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To analyze and project age-specific mortality or morbidity rates age-
period-cohort (APC) models are very popular. Bayesian approaches facil-
itate estimation and improve predictions by assigning smoothing priors to
age, period and cohort effects. Adjustments for overdispersion are straight-
forward using additional random effects. When rates are further stratified, for
example, by countries, multivariate APC models can be used, where differ-
ences of stratum-specific effects are interpretable as log relative risks. Here,
we incorporate correlated stratum-specific smoothing priors and correlated
overdispersion parameters into the multivariate APC model, and use Markov
chain Monte Carlo and integrated nested Laplace approximations for infer-
ence. Compared to a model without correlation, the new approach may lead to
more precise relative risk estimates, as shown in an application to chronic ob-
structive pulmonary disease mortality in three regions of England and Wales.
Furthermore, the imputation of missing data for one particular stratum may
be improved, since the new approach takes advantage of the remaining strata
if the corresponding observations are available there. This is shown in an ap-
plication to female mortality in Denmark, Sweden and Norway from the 20th
century, where we treat for each country in turn either the first or second half
of the observations as missing and then impute the omitted data. The pro-
jections are compared to those obtained from a univariate APC model and
an extended Lee–Carter demographic forecasting approach using the proper
Dawid–Sebastiani scoring rule.

1. Introduction. Most developed countries have national health registers to
routinely collect demographic rates. Age-period-cohort (APC) models are com-
monly used to analyze and project mortality or morbidity rates, in which effects
related to the age of an individual, calendar time (period) and the generation (co-
hort) can reasonably be assumed to be present. When several of such register data
sets are available, for example, for different countries, each data set could be ana-
lyzed separately by a univariate APC model. However, for comparable strata, sim-
ilar unobservable factors are likely to act on the different time dimensions (age,

Received July 2010; revised May 2011.
1Supported by the Swiss National Science Foundation.
2Supported by the Research Council of Norway.
Key words and phrases. Bayesian analysis, INLA, multivariate age-period-cohort model, projec-

tions, uniform correlation matrix.

304

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS498
http://www.imstat.org


CORRELATED MULTIVARIATE APC MODELS 305

period, cohort), so that a multivariate APC analysis may seem more appropriate
[Hansell et al. (2003), Hansell (2004), Jacobsen et al. (2004), Riebler and Held
(2010)].

A quirk of APC models is the obvious linear dependence of age, period and co-
hort effects leading to a well-known identifiability problem. Over the last decades
several proposals, ranging from the specification of additional identifying restric-
tions to the definition of estimable functions, have been made to solve the identifi-
ability problem; see, for example, Fienberg and Mason (1979), Osmond and Gard-
ner (1982), Holford (1983), Robertson and Boyle (1986), Clayton and Schifflers
(1987), Holford (1992), Fu (2000), Yang, Fu and Land (2004) or Kuang, Nielsen
and Nielsen (2008). Provided that at least one set of age, period or cohort ef-
fects is forced to be identical across strata (which is often a plausible assumption),
differences of stratum-specific effects in the multivariate APC model are identifi-
able without further identifying restrictions. They can be interpreted as log relative
risks, so that heterogeneous time trends, for example, across gender [Riebler et al.
(2011)] or geographical regions [Hansell (2004), Riebler and Held (2010)], can be
analyzed.

Bayesian APC analyses have become very popular in the last years; see, for ex-
ample, Nakamura (1986), Berzuini and Clayton (1994), Besag et al. (1995), Ogata
et al. (2000), Knorr-Held and Rainer (2001), Bray, Brennan and Boffetta (2001),
Bray (2002), Baker and Bray (2005), Schmid and Held (2007), Riebler and Held
(2010). As effects adjacent in time are likely to be similar, smoothing priors are
typically assumed for age, period and cohort effects. Nakamura (1986) used first-
order autoregressive priors, while Berzuini and Clayton (1994) and Besag et al.
(1995) proposed to use second-order random walks. The second-order random
walk is a discrete-time analogue of a cubic smoothing spline [Fahrmeir and Tutz
(2001)]. This prior is defined on the identifiable second differences, a well-known
measure of curvature, and penalizes deviations from a linear trend [Fienberg and
Mason (1979), Clayton and Schifflers (1987)]. The degree of smoothness is con-
trolled by an unknown smoothing parameter. Using smoothing priors, overfitting
cohorts, which by design are sparsely represented, is avoided [Besag et al. (1995)].

When age group and period intervals are of different length, an additional identi-
fiability problem may induce artificial cyclical patterns in the parameter estimates
of uni- and multivariate APC models; see Holford (2006) and Riebler and Held
(2010), respectively. However, this problem can be solved by applying smooth-
ing functions, such as second-order random walks or penalized splines [Holford
(2006)]. The assumed smoothness of age, period and cohort effects can also be
exploited for providing projections, as the effects can easily be extrapolated into
both the future and past [Knorr-Held and Rainer (2001), Bray (2002)]. In a hi-
erarchical Bayesian model, additional random effects can be included to account
for heterogeneity without temporal structure [Berzuini and Clayton (1994), Besag
et al. (1995)].
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Riebler and Held (2010) assumed independent smoothing priors for stratum-
specific effects in multivariate APC models. Here, we propose to link stratum-
specific smoothing priors. The new approach leads to a multivariate correlated
random walk, where the joint precision matrix is defined as the Kronecker product
of the inverse of a uniform correlation matrix and the precision matrix of the uni-
variate second random walk. Inference is done using Markov chain Monte Carlo
(MCMC) and integrated nested Laplace approximations [Rue, Martino and Chopin
(2009)].

The new specification can be regarded as shrinking the stratum-specific param-
eters toward some common trend. Indeed, an alternative model formulation would
introduce a common period effect, say, modeled via a second order random walk
and additionally independent second order random walks for each stratum. While
this formulation has two variance parameters, it in fact induces correlation between
the stratum-specific increments, which are defined as the sum of the common in-
novation and the stratum-specific innovations, so that it can be translated into a
multivariate random walk with one variance and one correlation parameter.

In time series analysis, the use of multivariate random walks plays a fundamen-
tal role in multivariate modeling [Harvey (1990)]. The multivariate random walk
is an example of an intrinsic multivariate Gaussian Markov random field (GMRF)
model [Rue and Held (2005)]. Multivariate GMRF models with conditional autore-
gressive (CAR) structure are sometimes called multivariate CAR (MCAR) models;
see, for example, Gelfand and Vounatsou (2003) or Carlin and Banerjee (2003).
Proper multivariate GMRF models have been introduced by Mardia (1988). Greco
and Trivisano (2009) applied MCAR models to handle general forms of spatial de-
pendence occurring in multivariate spatial modeling of area data. Lagazio, Biggeri
and Dreassi (2003) and Schmid and Held (2004) used Kronecker product precision
matrices to model different types of space–time interactions in spatial APC models
[Knorr-Held (2000)]. However, as far as we know, correlated second order random
walks have never been used in multivariate APC models.

We further propose the incorporation of correlated overdispersion parameters
to model unobserved risk factors without temporal structure but acting simultane-
ously on the different strata. The use of correlated overdispersion parameters is
similar in spirit to seemingly unrelated regressions, where single regression equa-
tions are linked by correlated error terms [Harvey (1990)].

Through the introduction of correlation in the prior distribution the effective
degrees of freedom are reduced whenever similar behavior in the different strata
exists. Hence, the precision of relative risks may be improved. Furthermore, the
approach is useful to predict missing records in one particular stratum if the cor-
responding data are available for the remaining strata. This might be the case for
historical data if the collection of demographic rates started not at the same time
in different strata. Consider, for example, Switzerland, where each canton (ad-
ministrative unit) is separately responsible for the implementation of health-policy
instruments, so that cancer is registered on a cantonal level [Ess et al. (2010),
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Bouchardy, Lutz and Kühni (2011)]. The first Swiss cancer registration system
started in 1970 in the canton of Geneva followed by registers in the cantons of
Vaud and Neuchâtel in 1974 [Bouchardy, Lutz and Kühni (2011)]. Compared to
other cantons without explicit cancer registration, extensive cancer analyses have
been performed for these cantons; see, for example, Levi et al. (1993, 1998, 2002),
Verkooijhen et al. (2003). Today most cantons have cancer registers and it is
planned that within the next years the entire Swiss population will be captured
by a cancer registration system [Bouchardy, Lutz and Kühni (2011)]. Our method
can be used to impute missing data for cantons with a younger cancer registration
system taking advantage of other cantons with a longer collection period. Thus,
important insight into cancer progression for all cantons could be gained. A differ-
ent aspect might be varying collection intervals in different regions, where in some
regions data are collected on a yearly basis, say, and in other regions on a five-year
basis. Here, the correlated multivariate APC approach may be used to impute the
rates for the missing years. In this paper, we demonstrate the ability to impute
missing data units in a cross-prediction study of female mortality in Scandinavia.

The paper is organized as follows. Section 2 introduces the two applications
presented in this paper. In Section 3 we review multivariate APC models and in-
troduce our extended correlated approach (Section 3.1). Then we present details
on the implementation (Section 3.2). In Section 4 we present the results of the two
applications. Our findings are summarized in Section 5.

2. Applications.

2.1. Analysis of heterogeneous time trends in COPD mortality among males
in England and Wales. We reanalyze male mortality data on chronic obstructive
pulmonary disease (COPD) in three regions of England and Wales: Greater Lon-
don, conurbations excluding Greater London and rural areas (nonconurbations).
COPD is one of the most common lung diseases making it hard to breathe as a
consequence of limited air flow. One of the main causes of COPD is smoking,
but also air pollution, smog, dust and chemical fumes are relevant risk factors.
While smoking exerts mainly long-term effects with a lag period of about 20–30
years [Kazerouni et al. (2004)], air pollution can cause both long-term (period or
cohort) effects and short-term (period) effects [Sunyer (2001), Dockery and Pope
(1994)]. We focus on short-term effects and the relation between marked air pol-
lution events and changes in COPD mortality. For all regions data are available
on an annual basis from 1950–1999 for seven age groups: 15–24, 25–34, . . . ,75+
[Hansell et al. (2003), Hansell (2004)]. Riebler and Held (2010) analyzed hetero-
geneous time trends in these data using an uncorrelated multivariate APC model
with common age effects. We will compare their results with those obtained from
a model with correlated stratum-specific period, cohort and overdispersion param-
eters.
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2.2. Extrapolation of overall mortality of Scandinavian females. All data were
obtained from the Human Mortality Database (2011). The number of deaths are
stratified by 5-year groups, for all Norwegian, Danish and Swedish women aged
0–84 in the period 1900–1999, leading to 17 age groups (0–4, 5–9, . . . ,80–84)
and 20 periods (1900–1904, . . . ,1995–1999). Figure 1 shows the death rates per
1,000 person-years for all three countries stratified by 5-year age groups. To ob-
tain person-years, we used the yearly population sizes available for the same age
groups and based on the 1st of January. We used linear interpolation to get mid-
year estimates and then added up the resulting quantities to obtain person-years
for 1900–1904, . . . ,1995–1999. The rates of all three countries show a very sim-
ilar progression. The peak in mortality in the 1915–1919 period, present, in par-
ticular, among young adults, is supposed to be related to the 1918–1919 Spanish
flu pandemic which killed about 50 million people worldwide, with most deaths
occurring among young adults [Andreasen, Viboud and Simonsen (2008)]. During
the summer of 1918 there were strong influenza waves in Denmark, Sweden and
Norway [Andreasen, Viboud and Simonsen (2008), Kolte et al. (2008)].

FIG. 1. Female death rates per 1,000 person-years (pyrs) in Norway, Denmark and Sweden by age
from 1900 to 1999. The vertical line divides the time into equally sized parts.
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We divide the calendar period into two equally sized parts (see Figure 1). For
either the first or second half of the 20th century, all observations from one partic-
ular country are treated as missing. The omitted data are then predicted exploiting
the information provided by the complete data sets of the other two countries. This
procedure is repeated for all countries and hence termed cross-prediction. Thus, we
cannot only assess the ability to project particular events present for all countries,
such as the Spanish-flu pattern, but also analyze the prediction quality for years
without such specific events. The probabilistic projections are compared to those
obtained from a univariate APC model and to those from an extended Lee–Carter
demographic forecasting model [Lee and Carter (1992)].

The data and code used in this application are provided in the Supplementary
Material [Riebler, Held and Rue (2011)].

3. The correlated multivariate APC model. Let yijr denote the number of
deaths observed for age group i (i = 1, . . . , I ), period j (j = 1, . . . , J ) and stra-
tum r (r = 1, . . . ,R). In both of our applications r represents a geographical re-
gion (either a region in England and Wales or a Scandinavian country). Deaths
can be regarded as events arising from a Poisson process. Hence, yijr can be inter-
preted as the number of events that have occurred during an exposure period of nijr

person-years, in which the occurrence rate is assumed to be λijr per person-year.
Thus, yijr is Poisson distributed with rate nijrλijr , where nijr is known [Armitage
(1966), Brillinger (1986)]. In the most general formulation of the multivariate APC
model, the linear predictor is

ηijr = log(λijr ) = μr + θir + ϕjr + ψkr .

Here, μr is the stratum-specific intercept, and θir , ϕjr and ψkr are stratum-specific
age, period and cohort effects, respectively. The cohort index k is a linear function
of the age index i and the period index j . If the time interval widths of age group
and period are equal, then k = (I − i) + j . If age group intervals are M times
wider than period intervals, as is the case in the first application (Section 2.1)
where M = 10, then k = M × (I − i) + j [Heuer (1997)]. We apply the usual
constraints,

∑I
i=1 θir = ∑J

j=1 ϕjr = ∑K
k=1 ψkr = 0 for r = 1, . . . ,R, to ensure

identifiability of the stratum-specific intercepts. However, parameter estimates are
still not identifiable without imposing additional constraints [Fienberg and Mason
(1979), Holford (1983)]. In contrast, second differences of parameter estimates, for
example, θir − 2θi−1r + θi−2r , are not affected by the identifiability problem and
can be uniquely determined [Fienberg and Mason (1979), Clayton and Schifflers
(1987)]. Furthermore, stratum-specific differences, for example, θir1 − θir2 with
r1 �= r2, are identifiable (absent an additional constraint), provided that at least one
of the three time effects (age, period, cohort) is common across strata [Riebler and
Held (2010)].
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3.1. Bayesian inference. In a Bayesian context, we work with a hierarchical
model in which prior distributions need to be assigned to all parameters. We use
independent flat priors for each stratum-specific intercept μr . Riebler and Held
(2010) assigned independent smoothing priors to the age effects θ = (θ1, . . . , θI )

�,
each stratum-specific set of period effects ϕr = (ϕ1r , . . . , ϕJ r)

� and cohort effects
ψ r = (ψ1r , . . . ,ψKr)

�, r = 1, . . . ,R, in a model with common age effects. Con-
sider, for example, the period effects for a specific stratum r . The random walk of
second order (RW2) is a smoothing prior based on second differences and penal-
izes deviations from a linear trend. This improper prior can be written as

f (ϕr |κϕ) ∝ κ(J−2)/2
ϕ exp

(
−κϕ

2

J∑
j=3

((
ϕjr − ϕ(j−1)r

) − (
ϕ(j−1)r − ϕ(j−2)r

))2
)

= κ(J−2)/2
ϕ exp

(
−1

2
ϕ�

r Pϕϕr

)

with precision matrix Pϕ , which depends on an unknown precision parameter κϕ :

Pϕ = κϕ

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −2 1
−2 5 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
1 −4 5 −2

1 −2 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, we propose the use of correlated smoothing priors for stratum-specific
time effects. Let C = (1 − ρ)I + ρJ denote a uniform correlation matrix, where
ρ is the unknown correlation parameter, I the identity matrix and J a matrix of
ones. The random walks of the stratum-specific period effects ϕ1, . . . ,ϕR can be
correlated using the stacked vector ϕ̃ = (ϕ�

1 , . . . ,ϕ�
R)�:

f (ϕ̃|Cϕ, κϕ) ∝ (|C−1
ϕ ⊗ Pϕ|	)1/2 exp

(−1
2 ϕ̃�{C−1

ϕ ⊗ Pϕ}ϕ̃)
= |C−1

ϕ |(J−2)/2 · (|Pϕ|	)R/2 exp
(−1

2 ϕ̃�{C−1
ϕ ⊗ Pϕ}ϕ̃)

,

where ⊗ denotes the Kronecker product and | · |	 the generalized determinant
defined as the product of all nonzero eigenvalues. The determinant of C−1

ϕ is
[(1 + (R − 1)ρϕ)(1 − ρϕ)R−1]−1; see the proof in Appendix A. This formulation
corresponds to a multivariate RW2 with correlated increments and is an example
for an improper (intrinsic) correlated GMRF [Gelfand and Vounatsou (2003), Rue
and Held (2005)].

To adjust for heterogeneity, which has no temporal structure but is likely to ex-
ist in the underlying rates, we introduce stratum-specific latent random effects zijr

into the linear predictor. These overdispersion parameters are typically assumed
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to be independent Gaussian variables with mean zero and unknown variance κ−1
z ,

that is, zijr
i.i.d.∼ N (0, κ−1

z ) [Berzuini and Clayton (1994), Besag et al. (1995)].
However, when interpreting these latent effects as unobserved covariates, it may
be plausible that they act partly simultaneously on the different strata. Hence, we
propose correlated overdispersion parameters and set zij = (zij1, . . . , zijR)� ∼

N (0, κ−1
z Cz) for all i and j .

All of the up to eight hyperparameters (four precisions and up to four corre-
lations) are treated as unknown. Suitable gamma-hyperpriors are assigned to the
precisions. As in Knorr-Held and Rainer (2001), we use Ga(1,0.00005) for the
precisions of age, period and cohort effects and Ga(1,0.005) for the precision of
the overdispersion.

Correlation parameters ρ are reparameterized using the general Fisher’s z-
transformation [Fisher (1958), page 219]:

ρ = exp(ρ	) − 1

exp(ρ	) + R − 1
, ρ	 = log

(
1 + ρ · (R − 1)

1 − ρ

)
,(1)

where ρ	 can take any real value. It is worth noting that this transformation ensures
that ρ only takes values within the interval (−1/(R − 1),1), so that C is positive
definite without imposing an additional constraint. Using R = 2 in (1), we obtain

ρ = exp(ρ	) − 1

exp(ρ	) + 1
, ρ	 = log

(
1 + ρ

1 − ρ

)
,

which is frequently used for constructing confidence intervals for ρ [Konishi
(1985)]. Fisher’s z-transformation is a variance stabilizing transformation. In a
Bayesian context this transformation is of particular interest since the derivative
of a variance stabilizing transformation corresponds to Jeffreys’ prior for the orig-
inal parameter [Lehmann (1999), pages 491 and 492]. For example, for R = 2,
Jeffreys’ prior is π(ρ) ∝ 1/(1 − ρ2), the derivative of log(

1+ρ
1−ρ

) [Lindley (1965),
pages 215–220].

We assign a normal prior with mean zero and fixed precision κρ	 to ρ	. Thus,
the prior probability that ρ is larger than zero is equal to 0.5, independent of R.
Figure 2 shows the resulting prior for ρ for three different values of κρ	 and three
different values of R. For R = 2 strata, setting κρ	 to 0.2 corresponds to a U-shaped
prior, κρ	 = 0.4 to a roughly uniform prior and κρ	 = 0.8 to a bump-shaped prior
for ρ; compare the first column of Figure 2. Note that κρ	 = 0 corresponds to
the improper Jeffreys’ prior. For a larger number of strata, the left boundary for
the correlation is shifted toward zero, resulting in an asymmetric prior distribution
for ρ, since half of the total density is distributed to a smaller interval, (−1/(R −
1),0). We use κρ	 = 0.2, so that sufficient probability mass is assigned to the
boundary values as well, making extreme posterior correlation estimates possible.
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FIG. 2. Prior distribution for correlation parameter ρ derived from a zero-mean Gaussian distri-
bution for ρ	 with three different values for the precision κρ	 (top to bottom: 0.2, 0.4, 0.8) and three
different numbers of strata R (left to right: R = 2, R = 3, R = 4).

3.2. Implementation. Bayesian inference for the models presented is not
straightforward, since the posterior distribution is not analytically available. The
common tool of choice is MCMC sampling. An alternative is integrated nested
Laplace approximations (INLAs). To compare these two inference techniques, we
implemented correlated multivariate APC models using both MCMC and INLA.
In the first application, we apply INLA and MCMC to show the almost perfect
coincidence of both approaches. Due to the complexity of the second application
resulting in large thinning intervals and burn-in periods, we only present the results
of INLA.

3.2.1. Analysis with MCMC. Algorithmic routines based on MCMC are im-
plemented in the low-level programming language C using the GMRFLib library
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[Rue and Held (2005)]. Following Besag et al. (1995), we reparameterize the
model from zijr to ηijr to obtain multivariate normal full conditional distributions
for the stratum-specific intercepts μ = (μ1, . . . ,μr)

� and all sets of time effects.
Block updating allows the proper incorporation of the sum-to-zero constraints for
the time effects. It is also possible to omit the sum-to-zero constraint for one set of
stratum-specific effects and simultaneously remove the stratum-specific intercepts
μ from the algorithm. For the precisions Gibbs sampling is used as well. The vector
ηij = (ηij1, . . . , ηijR)� has a nonstandard distribution. It is updated using multi-
variate Metropolis–Hastings steps with a GMRF proposal distribution based on a
second-order Taylor approximation of the log likelihood [Rue and Held (2005),
Section 4.4.1]. For the correlation parameters Metropolis–Hastings updates based
on a random walk proposal are used, such that acceptance rates around 40% are
achieved. In the application to COPD mortality we use a MCMC run of 350,000 it-
erations, discarding the first 50,000 iterations and storing every 20th sample there-
after, resulting in 15,000 samples. We have routinely examined convergence and
mixing diagnostics.

3.2.2. Analysis with INLA. Rue, Martino and Chopin (2009) proposed with
INLA an alternative deterministic Bayesian inference approach for latent Gaus-
sian random field models. INLA replaces time-consuming MCMC sampling with
fast and accurate approximations to the posterior marginal distributions. Some em-
pirical comparison with MCMC results can be found in Rue, Martino and Chopin
(2009), Paul et al. (2010) or Schrödle et al. (2011). We incorporated correlated
GMRF models into INLA, enabling the analysis of correlated multivariate APC
models based on a uniform correlation structure and using the general Fisher’s z-
transformation. The methodology is integrated in the package INLA (see www.r-
inla.org) for R [R Development Core Team (2010)]. For both applications, we use
the INLA package built on 14.03.2011.

4. Results.

4.1. COPD mortality among males in England and Wales. We compared the
uncorrelated model with joint age-effects, and region-specific period and cohort
effect presented by Riebler and Held (2010) with three different correlated for-
mulations: (1) Region-specific period and region-specific cohort effects are corre-
lated; (2) the overdispersion parameters are correlated; (3) region-specific period
effects, region-specific cohort effects and overdispersion parameters are correlated.
To make the models comparable, we used, in contrast to Riebler and Held (2010),
the same precision for the independent priors of region-specific period effects and
also the same precision for the independent priors of region-specific cohort effects.
For all models MCMC and INLA produce virtually identical results; see Figure 3
for a comparison of precision and correlation estimates in model 3. The running
time of INLA was always less than the computation time with MCMC. Inspecting

http://www.r-inla.org/
http://www.r-inla.org/
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FIG. 3. Approximated posterior marginal densities (solid red line) of precision and correlation pa-
rameters for the multivariate model with joint age effects and correlated period, cohort and overdis-
persion parameters obtained from INLA. Moreover, the corresponding histograms of 15,000 MCMC
samples obtained from a run with 50,000 burn-in iterations and a thinning of 20 are shown.

the log marginal likelihood returned by INLA, the model with correlated period
and cohort effects, and correlated overdispersion parameters, was classified as the
best model. Despite the improper random walk prior, the log-marginal likelihood
can be used here, as the models are based on the same underlying latent struc-
ture and only differ by the inclusion of correlation. Furthermore, the correlation
estimates ρϕ,ρψ and ρz of model 3 (Figure 3) are clearly different from zero,
confirming the between-region dependence.

Figure 4 compares the estimates of average relative risks obtained from MCMC
for the models with uncorrelated and correlated region-specific effects and overdis-
persion parameters, respectively. The estimates are relative to nonconurbations,
where the mortality rates tend to be the lowest. The results of both models are very
similar. The average relative risk of period effects shows the typical year-to-year
variation, with higher values in years of known air pollution events, such as the
“Great Smog” in London in 1952. In the average relative risks of cohort effects,
different smoking behavior may be visible. For a detailed interpretation of the rel-
ative risks we refer to Riebler and Held (2010). Due to fewer observations, the
credible intervals are getting wider for younger birth cohorts. However, adjusting
for correlation improves the precision of the relative risks estimates, in particular,
for younger birth cohorts. The average posterior standard deviation in the corre-
lated approach is about 20% and 25% smaller for the average relative risks of the
period effects and cohort effects, respectively.
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FIG. 4. Average relative risk of death for Greater London and conurbations excluding Greater
London compared with nonconurbations, analyzed by a multivariate model with joint age effects and
no correlations across other parameters (top), and a multivariate model with joint age effects and
correlated period, cohort and overdispersion parameters (bottom). Shown are the median estimates
within 95% pointwise credible bands.

4.2. Extrapolation of overall mortality of Scandinavian females. We will first
briefly introduce the basic and the extended Lee–Carter model considered. Then
we will present the results of the predictive model assessment and compare the
projections obtained by the different approaches.

4.2.1. The quasi-Poisson version of the Lee–Carter model. The Lee–Carter
model, introduced by Lee and Carter (1992) to forecast mortality in the U.S., is one
of the best-known methods for mortality forecasting and often used as a reference
[Booth (2006), Booth et al. (2006)]. It assumes a log-bilinear form

log
yij

nij

= αi + βiκj + εij ,

where αi describes the average shape of the age profile, βi the age-specific mortal-
ity change from this pattern with time-varying trend κj , and εij are homoskedastic
centered error terms. The parameters are constrained to

∑
j κj = 0 and

∑
i βi = 1.

Forecasting using this model proceeds in two steps: (1) the model coefficients are
estimated; (2) the time trend κj is extrapolated based on an ARIMA(0,1,0) time-
series model, that is, a random walk with drift. This forecasted trend is used to
derive the projected age-specific mortality rates based on the estimates for αi and
βi from step 1. Note that only the uncertainty in the time trend κj is taken into
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account in the projected rates, so that not all variability is captured [Lee and Carter
(1992), Butt and Haberman (2009)].

The Lee–Carter model was further developed and embedded in a quasi-Poisson
regression model by Brouhns, Denuit and Vermunt (2002). We used the ilc-
package [Butt and Haberman (2009)] in R to generate univariate predictions for
the country under consideration based on this extended model. Since the imple-
mentation does not allow to project into the past, we reversed the time-scale when
predicting data of the first half of the 20th century.

4.2.2. Predictive model assessment. Each of the three models (Lee–Carter,
univariate APC and multivariate APC; with the latter two abbreviated as APC and
cMAPC, resp.) generates, for each of the six scenarios of the cross-prediction pro-
cedure, 10 × 17 = 170 probabilistic forecasts for country r	 under consideration.
We used the mean squared error score to assess the concentration of the predic-
tive distribution (sharpness). To assess the statistical consistency between the dis-
tributional forecasts and the observations (calibration), we calculated prediction
intervals at various levels and computed the empirical coverage probabilities, that
is, the proportion of the prediction intervals that cover the observed number of
cases. To combine sharpness and calibration in one measure, we further report the
Dawid–Sebastiani scoring rule (DSS) defined as

DSS =
(

yijr	 − μijr	

σijr	

)2

+ 2 log(σijr	),

where yijr	 is the observation that realizes, μijr	 the mean and σijr	 the standard
deviation of the predictive distribution [Gneiting and Raftery (2007)]. This score
has been proposed as a proper alternative to the predictive model choice criterion
of Gelfand and Ghosh (1998) and was also used by Czado, Gneiting and Held
(2009) to assess the predictive quality of a univariate APC analysis applied to can-
cer incidence in Germany. To calculate these quantities, we need to post-process
the results returned by INLA and the ilc-package.

For the univariate and multivariate APC analysis, INLA returns posterior sum-
mary estimates and posterior marginal densities for the linear predictor ηijr	 , with
i = 1, . . . ,17 and j = 1, . . . ,10 or j = 11, . . . ,20, depending on whether we
project the first or last half of the 20th century. The corresponding estimates for
λijr	 are straightforward to derive. For the univariate Lee–Carter analysis of coun-
try r	, the ilc-package returns the predicted mortality rate λijr	 and the prediction
intervals (symmetric on the log-scale) at a predefined level.

We need the mean μijr	 = E(yijr	) of the predictive distribution for computing
the DSS and the mean squared error score. Using the law of iterated expecta-
tions [Billingsley (1986), Theorem 34.4], μijr	 can be derived. With yijr	 |λijr	 ∼
Po(nijr	 · λijr	), it follows

μijr	 = E(E(yijr	 |λijr	)) = E(nijr	 · λijr	) = nijr	 · E(λijr	).
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Analogously, the variance σ 2
ijr	 = Var(yijr	) follows from the law of total variance

as

σ 2
ijr	 = E(Var(yijr	 |λijr	)) + Var(E(yijr	 |λijr	))

= E(nijr	 · λijr	) + Var(nijr	 · λijr	)

= nijr	 · E(λijr	) + n2
ijr	 Var(λijr	)

for INLA. Under a quasi-Poisson approach with Var(yijr |λijr ) = φ · nijr · λijr

we need to explicitly incorporate the overdispersion parameter φ, so σ 2
ijr =

φ · nijrE(λijr ) + n2
ijr Var(λijr ). Here, we used the total lack of fit as φ; compare

Booth, Maindonald and Smith (2002).
To obtain posterior predictive quantiles, the missing Poisson variation was

added to the predicted mortality rates. When using INLA, this is done by numer-
ical integration over the predicted posterior marginal of λijr	 . Since we do not
obtain the posterior marginal of λijr	 using the ilc-package, we used Monte Carlo
sampling instead. To be more precise, we generated N = 100,000 samples for the
linear predictor ηijr	 from a normal distribution with mean log(λ̂ijr	) and variance
derived from the symmetric prediction intervals on log-scale. Then, we generated
for each sample η

(s)
ijr	 , s = 1, . . . ,N , one sample y

(s)
ijr	 from a negative binomial

distribution with density

f (y) = �(y + d)

�(d)�(y + 1)

(
d

m + d

)d(
m

m + d

)y

,

where E(y) = m and Var(y) = m(1+m/d). To match the mean and variance of the
quasi-Poisson distribution, we set m(s) = nijr	 exp(η

(s)
ijr	) and d(s) = m(s)/(φ − 1)

for each sample η
(s)
ijr	 . Subsequently, quantiles at different prediction levels could

be extracted from the samples.
Table 1 shows for all models the mean squared error (MSE) score, the empirical

coverage probabilities and the mean DSS averaged over all 170 projections. For
five of the six scenarios and especially when predicting the first 10 periods, the
correlated multivariate APC model is clearly the best model. Although the predic-
tion intervals are sometimes too large, as indicated by larger empirical coverage
probabilities than the nominal level, the empirical coverage is mostly closer to the
nominal level than for the other two approaches. Regarding mean DSS and em-
pirical coverage, the univariate APC model also performs mostly better than the
extended Lee–Carter approach. In particular, predicting the first half of the 20th
century, the extended Lee–Carter approach showed severe deficits. It was classified
as the best model regarding all predictive assessment criteria only when predicting
the second half of the 20th century for Norway. Inspecting the posterior corre-
lation estimates of the cMAPC model (Table 2), we observe that for this scenario
the posterior correlations between country-specific period effects and also between
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TABLE 1
Mean Dawid–Sebastiani score (DSS), mean squared error score (MSE), empirical coverage

probabilities for all models predicting female mortality of one country either for the first or second
half of the 20th century

1900–1949 1950–1999

Measure Lee–Carter APC cMAPC Lee–Carter APC cMAPC

NORWAY

DSS 232.4 38.9 17.9 13.5 16.8 15.0
MSE 3.49e+06 7.21e+06 1.73e+06 3.10e+06 1.92e+07 1.50e+07

Level 95% 19 66 70 91 96 78
80% 13 52 35 79 73 54
50% 9 39 11 52 35 37

DENMARK

DSS 50.5 41.2 14.7 22.2 17.1 13.7
MSE 3.37e+06 2.30e+07 3.56e+06 2.03e+07 6.43e+07 1.80e+07

Level 95% 24 58 96 66 95 99
80% 17 50 93 51 92 83
50% 6 15 79 30 64 65

SWEDEN

DSS 249.6 43.4 15.4 24.7 18.5 13.6
MSE 4.45e+07 9.48e+07 9.04e+06 9.43e+07 2.04e+08 3.05e+06

Level 95% 11 64 99 70 97 95
80% 8 28 94 62 95 72
50% 4 8 55 41 75 54

country-specific cohort effects are lower than in the other scenarios. In contrast, the
correlation between country-specific overdispersion parameters is quite high.

TABLE 2
Median and 95% credible interval for all correlation parameters in the correlated multivariate

APC model

Predicted Predicted
period country Age Period Cohort Overdispersion

1900–1949 Norway 0.9780.9910.996 0.810.960.99 0.570.820.94 0.910.930.94
Denmark 0.9940.9980.999 0.350.870.99 0.440.760.92 0.830.860.89
Sweden 0.9840.9940.997 0.700.950.99 0.580.840.95 0.750.790.84

1950–1999 Norway 0.9690.9860.994 0.010.510.85 0.280.620.84 0.900.920.94
Denmark 0.9640.9840.994 0.180.750.96 0.890.970.99 0.820.850.88
Sweden 0.9760.9900.996 0.620.961.00 0.600.830.94 0.770.810.84
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FIG. 5. Cumulative average of mean Dawid–Sebastiani scores across age groups.

To compare the performance change from short-term to long-term forecasts,
Figure 5 shows the cumulative average DSSj , where DSSj denotes the mean DSS
across age group at period j . Except for predicting death rates in Norway from
1950–1999, the curve for the cMAPC model is always below those of the two uni-
variate approaches. Predicting the periods in the first half of the 20th century, the
cumulative average DSSj of the extended Lee–Carter model is constantly increas-
ing, indicating a lower projection quality with increasing time. The largest jump
occurs for the period 1915–1919 with the Spanish flu. In contrast, the score of the
univariate APC model decreases when predicting more periods, while the score
for the correlated multivariate APC model stays fairly constant. Predicting the pe-
riods in the second half of the 20th century, the cumulative average DSSj slowly
increases for all models. However, except for Norway, the cumulative score of the
extended Lee–Carter model shows larger jumps from one period to the next.

4.2.3. Projections. The median projected death rates per 1,000 person-years
together with 80% pointwise prediction intervals for Norwegian women obtained
from all three models are shown in Figure 6 for the first half and Figure 7 for the
second half of the 20th century. Furthermore, the true death rates of Norwegian
women are added to the figures. For all models and especially for the univariate
APC model, the prediction intervals are getting wider as prediction time goes on.
While the projections of the two univariate approaches are almost straight lines,
different temporal patterns across age groups can be seen for the correlated model.
The Spanish flu was especially well captured by the correlated approach. Since
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FIG. 6. Median predicted mortality rates per 1,000 person-years (pyrs) of Norwegian women within 80% CI regions for the years 1900–1949. Shown
are the results from an extended Lee–Carter model (orange lines), a univariate APC model (dark blue lines) and a multivariate APC model with age,
period, cohort and overdispersion parameters correlated across regions (light blue shaded). In addition, the true mortality rates for Norwegian women
(red ◦) are shown.
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FIG. 7. Median predicted mortality rates per 1,000 person-years (pyrs) of Norwegian women within 80% CI regions for the years 1950–1999. Shown
are the results from an extended Lee–Carter model (orange lines), a univariate APC model (dark blue lines) and a multivariate APC model with age,
period, cohort and overdispersion parameters correlated across regions (light blue shaded). In addition, the true mortality rates for Norwegian women
(red ◦) are shown.
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the Spanish flu did not affect all age groups, this event (also present for Denmark
and Sweden) was captured and transferred to the projections due to the correlated
overdispersion parameters and not because of the correlated period effects, as one
might intuitively guess. Predicting the second half of the 20th century, the projec-
tions of the extended Lee–Carter model agree very well with the true observations.
In particular, the rates for ages over 60 are well projected, where the cMAPC model
tends to underestimate the overall death rate.

Projections for Danish and Swedish women are shown in Figures 8, 9, 10 and 11
in Appendix B. Here, the projections of the correlated approach coincide for all
scenarios and all age groups very well with the observed rates. In contrast, the
extended Lee–Carter approach tends to underestimate rates for younger age groups
when predicting the first half, and to overestimate rates for older age groups when
predicting the second half of the 20th century.

5. Discussion. In this paper we proposed the use of correlated smoothing pri-
ors and correlated overdispersion parameters for multivariate Bayesian APC ap-
proaches analyzing mortality or morbidity rates stratified by age, period, cohort
and one further variate. The specification of correlated smoothing priors involves
a Kronecker product precision structure for the outcome-specific time effects, that
is, age, period and/or cohort effects. We implemented correlated multivariate APC
models based on a uniform correlation structure in MCMC and INLA. In the first
application we analyzed COPD mortality among males in England and Wales us-
ing MCMC and INLA, and compared the results of an ordinary multivariate APC
model with those obtained from different correlated model formulations. A com-
parison of MCMC and INLA showed virtually identical results. As indicated by
the log marginal likelihood, the formulation with both correlated overdispersion
and correlated stratum-specific period and cohort effects was classified as the best.
As shown in the relative risk estimates, the correlated model structure improved
the precision of the relative risk estimates especially for younger birth cohorts.

In a second application on overall mortality of Danish, Swedish and Norwegian
women in the 20th century, we performed a cross-prediction study. We illustrated
the good predictive quality of the correlated approach when imputing missing data
units for one country if these units are available for the other countries. As focus
was set on projections, which are an estimable function in (multivariate) APC mod-
els, we were able to consider the most flexible model with country-specific age,
period, cohort and overdispersion parameters that were all correlated across coun-
tries. In total, we considered six scenarios treating in turn for a particular country
either the first or second half of the data as missing and subsequently predicting the
omitted data units. We compared the projections to those obtained from a univari-
ate APC model and a Lee–Carter approach embedded into a quasi-Poisson model
using the proper Dawid–Sebastiani scoring rule. Since only the correlated formu-
lation can take advantage from the complete tables of the remaining two countries,
it was classified as the best model in five of the six scenarios. Furthermore, we
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observed that the predictive quality stayed almost constant when increasing the
number of periods to predict, which was not the case for the two univariate ap-
proaches. Thus, the correlated approach outperformed both univariate methods in
short and long-term projections.

In real life, long-term projections of mortality or disease rates into the future
are difficult to make using our proposed approach, since there will be no data
from comparable time-series available. For short-term predictions, data for some
strata may be already available, while for others they are still missing. Here, the
correlation approach will be useful to forecast the missing units.

For the simultaneous projection of several strata, Li and Lee (2005) extended
the original log-linear Lee–Carter model. In the simplest extension, they assigned
each stratum its own age pattern, while assuming shared age-specific patterns of
mortality change and a shared time trend. Future values are then predicted for the
shared time trend based on an ARIMA process. Incorporating both shared and
stratum-specific parameters, this model seems to be similar in spirit to an uncor-
related multivariate APC model [Riebler and Held (2010)]. In a more complex
model, Li and Lee (2005) included an additional stratum-specific bilinear term to
allow for differences between the rate of change in mortality in a particular stratum
and the rate of change implied by the common bilinear term. However, in contrast
to the correlated approach presented here, those extensions cannot take advantage
of data units missing in one stratum but present for the remaining. By contrast, our
approach could be equally used to impute data for all strata simultaneously, ben-
efitting from the periods where complete data existed. Furthermore, we can use
stratum-specific effects for all parameters. Information from the remaining strata
is borrowed by incorporating correlation. In a Bayesian setting the inclusion of cor-
relation between parameters is straightforward via the prior distributions, whereas
in a frequentist setting this seems to be more complex.

Another interesting field of application is similar in spirit to the inference on
collapsed margins, proposed by Byers and Besag (2000). In the context of col-
lapsed margins, complete data are available on several risk factors, but a subse-
quent analysis indicates that information on an additional variable is relevant. For
this variable the numbers of persons at risk are available but not the numbers of
cases. Byers and Besag (2000) propose a Bayesian approach to estimate the ef-
fect of the variable. In multivariate APC models it might be that multiple data
sets are only available for a specific period in time, while, before and/or after this
date, data only exist for the conjunction of outcomes. A typical example could be
Germany, which was formerly united, then separated and now united again. Using
age-specific data on the population sizes from 1990 up to now for East and West
Germany separately, it may be possible to project mortality rates for both individ-
ual parts, by exploiting the correlation present when they were divided. Thus, the
observations for the conjunction of both parts could be separated. However, further
investigations are required to explore the applicability.
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The proposed methodology can only be applied to data stratified by one further
variate. For analyzing mortality rates stratified by more than one further variate,
a conditional approach using a multinomial logistic regression model has been
proposed [Held and Riebler (2011)]. However, the incorporation of correlation has
not yet been considered.

A disadvantage of the proposed methodology might be that it is essentially ad-
ditive in age, period and cohort, so that interactions between the time dimensions
cannot be explicitly modeled. Currie, Durban and Eilers (2004) proposed two-
dimensional smoothing to address this problem in the analysis of an individual
registry data set. Biatat and Currie (2010) started to extend this work and pro-
posed a model to compare various mortality tables by assuming a common two-
dimensional P-spline surface and additional one-dimensional smoothing functions
for age and period.

In general, the use of a Kronecker product structure is a promising area for
further research, as different correlation structures can easily be combined with
different precision matrices. Based on the uniform correlation structure INLA can,
by now, correlate a wide range of other GMRF models as components of more gen-
eral additive regression models. Examples are as follows: nonparametric seasonal
models, continuous-time random walks or models with a user specified precision
matrix. However, the uniform correlation structure is rather restrictive and may
only be plausible for a few outcomes. Future work encompasses the integration
of other correlation structures, for example, depending on the distance between
units, so that the approach can be extended to the space–time context, for example.
Furthermore, we are investigating the use of correlated two-dimensional smooth-
ing priors in INLA to incorporate interactions between time-dimensions into the
multivariate APC model.

APPENDIX A: UNIFORM CORRELATION STRUCTURE

Let C be an R ×R correlation matrix with uniform correlation structure, so that
C = (1 − ρ)I + ρJ:

C =

⎛
⎜⎜⎜⎜⎝

1 ρ · · · ρ

ρ
. . .

. . .
...

...
. . .

. . . ρ

ρ · · · ρ 1

⎞
⎟⎟⎟⎟⎠ ,

where ρ is the correlation parameter, I denotes the R × R identity matrix and J an
R × R matrix of ones. Then the inverse C−1 is given by

C−1 =

⎛
⎜⎜⎜⎝

a b · · · b

b
. . .

. . .
...

...
. . .

. . . b

b · · · b a

⎞
⎟⎟⎟⎠



CORRELATED MULTIVARIATE APC MODELS 325

with

a = − (R − 2) · ρ + 1

(ρ − 1){(R − 1) · ρ + 1} ,

b = ρ

(ρ − 1){(R − 1) · ρ + 1} .

PROOF. If C−1C = I, then C−1 is the inverse of C. For the diagonal elements
of C−1C it follows that

(C−1C)(i,i) = a + (R − 1) · b · ρ

= −(R − 2) · ρ − 1 + (R − 1) · ρ2

(ρ − 1){(R − 1) · ρ + 1}

= −Rρ + 2ρ − 1 + Rρ2 − ρ2

Rρ2 − ρ2 − Rρ + ρ + ρ − 1
= 1

for all i = 1, . . . ,R. For the nondiagonal elements, that is, i �= j , we get

(C−1C)(i,j) = a · ρ + b + (R − 2) · b · ρ

= {−(R − 2) · ρ − 1}ρ + ρ + (R − 2) · ρ2

(ρ − 1){(R − 1) · ρ + 1}

= −Rρ2 + 2ρ2 − ρ + ρ + Rρ2 − 2ρ2

(ρ − 1){(R − 1) · ρ + 1} = 0. �

The determinant |C−1| is given by

|C−1| = |C|−1 = [(
1 + (R − 1)ρ

)
(1 − ρ)R−1]−1

.

PROOF. We show that |C| = (1 + (R − 1)ρ)(1 − ρ)R−1, as the inverse case
follows immediately. Remember that |C| = |I − ρI + ρJ|. The identity matrix has
R times the eigenvalue 1. The matrix J has once the eigenvalue R and R − 1 times
the eigenvalue 0. Since both matrices (I and J) share the same eigenvectors, the
eigenvalues for C are (1 − ρ + ρ · R) and (1 − ρ) with multiplicity R − 1, so that
the determinant of C, the product of the eigenvalues, is

|C| = (1 − ρ + ρ · R)(1 − ρ)R−1 = (
1 + (R − 1)ρ

)
(1 − ρ)R−1. �

APPENDIX B: PROJECTION FOR DENMARK AND SWEDEN

The median projected death rates per 1,000 person-years together with 80%
pointwise prediction intervals for Danish and Swedish women obtained from all
three models are shown in Figures 8 and 10 for the first half and Figures 9 and 11
for the second half of the 20th century.
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FIG. 8. Same quantities as in Figure 6 but for Danish women (red ◦).
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FIG. 10. Same quantities as in Figure 6 but for Swedish women (red ◦).
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SUPPLEMENTARY MATERIAL

Code repository for the cross-prediction study of overall mortality of
Scandinavian women (DOI: 10.1214/11-AOAS498SUPP; .zip). This repository
archives the data, R-code and results for the cross-prediction study of overall mor-
tality of Scandinavian women presented in Section 4.2. In particular, it contains
code to make Table 1 and Figures 5–11.
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