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Multi-parameter evidence synthesis (MPES) is receiving growing atten-
tion from the epidemiological community as a coherent and flexible analyt-
ical framework to accommodate a disparate body of evidence available to
inform disease incidence and prevalence estimation. MPES is the statistical
methodology adopted by the Health Protection Agency in the UK for its an-
nual national assessment of the HIV epidemic, and is acknowledged by the
World Health Organization and UNAIDS as a valuable technique for the esti-
mation of adult HIV prevalence from surveillance data. This paper describes
the results of utilizing a Bayesian MPES approach to model HIV prevalence
in the Netherlands at the end of 2007, using an array of field data from dif-
ferent study designs on various population risk subgroups and with a varying
degree of regional coverage. Auxiliary data and expert opinion were addi-
tionally incorporated to resolve issues arising from biased, insufficient or in-
consistent evidence. This case study offers a demonstration of the ability of
MPES to naturally integrate and critically reconcile disparate and heteroge-
neous sources of evidence, while producing reliable estimates of HIV preva-
lence used to support public health decision-making.

1. Introduction. Refining and advancing the current understanding of the dy-
namics of the HIV epidemic attracts a continued interest from the epidemiological
and medical community. Both national and international public health institutes
recognize the importance of improving current methods to monitor HIV preva-
lence, as this constitutes a key input to inform public health-care policies and re-
source allocation.
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A number of approaches have been proposed in the statistical literature, start-
ing from the back-calculation method [Brookmeyer and Gail (1988)], initially
devised to obtain an estimate of HIV prevalence. The most popular estimation
methods (so-called “direct”) typically rely on evidence specifically around HIV
prevalence [Giesecke et al. (1994); Petruckevitch et al. (1997); Houweling et al.
(1998); Karon, Khare and Rosenberg (1998); Ramón et al. (2002); McGarrigle
et al. (2006)]. In broad terms, direct methods assume a target population of size
N = ∑

g Ng to be divided into mutually exclusive subgroups g = 1, . . . ,G of cor-
responding size Ng . Each subgroup is characterized by a given degree of risk be-
havior and consists of Ng(1−πg) uninfected and Ngπg infected individuals, where
πg denotes the unknown subgroup-specific HIV prevalence. Prevalent cases Ngπg

can in turn be split into Ngπgδg diagnosed and Ngπg(1 − δg) undiagnosed in-
dividuals, as determined by the (unknown) proportion δg of HIV positive cases
diagnosed within each subgroup. Provided enough cross-sectional surveillance-
or survey-based information is available to estimate subgroup sizes and parame-
ters, the number of subgroup-specific diagnosed and undiagnosed prevalent cases
can be inferred by multiplying corresponding estimates of Ng and πg with δg and
1 − δg , respectively. These in turn can be summed across subgroups to obtain a
point estimate of the total number of HIV infections in the population.

While at a first glance appealing, direct methods suffer from both conceptual
and practical complications. Data may: (i) be insufficient to inform directly rele-
vant parameters, like prevalence in hard-to-reach subgroups; (ii) relate to individu-
als matching multiple risk profiles; and/or (iii) be affected by selection and report-
ing biases. Without the inclusion of supplementary evidence, these problems are
normally tackled via unverifiable assumptions, ad-hoc adjustments and/or removal
of selected data [Goubar et al. (2008)]. Moreover, the common practice of using
only as many items of (highest quality) evidence as the number of parameters of
interest is hardly justified under a decision-making perspective. Decisions around
research prioritization and service provision are more rationally and robustly taken
when driven by a comprehensive, rather than selective, use of available informa-
tion [Claxton, Sculpher and Drummond (2002)], provided the varying degree of
accuracy of the components of the evidence base is correctly recognized and taken
into account in the analysis.

Conversely, multi-parameter evidence synthesis (henceforth MPES) offers a co-
herent analytical framework designed to make rational and exhaustive use of the
whole body of information available [Ades and Sutton (2006)], thus circumventing
the above shortcomings. A disparate pool of evidence is naturally accommodated
within a MPES model structure through its formal specification of the relation-
ships between data and parameters, which dictate how (direct) evidence on the
parameters of interest can be supplemented by (indirect) information available on
arbitrarily complex functions of those parameters. A MPES approach thus presents
a number of advantages over direct methods: first, since it incorporates more data,
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a MPES model is expected to produce more accurate parameter estimates. Conse-
quently, the inferences it produces correctly reflect the uncertainty surrounding the
whole evidence base. Moreover, where there are more data points than estimands,
MPES flags any inconsistency potentially affecting a collection of heterogeneous
items of data. These conflicts are important to detect, as they may highlight biases
in, or misinterpretations of, the data, which can be then addressed.

As an analytical perspective, MPES has in recent years rapidly gained a foot
in medical statistics, health technology assessment and epidemiological model-
ing of infectious diseases like HIV and hepatitis C [Welton and Ades (2005);
Goubar et al. (2008); Presanis et al. (2008); Sweeting et al. (2008); De Angelis
et al. (2009)]. Since 2005 the UK Health Protection Agency employs a MPES
approach to estimate diagnosed and undiagnosed HIV prevalences in the UK us-
ing data from routine surveillance and ad-hoc surveys [HIV & STI Department
(2005, 2006, 2007, 2008, 2009)]. These evidence synthesis exercises have typi-
cally been carried out from a Bayesian perspective, due to its computational con-
venience, coherent decision-theoretic foundation and automatic synthesis between
empirical and prior/subjective information.

This paper describes the development of a Bayesian MPES model to estimate
HIV prevalence in different population subgroups and areas across the Nether-
lands, through reliance on its national surveillance network and an array of regional
registries and surveys. The proposed model produces estimates of prevalence, pro-
portions diagnosed and sizes for a number of pre-defined subgroup profiles at risk
of HIV infection within the target population of 15- to 70-year old individuals
living in the Netherlands in 2007. The paper is organized as follows: Section 2
formally defines the MPES approach adopted. Section 3 describes the body of evi-
dence compiled by the National Institute for Public Health and the Environment in
the Netherlands to enable estimation. Section 4 details the MPES model building
process, and results are illustrated in Section 5. Model criticism and concluding
remarks are outlined in Section 6.

2. The synthesis of evidence. The practice of synthesising evidence from
multiple sources, through the combination of direct and/or indirect information
from differently designed studies, dates well before dedicated work emerged un-
der an explicit MPES header. Besides the vast body of literature on meta-analytis
[see Sutton et al. (2000)], of which MPES represents an extension, a method-
ological stepping stone in the subject of collating direct and indirect evidence
is widely recognized to be the Confidence Profile Method [Eddy and Hasselblad
(1992)]. Instances of complex synthesis include, but are not limited to, indirect
and mixed treatment comparisons [e.g., Dominici et al. (1999); Song et al. (2003);
Lu and Ades (2004); Caldwell, Ades and Higgins (2005)], cross-design synthesis
[Drioycour, Silberman and Chelimsky (1993); Benson and Hartz (2000)], hierar-
chical models [extensively reviewed in, e.g., Sutton et al. (2000); Ades and Cliffe
(2002); Whitehead (2002); Gelman and Hill (2007)], Bayesian melding [Poole and
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Raftery (2000); Fuentes and Raftery (2005); Alkema, Raftery and Clark (2007)],
bias adjustment [Spiegelhalter and Best (2003); Wolpert and Mengersen (2004);
Turner et al. (2009)] and multiple/surrogate endpoint synthesis [Berkey et al.
(1998); Nam, Mengersen and Garthwaite (2003); Burzykowski, Molenberghs and
Buyse (2004)]. These examples attempt to integrate separate sources of evidence
to draw inferences that are not only more efficient than those instead obtained
from a selective “best data” approach, but also consistent with all available infor-
mation.

Formally, a MPES setup follows closely the characterization of the Confi-
dence Profile Method: assume interest lies in learning about I basic parameters
ϑ = (ϑ1, . . . , ϑI ), and that for estimation purposes n data points (i.e., sufficient
statistics) y = (y1, . . . , yn) have been separately collected. Any data point may in-
form either a basic parameter ϑi or some functional parameter ψj = ψj(ϑ), j =
1, . . . , J , which can be expressed as a function of known form of the basic pa-
rameters. Data unbiasedly reporting on basic parameters are normally referred to
as “direct” evidence; samples informing functional parameters are also included
in the evidence base, in that they provide “indirect” evidence about their defining
basic parameters. Indicating with Lr(ϑ;yr) the likelihood contribution from yr to
(elements of) the basic parameter vector ϑ , from the independence of elements
in y the full likelihood model

L(ϑ;y) =
n∏

r=1

Lr(ϑ;yr)(1)

follows.
Within a classical framework, specification of (1) is sufficient to obtain, typi-

cally via maximum likelihood, estimates ϑ̂ of the basic parameters and therefore
of the J functional parameters ψ̂j = ψj(ϑ̂). Additionally, under a Bayesian per-
spective, prior (imperfect or even scarce) knowledge around the basic parameters,
as expressed through some joint prior distribution p(ϑ), may be updated in the
light of the observed data into a posterior distribution p(ϑ |y) summarizing all in-
formation around ϑ (and thus ψ ): that is,

p(ϑ |y) ∝ p(ϑ)L(ϑ;y).

As in recent MPES modeling work, a Bayesian approach is here proposed since its
prior-to-posterior updating mechanism naturally corresponds to the spirit, typical
of MPES, of synthesizing multiple items of evidence. Furthermore, the resulting
posterior distribution fully reflects both the sampling variability affecting such ev-
idence and the parameter uncertainty surrounding the model.

3. The HIV surveillance network in the Netherlands. In line with Goubar
et al. (2008) and Presanis et al. (2008), and compatibly with the socio-demographic
coverage and resolution of available data, the population living in the Netherlands
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at the end of 2007 was classified by mutually exclusive subgroups and areas of
residence. Subgroups are defined as follows:

(1) men who have sex with men (MSM), who have (MSMSTI) or have not
(MSMSTI) attended a sexually-transmitted infections (STI) clinic in 2007;

(2) intravenous drug users (IDU);
(3) female sex workers (FSW);
(4) heterosexuals attending an STI clinic (STI), further divided into Sub-

Saharan Africans (SSASTI), Caribbeans (CRBSTI) and nonmigrants (WSTSTI);
(5) heterosexuals not attending an STI clinic (thus supposedly at low risk

of infection), further divided into Sub-Saharan Africans (SSASTI), Caribbeans
(CRBSTI) and nonmigrants (WSTSTI).

Let G denote the set collecting the above subgroups. Broader groups may
be defined by merging selected risk categories in G , such as migrants from
HIV-endemic areas (MGR .= MGRSTI ∪ MGRSTI) either attending (MGRSTI

.=
SSASTI ∪ CRBSTI) or not attending (MGRSTI

.= SSASTI ∪ CRBSTI) an STI clinic;
likewise, nonmigrant population clusters (WST .= WSTSTI ∪WSTSTI) may be sim-
ilarly defined. Here it is assumed that subgroups in G are ranked by decreasing risk
of infection, so that individuals matching multiple risk profiles are allocated into
the one highest ranked: for instance, FSW who are at the same time IDU would be
classified as IDU.

Group and gender specific estimates of key parameters are derived for three
geographic regions: Amsterdam (A), Rotterdam (R) and the rest of the country
(O). Let Nr indicate the total population residing in region r , assumed known from
census statistics, and Nr,g = ρr,gNr the unknown (to be estimated) absolute size of
subgroup g ∈ G therein. Basic parameters of interest consist of relative subgroup
size ρr,g , HIV prevalence πr,g and proportion diagnosed with HIV δr,g for each
combination of 9 subgroups g and 3 regions r . With group-specific estimates being
sought by gender (and by STI clinic attendance status for MSM) except for the
female-only FSW, the total number of independent basic estimands thus amounts
to

3 × (

#{ρr,g}︷ ︸︸ ︷
9 × 2 − 1 − 2+

#{πr,g}︷ ︸︸ ︷
9 × 2 − 1+

#{δr,g}︷ ︸︸ ︷
9 × 2 − 1) = 147,

given that regional subgroup proportions add up to 1 for each gender:
∑

g ρr,g =
1 ∀r .

The HIV surveillance network in place in the Netherlands provides sufficient in-
formation to infer basic parameters for most region-subgroup combinations. How-
ever, data are partly lacking on proportions diagnosed (notably among migrant
subgroups) and more generally outside main urban areas. This lack of information
complicates, and in certain cases prevents, estimation of relevant basic parame-
ters, so that a direct approach in the spirit of that outlined in Section 1 would be
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inapplicable. On the other hand, an array of registry-based and ad-hoc surveys ef-
fectively targeting functional parameters is available to supplement, from a MPES
perspective, the available direct data, therefore compensating for the poor evidence
on some basic parameters. The overall data set consists of 194 items of data: 65
from Amsterdam, 60 from Rotterdam and 69 from the rest of the Netherlands.

Table 1 details the data collected to directly or indirectly inform HIV epidemic
descriptors in the Amsterdam area; the network of surveillance and survey data
capturing the HIV epidemic in Rotterdam and the rest of the Netherlands is re-
ported as 6.3. The full array of data shows the extent of coverage of national
surveillance and highlights the links between basic and functional parameters. Fig-
ure 1 sketches the flow of information within the network of evidence, which is
described below.

3.1. Relative subgroup sizes. Official figures from Statistics Netherlands
(CBS, source o) in Table 1 provide absolute frequencies Nr of regional population
sizes. Subgroup sizes for migrants not attending an STI clinic, additionally ob-
tained from CBS, are used to estimate proportions ρr,g for g ∈ MGRSTI. It should
be noted, however, that CBS statistics neither track illegal entries into the country
nor distinguish between migrants attending an STI clinic. This implies the follow-
ing: (i) a downward bias undermining, to an undocumented extent, migrant-related
figures; and (ii) the need to decouple STI clinic users from nonusers. Details of
how these biases are accommodated within the MPES modeling framework are
outlined in Section 4.

Broad MSM subgroup sizes are derived from regional published population
studies (Amsterdam and Rotterdam Health Monitors, sources a and r) and ran-
dom population samples (RNG, source s; Pienter Project, source t). These data,
however, enable unbiased estimation only of ρA,MSM, as they either under- or
over-report absolute (and hence relative) sizes of MSM subgroups living outside
Amsterdam. These data are then used to inform minimum and maximum values
of the underlying subgroup sizes. The municipal registry of opiate and methadone
users (source i) presents the same problem when used to inform IDU prevalence
in Amsterdam; the size of the IDU population elsewhere is estimated unbiasedly
through the Pienter study and a municipal report on addiction and homelessness in
Rotterdam (source t).

Direct estimates of subgroup sizes from all STI clinic attending-subgroups are
obtained from the national registry of STI clinic consultations (SOAP, source f).
Finally, unlinked anonymous (UA) HIV surveys (source q), reporting results from
HIV antibody testing of saliva samples from FSW in Amsterdam and Rotterdam,
are available to directly inform ρr,FSW for r = A,R. A published study on FSW in
The Hague (source u) is utilized to inform a range for the frequency of FSW in the
rest of the country.
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TABLE 1
Evidence supporting HIV prevalence estimation in Amsterdam (Nm = 284,002, Nf = 284,067); letters in brackets link to data sources as

detailed in Section 3

Basic parameters Functional parameters

Group Subgroup ρ π δ πδ μa

MSM
STI 2,495/Nm = 0.009 (f) 606/2,723 = 0.223b (f) 79/85 = 0.929 (g)
All 73/776 = 0.094 (a) 48/547 = 0.088 (s) 2,827c (h)

IDU
M (720–1,120)/Nm = 0.003–0.004 (i) 45/167 = 0.269d (k) 31/45 = 0.689e (k) 37/196 = 0.189 (p) 99f (h)

F (180–280)/Nf = 6.34E–04–9.85E–04 (i) 6/30 = 0.200d (k) 3/6 = 0.500e (k) 20/88 = 0.227 (p) 64f (h)

FSW F 7,440/Nf = 0.026 (q) 3/148 = 0.020 (q) 0/3 = 0 (q)

WSTSTI
M 5,702/Nm = 0.020 (f) 10/5,526 = 0.002b (f) 10/(Ng,mπg,m) (f)

F 6,586/Nf = 0.023 (f) 7/6,402 = 0.001b (f) 7/(Ng,f πg,f ) (f)

SSASTI
M 261/Nm = 0.001 (f) 7/237 = 0.030b (f) 7/(Ng,mπg,m) (f)

F 158/Nf = 0.001 (f) 10/151 = 0.066b (f) 10/(Ng,mπg,f ) (f)

CRBSTI
M 899/Nm = 0.003 (f) 4/855 = 0.005b (f) 4/(Ng,mπg,m) (f)
F 771/Nf = 0.003 (f) 6/753 = 0.008b (f) 6/(Ng,f πg,f ) (f)

SSASTI
M 9,434/Nm = 0.033g (o) 1/129 = 0.008 (l) 173h (h)
F 8,233/Nf = 0.029g (o) 0/50 = 0 (l) 252h (h)

CRBSTI
M 31,200/Nm = 0.110g (o) 1/215 = 0.005 (l) 137h (h)
F 36,468/Nf = 0.128g (o) 1/252 = 0.004 (l) 111h (h)

STI
M 8/2,135 = 0.004 (g) 2/8 = 0.250e (g)
F 7/2,580 = 0.003 (g) 3/7 = 0.429e (g)
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TABLE 1
(Continued)

Basic parameters Functional parameters

Group Subgroup ρ π δ πδ μa

Mixed
M 145i (h)
F 207i (h)

Pregnant Nonmigrant 4/13,097 = 1E–04 (m) 3/4 = 0.750 (m)
women Migrant 27/3,413 = 0.008 (m) 21/27 = 0.778 (m)

aTotal Amsterdam residents for each gender are estimated (source: CBS) at 3,522 (M) and 660 (F), also including 141 and 26 cases of unknown exposure
respectively (source: SHM).
bData inform minimum prevalences, due to 278/2,495 = 0.111 (STI MSM), 182/5,702 = 0.032 (M WST), 186/6,586 = 0.028 (F WST), 26/261 = 0.100
(M SSA), 9/158 = 0.057 (F SSA), 45/899 = 0.050 (M CRB) and 19/771 = 0.025 (F CRB) STI users opt-out fractions.
cRegistered cases are underestimated by a 91/98 = 0.929 fraction (source: Schorer Monitor).
dData inform maximum prevalence.
eData inform minimum proportions diagnosed.
fRegistered cases are underestimated by uninformed gender-specific fractions.
gCounts also include STI clinic users, but exclude illegal immigrants.
hRecorded infections include both STI clinic attending and nonattending immigrants.
iMixture of respectively male and female registered infections for IDU, FSW (F only), nonmigrant STI clinic users and other.
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FIG. 1. Schematic representation of the evidence network informing epidemiological parameters
in the MPES HIV model: different samples (squares) provide data-based information (solid arrows)
around key basic (circles) and functional (ellipses) estimands, where the latter are functionally re-
lated (dashed arrows) to the former (i.e., ρr,g,πr,g and δr,g ).

3.2. HIV prevalences. Evidence around HIV prevalence is more fragmented
than that on subgroup sizes. Information relating to MSM individuals is sparse,
with the only direct source of evidence on πA,MSM consisting of the Amsterdam
Cohort Study (source s). Information outside urban concentrations is indirectly
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derived through data on diagnosed prevalence (i.e., πO,MSMδO,MSM) from the
Schorer Monitor (source e), that is, the national institute responsible for the coordi-
nation of primary HIV/STI prevention policies targeting MSM in the Netherlands,
and the Pienter Project. Since these sources are biased downward and upward, re-
spectively, they provide upper and lower limits for the product πO,MSMδO,MSM.
Moreover, the Pienter data set also supplies information on diagnosed low-risk
prevalence outside main urban areas (πO,WSTSTI

δO,WSTSTI
).

Separate UA surveys carried out across the country allow direct estimation of
HIV prevalences among IDU (source k), FSW (sources k and q) and non-STI clinic
attending migrant subgroups (source l). As particularly the UA survey covering the
CRBSTI population is suspected to suffer from underreporting bias, this is specifi-
cally utilized to inform a lower bound for the corresponding prevalence parameter.

SOAP records are likely to underestimate HIV prevalence, due to an opt-out
policy in place on HIV testing in STI clinics across the Netherlands. Information
on HIV prevalence in STI clinic users is limited to those individuals actually sub-
mitting to HIV testing, while only information on attendance is retained from the
remaining patients. Since reluctance to submit to HIV testing is indicative of a
higher risk of HIV infection [Van der Bij et al. (2008)], it is reasonably assumed
that STI clinic users opting out of HIV testing are more likely to be HIV positive.
Details on how opt-in and opt-out contributions to HIV prevalence parameters
are decoupled and modeled are given in Section 4.1.1. UA surveys in Amsterdam
(DWAR; source g) and Rotterdam (ROTan; source v) are also included into the
network of evidence, as they inform HIV prevalence among all STI clinic users
(regardless of ethnicity) in urban areas.

Last, very little information exists on HIV prevalence affecting low-risk sub-
groups. Two indirect anonymized sources can be identified: the national antenatal
screening program (source m), which monitors seroprevalence in pregnant women
across the Netherlands in 2007; and the national registry of blood donors (Sanquin
Foundation, source w), which keeps records of HIV infections among new and
regular donors in the Netherlands in 2007.

Data on blood donors are unlikely to provide unbiased evidence on HIV preva-
lence in the low-risk group, as blood donors are at especially low risk of con-
tracting HIV. Moreover, information from Sanquin is not categorized by either
gender or region, so it captures HIV prevalence at a very coarse subgroup level.
Equally problematic, data from the national antenatal screening program, which
are broadly classified by ethnicity, provide evidence on HIV prevalence on a pop-
ulation subgroup not explicitly contemplated by the model, but rather resulting
from a mixture of female subgroups in G . An assumption of equal representative-
ness, in terms of risk group composition, of pregnant women with respect to the
wider female population is introduced to allow modeling of this indirect (“mixed”)
evidence [Presanis et al. (2008)].
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3.3. Proportions diagnosed with HIV. Many data sources already informing
HIV prevalence also provide evidence on the extent of disease diagnosis within the
target subgroups. This information, however, is markedly sparse: sample sizes are
small and coverage does not extend to all region-subgroup combinations, notably
excluding MSM, MGRSTI and WSTSTI.

Biases also undermine parts of the evidence base. For instance, UA evidence is
known to underestimate δr,IDU, due to the especially hard-to-reach nature of this
subgroup. Data are therefore assumed to inform a lower bound for corresponding
proportions. Similarly, DWAR records on all HIV infections diagnosed in STI clin-
ics in Amsterdam, due to intrinsic design limitations, provide a downward-biased
estimate of δA,STI.

3.4. Diagnosed HIV infections. The HIV Monitoring Foundation (SHM;
source h) compiles and maintains a registry of (almost2) all diagnosed HIV cases
in specialized care in the Netherlands, classified by socio-demographic factors.
Absolute counts from the relevant registry inform the regional risk group compo-
sition of (mixtures of) prevalent HIV diagnoses: namely,

μr,g = Nrρr,gπr,gδr,g,(2)

which form a set of functional parameters (see Figure 1) involving all basic pa-
rameters of interest. The risk subgroup classification adopted by SHM does not
coincide with that in the MPES model, since it includes mixed pregnant women,
SSA, CRB, WST and unclassified individuals (none in G ) as well as MSM and
IDU. Additionally, cross-matching with records from the Schorer Monitor reveals
an underreporting bias affecting SHM records on prevalent MSM cases diagnosed
across the country. Finally, SHM is also known to underreporting IDU cases in
Amsterdam.

4. The MPES model structure. The above array of data on HIV prevalence
in the Netherlands is synthesized in a Bayesian statistical model relying upon suit-
ably chosen standard distributions, in the spirit of case studies already documented
in the literature [e.g., Ades and Sutton (2006); Goubar et al. (2008); Presanis et al.
(2008)].

4.1. Sampling distributions. Count data xr,g from a census- or survey-type
study of fixed size nr,g on subgroup g ∈ G in region r (like, e.g., SOAP records
on HIV diagnoses in STI clinics across the Netherlands) and characterized by a
generic probability parameter λr,g are naturally modeled via Binomial likelihoods

xr,g|λr,g ∼ Bin(nr,g, λr,g).

2In reality, not every diagnosed HIV case makes timely (if any) contact with national treatment
facilities.
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The total number of diagnosed HIV cases mr· on SHM record as in care in re-
gion r is assumed to follow a Poisson distribution with regional rate μr· = ∑

g μr,g ,
with μr,g defined as in (2). At the same time, the subgroup sizes mr,g within each
region are assigned a Multinomial distribution with size parameter mr· and proba-
bility vector ξ r = (ξr,g;g ∈ G) with ξr,g = μr,g

μr· , so that

mr·|μr· ∼ Poi(μr·),
mr,g|mr·, ξ r ∼ Multin(mr·, ξ r ).

In practice, as explained in Section 2, interest does not always lie in the (often
functional) λ or ξ parameters, but rather in the basic parameters they subsume
in their definition. The relationship between basic and functional parameters is
formally determined by the type of mixed, biased or otherwise indirect evidence
available. Examples are illustrated in the following sections.

4.1.1. Mixed subgroup modeling. By classifying individuals into risk groups
other than those being modeled, registry-type records provide information on
proportions of diagnosed cases in each risk category (i.e., ratios of the form
μr,g/

∑
μr,g , rather than δr,g), possibly on suitably defined mixtures of subgroups

in G .
This is, for instance, the case with SHM which, as outlined in Section 3.4, poses

a number of modeling challenges. Unclassified individuals within its records are
distributed proportionately across modeled risk groups, in line with Presanis et al.
(2008). Additionally, records on mixed migrant subgroups are modeled by STI
clinic attendance status via the likelihood term

mr,g|mr·, ξr,g ∼ Bin(mr·, ξr,g)

for g ∈ {SSA,CRB}, where

ξr,SSA = μr,SSASTI + μr,SSASTI

μr·
and

ξr,CRB = μr,CRBSTI + μr,CRBSTI

μr·
,

where ξr,g denotes the fraction of reported regional HIV diagnoses in the SSA =
SSASTI ∪ SSASTI and CRB = CRBSTI ∪ CRBSTI subgroups.

As explained in Section 3.2, estimation of the HIV prevalence πout
r,g unobserved

in subgroups opting out of HIV testing requires some modeling assumption. Here
it is assumed that prevalence among STI clinic users declining an HIV test would
be at least that of patients with the same risk profile but not submitting to the test
[Van der Bij et al. (2008)]. This is formalized for g ∈ {SSASTI,CRBSTI,WSTSTI}
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through the decomposition

πr,g = #infections

Nrρr,g

= #opt-in infections

Nrρr,g

+ #opt-out infections

Nrρr,g

= π in
r,g + πout

r,g ,

where the HIV prevalence π in
r,g among those submitting to the diagnostic test is the

parameter actually being captured by regional SOAP statistics.
In Section 3.2 it was also mentioned that, in addition to SOAP, DWAR and

ROTan provide independent information on HIV prevalence and proportions diag-
nosed among STI clinic users of ethnicity in Amsterdam and Rotterdam, respec-
tively. These aggregate-level data are retained into the model to estimate corre-
sponding parameters for r ∈ {A,R}, that is,

π̃r,STI =
∑

g∈STI ρr,gπr,g∑
g∈STI ρr,g

,

δ̃r,STI =
∑

g∈STI ρr,gπr,gδr,g∑
g∈STI ρr,gπr,g

.

Data on low-risk women from the national antenatal screening program are dealt
with similarly.

4.1.2. Bias modeling. In general, any sample estimating some basic parameter
ϑ with bias 	 �= 0 can be regarded as providing indirect evidence, on some suitable
scale, on ϑ through the functional parameter ψ(ϑ) = ϑ +	. An example of biased
evidence from the case study at hand is offered by CBS immigration records which,
as explained in Section 3.1, do not include illegal entries and are not classified by
STI clinic attendance status. Letting γr,g indicate the proportion of legal migrants
in region r with ethnicity g ∈ {SSA,CRB}, CBS provides unbiased information on
the relative size ρ̃r,g of immigrant subpopulations legally living in the Netherlands:
in functional terms,

ρ̃r,SSA = γr,SSA(ρr,SSASTI + ρr,SSASTI
)

and

ρ̃r,CRB = γr,CRB(ρr,CRBSTI + ρr,CRBSTI
).

Since no auxiliary data are available to inform the number of illegal immigrants,
either overall or by ethnicity, it is assumed that the proportions 1 − γr,g of SSA-
born (CRB-born) illegal migrants in each region ranged between 10% and 20%3

(0% and 5%) across the country [van Veen (2009)].

3Unlike immigrants from Sub-Saharan African countries, most individuals from the Caribbean are
actually entitled lawful entry into the Netherlands.
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Furthermore, downward-biased SHM records on MSM and IDU (see Sec-
tion 3.4) are modeled by dividing parameters μr,MSM and μA,IDU with underre-
porting proportions, in turn separately estimated from the Schorer Monitor and
Amsterdam Cohort Study, respectively.

4.2. Prior distributions. Within a Bayesian framework, parameters of a statis-
tical model are given some prior probability distribution reflecting the imperfect
knowledge around them. In the present work basic parameters are typically as-
signed vague prior distributions. At times, lack of information around a significant
number of parameters required introducing more structured priors to express either
known constraints or expert opinion.

4.2.1. Parameter constraints. A relatively simple example of the need for a
constraining prior distribution was offered by data from the Sanquin Foundation.
As pointed out in Section 3.2, HIV prevalence among blood donors is expected to
be significantly lower than among the wider WSTSTI subgroup. This is accommo-
dated within the model by assuming that information from blood donors provides
a lower bound πL

WSTSTI
for WSTSTI HIV prevalence at a national level, where

πL
WSTSTI

≤ πr,WSTSTI
∀r.

These assumptions are introduced to model any sample that is only known to be
biased, but without any additional information as to the extent of the bias. These
data points are annotated in detail in Table 1. In all cases the modeling structure
is naturally completed by Uniform priors defined over appropriate bounds, as was
done in Section 4.1.1 with the parameters πout

r,g . It is then assumed that πr,WSTSTI
≤

ming∈G πr,g , implying that WSTSTI prevalences should not exceed that exhibited
by any other subgroup in the same region. Last, diagnosed HIV prevalences in any
STI clinic-attending subgroup are conservatively assumed to be at least 20%, to
prevent unrealistically low parameter estimates.

4.2.2. Expert opinion. Sometimes subjective prior distributions were elicited
from collaborating epidemiologists. This was the case with parameters character-
izing low-risk individuals and, more broadly, outside Amsterdam and Rotterdam
(see Section 3.2). Similarly to Goubar et al. (2008) and Presanis et al. (2008), let
πs

r,g denote HIV prevalence among male and female (s = m, f) individuals with
risk profile g �= MSM,FSW in region r ; the male-to-female prevalence log-odds
ratio is then defined as

ηr,g = logitπm
r,g − logitπ f

r,g.

A two-stage hierarchical model is formulated for prevalence log-odds ratios: in the
first level these are pooled across subgroups to produce shrunk estimates η̄r ; the



MPES MODELING OF HIV PREVALENCE IN THE NETHERLANDS 2373

second then pools regional log-odds ratios η̄r across the Netherlands to derive an
overall estimate ¯̄η. The complete model specification is thus given by

ηr,g|η̄r , σr ∼ N (η̄r , σ
2
r ),

(3)
η̄r | ¯̄η, τ, σr ∼ N ( ¯̄η, τ 2).

Vague hyperpriors on the national log-odds ratio ( ¯̄η) and on the regional (σr )
as well as national (τ ) standard deviations, respectively, measuring the degree of
between-subgroup and between-region heterogeneity among prevalence log-odds
ratios, complete the hierarchical model structure.

While absolute HIV prevalences should not be reasonably expected to be
distributed homogeneously across subgroups within each region, corresponding
male-to-female log-odds ratios can instead be more plausibly thought of as arising
from a common region-specific distribution, as implied by (3). Shrinkage toward a
regional mean allows information available around some subgroups to supplement
that around others poorly informed; see, for example, Gelman and Hill (2007) and
annotated bibliography for a comprehensive review of the concept of “borrowing
strength.”

Finally, expert opinion helps: to categorize individuals from HIV-endemic coun-
tries by legal entry status when modeling respective subgroup sizes (as described
in Section 4.1.2); and to infer HIV prevalences πout

r,g among STI clinic-attending
subgroups declining HIV testing (as seen in Section 4.1.1). Additional assump-
tions relating to migrants and STI clinic users are motivated by the expectation of
a higher proportion of HIV diagnoses among STI clinic users, relative to nonusers
with the same ethnicity and sexual orientation. In more formal terms,

δr,SSASTI ≥ δr,SSASTI
,

δr,CRBSTI ≥ δr,CRBSTI

and

δr,MSMSTI ≥ δr,MSMSTI
.

In a similar fashion, the MPES model also includes the constraints

δr,CRBSTI ≥ δr,SSASTI

and

δr,CRBSTI
≥ δr,SSASTI

.

The above are motivated by a better integration in the Netherlands of Caribbean
migrants compared to Sub-Saharan Africans, who tend to be less familiar with
HIV treatment facilities and access routes to health-care services [van Veen et al.
(2005)].
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4.3. Model appraisal. Recalling notation introduced in Section 2, the stan-
dardized deviance of a particular model is defined as

D(y,ϑ) = −2 ln
L(ϑ;y)

L(ϑ̂;y)
,

where L(ϑ̂;y) is the likelihood of the saturated model (where the number of pa-
rameters equals the number of observations), evaluated at the maximum-likelihood
estimate of ϑ .

The use of the posterior mean deviance

D̄(y) = E[D(y,ϑ)|y](4)

has been suggested by Spiegelhalter et al. (2002) as a measure of goodness of fit:
under standard regularity conditions, if the model is true, E[D̄(y)] ≈ n, so that, in
particular, E[D̄(y)] � n would be suggestive of lack of model fit. As the sampling
distribution of D̄(y) is not well understood [Seaman, De Angelis and Presanis
(2011)], this idea is here used informally to identify conflicting information on spe-
cific parameters (see Section 6.1), through the decomposition D̄(y) = ∑n

i=1 D̄(yi )

of the deviance (4) into the individual contributions D̄(yi ) made by each data point
yi , i = 1, . . . , n. The fact that, for a true model, E[D̄(yi )] ≈ 1, can be used to iden-
tify specific data points responsible for a potential lack of fit and to investigate the
likely inconsistency in the information they provide.

5. Results. The MPES model was fitted to the collection of surveillance and
survey data via McMC simulation using the WinBUGS statistical package [Lunn
et al. (2000)]. The code and data required to produce model estimates are provided
as 6.3. The sampling algorithm was started at three independent initial states, with
convergence ascertained by both visual and formal diagnostic means [Gelman and
Rubin (1992)] after 30,000 iterations. After thinning, a 30,000-sized sample from
the full posterior distribution was subsequently retained for drawing inferences.

5.1. Model inferences. Point and interval estimates around basic population
and HIV-related parameters are presented by risk group for the Amsterdam area in
Table 3, together with predicted number of HIV infections classified by diagnosis
status; inferences for the remaining georgraphic areas across the Netherlands are
presented as 6.3.

Most posterior distributions tend to concentrate around parameter values re-
garded as plausible by the collaborating epidemiologists, usually with a reasonable
level of accuracy, given the uncertainty affecting the underlying data. In particu-
lar, predicted numbers of prevalent (Nrρr,gπr,g) and undiagnosed (Nrρr,gπr,g(1 −
δr,g)) cases—the key inputs to health-care decision-making—appear in line with
expectations and concur with results from alternative analytical frameworks [van
Veen et al. (2011)].
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Estimates in general reflect the varying accuracy of regional collection net-
works, as well as local patterns of subgroup composition: the precision of in-
ferences can be seen to broadly decrease when moving from urban concentra-
tions (like Amsterdam, Table 3) into smaller subgroups/areas across the Nether-
lands (see 6.3). This is, for instance, the case with estimated proportions of preva-
lent MSM cases diagnosed outside Amsterdam and Rotterdam (δ̂O,MSM, see 6.3),
which are also significantly lower than those from the two main cities (see, e.g.,
δ̂A,MSM from Table 3). Due to the lack of studies targeting δO,MSM, this can only be
inferred indirectly from diagnosed HIV cases (μO,MSM) and diagnosed prevalence
(πO,MSMδO,MSM), the latter in turn being informed by two biased studies. The un-
certainty around resulting MPES estimates is just a consequence of the synthesis
between such scarce evidence and the mild ranking assumptions on δr,g detailed
in Section 4.2.2.

Estimated proportions of prevalent IDU cases diagnosed in Amsterdam (δA,IDU

from Table 3) are higher than elsewhere in the Netherlands (δr,IDU for r �= A from
6.3). Critical appraisal of δ̂A,IDU is complicated by the large number of data sources
involved. Direct data-based estimates (Table 1) can be seen to be much lower
than those produced by the MPES model (Table 3). At the same time, however,
the number μA,IDU of diagnosed HIV infections, which suffers from underreport-
ing (see Section 3.4), disagrees with direct information separately available on its
building blocks πA,IDU and δA,IDU (see Section 3.3). On the other hand, evidence
listed in Table 1 on πA,IDU and μA,IDU, while biased, is overall firmer than that
around δA,IDU and therefore weighs more in the synthesis process. In broad terms,
records on diagnosed infections can be seen as an “anchor” to the balance between
πA,IDU and δA,IDU: by definition, the same number of diagnosed HIV infections
μr,g can be obtained with different combinations of prevalent cases Nrρr,gπr,g

and fractions diagnosed δr,g . Since available information allows for more accurate
estimation of πA,IDU compared to δA,IDU, the MPES model reconciles conflicting
evidence around μA,IDU by favoring larger estimates of the more uncertain δA,IDU

over correspondingly lower values of πA,IDU.

6. Discussion. Recent applied work has consolidated the role of MPES as
a modeling framework for the estimation of epidemiological indicators of infec-
tious diseases [Ades (2003); Welton and Ades (2005); Ades et al. (2006, 2008);
Goubar et al. (2008); Presanis et al. (2008); De Angelis et al. (2009)]. This has
paved the way for governmental institutions (e.g., the Medical Research Council,
the National Institute for Health and Clinical Excellence and the Health Protection
Agency in the UK) and international bodies (e.g., the World Health Organization
and UNAIDS) to increasingly rely on formal evidence synthesis as an analytic tool
to advance epidemiological understanding and support medical decision-making.
The present work represents an additional step toward expansion of the range of
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applicability of the MPES approach, as it illustrates the experience of HIV preva-
lence estimation in the Netherlands, a western European country with a concen-
trated HIV epidemic and reasonably consolidated and accessible HIV specialist
care.

While relatively extensive in terms of geographic and behavioral coverage, the
array of surveillance and survey data made available by the Dutch National Insti-
tute for Public Health and the Environment required a comprehensive reappraisal at
an evidence synthesis stage. Problems in the evidence body were identified through
an informal use of deviance statistics in terms of conflicting, biased or insufficient
data on certain region-subgroup combinations. Inconsistencies thus detected were
mostly resolved by using additional data and/or expert beliefs provided by col-
laborating epidemiologists. Nevertheless, some evidence of conflict remained, as
indicated by the overall mean posterior deviance of 258.139, compared to a total of
186 observations.4 This conflict is mainly around evidence informing HIV preva-
lence among migrant women in the rest of the Netherlands, for which collection of
further information was consequently recommended. Ultimately, model estimates
broadly met the expectations of the pool of epidemiologists involved in the case
study.

6.1. The role within MPES of direct and indirect evidence. In general, the
process of amalgamating all knowledge available is expected to produce more ac-
curate inferences than those resulting from a partial or no synthesis. However, as
anticipated in Section 1, the availability of multiple evidence sources on given
parameters can lead to the utilization of discrepant, if not conflicting, items of in-
formation. These discrepancies typically originate from an incorrect interpretation
of what the data represent (e.g., unrecognized biases), which consequently are in-
adequately modeled. If these inconsistencies remain unresolved, MPES inferences
may be less accurate than those obtained from using direct information alone. This
is because MPES estimates arise as a compromise between estimates separately
informed by direct and indirect evidence only, the more precise of the two weight-
ing more in the balance. The MPES approach allows resolution of inconsistencies
by explicitly modeling the conflicting items of evidence [e.g., by accounting for
biases in the data, as in Ades and Cliffe (2002); Presanis et al. (2008)]. In practice,
this is achieved via an interactive reappraisal process, involving the statisticians
and collaborating epidemiologists, of the data sources flagged by the MPES model
as conflicting. Ultimately, any unresolved conflict of evidence on some parameter
would be symptomatic of the need for additional information—either in the form
of field data or of expert opinion—to be collected.

4This differs from the nominal total of 194 (see Section 3) in that it excludes overly sparse
samples—like those from SOAP leading to 0 or 1 maximum likelihood estimates of some δr,g
parameters—not meeting the regularity conditions mentioned in Section 4.3.
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TABLE 2
Posterior mean deviances (computed from direct items of evidence only) and posterior medians with

95% credibility intervals for selected basic parameters, obtained from modeling available direct
evidence only, indirect evidence only and all evidence

Inferences (%)

Parameter Deviance Direct Indirect MPES Full MPES

πm
R,CRBSTI

1.664 1.194 (0.416, 2.598)a 1.393 (1.000, 2.194) 1.492 (1.014, 2.451)

π f
R,IDU 1.887 14.489 (8.389, 22.488) 7.461 (4.198, 13.250) 10.060 (6.612, 15.030)

ρA,MSM 2.102 9.372 (7.456, 11.557) 13.750 (10.240, 21.240) 10.750 (9.173, 12.560)
π f

O,CRBSTI
8.463 1.515 (0.529, 3.292) 0.191 (0.164, 0.222) 0.194 (0.166, 0.226)

πm
O,SSASTI

9.346 1.116 (0.162, 3.658)a 3.838 (2.228, 6.214) 3.926 (2.227, 6.345)

aDirect evidence is known to be up- or down-ward biased.

As explained in Section 4.3, examination of the contribution D̄(yi ) provided
by each data point yi to the posterior mean deviance (4) allows identification of
conflicts between direct and indirect evidence: for a given item of direct evidence,
the farther from 1 its contribution to (4), the more marked the discrepancy of the
information it provides on a particular parameter with the remaining available evi-
dence. This is illustrated in Table 2, which for selected basic parameters reports the
posterior mean deviance contributions to (4), based on their respective direct-only
evidence, alongside corresponding inferences obtained from separately utilizing
direct, indirect and full information. The benefit of full evidence synthesis in the
presence of broadly agreeing sources of information is made obvious by estimates
of πm

R,CRBSTI
and π f

R,IDU: respective MPES inferences combine direct and indirect
evidence, whose consistency is highlighted by deviance statistics close to 1, to
produce narrower credibility intervals than those arising from a direct approach.
Moderately discrepant information is instead reconciled within the MPES model
through a compromise between direct- and indirect-only inferences: this, as in the
case of ρA,MSM, yields a credibility interval not significantly narrower than its
direct counterpart, since it conveys not only the uncertainty within, but also the
variability between, the items of evidence it involves.

The same rationale applies to MPES inferences on parameters informed by
conflicting evidence: similarly to ρA,MSM, MPES credibility intervals around
π f

O,CRBSTI
and πm

O,SSASTI
offer a compromise between the direct and indirect in-

formation separately contributing to their estimation. The synthesized inferences,
however, are clearly less accurate than their respective direct versions, due to
the extent of the inconsistency undermining the information on π f

O,CRBSTI
and

πm
O,SSASTI

, as also indicated by the correspondingly large deviance statistics. In this
case, while seemingly offering no immediate advantage over a direct method, the
deviant MPES estimates point to those parts of the evidence body which remain
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TABLE 3
Posterior medians with 95% credibility intervals of epidemiological parameters and total (Nρπ ) and undiagnosed (Nρπ(1 − δ) = Nρπ − μ) infections

from the MPES model of HIV prevalence in Amsterdam

Group Subgroup ρ̂ (%) π̂ (%) δ̂ (%) N̂ρπ N̂ρπ − μ̂

MSM
STI 0.879 (0.844, 0.913) 29.100 (24.910, 33.800) 93.510 (87.810, 97.210) 726 (617, 846) 46 (19, 91)

Non-STI 9.871 (8.298, 11.680) 9.641 (8.074, 11.590) 88.730 (74.900, 95.370) 2,682 (2,380, 3,208) 301 (113, 800)
All 10.750 (9.173, 12.560) 11.250 (9.645, 13.180) 89.640 (78.130, 95.570) 3,404 (3,138, 3,931) 351 (140, 854)

IDU
M 0.332 (0.256, 0.399) 21.365 (15.690, 28.100) 90.700 (69.660, 99.630) 198 (132, 286) 18 (0, 76)
F 0.093 (0.074, 0.108) 27.260 (21.180, 35.520) 93.280 (73.751, 99.700) 71 (54, 95) 4 (0, 22)

MF 0.212 (0.173, 0.248) 22.650 (17.840, 28.590) 90.790 (72.441, 99.610) 270 (198, 362) 24 (0, 90)

FSW F 2.620 (2.561, 2.679) 3.133 (1.192, 6.252) 33.975 (4.950, 69.159) 233 (88, 467) 148 (43, 367)

WSTSTI

M 2.008 (1.958, 2.061) 0.297 (0.184, 0.577) 57.630 (26.940, 91.490) 16 (10, 32) 7 (0, 23)
F 2.318 (2.265, 2.376) 0.168 (0.112, 0.317) 64.910 (32.590, 93.410) 11 (7, 20) 3 (0, 12)

MF 2.164 (2.126, 2.202) 0.234 (0.153, 0.397) 59.070 (32.140, 90.579) 28 (18, 48) 11 (1, 31)

SSASTI

M 0.091 (0.080, 0.102) 3.732 (2.686, 6.541) 79.315 (47.120, 97.290) 9 (7, 16) 1 (0, 8)
F 0.056 (0.048, 0.065) 7.348 (5.947, 9.797) 83.700 (68.730, 97.040) 11 (10, 15) 1 (0, 4)

MF 0.073 (0.067, 0.081) 5.179 (4.160, 7.164) 80.580 (59.801, 96.700) 21 (17, 29) 4 (0, 11)

CRBSTI

M 0.315 (0.295, 0.337) 0.600 (0.452, 1.119) 84.500 (54.521, 97.860) 5 (4, 10) 0 (0, 4)
F 0.271 (0.252, 0.290) 0.917 (0.767, 1.340) 87.630 (73.252, 97.890) 7 (6, 10) 0 (0, 2)

MF 0.293 (0.279, 0.307) 0.763 (0.624, 1.108) 85.360 (66.271, 97.380) 12 (10, 18) 1 (0, 5)

SSASTI

M 3.825 (3.590, 4.071) 1.899 (1.186, 3.278) 64.050 (35.030, 88.019) 206 (129, 356) 73 (17, 222)
F 3.394 (3.161, 3.587) 3.503 (2.877, 4.371) 72.300 (59.431, 83.320) 336 (279, 415) 93 (48, 164)

MF 3.607 (3.430, 3.781) 2.671 (2.142, 3.531) 68.670 (51.800, 81.030) 546 (441, 719) 170 (88, 342)

CRBSTI

M 10.970 (10.650, 11.280) 0.442 (0.292, 0.693) 75.720 (46.760, 91.440) 137 (90, 214) 32 (9, 106)
F 12.910 (12.550, 13.270) 0.375 (0.294, 0.479) 80.270 (66.860, 92.130) 137 (107, 175) 26 (9, 55)

MF 11.940 (11.680, 12.200) 0.407 (0.319, 0.539) 77.410 (59.160, 89.000) 276 (216, 365) 61 (26, 144)

WSTSTI

M 71.710 (69.840, 73.360) 0.065 (0.040, 0.129) 80.750 (39.700, 98.710) 132 (81, 264) 24 (1, 152)
F 78.350 (77.890, 78.800) 0.066 (0.033, 0.109) 85.020 (54.701, 98.800) 147 (72, 242) 21 (1, 81)

MF 75.030 (74.070, 75.880) 0.067 (0.042, 0.107) 82.180 (49.150, 98.530) 284 (180, 455) 48 (3, 216)

Total
M 100 (100, 100) 1.459 (1.335, 1.679) 86.655 (75.320, 93.860) 4,143 (3,791, 4,768) 553 (234, 1,170)
F 100 (100, 100) 0.340 (0.286, 0.422) 67.075 (53.860, 78.700) 965 (812, 1,200) 316 (174, 550)

MF 100 (100, 100) 0.901 (0.831, 1.017) 82.690 (73.560, 89.200) 5,120 (4,720, 5,777) 885 (512, 1,521)
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inconsistent, hence suggesting what type of supplementary information would be
most useful to resolve the discrepancy.

Furthermore, it can be seen that the leverage each evidence source applies to
the final MPES estimate is determined by its corresponding sample size, not by
it being graded as “direct” or “indirect”: this is shown in Table 2 with π f

O,CRBSTI
,

whose estimate is more driven by the stronger indirect evidence. Finally, it is worth
noting that the availability, in a MPES setup, of different sets of inferences, each
resulting from a different level of evidence synthesis, further stresses the robust-
ness and efficiency of a full MPES approach over any arbitrary selection of items
from the complete evidence base. Eventually the MPES approach contributed to a
better understanding of the nature of those evidence conflicts which, pending the
availability of additional data (the provision of which will be discussed for future
updates of national estimates), remain unresolved.

6.2. Prior information in MPES. As detailed in Section 4.2, the presented
MPES model relies on a number of prior assumptions. This is in line with the
MPES spirit of informing the analysis with all available evidence, not just “hard”
data. Often reliance on expert opinion is regarded as inappropriate, in that if mis-
used it could steer the analysis toward partly subjective outcomes. On the other
hand, as notably pointed out in Robert [(2007), Chapter 1], knowledge does not
exclusively derive from field data, but actually builds on it. Substantive prior
information informing the illustrated case study was typically introduced prag-
matically: earlier versions of the MPES model featuring fewer/milder prior as-
sumptions than those listed in Section 4.2 produced overly inaccurate (i.e., with
unduly wide credibility bounds) estimates for some poorly informed subgroup-
region combinations.5 An MPES model can help in identifying those parameters
whose estimation would benefit the most from the collection of larger/additional
samples. To this end, while MPES modeling falls short of indicating which design
strategy would yield largest efficiency gains, insights in this respect are naturally
offered by more formal decision-theoretic tools, such as those based on the con-
cept of value of information [Parmigiani and Inoue (2009), Chapter 13]. While
these are receiving increasing attention by the environmental and health sciences
community, they remain the subject of ongoing investigation and fall outside the
remit of this paper.

6.3. Current HIV prevalence estimation platforms. The MPES approach lends
itself as a valuable framework for national HIV prevalence estimation. Alternative
options have been freely made available in recent years by the UNAIDS Refer-
ence Group on Estimates, Modeling and Projections: that is, the Estimation and

5Results not shown.
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Projection Package [EPP, Ghys et al. (2004); Brown et al. (2006)] and the Work-
book Method [Walker et al. (2004); Lyerla et al. (2006)], each implemented in a
bespoken software package (unlike MPES).

EPP assumes the national population is subdivided into nonoverlapping risk
subgroups, for which historical records of size and HIV prevalence are avail-
able. EPP then fits a simple transmission model to the prevalence data via Sam-
pling Importance Resampling from a Bayesian Melding perspective [Poole and
Raftery (2000)], generating a cluster of epidemic curves for each urban/rural and
subgroup-specific sub-epidemic [Alkema, Raftery and Clark (2007); Raftery and
Bao (2010)]. Resulting national HIV prevalence and incidence projections can then
be fed into the stand-alone Spectrum module [Stover (2004)] to predict over time
the number of individuals living with HIV or AIDS, new HIV infections, etc.

The Workbook Method estimates and projects HIV prevalence in countries lack-
ing an HIV surveillance network consistently monitoring local prevalence patterns
over time. Similarly to MPES and EPP, albeit to a coarser degree, Workbook es-
timates rely on a classification of the target population by risk profiles for which
values of the maximum and minimum size and of HIV prevalence are available.
The various combinations of lower-upper bounds are then cross-multiplied and av-
eraged to obtain informal “plausibility” ranges for national HIV prevalence. This
in turn can be imported into EPP/Spectrum to obtain a wider array of ancillary
HIV epidemic descriptors.

A comparative discussion of the advantages and shortfalls of the three ap-
proaches (MPES, EPP/Spectrum, Workbook) is presented elsewhere [van Veen
et al. (2011)]. Extensive criticism of Workbook estimates has led to a marked shift
toward utilization and development of EPP among epidemiologists and practition-
ers in the field. While MPES has been only recently extended to HIV prevalence
estimation, its flexibility shows promise for application to increasingly varied and
complex data structures. Successful implementations have been carried out to in-
corporate time-series data for the estimation of HIV prevalence and incidence
trends and patterns among MSM in England and Wales [Presanis et al. (2011)].
Additional case studies to be conducted via MPES modeling are currently being
sought among eastern European countries, since this should facilitate the continu-
ing development necessary for the methodology to reach higher levels of dissemi-
nation and maturity.
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SUPPLEMENTARY MATERIAL

Supplement A: HIV prevalence data in Rotterdam and the rest of the
Netherlands (DOI: 10.1214/11-AOAS488SUPPA; .ps). Surveillance- and survey-

http://dx.doi.org/10.1214/11-AOAS488SUPPA
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type data supporting HIV prevalence estimation Rotterdam and the Rest of the
Netherlands.

Supplement B: MPES model and data files (DOI: 10.1214/11-
AOAS488SUPPB; .zip). WinBUGS code of the MPES model and data inputs en-
abling HIV prevalence estimation in the Netherlands.

Supplement C: HIV prevalence estimates in Rotterdam and the Nether-
lands (including and excluding Amsterdam) (DOI: 10.1214/11-
AOAS488SUPPC; .ps). Posterior inferences on HIV prevalence descriptors by risk
subgroup in Rotterdam and the Netherlands (separately including and excluding
Amsterdam and Rotterdam).
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