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EFFICIENT METHODS FOR SAMPLING SPIKE TRAINS IN
NETWORKS OF COUPLED NEURONS1

BY YURIY MISHCHENKO AND LIAM PANINSKI

Columbia University

Monte Carlo approaches have recently been proposed to quantify con-
nectivity in neuronal networks. The key problem is to sample from the condi-
tional distribution of a single neuronal spike train, given the activity of the
other neurons in the network. Dependencies between neurons are usually
relatively weak; however, temporal dependencies within the spike train of
a single neuron are typically strong. In this paper we develop several spe-
cialized Metropolis–Hastings samplers which take advantage of this depen-
dency structure. These samplers are based on two ideas: (1) an adaptation of
fast forward–backward algorithms from the theory of hidden Markov mod-
els to take advantage of the local dependencies inherent in spike trains, and
(2) a first-order expansion of the conditional likelihood which allows for ef-
ficient exact sampling in the limit of weak coupling between neurons. We
also demonstrate that these samplers can effectively incorporate side informa-
tion, in particular, noisy fluorescence observations in the context of calcium-
sensitive imaging experiments. We quantify the efficiency of these samplers
in a variety of simulated experiments in which the network parameters are
closely matched to data measured in real cortical networks, and also demon-
strate the sampler applied to real calcium imaging data.

1. Introduction. One of the central goals of neuroscience is to understand
how the structure of neural circuits underlies the processing of information in
the brain, and in recent years a considerable effort has been focused on mea-
suring neural connectivity empirically [Shepherd, Pologruto and Svoboda (2003);
Bureau, Shepherd and Svoboda (2004); Briggman and Denk (2006); Hagmann
et al. (2007); Sato et al. (2007); Smith (2007); Hagmann et al. (2008); Luo,
Callaway and Svoboda (2008); Bohland et al. (2009); Helmstaedter, Briggman
and Denk (2009)]. “Functional” approaches to this neural connectivity problem
rely on statistical analysis of neural activity observed with experimental tech-
niques such as multielectrode extracellular recording [Hatsopoulos et al. (1998);
Harris et al. (2003); Stein et al. (2004); Paninski (2004); Truccolo et al. (2005);
Santhanam et al. (2006); Luczak et al. (2007); Pillow et al. (2008)] or calcium
imaging [Tsien (1989); Cossart, Aronov and Yuste (2003); Yuste et al. (2006);
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Ohki et al. (2005)]. Although functional approaches [Brillinger (1988); Nykamp
(2003); Nykamp (2005a); Okatan, Wilson and Brown (2005); Srinivasan et al.
(2006); Rigat, de Gunst and van Pelt (2006); Nykamp (2007); Yu et al. (2006);
Kulkarni and Paninski (2007)] have not yet been demonstrated to directly yield
the true physical structure of a neural circuit, the estimates obtained via this type
of analysis play an increasingly important role in attempts to understand infor-
mation processing in neural circuits [Bureau, Shepherd and Svoboda (2004); Sato
et al. (2007); Pillow et al. (2008); Mishchenko, Vogelstein and Paninski (2011)].

Perhaps the biggest challenge for inferring neural connectivity from functional
data—and indeed in network analysis more generally—is the presence of hid-
den nodes which are not observed directly [Nykamp (2005b, 2007); Kulkarni
and Paninski (2007); Vidne et al. (2009); Pillow and Latham (2007); Vakorin,
Krakovska and McIntosh (2009)]. Despite swift progress in simultaneously record-
ing activity in massive populations of neurons, it is still beyond the reach of cur-
rent technology to monitor a complete set of neurons that provide the presynaptic
inputs even for a single neuron [though see, e.g., Petreanu et al. (2009) for some
recent progress in this direction]. Since estimation of functional connectivity relies
on the analysis of the inputs to target neurons in relation to their observed spiking
activity, the inability to monitor all inputs can result in persistent errors in the con-
nectivity estimation due to model misspecification. Developing a principled and
robust approach for incorporating such unobserved neurons, whose spike trains
are unknown and constitute hidden or latent variables, is an area of active research
in connectivity analysis [Nykamp (2007); Pillow and Latham (2007); Vidne et al.
(2009); Vakorin, Krakovska and McIntosh (2009)].

Incorporating these latent variables into connectivity estimation is a challenging
task. The standard approach for estimating the connectivity requires us to compute
the likelihood of the observed neural activity given an estimate of the underlying
connectivity. Computing this likelihood, however, requires us to integrate out the
probability distribution over the activity of all hidden neurons. This latent activity
variable will typically have very high dimensionality, making any direct integration
methods infeasible.

Thus, it is natural to turn to Markov chain Monte Carlo (MCMC) approaches
here [Rigat, de Gunst and van Pelt (2006)]. The best design of such an MCMC
sampler is not at all obvious in this setting, since it may be necessary to develop so-
phisticated proposal densities to capture the dependence of the hidden spike trains
on the observed spiking data in order to guarantee a reasonable proposal accep-
tance rate [Pillow and Latham (2007)]. For example, the simplest Gibbs sampling
approaches may not perform well given the strong dependencies between adjacent
spiking timebins that are inherent to neural activity.

In this paper we develop Metropolis–Hastings (MH) algorithms for efficiently
sampling from the probability distribution over the activity of hidden neurons. We
derive a proposal density that is asymptotically correct in the limit of weak in-
terneuronal couplings, and demonstrate the utility of this proposal density on sim-
ulated networks of neurons with neurophysiologically feasible parameters [Sayer,
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Friedlander and Redman (1990); Abeles (1991); Braitenberg and Schuz (1998);
Gómez-Urquijo et al. (2000); Song et al. (2005); Lefort, Tomm and Sarria (2009)].
We also consider a hybrid MH strategy based on fast hidden Markov model
(HMM) sampling approaches that can be exploited to extend the range of applica-
bility of the basic algorithm to more strongly coupled networks of neurons. In each
case, the resulting MCMC chain mixes quickly and each step of the chain may be
computed quickly.

Of special interest is the problem of sampling from the probability distribu-
tion over unknown spike trains when a neuron is indirectly observed using cal-
cium imaging (instead of electrical recordings) [Tsien (1989); Yuste et al. (2006);
Cossart, Aronov and Yuste (2003); Ohki et al. (2005); Vogelstein et al. (2009)].
This problem can be naturally related to the sampling problem described above.
We develop an approach to incorporate calcium fluorescence imaging observations
directly into our proposal density. This allows us to efficiently sample from the
probability distribution over the activity of multiple hidden neurons given calcium
fluorescence observations, improving on the methods introduced in Mishchenko,
Vogelstein and Paninski (2011).

2. Methods.

2.1. Model definition. We model the activity of individual neurons with a
discrete-time generalized linear model (GLM) [Brillinger (1988); Chornoboy,
Schramm and Karr (1988); Brillinger (1992); Plesser and Gerstner (2000);
Paninski et al. (2004); Paninski (2004); Rigat, de Gunst and van Pelt (2006);
Truccolo et al. (2005); Nykamp (2007); Kulkarni and Paninski (2007); Pillow
et al. (2008); Vidne et al. (2009); Stevenson et al. (2009)]:

ni(t) ∼ Bernoulli[f (Ji(t))�],
(1)

Ji(t) = bi(t) +
N∑

j=1

∑
t ′<t

wij (t − t ′)nj (t
′),

where the spike indicator function for neuron i, ni(t) ∈ {0,1}, is defined on time
bins t of size �. Connectivity between neurons is described via the “connectivity
matrix,” wij (t); the self-terms wii(t − t ′) describe refractory effects (there is a
minimal “refractory” interspike interval of a millisecond or two in most neurons,
e.g.), and wij (t − t ′) represents the statistical effect of a spike in neuron j at time
t ′ upon the spiking rate of neuron i at time t . N is the number of neurons in the
neural population, including hidden and observed neurons, and bi(t) denotes a
baseline driving term (which might depend on some observed covariates such as
a sensory stimulus). We assume that the maximal firing frequency �−1 is much
larger than the typical spiking rate, �−1 � E[ni(t)], in which case the Bernoulli
spiking model in (1) is closely related to models in which ni(t) is drawn from a
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Poisson distribution at every time step (see the references above for a number of
examples).

In the presence of fluorescence observations from a calcium-sensitive indicator
dye (the calcium imaging setting), the model (1) is supplemented by two variables
per neuron i: the intracellular calcium concentration Ci(t) (which is not observed
directly) and the fluorescence observations Fi(t). We model these terms according
to a hidden Markov model governed by a simple driven autoregressive process
[Vogelstein et al. (2009); Mishchenko, Vogelstein and Paninski (2011)],

Ci(t) = Ci(t − �) − �

τc
i

(
Ci(t − �) − Cb

i

) + Aini(t),

(2)
Fi(t) ∼ N [S(Ci(t)),V (Ci(t))].

Thus, under nonspiking conditions, Ci(t) is set to the baseline level of Cb
i . When-

ever the neuron fires a spike, ni(t) = 1, the calcium variable Ci(t) jumps by a
fixed amount Ai , and subsequently decays with time constant τ c

i ; τ c
i is on the

order of hundreds of milliseconds in the cases of most interest here. The fluores-
cence signal Fi(t) corresponds to the count of photons collected at the detector
per neuron per imaging frame. This photon count may be modeled with approxi-
mately Gaussian statistics (Poisson photon count models are also tractable in this
context [Vogelstein et al. (2009)], though we will not pursue this detail here), with
the mean given by a saturating Hill-type function S(C) = C/(C + Kd) Yasuda
et al. (2004) and the variance V (C) scaling with the mean. See Vogelstein et al.
(2009) for full details and further discussion. Note that observations of calcium-
indicator fluorescence are typically performed at a low “frame-rate,” FR, measured
in frames per second. Thus, we will restrict our attention to the case FR < �−1,
that is, Fi(t) observations are available only every few timesteps �. In addition, it
will be useful to define an effective SNR, following Mishchenko, Vogelstein and
Paninski (2011), as

eSNR = E[Fi(t) − Fi(t − �)|ni(t) = 1]
E[(Fi(t) − Fi(t − �))2/2|ni(t) = 0]1/2 ,(3)

that is, the size of a spike-driven fluorescence jump divided by a rough measure of
the standard deviation of the baseline fluorescence.

In Mishchenko, Vogelstein and Paninski (2011) we introduced an expectation-
maximization approach for estimating the model parameters given calcium flu-
orescence data; Pillow and Latham (2007) discuss a related approach for fitting
the model given spiking data recorded from extracellular electrodes. The maxi-
mization step in this context is often quite tractable, involving a separable convex
optimization problem [Smith and Brown (2003); Paninski (2004); Kulkarni and
Paninski (2007); Escola et al. (2011)]. The expectation step is much more dif-
ficult; analytical approaches are often infeasible. Monte Carlo solutions to this
problem require us to obtain samples from the probability distribution over the
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activity of all hidden neurons. This problem is the focus of the present paper. In
the context of the expectation maximization framework, we assume therefore that
an estimate of the model parameters θ is available, and the problem is to obtain
a sample from P(nhidden|nobserved; θ) (in the case that the spike trains of a subset
of neurons is observed directly), or P(nhidden|Fobserved; θ) (in the case that spike
trains are observed indirectly via calcium fluorescence measurements). Here and
throughout we use bold notation for vectors, that is, n(t) = {ni(t), i = 1, . . . ,N}
and n = {ni(t), i = 1, . . . ,N; t ∈ [0, T ]}; θ denotes the set of all parameters in the
model, including b,w,τ c, and A. In cases where no confusion is possible below
we will suppress the dependence on θ .

2.2. A block-wise Gibbs approach for sampling from the distribution over activ-
ity of hidden neurons. In Mishchenko, Vogelstein and Paninski (2011), we noted
that in order to sample from the desired joint distribution over the activity of all
hidden neurons, P(nhidden|·), it is sufficient to be able to efficiently sample se-
quentially from the conditional distribution over one hidden neuron given all of
the other hidden neurons, P(ni |n\i; ·): if this is possible, then a sample from the
full joint distribution, P(nhidden|·), can be obtained using a block-wise Gibbs al-
gorithm. This blockwise Gibbs approach makes sense in this context because the
connectivity weights wij , i �= j , are relatively weak in many neural contexts; for
example, synaptic strengths between cortical neurons are typically fairly small (see
the discussion in Section 2.7 below). However, dependencies between the spike
indicator variables {ni(s), ni(t)} within a single neuron may be quite large if the
time gap |s − t | is small, since the self-terms wii are typically strong over small
timescales; for example, as mentioned above, after every spike a neuron will enter
a refractory state during which it is unable to spike again for some time period.
See Toyoizumi, Rahnama Rad and Paninski (2009) for further discussion.

Thus, we will focus below exclusively on the single-neuron conditional sam-
pling problem, ni ∼ P(ni |n\i; ·). In the next couple sections we will discuss
methods for sampling from P(ni |n\i ); in Section 2.6 we will discuss adapta-
tions of these methods for incorporating calcium fluorescence observations in
P(ni |n\i ,Fi).

2.3. Exact sampling via the hidden Markov model forward–backward proce-
dure. In some special cases we can solve the single-neuron conditional sampling
problem quite explicitly. Specifically, if the support of each of the coupling terms
wij (t) is contained in the interval [0,K�] for some sufficiently small number of
time steps K , then we can employ standard hidden Markov model methods to sam-
ple from the desired conditional distribution exactly. The key is to note that in this
case equation (1) defines a K th-order Markov process; thus, it is convenient to ap-
ply the standard substitution si(t) = {ni(t

′), t − K� < t ′ ≤ t}. Here si(t) denotes
the “state” of neuron i, which is completely characterized by the binary K-string
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FIG. 1. Graphical model describing (A) the K-order Markov model for neural dynamics in terms
of the instantaneous spikes, ni(t), and (B) a simpler Markov model in terms of the grouped states
si (t) = {ni(t

′), t − K� < t ′ ≤ t}.

[e.g., si(t) = “010011100 . . . ”] describing its spiking over the K most recent time
bins. Clearly, the size of the state-space is 2K . See Figure 1 for an illustration.

To exploit this Markov structure, note that we may write the conditional dis-
tributions P [si(t)|si(t − �), s\i (t − �)] and P [s\i (t + �)|s\i (t), si(t)] explicitly
using model (1), and, in fact, it is easy to see that the system

si(t) ∼ P [si(t)|si(t − �), s\i (t − �)],
(4)

s\i (t + �) ∼ P [s\i (t + �)|s\i (t), si(t)]
forms an autoregressive hidden Markov model [Rabiner (1989)], with s\i (t + �)

playing the role of the observation at time t (Figure 1). Thus, if K is not too large,
standard finite hidden Markov model (HMM) techniques can be applied to obtain
the desired spike train samples. Specifically, we can use the standard filter forward-
sample backward algorithm [Rabiner (1989); De Gunst, Künsch and Schouten
(2001)] to obtain samples from P(si |s\i ), from which we can easily transform
back to obtain the desired sample ni . This requires O(T 2K) computation time and
O(2K) memory, since the transition matrix P [si(t)|si(t −�), s\i (t −�)] is sparse
[due to the redundant definition of the state variable si(t)], so the matrix–vector
multiplication required in the transition step scales linearly with the number of
states, instead of quadratically, as would be seen in the general case. Note, for clar-
ity, that in the above discussion we are assuming that the coupling terms wij (t) are
known (or have been estimated in a separate step), and therefore K is also known,
directly from the maximal support of the couplings wij (t); thus, we do not apply
any model selection or estimation techniques for choosing K here.
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2.4. Efficient sampling in the weak-coupling limit. Clearly, the HMM strategy
described above will become ineffective if K becomes larger than about 10 or so,
due to the exponential growth of the Markov state-space. Therefore, it is natural to
seek more general alternate methods. Recall that the interneuronal coupling terms
wij , i �= j , are small. Thus, it seems promising to examine the conditional spike
train probability in the limit of weak coupling (wij → 0), in the hope that a good
sampling method might suggest itself.

The log-likelihood of the hidden spike train ni can be written as

logP(ni |n\i ) = logP(ni ,n\i) + const.
(5)

= ∑
i

∑
t

ni(t) logf [Ji(t)] − f [Ji(t)]� − ni(t)! + const.;

for notational simplicity, we have used a Poisson model for ni(t) given the past
spike trains, but it turns out that we can use any exponential family with linear
sufficient statistics in the following computations; see the Appendix for details.
Now, if we make the abbreviation

J−
i (t) = ∑

s<t

∑
j

wij (t − s)nj (s),(6)

we can easily expand to first order in wij :

logP(ni ,n\i)

= ∑
t

ni(t) logf [Ji(t)] − f [Ji(t)]� − ni(t)!

+ ∑
j �=i

∑
t

nj (t) logf [bj (t) + J−
j (t)] − f [bj (t) + J−

j (t)]� + const.

= ∑
t

ni(t) logf [Ji(t)] − f [Ji(t)]� − ni(t)!

+ ∑
j �=i

∑
t

nj (t) logf [bj (t)] − f [bj (t)]�

+
(
nj (t)

f ′[bj (t)]
f [bj (t)] − f ′[bj (t)]�

)
J−

j (t) + o(w) + const.

= ∑
t

ni(t) logf [Ji(t)] − f [Ji(t)]� − ni(t)!

+ ∑
j �=i

∑
t

(
nj (t)

f ′[bj (t)]
f [bj (t)] − f ′[bj (t)]�

)∑
s<t

∑
k

wjk(t − s)nk(s)

+ o(w) + const.

= ∑
t

ni(t) logf [Ji(t)] − f [Ji(t)]� − ni(t)!(7)
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+ ∑
j �=i

∑
t

∑
s>t

(
nj (s)

f ′[bj (s)]
f [bj (s)] − f ′[bj (s)]�

)
wji(s − t)ni(t)

+ o(w) + const.

= ∑
t

ni(t)

{
logf [Ji(t)] + ∑

j �=i

∑
s>t

f ′[bj (s)]
f [bj (s)] wji(s − t)[nj (s) − f [bj (s)]�]

}

− ni(t)! + o(w) + const.,

where we have used the definition of J−
j (t) in the third equality, rearranged sums

(and changed variables) over t and s in the fourth equality, regathered terms in the
final equality, and retained only terms involving a factor of ni(t) throughout.

Thus, if we note the resemblance between equation (7) and the Poisson log-
probability, we see that one attractive approach is to sample from a spike train
proposal ni(t) with log-rate equal to the term within brackets,

logf [Ji(t)] + ∑
j �=i

∑
s>t

f ′[bj (s)]
f [bj (s)] wji(s − t)

[
nj (s) − f [bj (s)]�];(8)

since we are conditioning on {nj (t)} (i.e., these terms are assumed fixed), and
there are no ni(s) terms affecting the proposed rate of ni(t) for s > t , it is straight-
forward to sample ni(t) recursively forward according to this rate, and then use
Metropolis–Hastings to compute the required acceptance probability and obtain a
sample from the desired distribution.

We note that this approach is conceptually quite similar to that of Pillow and
Latham (2007), who proposed sampling recursively from a process of the form

ni(t) ∼ Poisson[f [J PL
i (t)]�],

(9)
J PL

i (t) = bPL
i + ∑

j

∑
s<t

wPL
ij (t − s)nj (s) + ∑

j �=i

∑
s>t

wPL
ij (t − s)ni(s).

Pillow and Latham (2007) discussed a somewhat computationally-intensive pro-
cedure in which the parameters bPL

i and wPL
ij are reoptimized iteratively via a max-

imum pseudolikelihood procedure. If we reverse the logic we used to obtain equa-
tion (7), it is clear that our approach simply uses an “effective input”

J̃i(t) = bi(t) + J−
i (t)

(10)

+ ∑
j �=i

∑
s>t

f [bi(t)]
f ′[bi(t)]

f ′[bj (s)]
f [bj (s)] wji(s − t)

[
nj (s) − f [bj (s)]�]

in place of J PL
i (t) above. Further, in the special case of an exponential nonlinearity,

f (J ) = exp(J ), all pre-factors in equation (10) cancel out, leading to an expression
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that resembles equation (9) quite closely:

J̃i(t) = bi(t) + ∑
j

∑
s<t

wij (t − s)nj (s)

(11)
+ ∑

j �=i

∑
s>t

wji(s − t)
[
nj (s) − f [bj (s)]�]

.

Thus, in the weak-coupling limit w → 0, and ignoring self-interaction terms wii ,
we see that the optimal “back-inputs” wPL

ij (t − s), s > t , from Pillow and Latham
(2007) may be analytically identified as the time- and index-reversed original for-
ward couplings, wji(−t).

2.5. Hybrid HMM-Metropolis–Hastings approaches. So far we have devel-
oped two methods for sampling from P(ni |n\i ): the HMM method (Section 2.3)
is exact but becomes inefficient when K is large, while the weak-coupling method
(Section 2.4) becomes inefficient when the coupling terms w become large. What
is needed is a hybrid approach that combines the strengths of these two methods.
The key is that the cross-coupling terms wij are typically fairly weak (as empha-
sized above), and the self-coupling terms wii(t) are large only for a small number
of time delays t .

To take advantage of this special structure, we begin by constructing a truncated
HMM that retains all coupling terms wij (t) for t up to some maximal delay tmax,
where tmax is chosen to keep the size of the state-space acceptably small but large
enough so that the coupling terms are captured to an acceptable degree. Then we
include the discarded coupling terms (i.e., terms at lags longer than tmax) via the
first-order approximation. More concretely, denote the conditional probability of
{ni(t)} under the truncated HMM as∏

t

Phmm

(
si(t)|si(t − �);n\i

)
(12)

[recall the correspondence between the K-string state variable si(t) and the binary
spiking variable ni(t)]. Note that this forms an inhomogeneous Markov chain in
the grouped state variables si(t), and an inhomogeneous (tmax/�)-Markov chain
in ni(t), as discussed in Section 2.3. Now we want to incorporate the discarded
coupling terms up to the first order: we simply form the product∏

t

Phmm

(
si(t)|si(t − �); s\i

)
(13)

× exp
(
ni(t)

∑
j �=i

∑
t ′>tmax

wji(t
′ − t)

f ′(bj (t
′))

f (bj (t ′))
[nj (t

′) − f (bj (t
′))�]

)
.

We use this simple product form here in an analogy to the HMM case, in which
we condition on observations by simply forming the (normalized) product of the
prior distribution on state variables and the likelihood of the observations given
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the state variables; in this case, the first term plays the role of the prior over the
state variables si(t) and the second term corresponds to the pseudo-observations
represented by the weak coupling terms incorporating the observed firing of the
other neurons nj . Although, to be clear, this joint probability does not correspond
rigorously to any small-parameter expansion of P(ni |n\i ), we might expect that
this hybrid may outperform alternative strategies such as using only the truncated
HMM, given by equation (12), or only the weak-coupling correction, given by
equation (13), as we will see in the Results section below (see especially Figure 6).
Since this product form for the joint probability is structurally equivalent to the
conditional probability of an HMM in the state variables si(t)—more precisely, the
graphical model [Jordan (1999)] corresponding to the above expression is a chain
in terms of si(t)—we can employ the forward–backward procedure to sample from
this proposal, and then compute the Metropolis–Hastings acceptance probability
to obtain samples from the desired conditional P(ni |n\i ).

Note that the MH acceptance probability will decrease as a function of the di-
mensionality T of the desired spike train and of the size of the discarded weights
wij (t), t > tmax, since for large w the proposal density discussed above will ap-
proximate the target density less accurately. In general, it is necessary to employ
a blockwise approach: that is, we update the spike train {ni(t)} in blocks whose
length is chosen to be small enough that the MH acceptance probability is suf-
ficiently high, but large enough so that the total correlations between blocks are
small and the overall chain mixes quickly. We will examine these trade-offs in
more quantitative detail in the Results section below.

2.6. Efficient sampling given calcium fluorescence imaging observations. In
this section we turn our attention to the problem of sampling from the fluorescent-
conditional distribution ni ∼ P(ni |n\i ,Fi). In principle, we could apply the same
basic approach as before, exploiting the HMM structure of equations (1)–(2) in the
variables {si(t),Ci(t)}; however, the state-space for the calcium variable Ci(t) is
continuous (instead of discrete), requiring us to adapt our methods somewhat.

We will briefly mention two alternative methods before introducing the novel
approach that is the focus of this section. First, in Mishchenko, Vogelstein and
Paninski (2011) we introduced a sampler based on a technique from Neal, Beal
and Roweis (2003). This method requires drawing a rather large auxiliary sample
from the continuous Ci(t) state space and then employing a modified forward–
backward approach to obtain spike train samples. The techniques we will discuss
below do not require such an auxiliary sample, and are therefore significantly more
computationally efficient; we will not compare these methods further here. Sec-
ond, standard pointwise Gibbs sampling is fairly straightforward in this setting:
we write P(Fi ,n) = P(Fi |ni)P (n), and then note that both P(ni(t)|n\i,t ) and
P(Fi |ni ) can be computed easily as a function of ni(t). [To compute the latter
quantity, note from equation (2) that ni(t) only affects the values of Fi(t

′) appre-
ciably for t < t ′ < ncτ

c
i , for a suitably large number of time constants nc.] We will

discuss the performance of the Gibbs approach further below.
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Now we turn to the main theme of this section: to adapt the MH-based block-
wise approach discussed above, it is essential to develop a proposal density that ef-
ficiently incorporates the observed fluorescence data, in order to ensure reasonable
acceptance rates. We use a filter-backward-and-sample-forward approach. The ba-
sic idea is to compute, via a backward recursion, the conditional future observation
density P(Fi(t :T )|si(t),Ci(t);n\i ) given the current state (si(t),Ci(t)), for all
t ≤ T . Then, we may easily sample from a proposal of the form

si(t) ∼ P
(
Fi(t :T )|si(t),Ci(t);n\i

) × P
(
si(t)|si(t − �);n\i

)
,

(14)
Ci(t) = Ci(t − �) − �/τc

i

(
Ci(t − �) − Cb

i

) + Aini(t),

and by appending the samples si(t), 0 < t ≤ T , we obtain a sample from the de-
sired density P(ni |n\i ,Fi). Here the spiking term P(si(t)|si(t − �);n\i ) may
include weak-coupling terms or truncations to keep the state-space tractably
bounded, as discussed in the previous section. [Again, recall the correspondence
between the K-string state variable si(t) and the binary spiking variable ni(t).]

To calculate P(Fi(t :T )|si(t),Ci(t)), we can use the standard backward HMM
recursion Rabiner (1989),

P
(
Fi(t :T )|si(t),Ci(t)

) = P(Fi(t)|Ci(t))P
(
Fi(t + � :T )|si(t),Ci(t)

)
,(15)

with

P
(
Fi(t + � :T )|si(t),Ci(t)

)

= ∑
si (t+�)

∫
dCi(t + �)P

(
Fi(t + � :T )|si(t + �),Ci(t + �)

)
(16)

× P
(
si(t + �)|si(t);n\i

)
P

(
Ci(t + �)|si(t + �),Ci(t)

)
.

We have already discussed the transition probability P(si(t + �)|si(t);n\i ). The
observation density P(Fi(t :T )|si(t),Ci(t)) is a continuous function of Ci(t). We
could solve this backward recursion directly by breaking the Ci(t) axis into a
large number of discrete intervals and employing standard numerical integration
methods to compute the required integrals at each time step. However, this ap-
proach is computationally expensive in the high SNR regime [i.e., where the ratio
of the spike-driven calcium bump Ai is large relative to the fluorescence noise
scale

√
V (Ci(t))], where a fine discretization becomes necessary. Vogelstein et al.

(2009) introduced a more efficient approximate recursion for this density that we
adapt here. The first step is to approximate P(Fi(t :T )|si(t),Ci(t)) with a mixture
of Gaussians; this approximation is exact in the limit of linear and Gaussian flu-
ourescence observations [i.e., in the case that the S(·) is linear and V (·) is constant
in equation (2)], and works reasonably in practice [see Vogelstein et al. (2009) for
further details].
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It is straightforward to see in this setting that we require 2K2T −t mixture com-
ponents to represent P(Fi(t :T )|si(t),Ci(t)) exactly; each term in the mixture cor-
responds to a distinct sequences of spikes ni(t :T ) and initial conditions si(t). For
large T , such a mixture of course cannot be computed explicitly. However, as
Vogelstein et al. (2009) pointed out, we may further approximate the intractable
2K2T −t mixture with a smaller 2K(T − t + 1) mixture, parametrized by the total
number of spikes

∑T
t ′=t ni(t

′) instead of the full spike sequence ni (t :T ) (since
mixture components with the same total number of spikes overlap substantially,
due to the long timescale τ c

i of the calcium decay); thus, we may avoid any catas-
trophic exponential growth in the complexity of the representation.

In order to calculate and update this approximate mixture, we proceed as fol-
lows. At each timestep t we represent P(Fi(t :T )|si(t),Ci(t)) as a mixture of
2K(T − t + 1) Gaussian components with weights ps,k , means ms,k , and vari-
ances vs,k , for 2K distinct states s and k = 1, . . . , T − t + 1. In order to update this
mixture backward one timestep, from time t to time t − �, we first integrate over
Ci(t + �) in equation (16). Since Ci(t) evolves deterministically given ni(t), this
reduces to updating the means and the variances in each Gaussian component,

ms,k → [ms,k − �/τc
i Ci

b − Aini(t)]/[1 − �/τc
i ],

vs,k → vs,k/(1 − �/τc
i )2,(17)

ps,k → ps,k/(1 − �/τc
i ).

Second, we perform the multiplication with the observation density P(Fi(t)|Ci(t))

in equation (15). In the case that Fi(t) is linear and Gaussian in Ci(t), each such
product is again Gaussian, and the means and the variances are updated as follows
[Mc(t) and Vc(t) are the mean and the variance for P(Fi(t)|Ci(t)), resp.]:

ms,k → (
Mc(t − �)vs,k + ms,kVc(t − �)

)
/
(
vs,k + Vc(t − �)

)
vs,k → Vc(t − �)vs,k/

(
vs,k + Vc(t − �)

)

ps,k → ps,k × (
2π

(
vs,k + Vc(t − �)

))−1/2(18)

× exp
[
−Mc(t − �)2

2Vc(t − �)
− m2

s,k

2vs,k

+ (Mc(t − �)vs,k + ms,kVc(t − �))2

2(vs,k + Vc(t − �))Vc(t − �)vs,k

]
.

More generally [i.e., in the case of a nonlinear S(·) or nonconstant V (·) in equa-
tion (2)], standard Gaussian approximations may be used to arrive at a similar
update rule; again, see Vogelstein et al. (2009) for details.

Third, we perform the summation over si(t + �) in equation (16), and reorga-
nize the obtained mixture to reduce the number of components from 2(T − t + 1)

to (T − t + 2) for each si(t). Equation (16) doubles each mixture component into
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two new Gaussians, corresponding to the two terms in the sum for ni(t + �) = 1
or ni(t + �) = 0. For brevity, we denote these terms as w+ = P(s+(t + �)|si(t))
and w− = P(s−(t + �)|si(t)), where s+(t + �) stands for the state si(t + �) de-
scribing a spike at time t + �, and s−(t + �) denotes the absence of a spike at
time t +�. We group all new components in pairs such that each pair corresponds
to a given number of spikes on the interval t :T . Each such pair of Gaussian com-
ponents is then merged into a single Gaussian with equivalent weight, mean, and
variance:

ps,k → w+ + w−,

ms,k → (w+ms+,k−1 + w−ms−,k)/(w
+ + w−),(19)

vs,k → vm
s,k + (w+vs+,k−1 + w−vs−,k)/(w

+ + w−),

and the vm
s,k term corresponds to the variance of the means,

vm
s,k = (

w+(
ms+,k−1(t) − ms,k(t − �)

)2 + w−(
ms−,k(t) − ms,k(t − �)

)2)
(20)

/(w+ + w−).

See Figure 8 below for an illustration.

2.7. Simulating populations of spiking neurons. To test the performance of
different sampling algorithms, we simulated a population of N = 50–800 neurons,
following the approach described in Mishchenko, Vogelstein and Paninski (2011).
Briefly, we simulated a spontaneously active randomly connected neural network,
with each neuron described by model equation (1), and connectivity and functional
parameters of individual neurons chosen randomly from distributions based on the
experimental data available for cortical networks in the literature [Sayer, Fried-
lander and Redman (1990); Braitenberg and Schuz (1998); Gómez-Urquijo et al.
(2000); Lefort, Tomm and Sarria (2009)]. Networks consisted of 80% excitatory
and 20% inhibitory neurons [Braitenberg and Schuz (1998); Gómez-Urquijo et al.
(2000)]. Neurons were connected to each other in a sparse, spatially homogeneous
manner: the probability that any two neurons i and j were connected (i.e., that
either wij or wji was nonzero) was 0.1 [Braitenberg and Schuz (1998); Lefort,
Tomm and Sarria (2009)]. The scale of the connectivity weights wij was matched
to results from the cortical literature, as cited above, and the overall average firing
rate of the networks was set to be about 5 Hz. The connectivity waveforms wij (t)

were modeled as exponential functions with time constant fixed for all neurons
at 10 msec; for the self-coupling terms wii(t), neurons strongly inhibited them-
selves over short time scales (an absolute refractory effect of 2 ms) and weakly
inhibited themselves with an exponentially-decaying weight over a timescale of
10 ms. Finally, we used an exponential nonlinearity, f (·) = exp(·), for simplicity.
Again, see Mishchenko, Vogelstein and Paninski (2011) for full details and further
discussion.
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3. Results. The efficiency of any Metropolis–Hastings sampler is determined
by the ease with which we can sample from the proposal density (and compute
the acceptance probability) versus the degree to which the proposal approximates
the true target P(ni |nobserved). In this section we will numerically compare the
efficiency of the proposal densities we have discussed above. In particular, we will
examine the following proposal densities, listed in rough order of complexity:

• Time-homogeneous Poisson process.
• Point process with log-conditional intensity function given by the delayed input

J−
i (t), equation (6).

• Point process with log-rate determined by full effective input in weak-coupling
approximation J̃i(t), equation (10).

• Hybrid truncated HMM proposal including weak-coupling terms [equation
(13)].

As a benchmark, we also compare these samplers against a simple pointwise Gibbs
sampler, in which we draw from P(ni(t)|ni,\t ,n\i) sequentially over t .

We begin by inspecting a simpler toy model of neural spiking. In this model both
refractory and interneuronal coupling effects are assumed to be short, that is, on
the time scale of ≈20 msec. This simplification allows us to characterize the neural
state fully by K ≈ 10 past time bins (� = 2 ms in these simulations), with the
state variable si(t) = {ni(t

′), t −K� < t ′ ≤ t}. In this case, equation (1) describes
a hidden Markov model with a state space that is small enough to sample from
directly, using the forward–backward procedure detailed in Section 2.3. Thus, in
this case we can obtain the probability distribution P(ni |nobserved) explicitly, and
compare different MH algorithms against a ground truth.

In Figure 2 we inspect the true instantaneous posterior spiking rate ri(t) =
P(ni(t)|nobserved)/� for the hidden neuron in this toy model, calculated exactly
with the forward–backward procedure and estimated using different effective rates
for a few of the MH proposals discussed above. We see that the true rate ri(t)

varies widely around its mean value, implying that the simplest proposal density
(the time-homogeneous Poisson process) will result in rather low acceptance rates,
as indeed we will see below. Similarly, a naive approximation for ri(t) using only
the delayed input J−

i (t) fails to capture much of the structure of ri(t). Incorporat-
ing both the past and the future spiking activity of the observed neurons via the
weak-coupling input J̃i(t) leads to a much more accurate approximation of the
true rate ri(t).

Similar results are obtained when we apply the MH algorithm using these pro-
posal densities (Figures 3 and 4). We use MH with M = 5,000 samples for each
proposal density, with a burn-in period of 1,000 samples, to obtain both the au-
tocorrelation functions (Figure 3) and estimates for the instantaneous spiking rate
ri(t) (Figure 4). We observe that the homogeneous Poisson proposal density leads
to a very long autocorrelation scale, implying inefficient mixing, that is, long runs
are necessary to obtain accurate estimates for quantities of interest such as ri(t).
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FIG. 2. Quantifying the approximation accuracy of two spike train proposal densities. Blue trace:
the true spiking rate ri (t) of one neuron conditioned on the spiking activity of all other neurons in
a population of N = 50 neurons; the rate is computed exactly via forward–backward procedure de-
scribed in Section 2.3. A population of spontaneously spiking neurons with neurophysiologically fea-
sible parameters (Section 2.7) was simulated for a total of 1 sec at a time resolution of � = 2 msec.
Approximate spiking rates obtained using just the delayed input, J−(t) [equation (6)], or full weak–
coupling input, J̃ (t) [equation (11)], are shown in red and green, respectively. (In particular, the
delayed input J−

i (t) and the full effective input J̃i (t) are computed as described in Section 2.4, and

then we approximate the rates using ri (t) = f [J−
i (t)] or f [J̃i (t)].) While the proposal based on

the delayed inputs J−(t) reproduces the true spiking rate somewhat poorly, the weak-coupling J̃ (t)

approximation is significantly more accurate.

FIG. 3. Autocorrelation functions for Gibbs and MH samplers. (The autocorrelation function is
averaged over all time bins in the spike train.) Echoing the results of Figure 2, we see that the
homogeneous (“uniform”) Poisson MH algorithm mixes slowly; the sampler based on the full weak–
coupling input J̃i (t) mixes significantly more quickly than the sampler based on the delayed inputs
J−
i (t). The standard Gibbs sampler performed about as well as the weak-coupling MH sampler. Sim-

ulation details are as in Figure 2, except a 10 sec spike train was simulated here to collect a sufficient
amount of data to distinguish the different algorithms.
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FIG. 4. Comparing the accuracy of MH and Gibbs samplers. Each trace indicates the posterior
spiking rate ri (t) for one hidden neuron, estimated from 5,000 samples using the Gibbs sampler
and the three MH samplers compared in the preceding two figures. The results are similar: the ho-
mogeneous Poisson proposal performs badly [in the sense that the ri (t) computed based on these
5,000 samples approximates the true ri (t) poorly], while the weak-coupling and Gibbs samplers
outperform the sampler based on the delayed inputs J−

i (t) (in terms of variance around the true
rate, computed via the full forward–backward HMM method, shown in blue). MH acceptance rates,
R, varied from R ≈ 0.75 for MH using the homogeneous Poisson proposal to R ≈ 0.98 for MH us-
ing the proposal with full effective input J̃i (t). Simulation details are as in Figure 2. A shorter time
interval of the simulated spike train is shown for greater clarity here.

Indeed, we see in Figure 4 that 5,000 samples are insufficient to accurately recon-
struct the desired rate ri(t). Similarly, for the proposal density based on the delayed
inputs J−(t), the autocorrelation scale is shorter, but still in the range of 10–20
samples. The weak-coupling proposal, which incorporates information from both
past and future observed spiking activity, mixes quite well, with an autocorrela-
tion scale on the order of a single sample, and leads to an accurate reconstruction
of the true rate in Figure 4. Interestingly, the simplest Gibbs sampling algorithm
also performs well, with an autocorrelation length similar to that of the best MH
sampler shown here.

We also study the performance of the weak-coupling proposal as a function
of the strength of the interneuronal interactions in the network, and as a function
of the number of neurons N in the population and the length T of the desired
spike train (Figure 5). The acceptance rate falls at a rate approximately inverse to
the coupling strength, which seems sensible, since this proposal is based on the
approximation that the coupling strength is weak. We observe similar behavior
with respect to the size of the neural population. In particular, the acceptance rate
drops below R ∼ 0.1 when N ∼ 600–1,000. On the other hand, increasing the
spike train length T affects performance to only a moderate degree: even when
the length of the sampled spike train is increased from 10 sec to 160 sec, the
acceptance rate remains above R ∼ 0.4.
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FIG. 5. Acceptance rate of the weak-coupling MH algorithm as a function of coupling strength,
C, neural population size, N , and spike length, T . We simulated sparsely connected networks of
inhibitory and excitatory neurons as described in Section 2.7, with refractory effects up to 10 msec
long and interneural interactions up to 50 msec long. Here a coupling strength value of C = 1
corresponds to the neurobiologically motivated set of parameters in Section 2.7 (also in Figures 2–4);
other values of C corresponded to scaling f (J (t)) → f (C · J (t)) in equation (1). 10 sec of neural
activity was simulated at a time resolution of � = 2 msec, with the neural population spiking at
≈4–5 Hz. 64 trials of 500 samples were simulated, with a new random neural network generated in
each trial, from which we estimated P(ni |n\i ;w). Average acceptance rate R and standard deviation
are shown for such trials, as well as examples of several individual trials (“x”). MH algorithm
performance degraded significantly as C or N increased. On the other hand, for larger values of T

performance degraded much less substantially, and even for the largest T we examined (160 sec) the
acceptance rate remained above R ∼ 0.4.

One would expect that the performance of the MH algorithm in the case of more
strongly-coupled neural networks can be improved by including strong short-term
interaction and refractory effects explicitly into the proposal density. We discussed
such an approach in Section 2.5. For weakly coupled networks, we expect the per-
formance of this hybrid algorithm to be similar to that of our original proposal
density; however, for more strongly coupled neural networks, we expect a better
performance. This expectation is borne out in the simulations shown in Figure 6:
the hybrid sampler (solid black line) performs significantly better than the origi-
nal MH algorithm (dashed black line) and uniformly better than alternative hybrid
strategies, for example, where only the short-scale truncated HMM is used, or
where all interneural interactions are accounted for via the weak-coupling approx-
imation, while the self-terms wii are accounted for via a truncated HMM (gray
lines). Similar results are obtained when we vary the size of the neural popula-
tion N (Figure 6).

In the simulation settings described above (timestep � = 2 msec, with coupling
currents wij lasting up to 50 ms) the MH algorithm (coded in Matlab without any
particular algorithmic optimization) took ≈300–400 sec to produce 1,000 samples
of 1,000 time-ticks each on a PC laptop (Intel Core Duo 2 GHz), dominated by the
time necessary to produce 1,000 spike train proposals using the forward recursion.
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FIG. 6. Acceptance rate of hybrid HMM-MH algorithm [equation (13)] as a function of the overall
coupling strength C and neural population size N . The hybrid algorithm (solid black line) performs
substantially better than the original MH algorithm described in Section 2.4 (dashed black line), and
uniformly better than alternative hybrid strategies, for example, where only a short-scale truncated
HMM is used or where all interneural interactions are accounted for via weak-coupling approxima-
tion (gray lines). Simulations are as in Figure 5.

The hybrid algorithm had a similar computational complexity (tmax = 10 ms in the
truncated HMM). The Gibbs algorithm had a somewhat higher computational cost,
due largely to the fact that updates of the currents Ji(t) for up to 50 ms needed to
be performed during each step, to decide whether to flip the state of each spike
variable ni(t). This resulted in running times for the Gibbs sampler which were
5–20 times slower than for the MH sampler. The Gibbs updates are even slower
in the calcium imaging setting (discussed at more length in the next section), due
to the fact that each update requires us to update Ci(t) over ncτ

c
i timesteps (recall

Section 2.6) for each proposed flip of ni(t).

3.1. Incorporating calcium fluorescence imaging observations. Next we ex-
amine the performance of the method we developed in Section 2.6 for sampling
from P(ni |n\i ,Fi). We find that this sampler performs quite well in moderate and
high SNR settings. More precisely, for values of eSNR greater than ≈5 [recall the
definition of eSNR in equation (3)], the conditional distribution P(ni |Fi ) is lo-
calized near the true spike train quite effectively, leading to a high MH acceptance
rate (Figures 7–9). Indeed, we find [as in Vogelstein et al. (2009)] that it is possible
to achieve a sort of “super-resolution” in the sense that the MH algorithm can suc-
cessfully return P(ni |Fi ) on the time-scale of � = 2 msec even when fluorescence
observations are obtained at a much lower frame-rate (here FR = 50 Hz).

Conversely, for low values of eSNR, for example, eSNR ≈ 1, the backward
density P(Fi (t :T )|ni(t),Ci(t)) becomes noninformative [i.e., relatively flat as a
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FIG. 7. Example of observed fluorescence for low SNR ≈ 2 and relatively high SNR ≈ 5.
� = 2 msec, and calcium imaging frame-rate FR = 50 Hz. 10 sec spike trains were simulated, with
the neural population spiking at ≈4–5 Hz. Actual spikes of the target neuron are indicated with stars.

function of ni(t) and Ci(t)], and the acceptance rate of our MH algorithm reverts
to the rate obtained under the conditions of no calcium imaging data. However,
in the low-to-moderate SNR regime (e.g., eSNR ≈ 2), the performance of the MH
sampler can drop substantially. This is primarily due to deviations in the shape of
P(Fi(t)|Ci(t)) from Gaussian at low SNR. Recall that we made several approx-
imations in computing the backward density: first, this density is truly a mixture
of ∼2T −t components, whereas we approximate it with a mixture of only ∼T − t

components. Second, we assume that each mixture component is Gaussian. Al-
though the fluorescence Fi(t) is described by normal statistics given the calcium

FIG. 8. Example of P(Fi (t :T )|Ci(t)) calculated as a T -mixture of Gaussians, as a function of
time (x-axis) and Ci(t) (y-axis); colorbar indicates the probability density at time t . For reference,
true calcium concentration is shown in red, and “observed” calcium concentration at the imaging
frames [i.e., S−1(Fi(t))] is shown with green “x.” Simulation details are as in Figure 7, first second
(50 frames) is shown for clarity. Time ticks correspond to � = 2 msec. Actual spike times of the target
neuron are shown with red lines.
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FIG. 9. Posterior spike probability, P(ni(t)|n\i ,Fi ), estimated using MH algorithm. While the
MH algorithm performs well for SNR = 5 and above (R ≈ 0.8), for low SNR = 2 acceptance
rate is only R ≈ 0.01. Simulation details are as in Figure 7, first second (50 frames) is shown for
clarity. Time ticks correspond to � = 2 msec. Actual spikes of the target neuron are shown with
asterisks. Note that in the high-SNR case the sampler successfully recovers the smoothly-varying
P(ni(t)|n\i ,Fi ) on a finer time-scale (� ≈ 2 msec) than the original fluorescence imaging data
provided (�FR ≈ 20 msec). However, in the low-SNR case the recovered firing rate is overly spiky
and variable due to the slow mixing speed of the M-H chain; recall that similar behavior is visible in
Figure 4.

variable Ci(t), the relationship between the fluorescence mean and calcium tran-
sient can be nonlinear, and the variance may depend on Ci(t) [recall equation (2)].
This makes the conditional distribution of Ci(t) non-Gaussian in general, particu-
larly at low-to-moderate levels of SNR (where the likelihood term is informative
but not sufficiently sharp to justify a simple Laplace approximation). We tested
the impact of each of these approximations individually by constructing a set of
toy models where these different approximations were made exact; we found that
the non-Gaussianity of P(Ci(t)|Fi(t)), due to nonlinear dependence of Fi(t) on
Ci(t), was the primary factor responsible for the drop in performance. Thus, we
expect that in cases where the saturating function S(·) is close to linear, the sam-
pler should perform well across the full SNR range (Figure 10); in highly nonlin-
ear settings, more sophisticated approximations [based on numerical integration
techniques such as expectation propagation Minka (2001)] may be necessary, as
discussed in the Conclusion section below. The MH sampler here took about twice
as long as in the fully-observed spike train case discussed in the previous section,
largely due to the increased complexity of the backward recursion described in
Section 2.6.

Given the good performance of Gibbs sampling noted in the calcium-free set-
ting discussed above, we also examined the Gibbs approach here. However, we
found that the Gibbs algorithm was not able to procure the samples successfully
given calcium imaging observations. In many cases we found that the Gibbs sam-
pler converged rapidly to a particular spike train close to the truth, but would then
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FIG. 10. Acceptance rate of MH algorithms as a function of the calcium imaging effective SNR,
equation (3). Calculations for two calcium signal models, with a toy linear (gray dashed) and
realistic Hill (solid black) transfer function, S(Ci(t)), are shown. [See Vogelstein et al. (2009);
Mishchenko, Vogelstein and Paninski (2011) for further details on the precise form of the nonlin-
ear function S(Ci(t)); in this case, three or four spikes were sufficient to drive the calcium variable
into a regime where the fluorescence signal was significantly saturated.] Performance of the MH
algorithm is good both for high and low eSNR, but can suffer for intermediate eSNR ≈ 1.1–3. This
performance drop is primarily due to deviations of the conditional distribution P(Ci(t)|Fi(t)) from
the Gaussian shape, as exemplified by the much better performance in the model where S(·) is linear
and P(Ci(t)|Fi(t)) is thus Gaussian. Simulation details are as in Figure 7. For each eSNR 50 simu-
lations for different neural populations were performed, and the average and standard error of these
simulations are shown.

become “stuck.” If initialized again, the sampler would often converge to a differ-
ent spike train, close to the truth, only to become stuck again. This behavior is due
to the fact that the conditional distributions P(ni(t)|ni,\t ,Fi) can be quite sharply
concentrated, leading to poor mixing between spike train configurations with high
posterior probability; of course, this is a common problem with the Gibbs sam-
pler (and indeed, this well-understood poor mixing behavior of the standard Gibbs
chain is what led us to develop the more involved methods presented here in the
first place). Roughly speaking, the extra constraints imposed by the fluorescence
observations in P(ni(t)|ni,\t ,Fi) relative to P(ni(t)|ni,\t ) make the former dis-
tribution more “frustrated,” in physics language, making it harder for the Gibbs
sampler to reach nearby states with high posterior probability and leading to the
relatively slower Gibbs mixing rate in the calcium-imaging setting.

Finally, we applied the hybrid sampler to a sample of real calcium fluores-
cence imaging data (Figure 11), in which F(t) and the true spike times n(t)

were recorded simultaneously. Thus, we have access to ground truth for n(t) here,
though of course only the observed fluorescence F is used to infer p(n(t)|F). The
model parameters were estimated using the EM method discussed in Vogelstein
et al. (2009); again, only the observed F was used to infer the model parameters,
not the true spike times n(t). About 50 spikes’ worth (5,000 fluorescence frames)
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FIG. 11. Application to real data (sample data courtesy of T. Sippy, R. Yuste, J. Vogelstein). Top:
observed F(t) (black) and true spike times (red) were recorded from a single neuron via simultaneous
fluorescence imaging and intracellular patch-clamp electrophysiological recording; see Vogelstein
et al. (2009) for further experimental details. Blue trace indicates posterior P(n(t)|F) computed by
the hybrid sampler. Bottom: p(C(t)|F) computed by the hybrid sampler. Y-axis units are arbitrary
in this case and have been suppressed. Note that the sampler infers spikes and jumps in C(t) at the
correct times.

of data was sufficient to adequately constrain the parameters. Then we applied the
hybrid sampler using these parameters to the subset of data shown in Figure 11.
The sampler does a good job of recovering the spike rate n(t) from the observed
fluorescence data F, and seems to do a reasonable job of recovering the corre-
sponding jumps in p(C(t)|F) that occur at spike times. Note that we do not have
access to the true intracellular calcium concentration C(t), and therefore no ground
truth comparisons are possible for this variable.

4. Conclusion. In this work we developed several Metropolis–Hastings ap-
proaches for sampling from the conditional distribution of neuronal spike trains,
given either the activity of other neurons in the network or calcium-sensitive imag-
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ing observations. The most effective approach was the hybrid method described in
Section 2.5, which takes advantage of the fact that strong short-term temporal de-
pendencies within a single spike train may be handled via forward–backward hid-
den Markov model methods, while weaker long-term dependencies between neu-
rons may be handled with the weak-coupling expansion developed in Section 2.4.
In each case, to sample efficiently from the spike train at time t , it is important
to incorporate not only past but also future information (i.e., spiking observations
from times both before and after t); Pillow and Latham (2007) made a similar
point. In the appendix we show that these methods may be extended rather easily
to other exponential families (not just the Bernoulli and Poisson cases of most in-
terest in the neuroscience setting); further applications to weakly-coupled Markov
chains in nonneural settings seem worth exploring.

Two major avenues are open for future work. First, as noted in Figure 8, the
proposed sampler suffers somewhat in the case of strongly nonlinear fluorescence
observations, largely because in this case our mixture-of-Gaussians approximation
of the backward density P [Fi (t :T )|Ci(t)] can break down. More sophisticated
methods for approximating this density are available, and should be explored more
thoroughly. Second, as discussed in Vogelstein et al. (2010), applications of these
methods to real data are ongoing, via Monte Carlo-Expectation-Maximization
methods similar to those discussed in Vogelstein et al. (2009); Mishchenko, Vo-
gelstein and Paninski (2011), with the fast sampler introduced here replacing the
slower Monte Carlo approaches discussed in Mishchenko, Vogelstein and Paninski
(2011). Calcium-fluorescence imaging methods have exploded in popularity over
the last several years, and we hope the methods presented here will prove useful in
quantifying the cross-correlations and effective connectivity in neural populations
observed via fluorescence imaging and multielectrode recording methods.

APPENDIX: SAMPLING FROM A WEAKLY-COUPLED
EXPONENTIAL FAMILY

As mentioned in Section 2.4, it is straightforward to develop a first-order pro-
posal density in the weak-coupling limit more generally, in the case that the vari-
ables of interest are drawn from an exponential family distribution with linear suf-
ficient statistics. We begin by writing down our exponential family model, using
slightly more compact notation than in Section 2.4:

logp({nit }) = ∑
it

f (Jit )k(nit ) + g(Jit ) + h(nit ),(21)

with the coupling introduced via

Jit = bit + ∑
s>0,j

wij
s nj,t−s .(22)
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As before, we may easily expand the joint log-density to the first order:

logp({nit }) = ∑
t

f (Jit )k(nit ) + g(Jit ) + h(nit )(23)

+ ∑
t,i �=j

[f ′(bjt )k(njt ) + g′(bjt )]
∑
s>0

wji
s ni,t−s

(24)
+ const(nit ) + o(w).

Now if we introduce the assumption that the sufficient statistic is linear, that is,
k(n) = n, then after rearranging the double sum over s and t we obtain

logp({nit }) = ∑
t

[
f (Jit ) + ∑

s>0,i �=j

wji
s [f ′(bj,t+s)nj,t+s + g′(bj,t+s)]

]
nit

+ h(nit ) + const(nit ) + o(w),

where again we have suppressed terms [such as g(Jit )] which do not involve nit ;
thus, to first order, the conditional distribution of {nit } given {njt }, i �= j , remains
within the same exponential family, but with a parameter shift

f (Jit ) → f (Jit ) + ∑
s>0,i �=j

wji
s [f ′(bj,t+s)nj,t+s + g′(bj,t+s)].(25)

In the canonical parameterization, f (J ) = J , standard exponential family theory
[Casella and Berger (2001)] shows that g′(bj,t+s) = −E(nj,t+s |bj,t+s), and the
parameter shift simplifies to

Jit → Jit + ∑
s>0,i �=j

wij
s [nj,t+s − E(nj,t+s |bj,t+s)].(26)

See Beck et al. (2007) for a discussion of some related results.
As a concrete example, consider the Gaussian case:

logp({nit }) = −∑
it

1

2σ 2
i

(nit − Jit )
2 + const.,(27)

with Jit as above. In this case we may define fi(Jit ) = Jit/σ
2
i and gi(Jit ) =

−J 2
it /2σ 2

i ; thus, we find that the parameter shift in this case is

f (Jit ) = Jit

σ 2
i

→ Jit

σ 2
i

+ ∑
s>0,i �=j

w
ij
s

σ 2
j

[nj,t+s − bj,t+s].(28)

In this linear-Gaussian case, we may compute the exact conditional distribution
of ni via the usual Gaussian conditioning formula; the necessary covariance and
inverse covariance matrices may be obtained via standard AR model computations.
It is straightforward to check that this exact formula agrees with equation (28) up
to o(w) terms in the small-w limit.
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