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RNA interference (RNAi) is an endogenous cellular process in which
small double-stranded RNAs lead to the destruction of mRNAs with comple-
mentary nucleoside sequence. With the production of RNAi libraries, large-
scale RNAi screening in human cells can be conducted to identify unknown
genes involved in a biological pathway. One challenge researchers face is how
to deal with the multiple testing issue and the related false positive rate (FDR)
and false negative rate (FNR). This paper proposes a Bayesian hierarchical
measurement error model for the analysis of data from a two-channel RNAi
high-throughput experiment with replicates, in which both the activity of a
particular biological pathway and cell viability are monitored and the goal
is to identify short hair-pin RNAs (shRNAs) that affect the pathway activity
without affecting cell activity. Simulation studies demonstrate the flexibility
and robustness of the Bayesian method and the benefits of having replicates
in the experiment. This method is illustrated through analyzing the data from
a RNAi high-throughput screening that searches for cellular factors affecting
HCV replication without affecting cell viability; comparisons of the results
from this HCV study and some of those reported in the literature are included.

1. Introduction.

1.1. RNA interference high-throughput screening and the motivating example.
RNA interference (RNAi) is a conserved biological pathway by which messen-
ger RNAs are targeted for degradation by double stranded RNA of identical se-
quence and, thus, it silences gene expression on the level of individual transcripts
[Chapman and Carrington (2007), Fire et al. (1998)]. For example, in mammalian
cells, small interfering RNAs (siRNAs) are effective in silencing target mRNAs
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[Echeverri et al. (2006), Elbashir et al. (2001), Hannon and Zamore (2003)]. Ini-
tially, it was used to knockdown the function of individual genes of interest; with
the production of RNAi libraries, it is possible for the current technology to si-
lence most of the genes in the genome and conduct genome-wide loss-of-function
screening so as to identify previously unknown genes involved in a biological path-
way; it provides a systematic analysis of the genome. The purpose of RNAi high-
throughput screening (HTS) is to identify a set of siRNAs affecting the cellular
phenotype of interest; in the HTS literature, this is referred to as hit selection. For
example, RNAi technology has opened up the field of genomic scale cell-based
screening to the study of viral-host interactions [Cherry (2009)] and several RNAi
HTS have been conducted to identify cellular factors required for various viral
infections.

As Boutros and Ahringer (2008) and Echeverri et al. (2006) pointed out, while
RNAi HTS is promising and has generated various significant technical advances
and scientific findings, there are still challenges regarding high-throughput assay
development and data analysis. In particular, Cherry (2009) and Tai et al. (2009)
remarked that in the studies of viral-host interactions, while RNAi HTS has led
to the discovery of hundreds of new factors and increased our knowledge of the
host factors that impact viral infection and highlighted the cellular pathways at
play, there is a surprising lack of concordance between the results of seemingly
similar screens. Among issues to be considered when comparing these studies,
one recognizes the need to standardize the statistics methods and to address the
false positive and false negative rates inherent to high-throughput siRNA screens.

We note that RNAi HTS refers to a wide range of different experiments. To de-
termine the assay appropriate for the biological process to be investigated and to
choose or develop statistical methods suitable for data resulting from the experi-
ments are of great importance; see Boutros and Ahringer (2008). More specifically,
this paper treats the simple situation that uses cell-based homogeneous assay, in
which the phenotypes of many cells are averaged across each well in a microtitre
plate. In particular, we are interested in data generated from a two-channel cell-
based RNAi HTS experiment where the phenotype of a pathway-specific reporter
gene and that of a constitutive reporter are measured; such experimental setups
are typically used in screens for signaling pathway components; see page R66.5
of Boutros, Bras and Huber (2006). Typical examples include RNAi HTS exper-
iments designed for the identification of cellular factors required for viral infec-
tions, in which cell viability is measured and used to account for the effect of
unequal cell numbers in different wells on the measurements of virus RNA repli-
cation.

This experimental setup makes it possible to distinguish changes in the readout
caused by depletion of the specific pathway components and changes incurred by
the changes in the overall cell number. Based on the plot for a two-channel RNAi
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HTS experiment, Boutros, Bras and Huber (2006) suggest, for a given siRNA, the
ratio of the log of the readout of the specific pathway to the log of the overall cell
number is used as a summary of the effect of the siRNA on the specific pathway.
In the analysis of data from RNAi HTS to identify host factors involved in HIV-1
replication, Börner et al. (2010) also carried out log transformation of the raw
data, including both the measurement of the pathway activity and the cell count in
each well, and applied a robust locally weighted regression [Cleveland (1979)] to
smooth the scatterplot of the log transformed data. In a sense, this seems to be an
extension and improvement of the suggestion of Boutros, Bras and Huber (2006).

To make a more systematic use of the data, we propose a Bayesian regression
model that treats cell viability as a covariate and the specific pathway activity mea-
surement as the response variable so that the pathway activity change can be stud-
ied in terms of the regression coefficient and the issues of false positive and false
negative rates can be handled in the Bayesian framework.

Statistical methods for cell-based RNAi HTS have been introduced and re-
viewed by Boutros, Bras and Huber (2006), Zhang et al. (2006), Zhang et al.
(2008), Malo et al. (2006) and Birmingham et al. (2009), among others. Most
of them deal with one-channel screening and use descriptive quantities like fold
change or simple statistics like Z-score or t-test to identify a set of siRNAs that in-
hibit or activate defined cellular phenotypes. The only exceptions are Zhang et al.
(2008), who proposed a Bayesian method for one-channel screening experiments
to handle false positive and false negative rates, and Boutros, Bras and Huber
(2006), who included some discussions on two-channel experiments.

Another feature of our experiment is that for each siRNA, the experiment is
replicated in 2J wells, where J of them measure cell viability and the other J

measure the specific pathway activity. We note that Tai et al. (2009) is an example
of two-channel RNAi HTS with J = 2 replicates, with pooled siRNAs though, and
that the dual channel experiment mentioned in Boutros, Bras and Huber (2006)
also has J = 2 replicates. Our method will make use of these replicates.

Our method is motivated by the following RNAi HTS that searches for the cel-
lular factors that affect HCV replication without affecting cell viability, referred
to as the HCV study in this paper. HCV (hepatitis C virus) is a small, enveloped,
positive-sense single-stranded RNA virus of the family Flaviviridae and the cause
of hepatitis C in humans; see Ryan and Ray (2004). It is estimated that hepatitis
C has infected nearly 200 million people worldwide, and is now infecting 3 to 4
million people per year (WHO, see the URL below). It is currently a leading cause
of cirrhosis, a common cause of hepatocellular carcinoma. As a result of these con-
ditions, it is the leading reason for liver transplantation in, for example, the United
States (NIDA, see the URL below).

The experiment is carried out as follows. A Huh-7-derived HCV-Luc cell line
that contains the genome of the HCV and harbors the luciferase gene as a re-
porter is employed as a cell-based system for RNA interference screening. We
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have shown that luciferase activity correlates well with the HCV replication (data
not shown). The HCV-Luc cells are transduced by the lentiviruses each carrying
specific short-hairpin RNA (shRNA) and puromycin-resistant gene. In these cir-
cumatances, lentivirus-transduced cells survive under puromycin selection. HCV
RNA replication in the well can now be measured in terms of the expression of
luciferase in HCV-Luc and cell viability in the well can be measured by a colori-
metric method which monitors the level of dehydrogenase in viable cells.

A VSV-G pseudotyped lentivirus-based RNAi library targeting a whole panel
of human kinases and phosphatases was employed [Moffat et al. (2006)] in this
study. This library includes 6,390 shRNAs designed to target 1,187 genes. HCV-
Luc cells are seeded in 96-well plates and each well is transduced with one of these
6,390 shRNAs. There are in total 71 plates and each plate has about 6 wells for
the controls. There are three types of controls: spike negative (SN), no transduc-
tion no puromycin selection (NTNP), and no tranduction with puromycin selec-
tion (NTWP). In SN control wells, the nonhuman gene targeting shLacZ is used
instead of the above-mentioned shRNAs; data from these wells serve as the RNAi
machinery competition controls. In NTNP control wells, cells are not transduced
by lentiviruses nor subjected to puromycin selection. In NTWP control wells, cells
are not transduced by lentiviruses but subjected to puromycin selection. There are
in total 142 SN wells with most plates having 2 SN wells in each plate, 217 NTNP
wells with most plates having 3 NTNP wells in each plate and 67 NTWP wells
with most plates having one NTWP well in each plate. It is believed that in both
SN and NTNP wells, we should observe normal HCV RNA replication and in
NTWP wells, we should observe little HCV RNA replication and minimal cell
viability.

The experiment described in the previous two paragraphs is replicated four
times in a plate-by-plate manner; specifically, for each plate, there are three repli-
cated plates in the sense that wells at the same position in these four plates are
transduced by the same shRNA. We call this platewise replication. Among these
four plates, we use two of them to measure cell viability and the other two to report
luciferase activity as a surrogate for HCV RNA replication assay.

1.2. A log-linear measurement error model. Let x̃ij denote the measurement
of the cell viability in the j th well of the ith shRNA. Let ỹij denote the mea-
surement of the pathway activity in the (J + j)th well of the ith shRNA. Here
i = 1, . . . , I and j = 1, . . . , J with J > 1. In practice, both x̃ij and ỹij refer to the
measurements undergone in certain data preprocessing steps so as to have reduced
systematic bias. Figure 1 gives the data plot; Figure 1(a) is a plot of the data from
the above HCV study with x̃ij and ỹij , respectively, the horizontal and vertical co-
ordinates for I = 6,549 and j = 1; Figure 1(b) is the corresponding plot for log x̃ij

and log ỹij . Visual examination of Figure 1(a), (b) suggests that a linear model on
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(a) (b)

FIG. 1. Plots for the HCV study data after preprocessing. There are in total 6,130 data points with
the 419 controls excluded. (a) On the original measurement scale; (b) on the log transformed scale.

the logarithm transformed data is considered. In fact, the Additional data file 4
in Boutros, Bras and Huber (2006) also suggests the consideration of logarithm
transformed data in a two-channel experiment based on their data. Another reason
for this logarithm transformation is that based on Q–Q plots, both log x̃i1 − log x̃i2
and log ỹi1 − log ỹi2 are, respectively, much closer to normal distributions than
x̃i1 − x̃i2 and ỹi1 − ỹi2. In fact, we found that logarithm transformation is very
close to those suggested by the Box–Cox transformation [Box and Cox (1964)]
technique.

Motivated by the above exploration, we assume that there exist μi and νi such
that log(x̃i1) − μi and log(x̃i2) − μi are independent with mean zero and likewise
log(ỹi1) − νi and log(ỹi2) − νi are also independent with mean zero.

We note that this formulation takes advantage of the replication in the experi-
ment design and eμi and eνi represent, respectively, the expected cell viability and
pathway activity when transduced by the ith shRNA. For the ith shRNA, denote
by γi = 0 if it incurs no change on the pathway activity, and by γi = 1 if it does;
in case γi = 1, the magnitude of the change is represented by βi . γi is usually
called the model index parameter. The plot in Figure 1(b) suggests a linear relation
between νi and μi and the following simple relation

νi = α0 + γiβi + α1μi(1)

is assumed in this paper, which seems to be one of the simplest that can be rea-
sonably imposed on the relation between pathway activity and cell viability. In
the context of the HCV study, (1) is a simple way to account for the effect of cell
numbers on HCV replication. We note that the HCV infects the host cell and repli-
cates in it, therefore, the number of cells in a well can affect the total number of
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HCV virion in that well; the purpose of measuring cell viability in each well is
to account for this effect on HCV replication. We regard (1) as a statistical for-
mulation to refine and implement the idea of Boutros, Bras and Huber (2006) and
Börner et al. (2010) mentioned in Section 1.1. In the original measurement scale
of Figure 1(a), it says the pathway activity eνi is a monomial of the cell viability
eμi with coefficients involving a baseline constant α0, activity change indicator γi ,
and activity change coefficient βi :

eνi = eα0+γiβi · eα1μi .

To complete the likelihood specification, we consider the robust and flexible
model which assumes t-distributions for each shRNA:

xij ≡ log(x̃ij ) = μi + εxij
/
√

ωxij
,

(2)
yij ≡ log(ỹij ) = νi + εyij

/
√

ωyij
.

Here εxij
, εyij

, ωxij
, and ωyij

are independent, εxij
and εyij

have normal distribu-
tions N (0, σ 2

xi
) and N (0, σ 2

yi
), respectively, and ωxij

and ωyij
have gamma distri-

butions Ga(dx/2,2/dx) and Ga(dy/2,2/dy), respectively. We note that the error
terms εxij

/
√

ωxij
and εyij

/
√

ωyij
have t-distributions with degrees of freedom, re-

spectively, dx and dy and scale parameters, respectively, σ 2
xi

and σ 2
yi

.
Discussions on error terms of the form (2) and their advantages appeared in the

gene expression literature; see, for example, Gottardo et al. (2006), Lewin et al.
(2006) and Lo and Gottardo (2007). The idea is that a hierarchical t-formulation
makes the model more robust to outliers than the usual Gaussian model and an
exchangeable prior for the variance allows each shRNA to have a different variance
and hence makes it more flexible.

Let γ = (γ1, . . . , γI ), β = (β1, . . . , βI ), μ = (μ1, . . . ,μI ), σ 2
x = (σ 2

x1
, . . . , σ 2

xI
),

σ 2
y = (σ 2

y1
, . . . , σ 2

yI
), ωx = (ωx1, . . . ,ωxI

) ≡ ((ωx11, . . . ,ωx1J
), . . . , (ωxI1, . . . ,

ωxIJ
)), ωy = (ωy1, . . . ,ωyI

) ≡ ((ωy11, . . . ,ωy1J
), . . . , (ωyI1, . . . ,ωyIJ

)), x = (x1,

. . . , xI ) ≡ ((x11, . . . , x1J ), . . . , (xI1, . . . , xIJ )), and y = (y1, . . . , yI ) ≡ ((y11, . . . ,

y1J ), . . . , (yI1, . . . , yIJ )). To study the likelihood, it seems easier to consider the
conditional density of (x, y) given ωx and ωy or the joint density of (x, y), ωx ,
and ωy . In fact, the former has the closed form:

f (x, y|γ,β,μ,α0, α1, σ
2
x , σ 2

y ,ωx,ωy)

=
I∏

i=1

J∏
j=1

√
ωxij

2πσ 2
xi

exp
{
−1

2

(
xij − μi

σxi
/
√

ωxij

)2}

×
√

ωyij

2πσ 2
yi

exp
{
−1

2

(
yij − α0 − γiβi − α1μi

σyi
/
√

ωyij

)2}
.
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The latter is equal to

g(x, y,ωx,ωy |γ,β,μ,α0, α1, σ
2
x , σ 2

y , dx, dy)

= f (x, y|γ,β,μ,α0, α1, σ
2
x , σ 2

y ,ωx,ωy)
(3)

×
I∏

i=1

J∏
j=1

(dx/2)dx/2


(dx/2)
ωdx/2−1

xij
exp

{
−dx

2
ωxij

}

× (dy/2)dy/2


(dy/2)
ω

dy/2−1
yij exp

{
−dy

2
ωyij

}
.

These expressions are useful in the implementation of Bayesian analysis.

1.3. Organization of this paper. Based on the log-linear measurement error
model that allows error terms having shRNA specific t-distributions, we will take
a Bayesian hierarchical approach to analyze the data from the HCV study, which
is a typical viral-host interaction study using cell-based RNAi HTS. Our purpose
is to propose shRNA lists and associated false positive rates so that experimental
scientists can decide whether to follow up with functional or biological studies.

Section 2 points out the quantities that are of primary interest and indicates the
way to introduce the priors and the joint density used for posterior inference; the
hybrid MCMC for sampling the posterior density is too complicated and is post-
poned to the supplementary material [Chen et al. (2011)]. Section 3 presents sim-
ulation studies to demonstrate that models having shRNA specific t-distributions
outperform models assuming constant variance Gaussian error terms and to ex-
plore the extra-power a RNAi HTS with replicates has in identifying shRNAs
affecting pathway activity and in estimating the false discovery rates. Section 4
summarizes the data preprocessing procedures for data from RNAi HTS; these
include edge effect adjustment, normalization, and outlier removal. Section 5 ana-
lyzes the data from the HCV study. In addition to illustrating the methods in real
data analysis, evaluating the performance of the methods by negative control wells,
and proposing shRNA lists with associated false discovery rates, we compare our
results with those from a limited Q-PCR study and those using the standard Z-
score method; we also compare our results with those from similar RNAi HTS in
the literature. The former indicates that results based on our methods are in better
agreement with those based on Q-PCR than those based on Z-score are and the
latter spotted some common findings, which is encouraging in view of the lack
of concordance in this area pointed out in Cherry (2009). Section 6 gives a brief
discussion of future investigations.

2. Bayesian inference. With the likelihood in (3), we now describe a hierar-
chical model for Bayesian inference. The following quantities are of primary in-
terest. The posterior probability that γi = 0 given the data, denoting pi = P(γi =
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0|x, y), reports the probability of incurring no activity change by the ith shRNA;
smaller pi suggests larger probability of incurring activity change; 1 − pi gives
the probability of incurring activity change. The marginal posterior distribution of
βi indicates the amount of positive or negative influence on the pathway activity
given that there is activity change, which is denoted by π(βi |γi = 1, x, y). We
will see in our real data analysis that E(βi |γi = 1, x, y) is highly correlated with
pi = P(γi = 0|x, y) and is often very useful in providing a list for further study.

The priors on (γ , β), μ, α0, α1, σ 2
x , σ 2

y , dx , and dy are independently assigned.
Let N(·|0,V ) denote the normal density with mean zero and variance V . Let
IG(·|A,B) denote the inverse gamma density with shape parameter A and scale pa-
rameter B . The prior on σ 2

x is defined by assuming σ 2
x1

, . . . , σ 2
xI

an i.i.d. sequence
with density IG(σ 2

xi
|Ax,Bx) and that on σ 2

y is defined similarly by assuming
σ 2

y1
, . . . , σ 2

yI
an i.i.d. sequence with density IG(σ 2

yi
|Ay,By). Let Ax = a2

x/bx + 2,
Bx = (a2

x/bx +1)ax , Ay = a2
y/by +2, and By = (a2

y/by +1)ay , then σ 2
xi

has mean
ax and variance bx and σ 2

yi
has mean ay and variance by . The prior is assigned by

assuming ax , bx , ay , and by are independent with uniform distribution U (0, φ1),
U (0, φ2), U (0, φ3), and U (0, φ4), respectively. We note that while the model al-
lows shRNA specific variance, information is shared between them through these
distributions so as to stabilize the variances. We will make use of the fact that we
have replicates in the experimental design to choose φ1 and φ2. Roughly speaking,
we choose φ1 (φ2) equal to or larger than twice the sample mean (sample variance)
of {(xi1 − xi2)

2/2|i = 1, . . . , I }, because we wish to have a more vague prior. The
way to choose φ3 and φ4 is similar. The prior for dx and dy are uniform on the
integers from 1 to 100.

The prior on γ is defined by assuming γ1, γ2, . . . , γI an i.i.d. sequence with
P(γi = 0) = 1 −P(γi = 1) = p, which is assumed to have a density Beta(φ5, φ6).
If γi = 0, let βi = 0; otherwise, let βi have a density N(βi |0,V ). Both α0 and
α1 also have prior densities N(α0|0,V ) and N(α1|0,V ). We assume V has in-
verse gamma density IG(V |φ7, φ8). The parameters (φ5, φ6) studied are (9,1) and
(1,1); we will see in Section 5.5 that the posterior inferences do not seem to be
sensitive to the values of (φ5, φ6). We choose φ7 and φ8 to make IG(V |φ7, φ8)

have large mean and variance so that it is less informative. We note that the prior
on (γi, βi) follows and extends that in Scott and Berger (2006) for microarray gene
expression studies.

The prior for μ is defined by assuming μ1, μ2, . . . ,μI an i.i.d. sequence with
uniform distribution U (−3,1), which is motivated by the fact that in the HCV
study, log(x̃ij ) belongs to (−3,1) for every i and j ; see Figure 1(b). Section 5.5
also shows that our main results do not vary much with the changes in the prior
on μ.

In addition to the above rationale, we limit our attention to the priors for which
the models fit the data well by posterior predictive check, discussed by Gelman,
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Meng and Stern (1996). In case there are several models fitting the data well, we
prefer the less informative priors.

It follows from (3) in Section 1.2 that the joint density of (x, y, ωx , ωy , γ , β ,
μ, α0, α1, σ 2

x , σ 2
y , dx , dy , p, V , ax , bx , ay , by ) is

g(x, y,ωx,ωy |γ,β,μ,α0, α1, σ
2
x , σ 2

y , dx, dy)

× pI−∑I
i=1 γi+φ5−1(1 − p)

∑I
i=1 γi+φ6−1

×
I∏

i=1

(N(βi |0,V ))γi · N(α0|0,V ) · N(α1|0,V ) · IG(V |φ7, φ8)(4)

×
I∏

i=1

IG(σ 2
xi

|Ax,Bx)J (Ax,Bx)

×
I∏

i=1

IG(σ 2
yi

|Ay,By)J (Ay,By),

where J (·, ·) is the Jacobian matrix of the transformation from (A,B) = (a2/b +
2, (a2/b + 1)a) to (a, b). It is based on (4) that we propose a hybrid MCMC
algorithm for computing the posterior distribution [see, e.g., Robert and Casella
(2004), page 393]. We note that we use the trick to update γi after integrating out
βi to make the algorithm more efficient; see Gottardo and Raftery (2009). Several
useful observations that accelerate the hybrid MCMC algorithm and the algorithm
itself are given in the supplementary material [Chen et al. (2011)] to streamline the
presentation.

3. Simulation studies. The purposes of these simulation studies are to eval-
uate the performance of our Bayesian method and to indicate the benefits of hav-
ing replicates in a RNAi HTS experiment. Our studies show that the hierarchical
model allowing error terms having t-distributions and shRNA specific variance
outperform the usual Gaussian model with fixed common variance in terms of
study power and false positive rate estimation.

The first data set we study is generated as follows. The total number of shRNAs
is 6,130. The number of replicates is 2. The model index parameter γi is equal to 1
for i = 1, . . . ,100, and equal to 0 for i > 100. If γi = 0, then βi = 0; otherwise
generate βi from uniform distribution on (−5,3). Let the parameters μi be gener-
ated by (0.248 + 2.77) · Beta(6,2) − 2.77, which has support on (−2.77,0.248)

and is very close to the empirical distribution of {xij } in the HCV study. Let
α0 = 12.557, α1 = 2.538, dx = 3, and dy = 3. Let σ 2

xi
be IG(σ 2

xi
|3,0.2), which

has mean 0.1 and variance 0.01, and σ 2
yi

be IG(σ 2
yi

|3,1), which has mean 0.5 and
variance 0.25; we note that these means and variances are many times larger than
those suggested by the data in the HCV study, given in Section 5.1. In fact, some
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(a) (b)

FIG. 2. Comparison of the results analyzed by the T method and the Gaussian method, based on
data generated from t-distributions with J = 2. (a) The actual FDR versus the desired FDR; (b) the
ROC curves.

aspects of the data set are chosen deliberately so they are similar to those in the
HCV study and some are chosen to be distinguished from those in the model or
prior specifications in the previous sections. The aspects similar to the HCV study
include the number of shRNAs, the number of replicates, and the distribution of
the cell viabilities. These help to make the simulation studies relevant to real data
analysis and are useful for the study of robustness of our method.

Our first analysis uses the model and prior described earlier in Sections 1.2
and 2; in particular, we choose φ1 = φ2 = φ4 = 0.2, φ3 = φ6 = 1, φ5 = 9, φ7 = 3,
and φ8 = 30,000. For the second analysis, we use the model in Section 1.2 with
ωxij

= ωyij
= 1, σ 2

xi
= σ 2

x , and σ 2
yi

= σ 2
y , both of which are estimated from the

data, and a constant V , which is equal to the posterior mean of the V obtained in
the first analysis. We summarize the comparison of these two analyses in Figure 2,
in which the first analysis is called the T method and the second is termed the
Gaussian method. Figure 2(a) provides plots of actual false discovery rates against
the desired false discovery rates, which was used in Lo and Gottardo (2007). Fig-
ure 2(b) shows plots of the true positive rates against the false positive rates. It is
clear from Figures 2(a) and (b) that the method allowing t-distribution and shRNA
specific variance performs much better.

The second data set is generated by the same model parameters as the first data
set except ωxij

= ωyij
= 1, σ 2

xi
= 0.1, and σ 2

yi
= 0.5; thus, the error terms are nor-

mal with the same variance. This data set is again analyzed by the above-mentioned
T method and the Gaussian method and a comparison of the two is summarized in
Figure 3. We can see that the Gaussian method performs only slightly better.

The third data set is generated in the same way as the first except that the number
of replicates J = 10. Figure 4 compares the results obtained from the data with
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(a) (b)

FIG. 3. Comparison of the results analyzed by the T method and the Gaussian method, based on
data generated by normal distribution with J = 2. (a) The actual FDR versus the desired FDR;
(b) the ROC curves.

J = 2 and J = 10, both of which are analyzed by the T method of this paper.
Figure 4 shows that the results using J = 10 is much better than J = 2.

In fact, we also compared these two methods using data generated with error
terms being neither Gaussian nor t-distributed and observed results similar to those
in Figures 2 and 4. To keep the paper concise, we omit reporting these compar-
isons.

(a) (b)

FIG. 4. Comparison of the results with J = 2 and J = 10, based on data generated from
t-distributions and analyzed by the T method. (a) The actual FDR versus the desired FDR; (b) the
ROC curves.
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4. Data preprocessing. Data preprocessing for RNAi HTS usually consists
of three parts: edge effect adjustment, normalization to reduce plate effects, and
outlier removal. Several data preprocessing methods have been proposed to deal
with these issues; see, for example, Boutros, Bras and Huber (2006), Malo et al.
(2006) and Zhang et al. (2006). These methods are adapted to suit the present
experiment.

The following three observations motivate our data preprocessing procedure.
The first observation is that technically replicated measurements should be close
to each other; this provides an opportunity to evaluate the general quality of the
experiment as well as to eliminate shRNAs showing large discrepancy between
the replicated measurements. The second observation is that the assignment of a
shRNA to a well and the effect of this shRNA on the measurements are indepen-
dent; our edge-effect adjustment makes use of this observation. The third obser-
vation is that measurements of control wells of the same type are expected to be
close to each other; the measurements for NTNP wells are expected to be larger
than those for SN wells and those for NTWP wells are expected to have the small-
est measurements; violation of these indicates poor quality of the experiments. In
the HCV study, no such violation is observed in any single plate either for lu-
ciferase activity or cell viability; our normalization procedure makes use of this
observation.

Our data preprocessing are performed by first conducting edge effect adjustment
and selecting the control wells so as to perform normalization, and then deleting
the outliers. The final data in the analysis consists of 6,130 shRNA and 419 nega-
tive control wells, each of which has four replicates.

Control wells serve two purposes in our data preprocessing. Since the measure-
ments for NTNP wells are larger than those for SN wells and NTWP wells have the
smallest measurements in any plate, it seems a good idea to use these control wells
to perform normalization if we can first delete outliers in the control wells. This
outlier deletion is carried out for luciferase activity and cell viability separately.
Here we present the deletion criterion for the luciferase activity in a shRNA or
control well; that for cell viability is similar and omitted. Using the fact that there
are four platewise replicates with two of them measuring luciferase activity, we
consider the ratio of the difference of its two replicated measurements to its mean
for a given well position, and delete both of its luciferase activities for a given well
position if the ratio is large. For the HCV study data, two NTNP control wells were
deleted based on the cell viability measurement before normalization.

Edge effect exists in both the measurements of luciferase activity and cell vi-
ability; the same adjustment procedure is carried out separately for each of these
two measurements and described as follows. We partition all the wells in this ex-
periment into three groups: G1 consists of all the wells on the boundary of a plate;
G2 consists of all the wells not in G1 but immediately adjacent to wells in G1;
G3 the remaining wells. A fixed constant is added to the measurement from each
well in G2 so that the average of all the measurements from wells in G2 is equal
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to that from wells in G3; a similar procedure is applied to the measurements from
each well in G1, except those from NTWP control wells. The rationale for not per-
forming edge effect adjustment to the NTWP control wells is that the total numbers
of cells in these wells are very small already and we expect little edge effects there.
We note that all the control wells are in G1.

After the outliers in the controls have been removed and the edge effect has
been taken into account, we perform normalization to reduce the plate effect. The
same normalization procedure is done separately for luciferase activity and cell
viability; we describe the procedure for luciferase activity and omit that for cell vi-
ability, because of the similarity. Our normalization will, in particular, make mean
measurements of the controls of the same type in each plate taking the same value
for different plates. The procedure is as follows. We denote the mean measure-
ments of NTNP wells, SN wells, and NTWP wells in plate h by ah, bh, and ch,
respectively. Let a, b, and c denote, respectively, the mean measurements of all
of the NTNP wells, SN wells, and NTWP wells from all the plates in this experi-
ment. The normalization procedure for wells in plate h is accomplished by using
the unique continuous piecewise linear function that maps ah, bh, and ch to a, b,
and c, respectively. Namely, its value at x is⎧⎪⎪⎨

⎪⎪⎩
x − ch + c, if x ≤ ch;
(a − c)(x − ch)/(ah − ch) + c, if ch < x ≤ ah;
(b − a)(x − ah)/(bh − ah) + a, if ah < x ≤ bh;
x − bh + b, if bh < x.

The luciferase activity of a well in plate h is to be replaced by the value of the
piecewise linear function at that luciferase activity. In the plates without NTWP
wells, the normalization is carried out using the piecewise linear function defined
by a and b.

After normalization, we exclude a shRNA from the analysis if either the ratio
of the difference of its two replicated luciferase activity to its mean or the ratio
corresponding to its two replicated cell viability measurements is large. For each
of the two measurements, we excluded two percent of the shRNAs that have the
most extreme ratios in the HCV study.

5. The HCV study. We now apply our methods to analyze the HCV study
data. In particular, we will provide lists of candidate shRNAs causing the reduction
of HCV replication without changing cell viability. We will first explain in some
detail the way we apply the methods in analyzing the data and the way we use
part of the control wells to evaluate the performance of the methods. We will also
examine our methods in light of a limited Q-PCR experiment, compare with the
results using the standard Z-score approach, show that our Bayesian analysis is
insensitive to the choice of prior, and indicate that there does exist concordance
between our findings and those in Supekova et al. (2008) and Tai et al. (2009).
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5.1. Data analysis. After the data preprocessing procedures, we analyzed the
data using the Bayesian method of this paper. Following the data analysis strategies
described in Section 2, we choose φ1 = φ2 = 0.03 and φ3 = φ4 = 0.2. In fact,
{(xi1 − xi2)

2/2|i = 1, . . . ,6,549} has mean 0.0016 and variance 8 × 10−6 and
{(yi1 − yi2)

2/2|i = 1, . . . ,6,549} has mean 0.0107 and variance 0.0004. Except
for the sensitivity analysis in Section 5.5, we always use φ5 = 9, φ6 = 1, φ7 = 3,
and φ8 = 1.9×105 in this section. We note that IG(·|3,1.9×105) has mean 95,000
and variance 9.025 × 109.

We use about half of the SN and NTNP wells and all of the NTWP wells for
normalization purposes and use the remaining control wells to evaluate our analy-
sis method and to help decide the knockdown effects of specific shRNAs. In each
plate, there is about one NTWP well, two SN wells, and three NTNP wells. We
use all the NTWP wells for normalization. We also note that there are in total 71
plates and 426 control wells in one replicate and there are four platewise replicates,
as described at the end of Section 1.1. After the initial outlier deletion of 2 NTNP
controls, we use 277 controls for normalization. The outlier deletion step after nor-
malization excluded another 6 controls, three of which were among those used for
normalization earlier. These outliers are excluded from the analysis. It turns out
that our analysis includes 419 controls, 274 of which were used for normaliza-
tion and the remaining 145 controls are used to evaluate our methods as well as to
decide the knockdown effect of specific shRNAs.

The posterior distributions are obtained by the hybrid MCMC algorithm in the
supplementary material [Chen et al. (2011)]. We calculated the Gelman–Rubin
statistic R̂ for all the important estimands based on five chains with random initial
values in several studies and found all the R̂’s were less then 1.1 using the iterations
between 10,000 and 20,000. Based on this experience and the fact that all the
studies in this section involve similar computations, we run one chain with 40,000
iterations and use the latter 20,000 iterations to calculate the posterior distributions
of all the parameters in each study.

Figure 5 gives some idea of the distribution of the activity change in this exper-
iment. Each dot in Figure 5 gives the results of one shRNA; its vertical coordinate
gives its posterior probability of incurring activity change 1 −pi and its horizontal
coordinate gives its magnitude of activity change E(βi |γi = 1, x, y), given there
is activity change. E(βi |γi = 1, x, y) is also called the posterior activity change
coefficient. Figure 5 indicates a very clear relation between these two quantities
and it will be clear that both are useful in examining the activity change.

Figure 6 gives the graphical display of the posterior predictive check that using
the χ2 omnibus discrepancy test quantity,

6,549∑
i=1

2∑
j=1

(yij − α0 − γiβi − α1xij )
2

α2
1σ 2

xi
dx/(dx − 2) + σ 2

yi
dy/(dy − 2)

.

The concept of posterior predictive check appeared in Gelman, Meng and Stern
(1996); see also Gelman et al. (2003). Figure 6 seems to indicate that the model fits
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FIG. 5. The volcano plot of posterior activity change coefficient and posterior probability of activity
change for the HCV study.

FIG. 6. The Scatterplot of predictive versus realized χ2 discrepancies for the HCV study.
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the data quite well. In fact, in the choice of priors, we find large φ8 not only makes
V less informative but also make model fit possible. By the way, the posterior
means of α0, α1, V , dx , and dy are, respectively, 12.557, 2.538, 58.207, 30, and 10.

We may regard the minimal interval containing the posterior means of the cell
viability E(μi |x, y) of the 274 controls as the range of normal cell viability, which
is (−0.635,−0.007), although this definition of normal cell viability might be a
little too stringent. Nevertheless, we find all of the remaining 145 controls are
in this normal range. This finding seems to suggest that our methods give good
estimates of the cell viabilities. Among all the 6,130 + 419 = 6,549 wells, 5,862
have their cell viabilities in the normal range, 602 of them less than −0.635 and
85 of them larger then −0.007.

Figure 7 reports two histograms of the probability of activity change 1−pi . The
dark one, called Histogram 7(a), is the histogram for the 145 controls; the light one,
called Histogram 7(b), is that for all the 6,549 wells. Since Histogram 7(a) con-
centrates heavily on the left, we think our methods assigned appropriate posterior
probability to these 145 control wells.

In fact, Histogram 7(a) provides opportunities for the study of false discovery
rate. For this, we present the data of Histogram 7(a) in Figure 8 using finer resolu-
tion so as to exhibit more details. Figure 8 seems to suggest that the set of shRNAs

FIG. 7. Histogram of posterior probability of activity change 1 − pi . The dark histogram, referred
to as Histogram 7(a), is for the 145 control wells reserved for evaluation purposes. The light his-
togram, referred to as Histogram 7(b), is for all the 6,549 wells.
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FIG. 8. Histogram of the posterior probability of activity change 1 − pi for the 145 control wells.

having 1 − pi larger than 0.2532, 0.1055, or 0.05 has false discovery rate, respec-
tively, 0, 1/145, or 2/145, among others.

There is still another quantity that is useful in assessing the performance of
our methods, namely, the posterior activity change coefficient E(βi |γi = 1, x, y).
Figure 9 provides two histograms of posterior activity change coefficient; the dark
one, sitting above the interval (−0.806,0.392), is that for the 145 shRNAs in the
control wells and the light one, sitting above the interval (−4.081,1.967), is that
for the total set of 6,549 shRNAs. The fact that the former sits in the middle of the
latter, as expected, seems to give another piece of indication that the experiment
and data analysis are reliable.

5.2. Main results. We are now in a position to provide shRNA lists, based on
which the laboratory scientists can conduct experiments to identify those that af-
fect HCV replication without affecting cell viability. Knowing that among the 785
shRNAs having their E(βi |γi = 1, x, y) less than −0.806, 601 of them have their
cell viability in the normal range (−0.635,−0.007), we will start the selection
with this set of 601 shRNAs. For this, we will make use of the direct posterior
probability approach discussed in Newton et al. (2004).

Assuming that placing a shRNA having posterior probability of not incurring
activity change pi in the list for further studies creates a loss of the amount pi , we
rank the shRNAs according to their pi and form the list as follows. Given a set ς

of shRNAs for which the losses are less than a positive number κ , we define

C(κ) = ∑
i

pi1[pi<κ],
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FIG. 9. Histogram of posterior activity change coefficients. The dark histogram is for the 145
control wells. The light histogram is for all the 6,549 wells.

which is the sum of the losses for all the shRNAs in ς . We note that C(κ)/|ς | is
called the posterior false detections rate (PFDR), where |ς | is the size of the set ς ;
we also note that with the shRNAs ordered by pi , there is a natural correspondence
between κ and set size |ς | and that C(κ)/|ς | increases with κ . To obtain a list of
shRNAs having PFDR C(κ)/|ς | less than α, we can find the largest possible κ or
|ς | such that C(κ)/|ς | is less than α. In practice, we can either fix the list size and
then compute its PFDR or fix the PFDR and compute the list size. For the set of
601 shRNAs having normal cell viability and posterior activity change coefficient
less than −0.806, Table 1 is a summary of various lists of shRNAs. Its left column
reports PFDR by first fixing the set size and its right column reports list size by
first fixing the PFDR. For example, the second row in the left column says that the
list of top 100 candidate shRNAs, targeting 77 genes, has PFDR 0.047; the second
row of the right column says given PFDR being 0.05, the list has 104 shRNAs,
targeting 81 genes, and one of the genes has three of the 104 shRNAs targeting it,
21 of the genes have two such shRNAs targeting each of them and the remaining
59 genes have only one such shRNA targeting each of them.

We note that when we are interested in individual shRNAs, those in the first
row are better candidates than those in the other rows; when we are interested in
genes that affect HCV replication, then we need to consider the number and the
knockdown effects of all the shRNAs in each gene. We will illustrate the latter in
Section 5.6.
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TABLE 1
Posterior false detection rates for lists of shRNAs whose E(μi |x, y) ∈ (−0.635,−0.007) and

E(βi |γi = 1, x, y) < −0.806 in the HCV study

Fix list size Fix PFDR

Number of
genes (shRNAs)

Number of
genes (shRNAs)

Number of shRNAs

PFDR PFDR 5 4 3 2 1

0.024 40 (50) 0.01 20 (21) 1 19
0.047 77 (100) 0.05 81 (104) 1 21 59
0.106 151 (200) 0.10 144 (190) 2 6 27 109
0.174 210 (300) 0.20 234 (337) 1 3 15 57 158
0.242 271 (400) 0.30 309 (488) 3 7 31 79 189

Tai et al. (2009) pointed out the issue of the choice of threshold in the Z-score
approach to hit selection; higher threshold causes little overlap with other studies
and lower threshold results in too many siRNAs for secondary validation. Our ap-
proach benefits from not only the statistical model but also the negative controls.
The above analysis points out an issue regarding the number of negative controls to
be used for the false discovery rate estimate. We believe that if we had more nega-
tive controls, we could have provided more information, including false discovery
rate, for the selection of shRNAs or genes.

For the purpose of comparison in Sections 5.4 and 5.6, we say a shRNA in
the HCV study causes activity change if either its pi < 1 − 0.2532 = 0.7468 or
its E(βi |γi = 1, x, y) /∈ [−0.806,0.392]; a shRNA has normal cell viability if its
E(μi |x, y) ∈ (−0.635,−0.007).

5.3. Q-PCR validation. Q-PCR is one of the popular methods to study activity
change in a secondary analysis of a gene list from a primary RNAi HTS. In this
study, both HCV RNA and house-keeping gene beta-actin are reverse transcribed
and then quantified using Q-PCR in a well with a given shRNA or without any
shRNA transduction. The ratio of the quantity of HCV RNA in a well with the
shRNA transduction to that in a well without any shRNA transduction and the
corresponding ratio for beta-actin are first calculated; the former ratio divided by
the latter ratio gives the activity change measured by Q-PCR for shRNA i, which
is denoted by ki .

When ki is around 1, we may say there is no activity change; when it is large
(small), we may say it increases (decreases) the activity. Although Q-PCR is con-
sidered to provide reliable measurements, we do not know of a good threshold on
ki for declaring activity change. Thus, we choose to present the correlation be-
tween the activity ki reported by the Q-PCR assay and posterior activity change
coefficient reported by our methods as a way to make the comparison.
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We examined by the Q-PCR method the pathway activity of 86 shRNAs in the
HCV study; we note that 68 of them have their ratio for beta-actin belonging to
the interval (0.7,1.43); these 68 shRNAs may thus be considered to have less
appreciable effect on cell viability. The empirical correlations of these two assays
are 0.68 for all these 86 shRNAs and 0.77 for the 68 shRNAs not affecting cell
viability. We note that these 86 shRNAs had been chosen for Q-PCR assay before
the methods of this paper were proposed. We note that we do not expect perfect
correlation, because, for HCV replication, our RNAi HTS monitors the luciferase
protein and Q-PCR measures HCV RNA and, for cell viability, ours monitors the
level of dehydrogenase and Q-PCR montiors the level of mRNA of beta-actin.

5.4. Comparison with the Z-score approach. Platewise Z-score is often used
in the primary analysis of RNAi HTS data; see, for example, Tai et al. (2009).
In particular, Tai et al. (2009) says that “A Z-score is the number of standard
deviations of the experimental luciferase activity above the median plate value.”
Because the plate effect in the data from the HCV study has been reduced by
normalization, it seems appropriate for us to consider an experiment-wise Z-score
and compare this Z-score approach with the method of this paper. We define the
Z-score as

Zij = yij − Mj

Sj

.

Here Mj and Sj are, respectively, the median and standard deviation of {yij |i =
1, . . . , I } for j = 1,2, after data preprocessing procedures.

Hit selection based on Z-score chooses shRNAs having extreme Z-scores. It is
desirable that these Z-scores follow a normal distribution; in this case, we can con-
veniently assign a p-value to Zi = (Zi1 + Zi2)/2 and use p-value to describe the
extremeness of the selected shRNA. Figures 10(a) and (b) give, respectively, the
plot of (Zi1,Zi2) and the histogram of {Zi |i = 1, . . . , I } for the HCV study. While
Figure 10(a) shows that Zi1 and Zi2 have correlation 0.990 and are in good agree-
ment, indicating both the assay and the data preprocessing procedure are excellent,
Figure 10(b) suggests they are not normally distributed.

For the above set of 86 shRNAs assayed by Q-PCR and whose subset of 68
shRNAs are not affecting cell viability, we find the empirical correlations of their
Z-scores Zi and the activity change measured by Q-PCR ki are 0.62 and 0.72,
respectively. Compared with the correlations reported in Section 5.3, it seems that
the activity change computed by our method is in better agreement with those
reported by the Q-PCR method.

Figure 11 is the plot of the Zi versus E(βi |γi = 1, x, y) for the 86 shRNAs. The
five shRNAs that show largest discrepancy between the Z-score Zi and posterior
activity change coefficient target five genes: RPS6, KIAA1446, INPP4A, SFRS1,
and TYK2; this discrepancy is decided by the size of the residues when a linear
regression is fitted. Table 2 reports the posterior probability of activity change, pos-
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(a) (b)

FIG. 10. Scatter plot for Z-scores and histogram of Z-score mean. (a) The scatter plot for
(Zi1,Zi2); (b) the histogram of Zi = (Zi1 + Zi2)/2.

terior activity change coefficient, posterior mean of cell viability E(μi |x, y), Z-
score Zi , and Q-PCR activity change ki for these five shRNAs showing largest dis-

FIG. 11. Plot of the Z-score vs posterior activity change coefficient for 86 shRNAs. The shRNAs
that show largest discrepancy between the Z-score and posterior activity change coefficient target,
respectively, RPS6, KIAA1446, INPP4A, SFRS1, and TYK2. The numerals in the figure correspond
to those in Table 2.
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TABLE 2
The Z-score, posterior activity change coefficient, and Q-PCR activity change effect ki

for five shRNAs

Gene 1 − pi E(βi |γi = 1,x,y) E(μi |x,y) Zi ki

75 RPS6 0.993 −2.323 −0.657 (8.80%) −3.067 0.08
66 KIAA1446 0.491 0.973 −0.657 (8.81%) −0.134 2.59
28 INPP4A 0.005 −0.088 −1.065 (6.00%) −1.925 1.25
27 SFRS1 0.005 −0.111 −0.975 (6.41%) −1.719 1.83
46 TYK2 0.907 −1.542 −0.650 (8.95%) −2.317 1.33

crepancy. All these methods claim unequivocally and unanimously that the shRNA
targeting RPS6 decreases the pathway activity significantly. In fact, we have veri-
fied that RPS6 is a crucial factor for HCV and we are preparing a manuscript for
this finding. Both Q-PCR and our method claim that the one targeting KIAA1446
increases the activity of the pathway and that targeting INPP4A has little effect on
the pathway, while the Z-score approach suggests differently; for SFRS1, Q-PCR
seems to claim a mild increase of the pathway activity, our method suggests little
effect on the pathway activity and Z-score suggests a decrease in pathway activity;
for TYK2, Q-PCR suggests little effect and both our method and Z-score suggest
a decrease in pathway activity. Table 2 seems to suggest again that our method is in
better agreement with the Q-PCR method in reporting the activity change effects
of shRNAs. We note that the percentage in the cell viability in Table 2 shows the
corresponding percentile among all the 6,549 wells.

5.5. Sensitivity analysis. This subsection examines certain distributional as-
sumptions on the prior used in Section 5.1 for analyzing the HCV study data.
The prior on p used was Beta(9,1); we now also consider Beta(1,1). The prior
on μi was U (−3,1); we now also consider the empirical one (0.248 + 2.77) ·
Beta(6,2)−2.77. Thus, there are four combinations in these comparisons, with all
the other analysis strategies unchanged. We report here three posterior inferences
for the comparison of these four studies. In fact, we made extensive comparisons
and found only similar results and the three reported here are the most represen-
tative ones. Table 3 treats the posterior probability of activity change based on the
145 controls. That all these probabilities in Table 3 are close to zero shows that
all of them perform very well, just as the one in Section 5.1. Table 4 reports the
correlation between the probability of activity change obtained from one combi-
nation and that obtained from another. Table 5, like Table 4, reports the correlation
regarding the posterior activity change coefficient obtained from different analy-
ses. Since all of the correlations in Table 4 and Table 5 are larger than 0.94, it
seems that the posterior inferences are not sensitive to these aspects of the prior
assumptions.
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TABLE 3
Posterior probability of incurring activity change 1 − pi for the 145 control wells

Prior on p Beta(9,1) Beta(1,1)

Prior on μi Empirical prior Uniform prior Empirical prior Uniform prior

Median 0.0045 0.0068 0.0043 0.0038
75% quantile 0.0095 0.0155 0.0078 0.0065
Maximum 0.1275 0.2532 0.1098 0.0955

5.6. Some comparison with the literature. Cherry (2009) reviewed five papers
that use siRNA screens to identify cellular factors that impact replication of HCV
or subgenomic replicons and found little overlap between them. As part of our
effort to evaluate the performance of our method, we select all the siRNAs in our
list that show activity change in Supekova et al. (2008) and Tai et al. (2009) and
see whether our findings are in line with theirs. A comprehensive discussion of the
scientific findings of our study will be reported elsewhere.

Supekova et al. (2008) reported that siRNAs specific for three human kinases,
CSK, JAK1, and VRK1, were identified to reduce the replication of HCV; they
also reported that by examining the siRNA knockdown effect of the eight kinase
genes in the Src family (BLK, HCK, FGR, LCK, LYN, FYN, c-SRC, and YES)
on the HCV replicon, they found that their siRNAs targeting seven of them did not
show any effect and that targeting FYN elevated replicon levels by about 3-fold
upon transduction.

In our HCV study, there are shRNAs targeting nine of these 11 genes, except
c-SRC and YES. We now compare our results on these nine genes with those from
Supekova et al. (2008).

Among the five shRNAs targeting FYN, four of them indicated considerable
elevation in HCV replication and the other one did not show activity change; none
showed change in cell viability. Our screening showed also that none of the shRNA

TABLE 4
Correlations between the posterior probability of activity change obtained from one prior

combination and that from another

Prior on p Beta(9,1) Beta(1,1)

Prior on μi Empirical prior Uniform prior Empirical prior

Beta(9,1) Empirical prior
Uniform prior 0.972

Beta(1,1) Empirical prior 0.997 0.960
Uniform prior 0.992 0.946 0.995
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TABLE 5
Correlations between the posterior activity change coefficient obtained from one prior combination

and that from another

Prior on p Beta(9,1) Beta(1,1)

Prior on μi Empirical prior Uniform prior Empirical prior

Beta(9,1) Empirical prior
Uniform prior 0.990

Beta(1,1) Empirical prior 0.992 0.988
Uniform prior 0.990 0.988 0.989

targeting FGR or HCK indicated any appreciable activity change. These results are
in perfect or excellent agreement with those in Supekova et al. (2008).

Among the four targeting BLK, three of them showed no activity change and
one indicated considerable increase; among the five targeting LCK, four of them
showed no activity change and one indicated considerable decrease. These are in
partial agreement with Supekova et al. (2008).

Among the 10 shRNAs targeting CSK, one showed considerable decrease both
in HCV replication and in cell viability; another showed considerable decrease in
HCV replication without change in cell viability; still another showed consider-
able increase in HCV replication without change in cell viability; the remaining
seven showed no change. All the four targeting JAK1 indicated no activity change
and no cell viability change. None of the two targeting VRK1 indicated any ap-
preciable activity change, although one of them indicated considerable reduction
in cell viability. Among the five shRNAs targeting LYN, three of them indicated
strong elevation in HCV replication without appreciable change in cell viability.
These suggest a certain amount of disagreement between our findings and those in
Supekova et al. (2008).

In view of the general lack of concordance between results of similar HCV
screens in the literature, the amount of agreement between Supekova et al. (2008)
and our study seems encouraging.

We note that Tai et al. (2009) reported that there is little overlap between the
results of their screen and those of Supekova et al. (2008); in fact, none of the
three genes CSK, JAK1, and VKR1 were selected in the primary screening of Tai
et al. (2009), which seems to be in agreement with ours.

We now compare our results with Tai et al. (2009), in which 96 genes are chosen
from the primary screening for reduced HCV replication. In the shRNA list of our
study, there are shRNAs targeting four of these 96 genes; they are TBK1, NUAK2,
COASY, and MAP3K14.

Two of the four shRNAs in our list targeting MAP3K14 showed strong reduc-
tion in HCV replication, another indicated marginal reduction in HCV replication
and the fourth one indicated no activity change; none showed change in cell via-
bility. The shRNAs targeting the remaining three genes showed little effect on the
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reduction of HCV replication. We note that Tai et al. (2009) used 21,094 siRNA
pools targeting the entire human RefSeq transcript database; each of these pools
consists of four individual siRNA duplexes and each of these four siRNAs targets
a different sequence within the target transcript.

6. Discussion. We have presented a Bayesian method to analyze data from
two channel cell-based RNAi HTS experiments with replicates, in which the phe-
notype of a pathway-specific reporter gene and that of a constitutive reporter are
measured. These experiments are typical in screens for signaling pathway com-
ponents and the purpose is often to identify genes that affect the activity of the
specific pathway without affecting that of the constitutive reporter.

We have conducted simulation studies and real data analysis to illustrate the
methods. Our simulation studies indicate that error terms with shRNA specific t-
distribution do make the method flexible and robust and that replication provides
better power in identifying shRNAs of interests and, at the same time, gives better
estimates of the false discovery rates.

In our analysis of the real data set, we illustrate the usage of negative controls,
included originally for normalization purposes only, to assess the performance of
our methods, to estimate false discovery rate, and to prioritize the shRNAs for
secondary validation, in addition to hit selection; we find our methods perform
excellently and these negative controls are very useful. We have also conducted
a Q-PCR based assay to assess the activity change of 86 shRNAs; we find the
results based on Q-PCR are in better agreement with those based on our method
than with those based on the standard Z-score approach. We have also shown that
our method is insensitive to the choice of prior. Finally, it is encouraging to find
that there does exist some overlap between the results of the HCV study and those
of Supekova et al. (2008) and Tai et al. (2009).

Realizing the usefulness of negative controls, we are interested in knowing the
optimal number of negative controls to be included in an experiment. It seems also
desirable to include positive controls as well in the experiment. With both positive
and negative controls, we may extend our Bayesian method so as to improve our
report on the false positive and negative rates in a RNAi HTS. We note that char-
acteristics of these controls, especially positive controls, and the number of these
controls deserve serious attention in designing an experiment and in extending our
statistical method.
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SUPPLEMENTARY MATERIAL

A Computer algorithm for analyzing data from two-channel cell-based
RNAi experiments with replicates (DOI: 10.1214/11-AOAS496SUPP; .pdf).
This note provides the hybrid MCMC algorithm for sampling the posterior dis-
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tribution used in Chen et al. (2011) and several observations used in designing this
algorithm so as to make it more efficient.
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