
The Annals of Applied Statistics
2011, Vol. 5, No. 3, 2003–2023
DOI: 10.1214/11-AOAS458
© Institute of Mathematical Statistics, 2011

RISK PREDICTION FOR PROSTATE CANCER RECURRENCE
THROUGH REGULARIZED ESTIMATION WITH SIMULTANEOUS

ADJUSTMENT FOR NONLINEAR CLINICAL EFFECTS1

BY QI LONG, MATTHIAS CHUNG, CARLOS S. MORENO

AND BRENT A. JOHNSON

Emory University, Texas State University, Emory University
and Emory University

In biomedical studies it is of substantial interest to develop risk prediction
scores using high-dimensional data such as gene expression data for clinical
endpoints that are subject to censoring. In the presence of well-established
clinical risk factors, investigators often prefer a procedure that also adjusts
for these clinical variables. While accelerated failure time (AFT) models are
a useful tool for the analysis of censored outcome data, it assumes that co-
variate effects on the logarithm of time-to-event are linear, which is often un-
realistic in practice. We propose to build risk prediction scores through regu-
larized rank estimation in partly linear AFT models, where high-dimensional
data such as gene expression data are modeled linearly and important clini-
cal variables are modeled nonlinearly using penalized regression splines. We
show through simulation studies that our model has better operating char-
acteristics compared to several existing models. In particular, we show that
there is a nonnegligible effect on prediction as well as feature selection when
nonlinear clinical effects are misspecified as linear. This work is motivated
by a recent prostate cancer study, where investigators collected gene expres-
sion data along with established prognostic clinical variables and the primary
endpoint is time to prostate cancer recurrence. We analyzed the prostate can-
cer data and evaluated prediction performance of several models based on the
extended c statistic for censored data, showing that (1) the relationship be-
tween the clinical variable, prostate specific antigen, and the prostate cancer
recurrence is likely nonlinear, that is, the time to recurrence decreases as PSA
increases and it starts to level off when PSA becomes greater than 11; (2) cor-
rect specification of this nonlinear effect improves performance in prediction
and feature selection; and (3) addition of gene expression data does not seem
to further improve the performance of the resultant risk prediction scores.

1. Introduction. In biomedical research it is of substantial interest to build
prediction scores for risk of a disease using high-dimensional biomarker data such

Received March 2010; revised January 2011.
1Supported in part by the National Institutes of Health Grant R01 CA106826, the PHS Grant UL1

RR025008 from the Clinical and Translational Science Award program, National Institutes of Health,
National Center for Research Resources, an Emory University Research Committee grant, and the
Department of Defense IDEA Award PC093328.

Key words and phrases. Accelerated failure time model, feature selection, Lasso, partly linear
model, penalized splines, rank estimation, risk prediction.

2003

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/11-AOAS458
http://www.imstat.org


2004 LONG, CHUNG, MORENO AND JOHNSON

as gene expression data for clinical endpoints subject to censoring, for example,
time to the development or recurrence of a disease. This process typically involves
a feature selection step, which identifies important biomarkers that are predictive
of the risk. When some clinical variables have been established as the risk factors
of a disease, it is preferred to use a feature selection procedure that also accounts
for these clinical variables. Using observed data with censored outcomes, our goal
is to build risk prediction scores using high-dimensional data through feature se-
lection while simultaneously adjusting for effects of clinical variables that are po-
tentially nonlinear.

1.1. A prostate cancer study. This article is motivated by a prostate cancer
study. An important challenge in prostate cancer research is to develop effec-
tive predictors of future tumor recurrence following surgery in order to determine
whether immediate adjuvant therapy is warranted. Thus, biomarkers that could
predict the likelihood of success for surgical therapies would be of great clini-
cal significance. In this study, each patient underwent radical prostatectomy fol-
lowing a diagnosis of prostate cancer, and their radical prostatectomy specimens
were collected immediately after the surgery and subsequently formalin-fixed and
paraffin-embedded (FFPE). More recently, the investigators isolated RNA samples
from these specimens and performed DASL (cDNA-mediated Annealing, Selec-
tion, extension and Ligation) expression profiling on these RNA samples using
a custom-designed panel of 1,536 probes for 522 prostate cancer relevant genes.
The DASL assay is a novel expression profiling platform based upon massively
multiplexed real-time polymerase chain reaction applied in a microarray format,
and, more importantly, it allows quantitative analysis of RNA from FFPE sam-
ples, whereas traditional microarrays do not [Bibikova et al. (2004); Abramovitz
et al. (2008)]. In addition, important clinical variables were also collected, two of
which, prostate specific antigen (PSA) and total gleason score, are known to be
associated with prostate cancer risk and prognosis and are of particular interest.
The primary clinical endpoint in this study is time to prostate cancer recurrence.
The research questions of interest include the following: (1) identifying important
probes that are predictive of the recurrence of prostate cancer after adjusting for
important clinical variables; (2) constructing and evaluating risk prediction scores;
and (3) determining whether the inclusion of the gene expression data improves
the prediction performance. It was also suspected that PSA may have a nonlinear
effect on the clinical endpoint. In this article we will develop and apply a new
statistical model, which allows us to answer these questions.

1.2. Feature selection and prediction in AFT. The accelerated failure time
(AFT) model is an important tool for the analysis of censored outcome data [Cox
and Oakes (1984); Kalbfleisch and Prentice (2002)]. Compared to the more pop-
ular proportional hazard (PH) model [Cox (1972)], the AFT model is, as sug-
gested by Sir David Cox [Reid (1994)], “in many ways more appealing because
of its quite direct physical interpretation,” especially when the response variable is
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not related to survival time. Furthermore, when prediction is of primary interest,
the AFT model is arguably more attractive, since it models the mean of the log-
transformed outcome variable, whereas the Cox PH model estimates the hazard
functions.

Classic AFT models assume that the covariate effects on the logarithm of the
time-to-event are linear, in which case one could use standard rank-based tech-
niques for estimation and inference [Tsiatis (1990); Ying (1993); Jin et al. (2003)]
and perform a lasso-type [Tibshirani (1996)] variable selection [Johnson (2008);
Cai, Huang and Tian (2009)]. Regarding existing variable selection and predic-
tion procedures, there are two unsatisfying products. First, the linearity assumption
may not hold in real data. For example, Kattan (2003a) showed that relaxing the
linearity assumption of the Cox PH model improved predictive accuracy in the set-
ting of predicting prostate cancer recurrence with low-dimensional data. Second,
an unsupervised implementation of the regularized variable selection procedure
can inadvertently remove clinical variables that are known to be scientifically rele-
vant and can be measured easily in practice. We will address both concerns in our
extensions of AFT models.

1.3. Partly linear models. It has been well established that linear regression
models are insufficient in many applications and it is more desirable to allow for
more general covariate effects. Nonlinear modeling of covariate effects is less re-
strictive than the linear modeling approach and thus is less likely to distort the
underlying relationship between an outcome and covariates. However, new chal-
lenges arise when including nonlinear covariate effects in regression models. In
particular, nonparametric regression methods encounter the so-called “curse of
dimensionality” problem, that is, the convergence rate of the resulting estimator
decreases as the dimension of the covariates increases [Stone (1980)], which is
further exacerbated when the dimension of the covariates is high. The partly lin-
ear model of Engle et al. (1986); Härdle, Liang and Gao (2000); Ruppert, Wand
and Carroll (2003) provides a useful compromise to model the effect of some co-
variates nonlinearly and the rest linearly. Specifically, for the ith subject, let Ti

be a univariate endpoint of interest for the ith subject, and Zi = (Z
(1)
i , . . . ,Z

(d)
i )T

(d ×1) and Xi = (X
(1)
i , . . . ,X

(q)
i )T (q ×1) denote high-dimensional features of in-

terest (say, gene expression levels) and established clinical variables, respectively.
Then one partly linear model of interest is

Ti = φ(Xi ) + ϑTZi + εi,(1)

where ϑ = (ϑ1, . . . , ϑd)T is a parameter vector of interest, φ is an unspecified
function, and the errors (εi) are independently and identically distributed (i.i.d.)
and follow an arbitrary distribution function Fε . Special cases of this model have
been used in varied applications across many disciplines including econometrics,
engineering, biostatistics and epidemiology [Härdle, Liang and Gao (2000)]. In
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this article we consider Model (1) for Ti subject to right-censoring, and, hence, the
observed data are {(T̃i, δi,Zi ,Xi)}ni=1, where T̃i = min(Ti,Ci), δi = I (Ti ≤ Ci),
and Ci is a random censoring event. We note that Ti is the log-transformed survival
time in survival analysis, and we refer to Model (1) as partly linear AFT models.

In the absence of censoring, the nonparametric function φ in Model (1) can be
estimated using kernel methods [Härdle, Liang and Gao (2000), references therein]
and smoothing spline methods [Engle et al. (1986); Heckman (1986)]. For partly
linear AFT models, one can extend the basic weighting scheme of Koul, Susarla
and van Ryzin (1981), where one treats censoring like other missing data problems
[Tsiatis (2006)] and inversely weights the uncensored observations by the proba-
bility of being uncensored, that is, so-called inverse-probability weighted (IPW)
estimators. A close cousin to the IPW methodology is censoring unbiased transfor-
mations [Fan and Gijbels (1996), Chapter 5 and references therein], which effec-
tively replaces a censored outcome with a suitable surrogate before complete-data
estimation procedures are applied. Both IPW kernel-type estimators and censor-
ing unbiased transformations in the partly linear model have been studied for AFT
models [Liang and Zhou (1998); Wang and Li (2002)]. Since both aforementioned
approaches make stronger assumptions than rank estimation of AFT models [Cai,
Huang and Tian (2009)], we focus on extending rank estimation to meet our needs.

We here consider a general penalized loss function for partly linear AFT models

min
ϑ,φ∈�

Ln(φ,ϑ) + γ J (φ),(2)

where Ln is the loss function for observed data and J (φ) imposes some type of
penalty on the complexity of φ. Our approach is to replace Ln with the Gehan
(1965) loss function [Jin et al. (2003)] and model φ using penalized regression
splines; our focus is to build risk prediction scores. To minimize the penalized
loss function (2), the insight into the optimization procedure is due, in part, to
Koenker, Ng and Portnoy (1994), who noted that the optimization problem in
quantile smoothing splines can be solved by L1-type linear programming tech-
niques and proposed an interior point algorithm for the problem. Li, Liu and Zhu
(2007) built on this idea to propose an entirely different path-finding algorithm
for more general nonparametric quantile regression models. Along similar lines,
when J (φ) is taken as a L1 norm as in penalized regression splines [Ruppert and
Carroll (1997)], the optimization problem of (2) is essentially an L1 loss plus L1
penalty problem, and can also be solved by L1-type linear programming tech-
niques, which will be exploited in our approach to the optimization problem. Once
the basic spline framework is adopted, we show that our estimator can be gen-
eralized through additive models for q > 1 and variable selection in the linear
component. The additive structure of nonlinear components [Hastie and Tibshi-
rani (1990)] is adopted to further alleviate the issue of curse of dimensionality. To
the best of our knowledge, there is no similar work in the partly linear or partly
additive model for censored or uncensored data using Cox or AFT models, and
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we are the first to conduct systematic investigation on the impact of misspecified
nonlinear effects on prediction and feature selection using AFT models for high-
dimensional data.

More recently, Chen, Shen and Ying (2005) proposed stratified rank estimation
for Model (1) and Johnson (2009) proposed a regularized extension. However,
their stratified methods are fundamentally different from ours in several aspects.
First and foremost, the stratified estimators do not provide an estimate of the non-
linear effect of the stratifying variable, namely, φ̂(X), and, hence, the lasso exten-
sion proposed by Johnson (2009) focused on variable selection only. It is evident
that φ̂(X) plays an important role in prediction; since the stratified estimators in
Johnson (2009) can only use ϑ̂

TZ for prediction, their performance suffers, which
will be shown in our numerical studies. By contrast, our approach provides an
estimate of φ(X), which in turn can be used to improve prediction performance.
Second, the numerical algorithm proposed in Johnson (2009) can only handle the
case of d < n and their numerical studies are limited to such cases, whereas we
here investigate the high-dimensional settings with d > n. Third, as will be shown
in our numerical results, our proposed method outperforms the stratified estimators
in feature selection as well.

The rest of the article is organized as follows. In Section 2 we present the details
of the methodology. In Section 3 we investigate the operation characteristics of
the proposed approach through simulation studies. In Section 4 we analyze the
prostate cancer study and provide answers to the research questions of interest.
We conclude this article with some discussion remarks in Section 5.

2. Methodology.

2.1. Regression splines in partly linear AFT model. We first consider a simpli-
fied case for the partly linear AFT model (1), where Xi is assumed to be univariate,
that is, q = 1 and Xi ≡ Xi , and then Model (1) reduces to

Ti = φ(Xi) + ϑTZi + εi.(3)

Let B(x) = {B1(x), . . . ,BM(x)}T (M ≤ n) be a set of basis functions. We use
a regression spline model for φ(·), which asserts that φ(x) = B(x)Tβ , for some
β ∈ �M . Popular bases include B-splines, natural splines and truncated power
series basis [Ruppert, Wand and Carroll (2003)]. As explained in Section 2.2, we
will use the truncated power series basis of degree p without the intercept term,
that is, B(x) = {x, . . . , xp, (x −κ1)

p
+, . . . , (x −κr)

p
+}T, where (κ1, . . . , κr) denotes

a set of r knots, and (u)+ = uI (u ≥ 0). Hence, M = p + r . Throughout, we use
equally spaced percentiles as knots and set p = 3, that is, the cubic splines, unless
otherwise noted. Let θ ≡ (β,ϑ) denote the parameters of interest. Then, define
θ̂RS ≡ (β̂, ϑ̂) = argminβ,ϑ Ln(β,ϑ), where

Ln(β,ϑ) = n−2
n∑

i=1

n∑
j=1

δi(ei − ej )−(4)
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with ei = T̃i − βT
B(Xi) − ϑTZi and c− = max(0,−c). Because Model (3) has

been “linearized,” we can apply existing rank-based estimation techniques for the
usual linear AFT models. In particular, Jin et al. (2003) noted that the minimizer
of Ln(β,ϑ) is also the minimizer of

n∑
i=1

n∑
j=1

δi |ei − ej | +
∣∣∣∣∣ζ − (βT,ϑT)

n∑
k=1

n∑
l=1

δkDlk

∣∣∣∣∣
for a large constant ζ , where Dlk = {B(Xl)

T,ZT
l }T − {B(Xk)

T,ZT
k }T. Evidently,

the minimizer of this new loss function may be viewed as the solution to a L1 re-
gression of a pseudo response vector V = (V1, . . . , VS)T (S×1) on a pseudo design
matrix W = (W1, . . . ,WS)T (S×(M +d)). It can be readily shown that V is of the
form {δi(T̃i − T̃j ), . . . , ζ }T and W is of the form (δiDij , . . . ,

∑n
k=1

∑n
l=1 δkDlk)

T,
where δi(T̃i − T̃j ) and δiD

T
ij go through all i and j with δi = 1, and, hence, S de-

notes the number of pseudo observations in V. Consequently, we have

θ̂RS = argmin
β,ϑ

S∑
s=1

|Vs − θTWs |.(5)

The fact that θ̂RS can be written as the L1 regression estimate facilitates the nu-
merical techniques, which will be used for our subsequent estimators.

2.2. Penalized regression splines in partly linear AFT models. When regres-
sion splines are used to model nonlinear covariates effects, it is crucial to choose
the optimal number and location of knots (κ1, . . . , κr). It is well known that too
many knots may lead to overfitting, whereas too few may not be sufficient to
capture nonlinear effects [Ruppert, Wand and Carroll (2003)]. The penalized re-
gression spline regression approach [Eilers and Marx (1996); Ruppert and Car-
roll (1997); Li and Ruppert (2008); Claeskens, Krivobokova and Opsomer (2009)]
handles this problem by starting with a very large number of knots and applying
regularization to avoid overfitting. In addition, a penalized regression spline with
L1 penalty corresponds to a Bayesian model with double exponential or Laplace
priors and is known to be able to accommodate large jumps when using the trun-
cated polynomial basis functions [Ruppert and Carroll (1997)]. While the trun-
cated power series basis is often used for penalized regression spline [Ruppert and
Carroll (1997)], one can use other bases such as B-splines basis in penalized re-
gression spline models and the results should not differ as long as two sets of bases
span the same space of functions [Li and Ruppert (2008)]. We adopt the L1 penalty
and consider the penalized regression spline estimator

θ̂PRS(γ ) = argmin
β,ϑ

{
Ln(β,ϑ) + γ

M∑
m=p+1

|βm|
}
,(6)
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referred to as the partly linear AFT estimator, where γ is a regularization pa-
rameter and is used to achieve the goal of knot selection. Using the L1 loss
function in (5) and a data augmentation technique for regularized L1 regression,
θPRS(γ ) may be found easily for a given γ . Namely, define V∗ = (VT,0T

r )T,
W∗ = [WT, (0r×p,Dr ,0r×d)T]T, and Dr = γ Ir , where 0r is a r-vector of zeros,
0r×p (0r×d ) is a r × p (r × d) matrix of zeros and Ir an r-dimensional identity
matrix. Then, θ̂PRS(γ ) is found through the L1 regression of V∗ on W∗. γ can be
selected through cross-validation or generalized cross-validation [Ruppert, Wand
and Carroll (2003)].

2.3. Variable selection and prediction in partly linear AFT models. Finally,
we consider variable selection for the high-dimensional features (Z) in the partly
linear AFT model (3) by extending the penalized regression spline estimator
θ̂PRS(γ ). Let λ be another regularization parameter and consider the minimizer
to the L1 regularized loss function

θ̂PRS(1)(γ, λ) = argmin
β,ϑ

{
Ln(β,ϑ) + γ

M∑
m=p+1

|βm| + λ

d∑
j=1

|ϑj |
}
,(7)

which is also referred to as the lasso partly linear AFT model estimator. The data
augmentation scheme used in Section 2.2 applies to the regularized estimator in
(7) as well. Define the pseudo response vector V† = (VT,0T

r+d)T and the pseudo
design matrix

W† =
[

WT,

(
0r×p γ Ir 0r×d

0d×p 0d×r diag(λ1, . . . , λd)

)T
]T

.

For fixed γ and λ, the estimate is computed as the L1 regression estimate of V† on
W†. To select γ and λ, we can use two approaches, namely, the cross-validation
(CV) and the generalized cross-validation (GCV) [Tibshirani (1997); Cai, Huang
and Tian (2009)]. The K-fold CV approach chooses the values of γ and λ that
maximize the Gehan loss function (4). The GCV approach chooses the values of γ

and λ that maximize the criteria, Ln(β,ϑ)/(1 − dγ,λ/n)2, where n is the number
of observations and dγ,λ is the number of nonzero estimated coefficients for the
basis functions (B(X)) and linear predictors (Z), that is, the number of nonzero
estimates in (β̂, ϑ̂). Note that dγ,λ depends on γ and λ. Once θPRS(1) is obtained,

one can build prediction scores as φ̂(X) + ϑ̂
TZ.

2.4. Extension to additive partly linear AFT models. When Xi is of q-
dimension (q > 1) in the partly linear model (1), estimation is more difficult due
to the issue of curse of dimensionality, even when q is moderately large and in
the absence of censoring. For our partly linear AFT model, we propose to use an
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additive structure for φ to further alleviate the problem, namely, an additive partly
linear AFT model,

Ti =
q∑

j=1

φj

(
X

(j)
i

) + ϑTZi + εi,(8)

where φj ’s (j = 1, . . . , q) are unknown functions. Similar to what is discussed in
Section 2.2, penalized regression splines can be used for the additive partly linear
model to conduct knot selection for each nonlinear effect, φj (X

(j)
i ) (j = 1, . . . , q).

The variable selection for Z as discussed in Section 2.3 can also be extended to
this additive partly linear AFT model. When q is large and it is also of interest
to conduct feature selection among q additive nonlinear effects, one can modify
the regularization term for β in the loss functions (6) and (7); specifically, one can
regularize all β , that is, γ

∑M
m=1 |βm|, as opposed to regularizing only the terms

that correspond to the set of jumps in the pth derivative, that is, γ
∑M

m=p+1 |βm|.
Similarly, we can modify the data augmentation scheme to obtain the parameter
estimates for these models.

2.5. Numerical implementation for high-dimensional data. In Sections 2.1–2.4
the parameters are estimated using L1 regression models through a data augmenta-
tion scheme such as (5), which can be readily implemented using the quantreg
package in R. While this algorithm works well when the total number of parame-
ters is small relative to the sample size, it becomes very slow and starts to fail as
the number of parameters gets close to or greater than the effective sample size af-
ter accounting for censoring. As an alternative, we extended a numerical algorithm
developed for efficient computation of rank estimates for AFT models [Conrad and
Johnson (2010)] to compute the proposed estimators, in particular, the estimator
in (7). In essence, this method approximates a L1 regularized loss function with a
smooth function and subsequently optimizes the smoothed objective function us-
ing a Limited-Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm [Nocedal
and Wright (2006)], which is implemented in Matlab. This method speeds up the
computation substantially and can handle the case of high-dimensional data. We
have compared these two algorithms and they give very similar results when both
are applicable, that is, Z is of low dimension.

3. Simulation studies. We conducted extensive simulation studies to evaluate
the operating characteristics of the proposed models including estimation, feature
selection and, most importantly, prediction, in comparison with several existing
models.

3.1. Estimation. We considered a case of single Zi and single Xi , that is,
Model (3), and focused on the estimation of the regression coefficient ϑ and
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its sampling variance. In this setup, no feature selection is involved. To facili-
tate comparisons, our simulation study details were adapted from those given by
Chen, Shen and Ying (2005) and Johnson (2009). The random variable Zi was
generated from a standard normal distribution, and Xi was generated through
Xi = 0.25Zi + Ui , where Ui follows a uniform distribution Un(−5,5) and com-
pletely independent of all other random variables. In Model (3) we let ϑ = 1
and εi ∼ N(0,1) and mutually independent of (Xi,Zi). We considered linear and
quadratic effects, that is, φ(Xi) = 2Xi and φ(Xi) = X2

i , respectively. Finally, cen-
soring random variables were simulated through Ci = φ(Xi) + Ziϑ + U∗

i , where
U∗

i follows Un(0,1). As a result, the proportion of censored outcomes ranges from
20% to 30%. We compared several estimators, the partly linear AFT model (PL-
AFT) with r knots (r = 2 and 4), which was fit using the loss function (6), the
stratified estimator in Chen, Shen and Ying (2005) (SK -AFT) where K denotes
the number of strata, the standard linear AFT model with both Xi and Zi modeled
linearly (AFT), and an AFT model with true φ plugged in (AFT-φ). Two sample
sizes were used, n = 50 and n = 100.

Our simulation results show that the CV and GCV methods give similar results,
so we report only the results using GCV. Table 1 summarizes the mean bias, stan-
dard deviation (SD) and mean squared error (MSE) of ϑ̂ over 200 Monte Carlo
data sets, and it also provides the range of standard errors for the performance
measure in each column, where all numbers are multiplied by 1,000. In all cases,
the proposed partly linear AFT estimator outperforms the stratified estimators as
well as the standard AFT estimator in terms of MSE, and its performance is com-
parable to that of the estimator using the true φ. The number of knots has little
impact on the performance of our proposed estimator. The standard linear AFT es-
timator exhibits the largest bias and MSE when φ is not linear, indicating that it is
important to adjust for the nonlinear effect of X even when one is only interested
in the effect of Z. While the stratification step in the SK -AFT method results in re-
duced bias when the number of strata is large, it has larger SD and MSE compared
to PL-AFT. Furthermore, in the settings of our interest, no method has been pro-
posed for choosing K in the SK -AFT method, which is not obvious either, leading
to a further shortcoming of this method over the others.

3.2. Feature selection. In our second set of simulation studies, we focused on
simultaneous estimation and feature selection for Zi as well as prediction. The
regression function still consisted of a nonlinear effect of a single covariate Xi ,
but we increased the dimension of the linear predictors (Zi) to d = 8. Zi were
generated from a multivariate normal with a mean equal to 0d and (j, k)th el-
ement of the covariance matrix equal to ρ|j−k| (ρ = 0,0.5,0.9). The covariate
Xi was generated through Xi = 0.5Z1i + 0.5Z2i + 0.5Z3i + Ui , where Ui is
Un(−1,1) and independent of all other random variables. This corresponds to
a case where Z1 and Z2 have both direct and indirect effects through X on the
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TABLE 1
Simulation results for parameter estimation (ϑ̂ ) based on 200 Monte Carlo data sets, where ϑ = 1

φ(X) = 2X φ(X) = 2X2

Bias SD MSE Bias SD MSE

n = 50
PL-AFT (r = 2) −12 159 25 −2 166 28
PL-AFT (r = 4) −10 159 25 −1 168 28
S5-AFT 95 288 92 −65 436 195
S10-AFT 28 223 50 −43 299 91
S25-AFT 31 303 93 −38 381 146
AFT −4 153 23 21 1,214 1,475
AFT-φ −7 154 24 −5 158 25

n = 100
PL-AFT (r = 2) −9 113 13 −2 115 13
PL-AFT (r = 4) −9 113 13 −1 115 13
S10-AFT 44 163 29 −23 210 45
S25-AFT 1 157 25 −9 185 34
S50-AFT −7 193 37 8 209 44
AFT −8 113 13 71 755 575
AFT-φ −9 113 13 −2 111 12

Range of SEs 8–21 NA 1–12 8–86 NA 1–209

PL-AFT, partly linear AFT model with r knots; SK -AFT, stratified AFT estimator with K strata;
AFT, standard linear AFT model with both Xi and Zi modeled linearly; and AFT-φ, AFT model
with true φ plugged in. Range of SEs, the range of SEs for the corresponding performance measure
in each column. NA, SE of a performance measure cannot be computed for SD. All numbers are
multiplied by 1,000.

outcome, whereas Z3 has only an indirect effect on the outcome. The true re-
gression coefficients for Z are set to ϑ = (,,0,0,0,,0,0)′, where  = 1
and 0.5 represent a strong signal (effect size) and a weak signal (effect size),
respectively. In this case, the three important covariates (namely, Z1, Z2 and
Z6) can potentially be highly correlated. The effect of Xi was generated from
φ(Xi) = (0.2 ∗ Xi + 0.5 ∗ X2

i + 0.15 ∗ X3
i )I (Xi ≥ 0) + (0.05 ∗ Xi)I (Xi < 0),

where I (·) is the indicator function. This setup mimics a practical setting where the
effect of the clinical variable (X) on the outcome is ignorable when X is less than
a threshold level (X = 0); but as X increases past the threshold level, its effect be-
comes appreciable. The log survival time Ti was then generated using equation (3),
where εi follows N(0,1) and is mutually independent of (Xi,Zi). The censoring
random variable was simulated according to the rule, Ci = φ(Xi) + ϑT Zi + U∗

i ,

where U∗
i follows the uniform distribution Un(0,6). The resulting proportion of

censoring ranges from 20% to 30%.
We compared six models: (1) the lasso partly linear AFT model (Lasso-PL)

with r = 6 which was fit using the loss function (7); (2) the lasso stratified model



RISK PREDICTION WITH REGULARIZED PARTLY LINEAR AFT MODEL 2013

(Lasso-SK ) [Johnson (2009)] where K denotes the number of strata; (3) the lasso
linear AFT model assuming a linear effect for both Xi and Zi (Lasso-L); (4) the
standard linear AFT model (AFT); (5) the lasso linear Cox PH model assuming a
linear effect for both Xi and Zi (Lasso–Cox) [Tibshirani (1997); Goeman (2010)];
and (6) the so-called oracle partly linear model (Oracle) with ϑ3, ϑ4, ϑ5, ϑ7 and ϑ8
fixed at 0 and r = 6 for the penalized splines. We are not aware of any existing Cox
PH model that can handle both nonlinear covariate effects and feature selection in
high-dimensional data. Since the data were generated under a true AFT model
and the PH assumption underlying the Cox model is violated, we are primarily
interested in feature selection when comparing the Lasso–Cox model. The oracle
model, while unavailable in practice, may serve as an optimal benchmark for the
purpose of comparisons. In each instance of regularized methods, GCV was used
to tune the regularization parameters, λ and/or γ .

In each simulation run, a training sample of size n = 125 and a testing sam-
ple of size 10n were generated. To evaluate parameter estimation, we moni-
tored the sum of squared errors (SSE) for ϑ̂ defined as (ϑ̂ − ϑ)T(ϑ̂ − ϑ). To
evaluate feature selection, we monitor the proportion of zero coefficients being
set to zero (PC ≡ ∑d

i=1 I (ϑ̂i = 0)I (ϑi = 0)/
∑d

i=1 I (ϑi = 0)), for which 1 is
the optimal value, and the proportion of nonzero coefficients being set to zero
(PI ≡ ∑d

i=1 I (ϑ̂i = 0)I (ϑi 
= 0)/
∑d

i=1 I (ϑi 
= 0)), for which 0 is the optimal
value. To assess the prediction performance, we considered two mean squared
prediction errors, MSPE1 ≡ (10n)−1 ∑10n

j=1[φ̂(Xj ) − φ(Xj ) + (ϑ̂ − ϑ)TZj ]2, and

MSPE2 ≡ (10n)−1 ∑10n
j=1[(ϑ̂ − ϑ)TZj ]2, where j goes through the observations

in the testing sample. MSPE1 is the squared prediction error using both nonlinear
and linear components in Model (3), and MSPE2 is the squared prediction error
using only linear components in Model (3). For AFT models, MSPE1 and MSPE2
can be considered as metrics of prediction performance on the log-transformed
scale. Note that the stratified Lasso model does not provide an estimate of φ(X),
so MSPE1 is not applicable for Lasso-SK . For each simulation setting, the perfor-
mance measures were averaged over 400 Monte Carlo data sets. For the perfor-
mance measure in each column, the range of standard errors was computed.

Our simulation results are summarized in Table 2. First, the performance of the
standard linear AFT model (AFT) is not satisfactory in terms of both prediction
and feature selections. We now restrict the discussion to the regularized estima-
tors. In all cases, our Lasso-PL estimator exhibits lowest SSE, MSPE1 and MSPE2
among regularized estimators; in particular, its MSPE1 and MSPE2 are compara-
ble to that of the Oracle estimator and are substantially lower than other regular-
ized estimators. In terms of feature selection, Lasso-PL, Lasso-L and Lasso–Cox
correctly identify the majority of the regression coefficients that are zero (PC);
Lasso-PL has higher PC than Lasso-L when ρ = 0 or 0.5 and their PC’s are com-
parable in the presence of high correlation (ρ = 0.9); and Lasso-L has consider-
ably higher PC than Lasso–Cox in all cases. By comparison, the lasso stratified



2014 LONG, CHUNG, MORENO AND JOHNSON

TABLE 2
Simulation results for evaluating feature selection and prediction performance based on 400 Monte

Carlo data sets, where n = 125 and d = 8

� = 1 � = 0.5

SSE PC PI MSPE1 MSPE2 SSE PC PI MSPE1 MSPE2

ρ = 0
Lasso-PL 8 734 0 244 67 8 724 0 237 67
Lasso-S2 23 482 0 NA 186 23 453 1 NA 185
Lasso-S4 16 582 0 NA 127 15 565 2 NA 122
Lasso-S8 20 424 0 NA 161 20 438 8 NA 159
Lasso-L 12 639 0 997 100 12 611 0 990 99
Lasso–Cox NA 488 0 NA NA NA 543 17 NA NA
AFT 18 0 0 982 142 18 0 0 982 143
Oracle 4 1,000 0 153 29 4 1,000 0 207 30

ρ = 0.5
Lasso-PL 11 767 0 225 74 11 777 2 296 75
Lasso-S2 38 403 0 NA 341 40 412 8 NA 353
Lasso-S4 21 569 0 NA 171 20 599 5 NA 146
Lasso-S8 26 540 0 NA 218 26 594 15 NA 204
Lasso-L 19 720 0 2,894 126 19 748 16 2,943 121
Lasso–Cox NA 562 0 NA NA NA 612 14 NA NA
AFT 33 0 0 2,839 212 32 0 0 2,878 202
Oracle 5 1,000 0 175 31 5 1,000 0 248 32

ρ = 0.9
Lasso-PL 45 739 2 373 118 39 758 113 337 130
Lasso-S2 126 502 16 NA 592 106 500 152 NA 595
Lasso-S4 77 582 4 NA 184 60 596 124 NA 170
Lasso-S8 118 236 6 NA 338 96 424 135 NA 390
Lasso-L 92 751 31 6,571 245 65 778 270 6,738 262
Lasso–Cox NA 596 8 NA NA NA 651 153 NA NA
AFT 224 0 0 6,483 337 226 0 0 6,612 354
Oracle 17 1,000 0 320 55 17 1,000 0 288 54

Range of SEs 0.1–8 0–24 0–5 8–76 1–23 0.2–8 0–26 0–13 10–81 1–25

Lasso-PL, Lasso partly linear AFT model; Lasso-SK , Lasso stratified model with K strata; Lasso-
L, Lasso linear AFT model assuming a linear effect for both Xi and Zi ; Lasso–Cox, Lasso linear
Cox model assuming a linear effect for both Xi and Zi ; AFT, standard AFT model assuming linear
effects for both Xi and Zi without regularization; and Oracle, oracle partly linear model with zero
coefficients being set to 0. , effect size; SSE, sum of squared errors for ϑ̂ ; PC , proportion of
zero coefficients being set to zero; PI , proportion of nonzero coefficients being set to zero; MSPE1,
squared prediction error using both nonlinear and linear components; and MSPE2, squared prediction
error using only linear components. Range of SEs, range of SEs for the corresponding performance
measure in each column. NA, a performance measure is not applicable for an estimator. All numbers
are multiplied by 1,000.
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models (Lasso-SK ) only identify less than 30% of true zeros in some cases and
roughly half of the true zeros in the rest of the cases. When there is no correlation
and the signal is strong, all Lasso estimators successfully avoid setting nonzero
coefficients to zero, that is, PI equal to or close to 0. However, as the correlation
gets stronger, PI increases for all estimators to various degrees. When ρ = 0.9, PI

becomes appreciable for Lasso-L, whereas it remains moderate for Lasso-PL.

3.3. Prediction in the presence of high-dimensional data. We conducted a
third set of simulations to explore the impact of noise levels on the prediction
performance in the presence of high-dimensional data (i.e., d ≥ n), and com-
pared four models, namely, Lasso-PL, Lasso-SK , Lasso-L and Lasso–Cox. We
note that the standard AFT model is not applicable for high-dimensional data.
The simulation setup paralleled that in Section 3.2. The differences are noted as
follows. The sample size was fixed to n = 100 and the number of linear predic-
tors was d ≥ 100, and let ϑ1 = ϑ26 = ϑ51 = ϑ76 = 1 and all other ϑ’s be 0. Let
X = 0.5Z10 + 0.5Z35 + 0.5Z60 +Ui , where Ui follows Un(−1,1). Through these
changes, we investigated a case where the significant linear predictors (Z) are not
highly correlated. The censoring random variable was generated similar to that in
Section 3.2 with a different uniform distribution such that the censoring proba-
bility is approximately 40%. Since MSPE1 and MSPE2 are not applicable in the
presence of censoring in practice, we computed another metric of prediction per-
formance using the testing sample, namely, the c statistic for censored data, which
measures the proportion of concordance pairs based on observed and predicted
outcomes and ranges between 0 and 1 with 1 indicating perfect prediction [Kattan
(2003a); Kattan (2003b); Steyerberg et al. (2010)]. In particular, the comparison
with Lasso–Cox is focused on c statistics. Again, for Lasso-SK , MSPE1 was not
applicable and ϑ̂

TZj was used to compute the c statistic; for the performance mea-
sure in each column, the range of standard errors was computed.

Table 3 summarizes the prediction performance for d = 100, d = 500 and
d = 1,500 over 400 Monte Carlo data sets. In the presence of high-dimensional
data, Table 3 shows that the proposed Lasso-PL always achieves the best prediction
performance in terms of the c statistic as well as MSPE1 and MSPE2, and Lasso–
Cox always has lower c than Lasso-PL and Lasso-L. By and large, the prediction
performance of Lasso-SK is comparable to that of Lasso-L and is considerably
worse than Lasso-PL in all cases, and, in particular, the absence of the estimated
nonlinear effect in X leads to substantial loss in the c statistic. While Lasso-PL
estimates the nonlinear effect of X well in all cases, the prediction error due to
the linear predictors (MSPE2) starts to dominate as d increases. Since all signifi-
cant predictors are in the first 100 predictors, the cases of d = 1,500 and d = 500
simply add 1,100 and 400 noise predictors, respectively, compared to the case of
d = 100. Our results indicate that as the noise level increases the prediction per-
formance deteriorates for all models. For Lasso-L models, the prediction error due
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TABLE 3
Simulation results for evaluating prediction performance in the presence of high-dimensional data

based on 400 Monte Carlo data sets, where n = 100

d = 100 d = 500 d = 1,500

MSPE1 MSPE2 c MSPE1 MSPE2 c MSPE1 MSPE2 c

ρ = 0
Lasso-PL 412 349 860 989 897 840 1,685 1,543 796
Lasso-S2 NA 676 811 NA 1,589 768 NA 2,310 711
Lasso-S4 NA 560 812 NA 1,428 780 NA 2,182 718
Lasso-S8 NA 529 811 NA 1,454 775 NA 2,208 716
Lasso-L 1,441 568 829 2,752 1,666 784 3,719 2,496 697
Lasso–Cox NA NA 798 NA NA 749 NA NA 684

ρ = 0.5
Lasso-PL 389 330 860 1,034 937 839 1,659 1,518 797
Lasso-S2 NA 637 810 NA 1,653 766 NA 2,270 716
Lasso-S4 NA 525 812 NA 1,472 777 NA 2,152 725
Lasso-S8 NA 491 811 NA 1,512 774 NA 2,196 721
Lasso-L 1,418 550 829 2,803 1,720 781 3,703 2,513 701
Lasso–Cox NA NA 799 NA NA 749 NA NA 690

ρ = 0.9
Lasso-PL 387 328 875 1,084 1,124 852 1,795 1,909 811
Lasso-S2 NA 529 841 NA 1,314 815 NA 2,059 769
Lasso-S4 NA 474 842 NA 1,422 812 NA 2,253 759
Lasso-S8 NA 455 841 NA 1,618 805 NA 2,473 744
Lasso-L 1,476 480 852 2,274 1,152 836 3,179 1,849 802
Lasso–Cox NA NA 840 NA NA 825 NA NA 796

Range of SEs 9–20 8–23 0.6–2 32–56 32–52 1–4 47–61 47–57 2–5

Lasso-PL, Lasso partly linear AFT model; Lasso-SK , Lasso stratified model with K strata; Lasso-L,
Lasso linear AFT model assuming a linear effect for both Xi and Zi ; and Lasso–Cox, Lasso linear
Cox model assuming a linear effect for both Xi and Zi . MSPE1, the squared prediction error using
both nonlinear and linear components; MSPE2, the squared prediction error using only linear com-
ponents; and c, the c-statistic for censored data. Range of SEs, range of SEs for the corresponding
performance measure in each column. NA, a performance measure is not applicable for a estimator.
All numbers are multiplied by 1,000.

to misspecified nonlinear effect of X remains substantial in all cases. In this setup,
when correlation is weak or moderate (ρ = 0 or 0.5), the impact of correlation
on prediction performance is moderate, in particular, in terms of c; however, as
correlation becomes very strong (ρ = 0.9), the prediction performance improves
considerably in terms of c for all methods.

We performed additional simulations for a higher censoring rate, 60%, and for
different regression coefficient values, for example, ϑ1 = ϑ2 = ϑ3 = ϑ50 = 1 and
all other ϑ’s set to 0, that is, the first three significant predictors are highly cor-
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related. Under all scenarios, the results on comparisons between different models
remain the same, but the prediction performance worsens as the censoring rate
increases.

In summary, the proposed lasso partly linear AFT model achieves best perfor-
mance in all three areas: estimation, feature selection and prediction. While the
lasso stratified estimator performs reasonably well in estimation, its performance
in feature selection and prediction is not satisfactory. When a covariate effect is
nonlinear, the performance of Lasso-L worsens, and the deterioration can be sub-
stantial in terms of prediction. When the PH assumption does not hold, the per-
formance of Lasso–Cox is considerably worse than Lasso-L. Furthermore, if pre-
diction is of primary interest, our results suggest that it is advantageous to build
prediction scores using data with less noise variables.

4. Data analysis: The prostate cancer study. We analyzed the data from
the prostate cancer study, which included 78 patients. The outcome of interest is
time to prostate cancer recurrence, which starts on the day of prostatectomy and
is subject to censoring; the observed survival time ranges from 2 months to 160
months and the censoring rate is 57.7%. In the data analysis, the log-transformed
survival time was used to fit AFT models. Gene expression data using 1,536 probes
and two clinical variables (PSA and gleason score) were measured from samples
collected at the baseline (i.e., right after the surgery) and were used in our analysis.
Since replicate RNA samples were collected and measured from some subjects,
we averaged the gene expression data over multiple RNA samples from a same
subject before subsequent analysis. The gleason score in this data set ranges only
between 5 and 9 and 91% of patients had a score of either 6 or 7; combining this
with suggestions from the investigators, the total gleason score was dichotomized
as ≥ 7 or not.

Before the data analysis, all gene expression measurements were preprocessed
and standardized to have mean 0 and unit standard deviation. Subsequently, Cox
PH models were fit for each individual probe and all probes were then ranked
according to their score test statistics from the largest (J = 1) to the smallest
(J = 1,536). This ranking procedure serves two purposes. First, it simplifies the
presentation of the results, since we can refer to each probe using its ranking. Sec-
ond, a pre-selection step using this ranking procedure is used when evaluating the
prediction performance in Section 4.2, which is similar to what is often used in
detecting differentially expressed genes. We note that the use of Cox PH models is
of no particular importance, which simply provides a way to rank the probes; one
can use other models such as AFT models.

4.1. Feature selection. Before building prediction scores, we conducted fea-
ture selection using the following models: the Lasso-PL with r = 10, Lasso-SK ,
Lasso-L and Lasso–Cox. In the Lasso-PL model (3), Xi is PSA, which is modeled
using penalized splines, and Z includes the binary clinical variable, gleason score,
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TABLE 4
Feature selection for the prostate cancer study

Method Selected probes

Lasso-PL 1, 2, 4, 12, 16, 31, 38, 46, 63
Lasso-S2 1, 4, 8, 12, 16, 31, 46, 63, 382, 906
Lasso-S4 1, 4, 12, 16, 29, 31, 36, 38, 46, 56, 70, 78, 310, 382, 390, 591, 1,500
Lasso-S8 1, 4, 8, 9, 16, 18, 31, 36, 37, 38, 46, 56, 57, 70, 78, 178, 237, 271, 310, 855, 1,500
Lasso-L 1, 2, 4, 8, 9, 16, 31, 46, 63, 70, 136
Lasso–Cox 2, 4, 8, 11, 14, 16, 22, 31, 46, 52, 63

as well as the complete set or a subset of 1,536 probes. Similarly, in the Lasso-SK

model, stratification is based on PSA.
We first conducted an analysis using the complete set of 1,536 probes. The re-

sults on feature selection are summarized in Table 4. A linear effect of PSA was
included in the Lasso-L model and was estimated to be nonzero, which further
justifies the inclusion of PSA in other models; on the other hand, the total gleason
score is not selected by any of the methods. Figure 1 shows the estimated effect
of PSA using Lasso-PL; specifically, the time to recurrence initially decreases as
PSA increases and then starts to increase slightly as PSA goes beyond 11. Af-
ter further examination of the data, we found that most patients had PSA values
ranging from 0–15.2, but three had PSA values of 18.43, 26 and 32.10. More im-
portantly, all subjects with PSA > 15.2 had censored outcomes; consequently, it is
not appropriate to project the estimated φ(X) beyond 15.2. We also suspect that
the increasing trend toward the right tail is an artifact of the data and the effect of
PSA instead levels off when it is greater than 11, given that an increase in the time
to recurrence as PSA increases does not seem plausible clinically.

FIG. 1. Estimated nonlinear effect of PSA on the prostate cancer recurrence after surgery (φ̂(X)).



RISK PREDICTION WITH REGULARIZED PARTLY LINEAR AFT MODEL 2019

In terms of feature selection for the probe data, the Lasso-PL model selects the
least number of features, among which Probe 4, 16, 31 and 46 are selected by all
six models, Probe 1 selected by five models, Probe 63 selected by four models and
Probe 2, 12 and 38 selected by three models. In other words, all probes selected by
Lasso-PL are selected by at least half of all models, whereas other models select
some probes that are not shared by the rest of the models and are likely to be
noise. This agrees with the simulation results, that is, in the presence of moderate
to strong correlation among predictors, the other models tend to select a larger
number of noise features. In addition, the difference between the Lasso-PL method
and the Lasso-L method is likely due to the nonlinear effect of PSA.

4.2. Prediction performance. To internally evaluate the prediction perfor-
mance, the data were randomly split into a training sample (60%) and a validation
sample (40%). Due to the high censoring rate, this step was stratified on the censor-
ing status to avoid extreme imbalance of censoring rates between the training and
validation samples. The models of interest were fit using the training sample and
were then used to construct the predictive risk score for cancer recurrence, say,
φ̂(X) + ϑ̂

TZ for Lasso-PL, for subjects in the validation sample. Subsequently,
the c statistic was computed in the validation sample. This procedure was repeated
1,000 times and the average c statistic is used for evaluating the prediction perfor-
mance of different models.

We compared the following model and data combinations: Lasso-PL with
r = 10 using 1,536 probes and 2 clinical variables with PSA modeled nonlin-
early; Lasso-L and Lasso–Cox using 1,536 probes and 2 clinical variables; Lasso-
PL with r = 10 using 2 clinical variables plus top 25 probes with PSA modeled
nonlinearly, where the top 25 probes were selected within each training sample;
Lasso-L and Lasso–Cox using 2 clinical variables plus top 25 probes; partly linear
AFT and Cox models (PL-AFT and PL-Cox) using 2 clinical variables only with
PSA modeled nonlinearly through a penalized spline; linear AFT and Cox model
(AFT and Cox) using 2 clinical variables only. Note that we did not use Lasso-SK ,
since it does not estimate the nonlinear effect of PSA.

Table 5 presents the mean c statistic computed using each model and data com-
bination. Partly linear models have higher average c than linear models in all set-
tings and for both AFT and Cox models, indicating that the misspecified effect of
PSA leads to worse prediction performance. In all cases, AFT models have simi-
lar or higher average c compared to their corresponding Cox models. The average
c for Lasso-PL using all 1,536 probes is slightly less than PL-AFT using only
clinical variables, whereas Lasso-L and Lasso–Cox using all 1,536 probes have
substantially lower c than AFT and Cox using only clinical variables. Further-
more, when a pre-selection step was included to choose the top 25 probes first, we
observe small improvement in c for Lasso-L and Lasso–Cox and no improvement
for Lasso-PL, which is likely due to that the correctly modeled PSA effect plays
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TABLE 5
Prediction performance in the data analysis: mean c statistic

All 1,536 probes

Lasso-PL Lasso-L Lasso–Cox
0.653 0.561 0.553

Top 25 probes

Lasso-PL Lasso-L Lasso–Cox
0.653 0.567 0.572

Clinical variables only

PL-AFT AFT PL-Cox Cox
0.665 0.644 0.658 0.644

the most important role in prediction and the addition of gene expression data does
not seem to further improve prediction.

In summary, our analyses suggest that (1) the relationship between the base-
line PSA and prostate cancer recurrence is likely nonlinear, that is, the time to
recurrence decreases as PSA increases and it starts to level off when PSA becomes
greater than 11; (2) the correct specification of this nonlinear effect improves per-
formance in prediction and feature selection; and (3) the addition of gene expres-
sion data does not seem to further improve the prediction performance. However,
given that the sample size in this study is small, our results need to be validated in
a future study, preferably with a larger sample size.

5. Discussion. We have investigated statistical approaches for prediction of
clinical end points that are subject to censoring. Our research shows that correctly
specifying nonlinear effects improves performance in both prediction and feature
selection for both low-dimensional and high-dimensional data. While the proposed
models can be used for high-dimensional data, caution needs to be exercised in
practice, since the sample size is often small in real-life studies. This is especially
true when prediction is of primary interest and feature selection is less of a concern.
As the regularized methods achieve sparsity, they shrink the coefficients of the
important predictors. In finite samples, such shrinkage becomes more pronounced
as the noise level (i.e., the number of noise predictors) increases; as a result, the
prediction performance deteriorates, which is reflected in our simulations and data
analysis.

We investigated two numerical methods for fitting proposed models. The first
algorithm is implemented through a L1 regression, which is slow for large data sets
or when the number of predictors is large relative to the sample size and fails when
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d > n. These limitations are especially serious for censored data. For example, in
our data example, the first algorithm started to have convergence issues if d > 25
probes were used, in particular, when cross-validation was used or internal valida-
tion was performed for evaluating prediction performance. The second algorithm
as described in Section 2.5 can deal with high-dimensional data, and its solutions
are fairly close to those obtained using the first method when both are applicable.
Consequently, we recommend the use of the second algorithm in practice.

In this paper we focus on the performance for prediction as well as feature se-
lection in finite samples through extensive numerical studies, and the theoretical
properties of the proposed methods are likely inherited from those of regularized
linear AFT models and penalized splines, which are beyond the scope of this ar-
ticle and are a topic for future research. Nevertheless, our numerical results pro-
vide empirical evidence to suggest that the proposed approach is likely to enjoy
the properties on feature selection that are possessed by regularized estimation in
linear AFT models [Cai, Huang and Tian (2009)] and in stratified AFT models
[Johnson (2009)].

Several metrics have been proposed for assessing the performance of prediction
models, and Steyerberg et al. (2010) provide a nice review on this subject; however,
it is well known that censoring presents additional challenges in developing such
metrics [Begg et al. (2000); Gonen and Heller (2005); Steyerberg et al. (2010)]. In
our simulations and data example, we used the extended c statistic to evaluate the
prediction performance in the presence of censored data; despite its ease of use,
this metric uses only concordant and disconcordant information and hence leads to
loss of information. Furthermore, while the existing metrics for censored data are
applicable for AFT models, no metric has been proposed to take advantage of the
unique feature of AFT models, namely, they model the log-transformed outcome
and can provide prediction on the log-transformed scale, which is not trivial and is
another topic for our future research.
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