗) = Mλ0

(
K∑

k=1

βk�k,λrλ(AV )

)
⊗ G(v∗, σ∗),(2.3)

where each prototype, �j , has age t (�k) and metallicity Z(�k), and
∑K

k=1 βk =
1.

Our goal in this analysis is to choose a suitable SSP basis to estimate a set of
physical parameters for each galaxy. Some of the commonly-used SFH parameters
are as follows:

• 〈log t〉L = ∑N
i=1 γi log t (Xi ), the luminosity-weighted average log age of the

stars in the galaxy,
• log〈Z〉L = log

∑N
i=1 γiZ(Xi), the log luminosity-weighted average metallicity

of the stars in the galaxy,
• γc, a time-binned version of the population vector, γ , and
• 〈log t〉M, log〈Z〉M , mass-weighted versions of the average age and metallicity

of the stars in the galaxy.

We estimate each of these parameters using the maximum likelihood parameters
from model (2.3). In Richards et al. (2009a), we introduced a method of choosing
a SSP prototype basis and compared it to bases of regular (t,Z) grids that were
used in previous analyses. See Figure 2 for a plot of two such SSP spectral bases.

3. Formal problem statement. We begin with a large, fixed set of N theoret-
ical components, each with known parameters π i (these are the physical proper-
ties of each component). We refer to this set as the model data. These data can be
thought of as a sample from some distribution PX in R

p . The model data are stored
in an p by N matrix X = [X1, . . . ,XN ], where p is the total wavelength range of
the SSP spectra. We assume that each observed data point Yj , j = 1, . . . ,M , is
generated from the linearly separable nonlinear model

Yj = f

(
N∑

i=1

γij Xi; θ j

)
+ εj ,(3.1)
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where, for each j , the coefficients, γ1j , . . . , γNj , are nonnegative and sum to 1. The
functional f is a known, problem-dependent (possibly nonlinear) function of the
linear combination of the components X and some unknown parameters, θj . Each
εj is a vector of random errors. The set of target parameters for each observed data
vector, Yj , is {ρj , θi}, where ρj = ∑N

i=1 γijπi is a function of the model weights,
γ , and intrinsic parameters, π , of the theoretical components.

For large N , it is impossible to use model (3.1) to estimate each {ρj , θj }
due to the large computational cost. Our goal is to find a set of prototypes
� = [�1, . . . ,�K ], where K � N , that can accurately estimate the target pa-
rameters {ρj , θj } for each observed Yj , using the model

Yj = f

(
K∑

k=1

βkj�k; θ j

)
,(3.2)

where β1j , . . . , βKj are nonnegative component weights such that
∑

k βkj = 1 for
all j . Naturally, our estimate of ρj is

ρ̂j =
K∑

k=1

β̂kj

N∑
i=1

αikπi,(3.3)

where the β̂jk are estimated using the model (3.2), and α is an N by K matrix of
nonnegative coefficients that defines the prototypes from the dictionary of compo-
nents by

� = Xα.(3.4)

The coefficients α are constrained such that each of the prototypes, �k , resides
in a region of the theoretical component space, Rk ∈ X , with nonzero probability,
PX(Rk) > 0, over all plausible values of the physical parameters used to gener-
ate X. This constraint is enforced to ensure the physical plausibility of the proto-
types, � , and their parameters. If our prototype basis were to include components
that are disallowed by the physical models that generated X, then the parameter
estimates for the observed data would be uninterpretable.

4. Methods for prototyping. The usual method used to choose a basis for
estimating target parameters from the signal model is to select prototypes from
a regular grid in the physical parameter space. Examples of such bases are those
found in Cid Fernandes et al. (2005) and Asari et al. (2007), both of whom em-
ploy SSPs on regular grids of age and metallicity to estimate SFH parameters. In
this section we propose methods that use the set of physical components, X, to
construct a prototype basis in a principled manner. In Section 5 we compare the
proposed basis selection methods via simulations, and show that regular parameter
grids tend to yield suboptimal parameter estimates.
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4.1. Quantization of model space. For problems of interest, practical fitting of
theoretical models to noisy data requires a finite set of prototypes. The question be-
comes how to best choose this set of prototypes, that is, how to quantize the model
space. Here, instead of quantizing the parameter space by choosing uniform pa-
rameter grids, we propose methods that quantize the vector space X of theoretical
model-produced data. The idea behind this approach is that under the presence of
noise, components with similar functional forms will be indistinguishable, so that
it is better to choose prototypes that are approximately evenly spaced in X (rather
than evenly spaced in the parameter space). By replacing the theoretical models in
each neighborhood by their local average, the model quantization approach is op-
timal for treating degeneracies because it allows a slight increase in bias to achieve
a large decrease in variance of the target parameter estimates. The increase in es-
timator bias should be small because more prototypes are included in parameter
regions where we can better discern the theoretical data curves of the components,
allowing for precise parameter estimates in those regions and coarser average es-
timates in degenerate regions. If, instead, multiple components in our dictionary
were to have very similar theoretical data curves but different parameter values,
then, in the absence of any other method of regularization, we would have diffi-
culty breaking the degeneracy no matter how many prototypes we include in that
region of the parameter space, causing increased parameter estimator variance and
higher statistical risk.

4.1.1. K-means and diffusion K-means. The basic idea here is to quantize
the vector space or support of model-produced data with respect to an appropriate
metric and prior distribution. The vector quantization approach can be formalized
as follows:

Suppose that X1, . . . ,XN is a sample from some distribution PX with support
X ⊂ R

p . The support X often has some lower-dimensional structure, which we
refer to as the lower-dimensional geometry of X . Fix an integer K < N . To any
dictionary A = {a1, . . . ,aK} of prototypes, we can assign a cost

W(A,PX) =
∫

min
a∈A

‖x − a‖2PX(dx).(4.1)

Let Bk denote all sets of the form B = {b1, . . . ,bK} with bj ∈ R
p . Define the

optimal dictionary of K prototypes as the cluster centers

� = arg min
B∈Bk

W(B,PX).

In practice, we estimate � from model-produced data X1, . . . ,XN according to

�̂ = arg min
B

W(B, P̂X),

where P̂X is the empirical distribution. This estimate is found by Lloyd’s K-means
(KM) algorithm. To simplify the notation, we will henceforth skip the hat symbol
on all estimates.
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The empirical K-means solution corresponds to allocating each Xi into subsets
S1, . . . , SK , where the K centroids define the prototypes. In the definition of the
prototypes in (3.4), this reduces to

αik =
⎧⎨⎩

1

|Sk| , if i ∈ Sk ,

0, else.
(4.2)

Potential problems to this approach are the following: (1) the KM prototypes will
adhere to the design density on X , and (2) for small K , estimated prototypes could
fall in areas that PX assigns probability zero. The first issue can be corrected using
a weighted K-means approach or a method such as uniform subset selection (Sec-
tion 4.1.2). However, often the density on X corresponds to a prior distribution
on the physical parameters, meaning it is often desirable to adhere to its design
density. To remedy the latter issue, we could select as prototypes the K data points
that are closest to each of the centroids. We see in simulations that this approach
tends to yield slightly worse parameter estimates than the original K-means for-
mulation. We attribute this to the smoother sampling of parameter space achieved
by the original KM formulation, which averages the parameters of components
with similar theoretical data, effectively decreasing the variability of the parame-
ter estimates.

If the theoretical data are high dimensional, we might choose to first learn the
low-dimensional structure of X and then employ K-means in this reduced space.
This would permit us to avoid quantizing high-dimensional data, where K-means
can be problematic due to the curse of dimensionality. This failure occurs because
the theoretical data are extremely sparse in high dimensions, causing the distances
between similar components to approach the distances between unrelated objects.
To remedy this, we suggest the use of the diffusion map method for nonlinear
dimensionality reduction [Coifman and Lafon (2006), Lafon and Lee (2006)]. In
other words, we transform the model data into a lower-dimensional representation
where we apply K-means (diffusion K-means, DKM). Formally, this corresponds
to substituting (4.1) with the cost function

W(φ,A,PX) =
∫

min
a∈A

‖φ(x) − φ(a)‖2PX(dx),(4.3)

where φ is a data transformation defined by diffusion maps.6

4.1.2. Uniform subset selection. In the theoretical model data quantization ap-
proach the goal is to have prototypes regularly spaced in X , where X is the support
of PX . With this heuristic in mind, we devise the uniform subset selection (USS)

6Software for diffusion maps and diffusion K-means is available in the diffusionMap R
package, which can be downloaded from http://cran.r-project.org/web/packages/diffusionMap/index.
html.

http://cran.r-project.org/web/packages/diffusionMap/index.html
http://cran.r-project.org/web/packages/diffusionMap/index.html
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method, which sequentially chooses the component Xi ∈ X that is furthest away
from the closest component that has already been chosen. Because the choice of
distance metric is flexible, USS can be tailored to deal with many data types and
high-dimensional data. Unlike K-means, USS is not influenced by differences in
the density of components across X . However, USS typically chooses extreme
components as prototypes because in each successive selection it picks the fur-
thest theoretical data curve from the active set. In simulations, USS produces poor
parameter estimates due to its tendency to select extreme components.

4.2. Sparse coding approaches. Most standard sparse coding techniques do
not apply for the prototyping problem. Without the appropriate constraints, the
prototype basis elements will be nonphysical and the subsequent parameter esti-
mates will be nonsensical (see Section 4.2.3). There are methods related to sparse
coding that enforce the proper constraints to ensure that prototype basis elements
reside within the native data space (see Sections 4.2.1 and 4.2.2), but these gener-
ally do not perform well for target parameter estimation because their objective of
optimal data reconstruction—and not estimation of the target parameters—forces
these methods to choose extreme prototypes.

4.2.1. Archetypal analysis. Archetypal analysis (AA) was introduced by Cut-
ler and Breiman (1994) as a method of representing each data point as a linear mix-
ture of archetypal examples, which themselves are linear mixtures of the original
component dictionary. The method searches for the set of archetypes �1, . . . ,�K

that satisfy (3.4) and minimize the residual sum of squares (RSS)

RSS =
N∑

i=1

∥∥∥∥∥Xi −
K∑

k=1

βik�k

∥∥∥∥∥
2

(4.4)

=
N∑

i=1

∥∥∥∥∥Xi −
K∑

k=1

βik

N∑
j=1

αjkXj

∥∥∥∥∥
2

,(4.5)

where
∑K

k=1 βik = 1 for all i and βik ≥ 0 for all i and k. To minimize the RSS cri-
terion, an alternating nonnegative least squares algorithm is employed, alternating
between finding the best β’s for a set of prototypes and finding the best prototypes
(α’s) for a set of β’s. This computation scales linearly in the number of dimen-
sions of the original theoretical data, with computational complexity becoming
prohibitive for dimensionality more than 500 [Stone (2002)].

Once there are as many prototypes, K , as the number of data points that define
the boundary of the convex hull, any element in the dictionary can be fit perfectly
with a linear mixture of the prototypes, yielding a RSS of 0. If we try to pick more
prototypes than the number of data points that define the boundary of the convex
hull, then the AA algorithm will fail to converge because β becomes noninvertible,
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preventing the iterative algorithm to find the optimal set of prototypes, � = β−1X,
given the current β . We have experimented with using the Moore–Penrose pseu-
doinverse to perform this operation, but it is usually ill-behaved when β is nonin-
vertible. This upper bound on the number of AA prototypes is a serious drawback
to using AA as a prototyping method because often the complicated nature of the
data generating processes necessitates the use of larger prototype bases.

Prototypes found by AA are optimal in the sense that they minimize the RSS
for fitting noiseless, linear mixtures of the X’s. This is the case because AA pro-
totypes are found along the boundary of the convex hull formed by the X’s [see
Cutler and Breiman (1994)]. Unlike AA, our objective is not to minimize RSS,
but to minimize the error in the derived parameter estimates. Archetypal analysis
achieves suboptimal results in the estimation of ρ because it only samples proto-
types from the boundary of the component space, X , focusing attention on extreme
cases while disregarding large regions of X . In Section 5 we show using simulated
data that AA is outperformed by the model quantization approach for estimating
the target parameters from the signal model parameters.

4.2.2. Sparse subset selection. We introduce the method of sparse subset se-
lection (SSS), whose goal is to find a subset of the original dictionary, � ⊂ X, that
can reconstruct X in a linear mixture setting. This method is motivated by sparse
coding in that it seeks the basis that minimizes a regularized reconstruction of X,
where the regularization is chosen to select a subset of the columns of X.

Recently, Obozinski et al. (2011) introduced a method of variable selection
in a high-dimensional multivariate linear regression setting. Their method uses
a penalty on the �1/�q norm, for q > 1, of the matrix of regression coefficients in
such a way that induces sparsity in the rows of the coefficient matrix. We can, in
a straightforward way, adapt their method to select a subset of columns of X to be
used as prototypes. Our objective function is

arg min
B

{
1

2N
‖X − XB‖2

F + λk‖B‖�1/�q

}
,(4.6)

where ‖ · ‖F is the Frobenius norm of a matrix, and the �1/�q penalty is defined as

‖B‖�1/�q =
N∑

i=1

(
N∑

j=1

b
q
ij

)1/q

=
N∑

i=1

‖bi‖q(4.7)

so that sparsity is induced in the rows of B, the N by N matrix of nonnegative
mixture coefficients. Additionally, B is normalized to sum to 1 across columns.
The basis, � , is defined as the columns of X that correspond to nonzero rows of B
(α is the corresponding indicator variable). The parameter λk controls the number
of prototypes in our SSS set � .

To perform the optimization (4.6), we use the CVX Matlab package [Grant
and Boyd (2010)]. Setting q = 2, we recast the problem as a second-order cone
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problem with the additional constraints of nonnegativity and column normalization
of B [see Boyd and Vandenberghe (2004)]. The current implementation cannot
solve problems for large N . In Section 4.3 we show, for a small problem, that SSS
has behavior similar to archetypal analysis in that it selects prototypes from the
boundary of the convex hull of X. Like AA, SSS is not a good method for target
parameter estimation.

4.2.3. Some methods not useful for prototyping. There are other methods for
sparse data representation that fail to work for prototype selection. These methods
are not applicable to this problem because they do not select prototypes that reside
in regions of X with nonzero probability PX . The failure to obey this constraint
means that the chosen prototypes in general will not be physical, meaning that
either their theoretical data or intrinsic parameters are disallowed. For instance, in
the SFH problem, this could lead us to use prototypes whose spectra have negative
photon fluxes or whose ages are either negative or greater than the age of the
Universe. Using such uninterpretable prototypes to model observed data produces
parameter estimates that are nonsensical.

We mention two popular methods for estimating small bases from large dictio-
naries, X, and describe why they are not useful for prototyping:

In standard sparse coding [Olshausen et al. (1996)], the goal is to find a de-
composition of the matrix X, in which the hidden components are sparse. Sparse
coding combines the goal of small reconstruction error along with sparseness, via
minimization of

C(�,A) = 1

2
‖X − �A‖2 + λ

∑
ij

|aij |,(4.8)

where the trade-off between �1 sparsity in the mixture coefficients A, and accurate
reconstruction of X, is controlled by λ. However, there are no constraints on the
sign of the entries of A or � , meaning that prototypes with nonphysical attributes
are allowed.

Nonnegative Matrix Factorization (NMF) [Lee and Seung (2001), Paatero and
Tapper (1994)] is a related technique that includes strict nonnegativity constraints
on all coefficients aij and 
jk while minimizing the reconstruction of X,

arg min

,A

{
1

2
‖X − �A‖2

}
.(4.9)

This construction is different than our prototype definition in (3.4), where � = Xα.
To reconcile the two, we see that, since N > K , α is the right inverse of A:

α = A(AT A)−1,(4.10)

which exists if A is full rank. However, under this formulation, the αij are not
constrained to be nonnegative and the resultant prototypes are not constrained to
reside in X . Thus, NMF is not useful for prototyping. Note that archetypal anal-
ysis avoids this problem by enforcing the further constraint that the prototypes be
constrained linear combinations of X.
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FIG. 3. Distribution of prototypes (red �’s) for four different methods when applied to the 250
theoretical data objects in the toy data set (grey •’s). K-means evenly samples the native data
space while the other methods focus more attention to the boundary of the space.

4.3. Comparison of prototypes. We apply four prototyping methods to the
two-dimensional data set toy in the archetypes R package.7 We treat each
2-D data point, Xi , as model-produced theoretical data. Plots of this dictionary
of data and the selected prototypes for four different prototyping methods, using
K = 7, are in Figure 3. K-means places prototypes evenly spaced within the con-
vex hull of the data. USS also evenly allocates the prototypes, but places many
along the boundary of the native space. Archetypal analysis and SSS place all pro-
totypes on the boundary of the convex hull. Note that for more than 7 prototypes,
the archetypal analysis algorithm does not converge to a solution.

5. Simulated examples. In this section we test the effectiveness of the pro-
totyping methods for estimating a set of target parameters using simulated data.
The first test set is the toy example of zero-mean Gaussian curves discussed in
Section 1.1. The second simulation experiment is a set of realistic galaxy spectra
created to mimic the SDSS data that we later analyze in Section 6.

7Available from CRAN at http://cran.r-project.org/web/packages/archetypes.

http://cran.r-project.org/web/packages/archetypes
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5.1. Gaussian curves. We begin with the example introduced in Section 1.1.
We simulate a database of N = 157,μ = 0 Gaussian curves, X1, . . . ,XN , on a fine
grid of σ = (σ1, . . . , σN) from 0.2 to 8 in steps of 0.05 (see Figure 1). Each Xi is
represented as a vector of length 321. From this database, we simulate a set of 100
data vectors, Y1, . . . ,Y100, from the model

Yj =
N∑

i=1

γij Xi + εj ,(5.1)

where the mixture coefficients, γij ≥ 0, sum to unity for each j and have at most 5
nonzero entries for each j . The noise vectors, εj , are i.i.d. normal zero-mean with
standard deviation 0.05.

From X1, . . . ,XN , we generate bases of prototypes using six different methods
described in Section 4. To explore the differences in each of these methods, we plot
(Figure 4) the distribution of K = 15 prototype σ values. The model quantization
methods (KM, DKM, USS) find more prototypes with small σ values. The AA and
SSS methods place more prototypes at the extreme values of σ (note that for SSS,
we ran the algorithm on a coarser grid of 32 Gaussian curves).

To evaluate each of the methods, we compare their ability to estimate the aver-
age σ for each Yj , defined as

σ̄j =
N∑

i=1

γijσi.(5.2)

For each choice of basis, we fit the observed data using nonnegative least squares.8

In Figure 5 the MSE for σ̄ estimation for K-means, diffusion K-means, USS and

FIG. 4. Distribution of K = 15 prototype σ values for seven different prototyping methods ap-
plied to the Gaussian curves example. The methods are the following: Grid-regular σ grid, log
Grid-regular log(σ ) grid, KM—K-means, DKM—diffusion K-means, USS—uniform subset selec-
tion, AA—archetypal analysis, and SSS—sparse subset selection.

8We use the nnls R package, which uses the Lawson–Hanson nonnegative least squares imple-
mentation [Lawson and Hanson (1995)].
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FIG. 5. MSE for the estimation of σ for the Gaussian curve example. Plotted is the MSE for us-
ing a regular parameter grid, K-means (KM), diffusion K-means (DKM) and archetypal analysis
(AA) prototype bases. Both DKM and KM achieve significantly better σ̄ estimates than a regular
parameter grid and outperform estimates obtained by using all 157 Gaussian curves in the original
dictionary. For each K , the MSE is averaged across 25 repetitions of the experiment. Point-wise 68%
confidence bands are shown as dotted lines.

uniform σ -grid and log(σ ) grid bases is plotted as a function of K . SSS is not plot-
ted because it yields parameter estimates with MSE > 2. AA is not plotted because
it only converges for K ≤ 15, and performs worse than the σ grid for those values.
KM and DKM outperform the regular parameter grids, USS, and AA prototype
bases. KM achieves a minimum MSE, averaged over 25 trials, of 0.815 at K = 10
prototypes. DKM achieves a minimum MSE of 0.846 at K = 15 prototypes, while
the uniform σ grid achieves a minimum MSE of 1.378, 1.7 times higher than the
best MSE for KM. Results for AA and SSS are not plotted because AA only con-
verges for K ≤ 15 prototypes, and SSS is too computationally intensive to run on
the entire dictionary of curves; at K = 15, neither method outperforms a uniform
σ grid.

An interesting observation in Figure 5 is that the minimum MSE for estimating
σ̄ is achieved for K = 10 KM prototypes. As the number of prototypes increases
from 10, the KM σ̄ estimates worsen. This exemplifies the bias-variance trade-off
in the estimation procedure: for K > 10, the increased variance of the estimates
is larger than the reduction in squared-bias. Estimates of σ̄ from four of the five
prototype bases plotted in Figure 5 outperform the estimates found by fitting each
Yj as a mixture of all 157 original component curves. Over the 25 repetitions of
the simulations, the γij which are positive, that is, the Xi that receive any weight,
vary widely. These results demonstrate that a single, judiciously chosen, reduced
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basis can reproduce a wide range of truths and return accurate parameter estimates
with reduced variance.

5.2. Simulated galaxy spectra. We further test the performance of each proto-
typing method using realistic simulated galaxy spectra. Starting with a database,
X, of 1,182 SSPs from the models of Bruzual and Charlot (2003) (see Section 2),
we generate simulated galaxy spectra using the model (2.1). The SSPs are gener-
ated from 6 different metallicities and a fine sampling of 197 ages from 0 to 14
Gyrs. We use a prescription similar to Chen et al. (2009) to choose the physical
parameters of the simulations, altered to have higher contribution from younger
SSPs. The basic physical components of the simulation are as follows:

(1) A star formation history with exponentially decaying star formation rate
(SFR): SFR ∝ exp(γ t). Here, γ > 0, so the SFR is exponentially declining with
time, as t is the age of the SSP today.

(2) We allow γ to vary between galaxies. For each galaxy we draw γ from a
uniform distribution between 0.25 and 1 Gyr−1.

(3) The time tform when a galaxy begins star formation is distributed uniformly
between 0 and 5.7 Gyr after the Big Bang, where the Universe is assumed to be
13.7 Gyr old.

(4) We allow for starbursts, epochs of increased SFR, with equal probability
at all times. The probability a starburst begins at time t is constructed so that the
probability of no starbursts in the life of the galaxy is 33%. The length of each
burst is distributed uniformly between 0.03 and 0.3 Gyr and the fraction of total
stellar mass formed in the burst in the past 0.5 Gyr is distributed log-uniformly
between 0 and 0.5. The SFR of each starburst is constant throughout the length of
the burst.

Each galaxy spectrum is generated as a mixture of SSPs of up to 197 time bins,
with a uniformly drawn metallicity in each bin. We draw the reddening parameter
(AV ) and velocity dispersion (σ0) from empirical distributions over a plausible
range of each parameter. We simulate 100 galaxy spectra with i.i.d. zero-mean
Gaussian noise with S/N = 10 at λ0 = 4020 Å.

We apply the methods in Section 4 to choose SSP prototype bases from X. In
Figure 6 the distributions of the SSP prototype ages and metallicities for K = 150
prototype bases are plotted along with the regular parameter grid used by Asari
et al. (2007). Each method highly samples the older, higher metallicity SSPs and
typically only includes a few prototypes with low age and low metallicity. This is
reasonable because older, higher metallic SSP spectra change more with respect to
changes in age and metallicity. Any method for prototyping based on the model-
produced data will detect this difference and sample these regions of the parameter
space more highly.

Each simulated galaxy spectrum is fit using the STARLIGHT software with
each prototype basis. To assess the performance of each method, we compare the
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FIG. 6. Distribution of (t,Z) of several prototype bases of SSPs, K = 150. All bases were de-
rived using a database of 1,182 model-produced SSPs. Each of the methods more heavily samples
prototypes with large age and large metallicity.

accuracy of their parameter estimates. In Figure 7 we plot the MSE of the estimates
of log〈t∗〉L, 〈logZ∗〉L,AV and σ∗ and the average error of the coarse-grained pop-
ulation vector estimate, γ̂c, measured by the average �2 distance to the true γc.
Each prototype method outperforms the regular parameter grid prototype bases,
often by large margins, especially for K = 45. Between the different prototyp-
ing methods there does not appear to be a clear winner, though diffusion K-means
bases achieve the lowest or second-lowest MSE for 4 of the 5 parameters. K-means
also achieves accurate estimates for each of the parameters, and always beats or
ties the K-means-central estimates. Both USS and AA yield inaccurate estimates
for all parameters except 〈logZ∗〉L and σ∗. SSS could not be run on such a large
dictionary of SSPs. Overall, small bases achieve better estimates of log〈t∗〉L,AV

and γc, but this likely will not be the case for real galaxies, whose SFHs are more
complicated and diverse than the simulation prescription used.

6. Analysis of SDSS galaxies. Prototyping methods are used to estimate the
SFH parameters from the SDSS spectra of a set of 3046 galaxies in SDSS Data
Release 6 [Adelman-McCarthy et al. (2008)]. For more detailed information about
the data and preprocessing steps, see Richards et al. (2009a). In Figure 8 we plot
the estimated log〈t∗〉L versus 〈logZ∗〉L for each galaxy using three basis choices:
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FIG. 7. Errors in physical parameter estimates for galaxy simulations using prototype techniques:
K-means (KM), diffusion K-means (DKM), centroid K-means (KM-central), USS, AA, and a regular
parameter grid. MSEs are plotted for bases of size K = 10, 25, 45, 100 and 150. The regular param-
eter grids are from Cid Fernandes et al. (2005) (K = 45) and Asari et al. (2007) (K = 150). Each
prototyping method finds more accurate SFH parameter estimates than the two regular parameter
grids.

the regular parameter grid of Asari et al. (2007) (Asa07, K = 150), DKM with
K = 45, and DKM with K = 150.

There are several differences in the estimated 〈logZ∗〉L − log〈t∗〉L relation for
each basis. First, both diffusion K-means bases produce estimates that are tightly
spread around an increasing trend while the Asa07 estimates are more diffusely
spread around such a trend. The direction of discrepancy in the Asa07 estimates
from the trend corresponds exactly with the direction of a well-known spectral
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FIG. 8. Estimates of log〈t∗〉L versus 〈logZ∗〉L for a set of 3046 galaxies observed by the SDSS,
estimated using STARLIGHT with three different prototype bases. From left to right, bases are as
follows: regular parameter grid from Asari et al. (2007) with K = 150, diffusion K-means K = 45,
and diffusion K-means K = 150. Estimates from diffusion K-means bases show much less spread in
the direction of the well-known age-metallicity degeneracy in galaxy population synthesis studies.

degeneracy between old, metal-poor and young, metal-rich galaxies [Worthey
(1994)]. This suggests that the observed variability along this direction is not
due to the physics of these galaxies, but rather is caused by confusion stemming
from the choice of basis [in Richards et al. (2009a) we verified that diffusion K-
means SFH estimates have a decreased age-metallicity degeneracy, using simu-
lated galaxy spectra]. Second, the K = 45 diffusion K-means basis estimates no
young, metal-poor galaxies, whereas the other bases do. This suggests that this
small number of prototypes is not sufficient to cover the parameter space; partic-
ularly, young, metal-poor SSPs have been neglected in the K = 45 diffusion K-
means basis. Finally, the overall trend between log〈t∗〉L versus 〈logZ∗〉L differs
substantially between the regular grid and diffusion K-means basis, suggesting
that SFH parameter estimates are sensitive to the choice of basis and that down-
stream cosmological inferences will depend heavily on the basis used.

Recently, we have estimated the SFH parameters for all 781,692 galaxies in
the SDSS DR7 [Abazajian (2009)] main sample or LRG sample. This subset of
DR7 galaxies was chosen for analysis because it was targeted for spectroscopic
observation, and thus has a well defined selection function [Strauss (2002)]. We
estimated the parameters using STARLIGHT with a diffusion K-means basis of
size K = 150. The computational routines took nearly 5 CPU years to analyze
the entire data set, which includes preprocessing of the data, estimating the SFH
parameters for each, and compiling the catalog of estimates. The computations
were performed in parallel on the 1,000-core high-performance FLUX cluster at
the University of Michigan. Results of this analysis are in preparation [Richards
and Miller (2011)] and will be published shortly. These SFH estimates will be
used to constrain cosmological models that concern the formation and evolution
of galaxies and the history and fate of the Universe.

There is also ongoing work into approaches to quantifying the statistical un-
certainty in the resulting parameter estimates. This is a critical, but challenging,
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component. The basic approach to be employed will exploit the massive amount
of data by inspecting the amount of variability in parameter estimates in small
neighborhoods in the space of galaxy spectra. An additional regression model will
be fit, with the parameter estimates as the response, and the spectrum as the pre-
dictor. In previous work [Richards et al. (2009b) and Freeman et al. (2009)], we
have fit models of exactly this type, using galaxy spectra or colors to predict red-
shift. As was the case in that work, we will smooth the parameter estimates in the
high-dimensional space to obtain an estimator with lower variance. Equally im-
portant, this will yield a natural way of estimating the uncertainty in the estimator,
by inspecting the variance of the residuals of the regression fit.

7. Conclusions. We have introduced a prototyping approach for the common
class of parameter estimation problems where observed data are produced as a
constrained linear combination of theoretical model-produced components, and
the target parameters are derived from the parameters in the signal model. The
usual approach to this type of problem is to use models on a regular grid in param-
eter space. In this paper we have introduced approaches that use the properties of
the theoretical data from the dictionary of components to estimate prototype bases.
These approaches include: quantizing the component model data space using K-
means, selecting prototypes uniformly over the space of theoretical component
data, and estimating prototype bases that minimize the reconstruction error of the
components.

Our main findings are the following:

• The quantization methods presented in this paper achieve better parameter esti-
mates than the approach of using prototypes from a regular parameter grid, as
shown in multiple simulations. The regularization that results from a reduced
basis leads to reduced variance in the parameter estimates, without sacrificing
accuracy. This is the case because components with similar theoretical data will
be indiscernible under the presence of noise, making it crucial that prototypes
be spread out evenly in theoretical data space, inducing a large decrease in vari-
ance of the target parameter estimates. If bases are too small, then the parameter
estimates suffer from large bias because important regions of model space are
neglected.

• Standard sparse coding methods are not appropriate for this class of problem.
Without the proper constraints, these methods do not find prototypes that are
physically-plausible. Even with these constraints, these methods select proto-
types around the boundary of the data distribution, which is good for data re-
construction but not for target parameter estimation.

• For a complicated problem in astrophysics—estimating the history of star for-
mation for each galaxy in a large database—we obtain more accurate parame-
ters (in simulations) using the model quantization approach than using regular
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parameter grids. When applied to the real data, these different prototyping ap-
proaches produce markedly different results, showing the importance of proto-
type basis selection.
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