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BAYESIAN VARIABLE SELECTION REGRESSION FOR
GENOME-WIDE ASSOCIATION STUDIES AND OTHER

LARGE-SCALE PROBLEMS
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University of Chicago

We consider applying Bayesian Variable Selection Regression, or BVSR,
to genome-wide association studies and similar large-scale regression prob-
lems. Currently, typical genome-wide association studies measure hundreds
of thousands, or millions, of genetic variants (SNPs), in thousands or tens of
thousands of individuals, and attempt to identify regions harboring SNPs that
affect some phenotype or outcome of interest. This goal can naturally be cast
as a variable selection regression problem, with the SNPs as the covariates
in the regression. Characteristic features of genome-wide association studies
include the following: (i) a focus primarily on identifying relevant variables,
rather than on prediction; and (ii) many relevant covariates may have tiny ef-
fects, making it effectively impossible to confidently identify the complete
“correct” subset of variables. Taken together, these factors put a premium on
having interpretable measures of confidence for individual covariates being
included in the model, which we argue is a strength of BVSR compared with
alternatives such as penalized regression methods. Here we focus primarily
on analysis of quantitative phenotypes, and on appropriate prior specifica-
tion for BVSR in this setting, emphasizing the idea of considering what the
priors imply about the total proportion of variance in outcome explained by
relevant covariates. We also emphasize the potential for BVSR to estimate
this proportion of variance explained, and hence shed light on the issue of
“missing heritability” in genome-wide association studies. More generally,
we demonstrate that, despite the apparent computational challenges, BVSR
can provide useful inferences in these large-scale problems, and in our sim-
ulations produces better power and predictive performance compared with
standard single-SNP analyses and the penalized regression method LASSO.
Methods described here are implemented in a software package, pi-MASS,
available from the Guan Lab website http://bcm.edu/cnrc/mcmcmc/pimass.

1. Introduction. The problem of identifying relevant covariates in a regres-
sion model, sometimes known as variable selection, arises frequently in many
fields. As computational and data-collection technologies have developed, the
number of covariates typically measured in these kinds of problems has steadily
increased, and it is now not unusual to come across data sets involving many thou-
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sands or millions of covariates. Here we consider one particular setting where data
sets of this size are common: genome-wide association studies (GWAS).

Current typical GWAS [e.g., Wellcome Trust Case Control Consortium (2007)]
measure hundreds of thousands, or millions, of genetic variants (typically Single
Nucleotide Polymorphisms, or SNPs), in hundreds, thousands, or tens of thousands
of individuals, with the primary goal being to identify which regions of the genome
harbor SNPs that affect some phenotype or outcome of interest. While many
GWAS are case-control studies, here we focus primarily on the computationally-
simpler setting where a continuous phenotype has been measured on population-
based samples, before briefly considering the challenges of extending these meth-
ods to binary outcomes.

Most existing GWAS analyses are “single-SNP” analyses, which simply test
each SNP, one at a time, for association with the phenotype. Strong associations
between a SNP and the phenotype are interpreted as indicating that SNP, or a
nearby correlated SNP, likely affects phenotype. The primary rationale for GWAS
is the idea that, by examining these SNPs in more detail—for example, examining
which genes they are in or near—we may glean important insights into the biology
of the phenotype under study.

In this paper we examine the potential to apply Bayesian Variable Selection
Regression (BVSR) to GWAS (or other similar large-scale problems). Variable
selection regression provides a very natural approach to analyzing GWAS: the
phenotype is treated as the regression response, SNPs become regression covari-
ates, and the goal of identifying genomic regions likely to harbor SNPs affecting
phenotype is accomplished by examining the genomic locations of SNPs deemed
likely to have nonzero regression coefficients. However, BVSR requires the use of
computationally-intensive Markov chain Monte Carlo (MCMC) algorithms, and,
prior to performing this work, it was unclear to us whether such algorithms could
produce reliable results in a practical time-frame for problems as large as a typ-
ical GWAS. One important contribution of this paper is to show that, even us-
ing relatively simple MCMC algorithms, BVSR can indeed produce useful in-
ferences in problems of this size. Another important contribution is to discuss
how BVSR should be used for GWAS analysis, with particular focus on choice
of appropriate prior distribution. Further, and perhaps most importantly, we give
reasons why one might want to use BVSR to analyze GWAS—rather than less
computationally-demanding approaches such as single-SNP analyses, or penalized
regression approaches such as LASSO [Tibshirani (1996)]—by emphasizing qual-
itative advantages of BVSR in this context. In particular, we emphasize that, unlike
penalized regression approaches, BVSR naturally produces easily-interpretable
measures of confidence—specifically, posterior probabilities—that individual co-
variates have nonzero regression coefficients. This is a particularly important ad-
vantage in GWAS because the primary goal of the analysis is to identify such
covariates, and to use these identifications to learn about underlying biology (in
contrast to other settings where prediction may be the primary goal).
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Although our work is motivated by GWAS, many of the ideas and results should
be of more general interest. In brief, the key elements are as follows:

• We demonstrate that BVSR can be practical for large problems involving hun-
dreds of thousands of covariates and thousands of observations.

• We introduce some new ideas for prior specification in BVSR. In particular,
we emphasize the benefits of focusing on what the priors imply about the total
proportion of variance in response explained by relevant covariates (henceforth
abbreviated as PVE). We note that standard approaches to prior specification in
BVSR, which put the same priors on the regression coefficients irrespective of
how many covariates are included in the model, imply that models with many
relevant covariates are likely to have much larger PVE than models with few
relevant covariates. We propose a simple alternative prior that does not make this
potentially undesirable assumption, and has the intuitively appealing property
that it applies stronger shrinkage in more complex models (i.e., models with
more relevant covariates).

• We emphasize the potential for BVSR to estimate the total amount of signal
in a data set, specifically the PVE, even when there is insufficient information
to reliably identify all relevant covariates. As a result, BVSR has the potential
to shed light on the so-called “missing heritability” observed in many GWAS
[Maher (2008); Yang et al. (2010)].

• We compare and contrast BVSR with a penalized-regression approach, the
LASSO [Tibshirani (1996)]. Despite the considerable literature on both BVSR
and penalized regression, there exist few comparisons (either qualitative or
quantitative) of these two approaches. We chose the LASSO as a representative
of penalized regression approaches both because of its popularity and because
previous papers have applied it to the specific context of GWAS [e.g., Hoggart
et al. (2008); Wu et al. (2009)]. In our limited simulation study BVSR outper-
forms LASSO in terms of predictive performance. In addition, we emphasize
the qualitative advantage of BVSR over LASSO, and other penalized regres-
sion methods, that it produces posterior probabilities for each covariate having
a nonzero regression coefficients. This qualitative advantage seems more funda-
mental, since predictive performance of different methods may vary depending
on the underlying assumptions.

The remainder of the paper is organized as follows. In Section 2 we de-
scribe BVSR and our choice of priors. In Section 3 we discuss computation and
inference, including Markov chain Monte Carlo algorithms used, and a Rao–
Blackwellization approach to estimating the marginal posterior inclusion proba-
bility for each covariate. Section 4 reviews our main goals in applying BVSR to
GWAS. In Section 5 we examine, through simulations, the effectiveness of BVSR
for various tasks, including estimating the PVE, prediction, and identifying rel-
evant covariates. For some of these tasks we compare BVSR with LASSO and
single-SNP analyses. We also illustrate BVSR on a GWAS for C-reactive protein.
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In Section 6 we briefly consider the challenges of extending our methods to deal
with binary phenotypes. Finally, in Section 7 we discuss some limitations and pit-
falls of BVSR as we have applied it in this context, and potential future directions.

2. Models and priors. This section introduces notation and specifies the de-
tails of our BVSR model and priors used. Our formulation up to Section 2.1 is
in the same vein as much previous work on BVSR, but with particular emphasis
on putting priors on hyperparameters that are often considered fixed and known.
Key relevant references include Mitchell and Beauchamp (1988), George and Mc-
Culloch (1993), Smith and Kohn (1996), Raftery, Madigan and Hoeting (1997)
and Brown, Vannucci and Fearn (2002); see also Miller (2002) and O’Hara and
Sillanpää (2009) for more background and references.

We consider the standard normal linear regression

y|μ,β,X, τ ∼ Nn(μ + Xβ, τ−1In),(2.1)

relating a response variable y to covariates X. Here y is an n-vector of observations
on n individuals, μ is an n-vector with components all equal to the same scalar μ,
X is an n by p matrix of covariates, β is a p-vector of regression coefficients, τ de-
notes the inverse variance of the residual errors, Nn(·, ·) denotes the n-dimensional
multivariate normal distribution and In the n by n identity matrix. The variables y
and X are observed, whereas μ,β , and τ are parameters to be inferred. In more
detail, y = (y1, . . . , yn), where yi is the measured response on individual i, and
X = (x·1, . . . ,x·p), where x·j = (x1j , . . . , xnj )

T is a column vector containing the
observed values of the j th covariate. For example, in the context of a GWAS, yi

is the measured phenotype of interest in individual i, and xij is the genotype of
individual i at SNP j , typically coded as 0, 1 or 2 copies of a particular reference
allele. [By coding the genotypes as 0, 1, or 2, we are assuming an additive ge-
netic model. It would be straightforward to include dominant and recessive effects
by adding another covariate for each SNP, as in Servin and Stephens (2007), e.g.,
although this would increase computational cost.]

In many contexts, including GWAS, the number of covariates is very large—
and, in particular, p � n—but only a small subset of the covariates are expected
to be associated with the response (i.e., have nonzero βj ). Indeed, the main goal
of GWAS is to identify these relevant covariates. To this end, we define a vector of
binary indicators γ = (γ1, . . . , γp) ∈ {0,1}p that indicate which elements of β are
nonzero. Thus,

y|γ ,μ, τ,β,X ∼ Nn(μ + Xγ βγ , τ−1In),(2.2)

where Xγ denotes the design matrix X restricted to those columns j for which
γj = 1, and βγ denotes a corresponding vector of regression coefficients. In gen-
eral, for observational studies one would be reluctant to conclude any causal inter-
pretation for γ , but in the context of GWAS, it is usually reasonable to interpret



1784 Y. GUAN AND M. STEPHENS

γj = 1 as indicating that SNP j , or an unmeasured SNP correlated with SNP j ,
has a causal (functional) affect on y. This is because in GWAS reverse causation is
generally implausible (phenotypes cannot causally affect genotype, since genotype
comes first temporally), and there are few potential unmeasured confounders that
could affect both genotype and y [Smith and Ebrahim (2003)]. A well-documented
exception to this is population structure; here we assume that this has been cor-
rected for prior to analysis, for example, by letting y be the residuals from re-
gressing the observed phenotype values against measures of population structure,
obtained, for example, by model-based clustering [Pritchard et al. (2000)] or prin-
cipal components analysis [Price et al. (2006)].

Taking a Bayesian approach to inference, we put priors on the parameters:

τ ∼ Gamma(λ/2, κ/2),(2.3)

μ|τ ∼ N(0, σ 2
μ/τ),(2.4)

γj ∼ Bernoulli(π),(2.5)

βγ |τ,γ ∼ N|γ |
(
0, (σ 2

a /τ )I|γ |
)
,(2.6)

β−γ |γ ∼ δ0,(2.7)

where |γ | := ∑
j γj , β−γ denotes the vector of β coefficients for which γj = 0,

and δ0 denotes a point mass on 0. Here π,σa, λ, κ , and σμ are hyperparameters.
The hyperparameters π and σa have important roles, with π reflecting the sparsity
of the model, and σa reflecting the typical size of the nonzero regression coeffi-
cients. Rather than setting these hyperparameters to prespecified values, we place
priors on them, hence allowing their values to be informed by the data; the pri-
ors used are detailed below. (Later we will argue that this ability to infer π and
σa from the data is an important advantage of analyzing all SNPs simultaneously,
rather than one at a time.) The remaining hyperparameters are less critical, and, in
practice, we consider the posterior distributions for which σ 2

μ → ∞ and ν, κ → 0,
which has the attractive property that the resulting relative marginal likelihoods for
γ are invariant to shifting or scaling of y. Thus, for example, inference of which
genetic variants are associated with height would be unaffected by whether height
is measured in meters or inches. [Taking these limits is effectively equivalent to
using the improper prior p(μ, τ) ∝ 1/τ , but we prefer to formulate proper priors
and take limits in their posteriors, to verify sensible limiting behavior.]

The parameter π controls the sparsity of the model, and where the appropriate
level of sparsity is uncertain a priori, as is typically the case, it seems important
to specify a prior for π rather than fixing it to an arbitrary value. In GWAS, and
probably in many other settings with extreme sparsity, uncertainty in π may span
orders of magnitude: for example, there could be just a few relevant covariates
or hundreds. In this case a uniform prior on π seems inappropriate, since this
would inevitably place most of the prior mass on larger numbers of covariates
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(e.g., uniform on 10−5 to 10−3 puts about 90% probability on >10−4). Instead,
we put a uniform prior on logπ :

logπ ∼ U(a, b),(2.8)

where a = log(1/p) and b = log(M/p), so the lower and upper limits on π cor-
respond, respectively, to an expectation of 1 and M covariates in the model. In
applications here we used M = 400, with this arbitrary limit being imposed partly
due to computational considerations (larger M can increase computing time con-
siderably). The assumption of a uniform distribution is, of course, somewhat arti-
ficial but has the merit of being easily interpretable. An alternative, which may be
preferable in some settings, would be a normal prior on log(π/(1 − π)).

The above formulation, with the exception of our slightly nonstandard prior
on π , follows previous work. However, since many formulations of BVSR differ
slightly from one another, we now comment on some of the choices we made:

(1) We chose, in (2.6), to put independent priors on the elements of βγ . An al-
ternative common choice is Zellner’s g-prior [Zellner (1986); Agliari and Parisetti
(1988)], which assumes correlations among the regression coefficients mimicking
the correlations among covariates,

βγ ∼ N|γ |
(

0,
g

τ
Xt

γ Xγ

)
.

For GWAS we prefer the independent priors because we view the β’s as reflecting
causal effects of X on y, and there seems to be no good reason to believe that the
correlation structure of causal effects will follow that of the SNPs.

(2) Some authors center each of the vectors y and x·1, . . . ,x·p to have mean 0,
and set μ = 0. This approach yields the same posterior on γ as our limiting prior
on μ (derivation omitted), and simplifies calculations, and so we use it henceforth.

(3) It is common in variable selection problems to scale the covariates
x·1, . . . ,x·p to each have unit variance, to avoid problems due to different vari-
ables being measured on different scales. In GWAS these covariates are measured
on the same scale, being counts of the reference allele, and so we do not scale
the covariates in this way in our examples. However, one could so scale them,
which would correspond to a prior assumption that SNPs with less variable geno-
types (i.e., those with a lower minor allele frequency) have larger effect sizes; see
Wakefield (2009) for relevant discussion.

(4) The priors assume that the βj are exchangeable, and, in particular, that all
covariates are, a priori, equally plausible candidates to affect outcome y. In the
context of a GWAS, this assumption means we are ignoring information that might
make some SNPs better candidates for affecting outcome than others. Our priors
also ignore the fact that functional SNPs may tend to cluster near one another in the
genome. These choices were made purely for simplicity; one attractive feature of
BVSR is that one could modify the priors to incorporate these types of information,
but we leave this to future work.
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(5) Some formulations of BVSR use a similar “sparse” prior, where the mar-
ginal prior on βj is a mixture of a point mass at 0 and a normal distribution,
whereas others [e.g., George and McCulloch (1993)] instead use a mixture of
two normal distributions, one with a substantially larger variance than the other.
The sparse formulation seems computationally advantageous in large problems
because sparsity facilitates certain operations (e.g., integrating out β given γ ).

2.1. Novel prior on σ 2
a . While the above formulation is essentially standard

and widely used, there is considerable variability in how different authors treat the
hyperparameter σa . Some fix it to an essentially arbitrary value, while others put
a prior on this parameter. Several different priors have been suggested, and the
lack of consensus among different authors may reflect the fact that most of them
seem not to have been given a compelling motivation or interpretation. Here we
suggest a way of thinking about this prior that we believe aids interpretation, and
hence appropriate prior specification. Specifically, we suggest focusing on what
the prior implies about the proportion of variance in y explained by Xγ (the PVE).
For example, almost all priors we have seen previously in this context assume
independence of π and σa , which implies independence of γ and σa . While this
assumption may seem natural initially, it implies that more complex models are
expected to have substantially higher PVE. In our application this assumption does
not capture our prior beliefs. For example, it seems quite plausible a priori that
there could be either a large number of relevant covariates with small PVE, or a
small number of covariates with large PVE.

Here we suggest specifying a prior on σ 2
a given γ by considering the induced

prior on the PVE, and, in particular, by making this induced prior relatively flat in
the range of (0,1). To formalize this, let V (β, τ ) denote the empirical variance of
Xβ relative to the residual variance τ−1:

V (β, τ ) := 1

n

n∑
i=1

[(Xβ)i]2τ,(2.9)

where this expression for the variance assumes that the covariates have been cen-
tered, and so Xβ has mean 0. Then the total proportion of variance in y explained
by X if the true values of the regression coefficients are β is given by

PVE(β, τ ) := V (β, τ )/
(
1 + V (β, τ )

)
.(2.10)

Our aim is to choose a prior on β given τ so that the induced prior on PVE(β, τ )

is approximately uniform. To do this, we exploit the fact that the expected value of
V (β, τ ) (with expectation being taken over β|τ ) depends in a simple way on σa :

v(γ , σa) := E[V (β, τ )|γ , σa, τ ] = σ 2
a

∑
j : γj=1

sj ,(2.11)
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where sj = 1
n

∑n
i=1 x2

ij is the variance of covariate j . Define

h(γ , σa) = v(γ , σa)/
(
1 + v(γ , σa)

)
.(2.12)

Intuitively, h gives a rough guide to the expectation of PVE for a given value of γ
and σa . (It is not precisely the expectation since it is the ratio of expectations, rather
than the expectation of the ratio.) To accomplish our goal of putting approximately
uniform prior on PVE, we specify a uniform prior on h, independent of γ , which
induces a prior on σa given γ via the relationship

σ 2
a (h, γ ) = h

1 − h

1∑
j : γj=1 sj

.(2.13)

In all our MCMC computations, we parameterize our model in terms of (h,γ ),
rather than (σa,γ ). Note that the induced prior on σ 2

a is diffuse: if Z = h/(1 − h),
and h ∼ U(0,1), then Z has a probability density function f (z) = 1/(1 + z)2,
which is heavy tailed.

Our prior on σa has interesting connections with the prior suggested by Liang
et al. (2008). While Liang et al. (2008) use a g prior, if we consider the case
where the covariates are orthogonal with variances sj = 1, then their parameter
g is effectively equivalent to our nσ 2

a . They suggest putting a Beta(1, a/2 − 1)

prior on g/(1 + g), with a = 3 or 4; the case a = 4 is uniform on g/(1 + g), or
in our notation uniform on nσ 2

a /(1 + nσ 2
a ). In contrast, our prior is uniform on

|γ |σ 2
a /(1 + |γ |σ 2

a ). Thus, our σa is effectively n/|γ | times the value of σa from
Liang et al. (2008), and so our σa is larger than theirs (implying less shrinkage),
provided that the number of relevant covariates |γ | is less than n. Qualitatively,
perhaps the main difference between the priors is that our prior applies less shrink-
age (larger σa) in simpler models, which seems intuitively appealing.

Of course, choice of appropriate prior distributions may vary according to con-
text, and we do not argue that the prior used here is universally superior to other
choices. However, we do believe the priors outlined above are suitable for general
use in most GWAS applications. In addition, we emphasize that these priors in-
corporate two principles that we believe should be helpful more generally: first,
it seems preferable to place prior distributions on the hyperparameters π and σa ,
rather than fixing them to specific values, as this provides the potential to learn
about them from the data; second, when comparing priors for σa , it is helpful to
consider what the priors imply about PVE.

3. Computation and inference. We use Markov chain Monte Carlo to obtain
samples from the posterior distribution of (h,π,γ ) on the product space (0,1) ×
(0,1) × {0,1}p , which is given by

p(h,π,γ |y) ∝ p(y|h,γ )p(h)p(γ |π)p(π).(3.1)

Here we are exploiting the fact that the parameters β and τ can be integrated out
analytically to compute the marginal likelihood p(y|h,γ ). For each sampled value
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of h,γ from this posterior, we also obtain samples from the posterior distributions
of β and τ by sampling from their conditional distributions given y,γ , h.

Our Markov chain Monte Carlo algorithm for sampling h,π,γ is detailed in
Appendix A. In brief, it is a Metropolis–Hastings algorithm [Metropolis et al.
(1953); Hastings (1970)], using a simple local proposal to jointly update h,π,γ . In
particular, it explores the space of covariates included in the model, γ , by propos-
ing to add, remove, or switch single covariates in and out of the model. To improve
computational performance, we use three strategies. First, in addition to the local
proposal moves, we sometimes make a longer-range proposal by compounding
randomly many local moves. This technique, named “small-world proposal,” im-
proves the theoretical convergence rate of the MCMC scheme [Guan and Krone
(2007)]. Second, and perhaps more importantly, when proposing new values for
γ , and specifically when proposing to add a variable to the model, we focus more
attention on those covariates with the strongest marginal associations. This idea
is related to the sure independence screen [Fan and Lv (2008)] (SIS), which uses
marginal associations as an initial screening step. However, it is a “softer” use
of these marginal associations than the SIS, because every variable continues to
have positive probability of being proposed. Simulations (not shown) show that
taking account of the marginal associations in this way dramatically increases the
acceptance rate compared to a proposal that ignores the marginal associations.
Finally, when estimating quantities of interest, we make use where possible of
Rao–Blackwellization techniques [Casella and Robert (1996)], detailed below, to
reduce Monte Carlo variance.

We note that our computational scheme is relatively simple, and one can create
data sets where it will perform poorly, for example, multiple correlated covariates
that are far apart along a chromosome, where an efficient algorithm would require
careful joint updates of the γi values for those correlated covariates. (In our current
implementation, swap proposals only apply to SNPs that are close to one another
in the genome, which is motivated by the fact that correlations decay quickly with
respect to distance between SNPs.) However, our main focus in this paper is not
on producing a computational scheme that will deal with difficult situations that
might arise, but rather on prior specification, and to provide an initial assessment of
the potential for BVSR to be applied to large-scale problems. Indeed, we hope that
our results stimulate more research on the challenging computational problems
that can occur in applying BVSR to GWAS and similar settings.

3.1. Posterior inclusion probabilities via Rao–Blackwellization. In the con-
text of GWAS, a key inferential question is which covariates have a high proba-
bility of being included in the model. That is, we wish to compute the posterior
inclusion probability (PIP) of the j th covariate, Pr(γj = 1|y). Although one could
obtain a simple Monte Carlo estimate of this probability by simply counting the
proportion of MCMC samples for which γj = 1, this estimator may have high
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sampling variance. To improve precision, we instead use the Rao–Blackwellized
estimate,

Pr(γj = 1|y) ≈ (1/M)

M∑
i=1

Pr
(
γj = 1|y,γ

(i)
−j ,β

(i)
−j , τ

(i), h(i), π(i)),(3.2)

where γ (i),β(i), τ (i), h(i), π(i) denote the ith MCMC sample from the posterior
distribution of these parameters given y, and γ −j and β−j denote the vectors γ
and β excluding the j th coordinate. The probabilities that are being averaged here
essentially involve simple univariate regressions of residuals against covariate j ,
and so are fast to compute for all j even when p is very large. Details are given in
Appendix B.

3.2. Estimating proportion of variance explained. To perform inference on
the total proportion of variance in y explained by measured covariates, we use
samples from the posterior distribution of PVE(β, τ ), which is defined at equation
(2.10). These posterior samples are obtained by simply computing PVE(β(i), τ (i))

for each sampled value of β, τ from our MCMC scheme.

3.3. Predicting future exchangeable observations. Given observed covariates
xn+1 for a future individual, we can predict a value of yn+1 for that individual by

E(yn+1|y) = xn+1E(β|y).(3.3)

To estimate E(β|y), we use the Rao–Blackwellized estimates

E(βj |y) ≈ (1/M)

M∑
i=1

E
(
βj |γj = 1,y, θ

(i)
−j

)
Pr

(
γj = 1|y, θ

(i)
−j

)
.(3.4)

Expressions for the two terms in this sum are given in Appendix B.

3.4. Assessing predictive performance. Suppose that we estimate β to be β̂ .
One way to assess the overall quality of this estimate is to ask how well it would
predict future observations, on average. Motivated by this, we define the mean
squared prediction error (MSPE):

MSPE(β̂;β, τ ) = E(Xβ̂ − y)2 =
m∑

j=1

sj (β̂ − β)2 + 1/τ ,(3.5)

where β is the true value of the parameter, and sj is the variance of x·j , defined at
(2.11).

The MSPE has the disadvantage that its scale depends on the units of mea-
surement of y. Hence, we define a relative prediction gain, RPG, which contrasts
the MSPE from an estimated β with the prediction loss from simply predicting the
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mean of y for each future observation (MSPE0) and to the prediction error attained
by the true value of β (MSPEopt = 1/τ ):

RPG = MSPE0 − MSPE(β̂)

MSPE0 − MSPEopt
.(3.6)

The RPG does not depend on τ or on the scale of measurement of y, and indicates
what proportion of the extractable signal we are successfully obtaining from the
data. For example, if the total proportion of variance in y explained by Xγ is 0.2,
then an RPG of 0.75 indicates that we are effectively able to extract three-quarters
of this signal, leaving approximately 0.05 of the variance in y “unexplained.” Note
that RPG = 0 if the prediction performs as well as the mean, and RPG = 1 if the
prediction performs as well as the true value of β . If RPG < 0, then the predic-
tion is worse than simply using the mean, effectively indicating a problem with
“overfitting.”

4. Goals and expectations. At this point it seems helpful to review what we
are attempting to achieve, and why it might be achievable despite the apparent
severity of the computational burden. In brief, our primary goal is to extract more
information from signals that exist in these data, particularly marginal associa-
tions, than do standard single-SNP analyses that test each SNP, one at a time, for
association with phenotype. (The vast majority of GWAS published so far restrict
themselves to such single-SNP analyses.) One of the main difficulties in single-
SNP analysis is to decide how confident one should be that individual SNPs are
truly associated with the phenotype. This difficulty stems from the fact that confi-
dence should depend on the unknown values of π and σa . In a single-SNP analysis
one must make assumptions, either implicitly or explicitly, about these parameters.
An important aim of our approach is to instead estimate these parameters from the
data, and hence provide more data-driven estimates of confidence for each SNP be-
ing associated with phenotype. To get intuition into why the data are informative
about π and σa , consider the following examples. First, suppose that in a GWAS
involving 300,000 SNPs, there are 10 SNPs (in different genomic regions) that
show very strong marginal associations. Then, effectively, we immediately learn
that π is likely at least of the order of 10/300,000 (and, of course, it may be con-
siderably higher). Further, the estimated size of the effects at these 10 SNPs also
immediately gives some idea of plausible values for σa (or, more precisely, for
σa/τ ). Conversely, suppose that in a different GWAS none of the 300,000 SNPs
show even modest marginal associations. This immediately suggests that either π

or σa/τ (or both) must be “small” (because if both were large, then there would
be many strong effects, and we would have seen some of them). More generally,
we note that the strength of the effect size at the most strongly associated SNPs
immediately puts an upper bound on what kinds of effect size are possible, and
hence an upper bound on plausible values for σa/τ . In essence, BVSR provides
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a model-based approach to quantifying these qualitative ideas, taking account of
relevant factors (e.g., sample size) that affect the amount of information in the data.

Another limitation of single-SNP analyses, at least as conventionally applied,
is that once some SNPs are confidently identified to be associated with outcome,
they are not controlled for, as they should be, in analysis of subsequent SNPs.
Controlling for SNPs that truly affect phenotype should help in identifying further
such SNPs, and so a second key aim of our approach is to accomplish this. To
see why our approach should attain this goal, note that our Rao–Blackwellization
procedure for estimating marginal posterior inclusion probabilities is effectively a
conventional single-SNP analysis that controls for the SNPs currently in the model.
Thus, for example, if we start our MCMC algorithm from a point that includes
the strongest marginal associations, it effectively immediately accomplishes this
second goal.

We note two things we are not attempting to do. First, we are not attempting
to identify a single best model (i.e., combination of SNPs), or to estimate poste-
rior probabilities for specific models. In this context—and, we would argue, many
other contexts where BVSR may be appropriate—these goals are of no interest,
because the combination of small effect sizes and p � n mean that the poste-
rior probability on any particular model is going to be very small, and the chance
of identifying the “correct” model is effectively zero. Neither are we attempting
to identify combinations of SNPs that interact in a nonadditive way to affect the
phenotype—SNPs that have little marginal signal, but whose effect is only revealed
when they are considered together in combination with others. While such combi-
nations of SNPs may exist, and identifying them would be of considerable interest,
this seems considerably more challenging, both statistically and computationally,
than our more modest goals here.

Finally, we note a particular feature of GWAS studies that may make it easier to
obtain useful results from BVSR than in other contexts. Specifically, correlations
among SNPs tend to be highly “local”: each SNP is typically correlated with only
a relatively small number of other SNPs that are near to it (linearly along the
DNA sequence), and any two randomly chosen SNPs are typically uncorrelated
with one another. Put another way, the matrix X′X tends to have a highly banded
structure, with large values clustering near the diagonal. To understand why this is
helpful, note that one of the main potential pitfalls in applying MCMC to BVSR
is that the MCMC scheme may get stuck in a “local mode” where a particular
covariate (A, say) is included in the model, whereas in fact a different correlated
covariate (B, say) should have been included. To help avoid getting stuck like
this, the MCMC scheme could include specific steps that propose to interchange
correlated covariates (e.g., remove A from the model and add B to the model), and
the local correlation structure among SNPs in a GWAS means that this is easily
implemented by simply proposing to interchange nearby SNPs. Furthermore, and
perhaps more importantly, the local correlation structure means that getting stuck
in such local modes may not matter very much, because if A and B are correlated,
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then they are also almost certainly close to one another in the genome, and hence
implicate a similar set of genes, and correctly identifying a set of implicated genes
is the ultimate goal of most GWAS analyses.

5. Simulations and comparisons with other methods. We now present a va-
riety of simulation results to illustrate features of our method, and assess its perfor-
mance. Because our priors and methodology were primarily motivated by GWAS,
these simulations are designed to mimic certain features of a typical GWAS.
These include particularly that p � n (in our simulations p ≈ 10,000–300,000
and n ≈ 1,000), extreme sparsity (in most of our simulations ∼30 covariates af-
fect response), and small effect sizes (most relevant covariates individually explain
<1% of the variance of y).

5.1. Simulation details. We performed simulations based on three different
genotype data, including both simulated and real genotypes. The first is simu-
lated 10,000 independent SNPs (henceforth 10K), the second is real genotypes at
∼317,000 SNPs (henceforth 317K), and the third is real genotypes at ∼550,000
SNPs (henceforth 550K). Both 317K and 550K genotypes closely mimic real
GWAS, and comparison between them can illustrate the scalability of our method.
The 10K data set is helpful for several reasons: smaller simulations run faster; they
allow us to assess methods in a simpler setting where computational problems are
less of an issue; and the independence of the covariates avoids problems with de-
ciding what is meant by a “true association” when covariates are correlated with
one another.

For the 10K data, we simulated genotypes as follows. At each SNP j =
1, . . . ,10,000 the minor allele frequency fj is drawn from a uniform distribution
on [0.05,0.5], and then genotypes xij (i = 1, . . . , n) are drawn independently from
a Binomial(2, fj ) distribution. We use n = 1,000 and 6,000.

Both 317K and 550K data sets come from an association study performed by
the Pharmacogenomics and Risk of Cardiovascular Disease (PARC) consortium
[Reiner et al. (2008); Barber et al. (2010)]. The 317K genotypes come from the
Illumina 317K BeadChip SNP arrays for 980 individuals and the 550K geno-
types come from the Illumina 610K SNP chip plus a custom 13,680 SNP Illumina
i-Select chip in 988 individuals (550K SNPs remain after QC). We replaced miss-
ing genotypes with their posterior mean given the observed genotypes, which we
computed under a Hidden Markov Model [Scheet and Stephens (2006)] imple-
mented in the software package BIMBAM [Guan and Stephens (2008)].

For both the simulated and real genotypes we simulated sets of phenotypes in
the following way. First, we specified a value of PVE, the total proportion of vari-
ance in y explained by the relevant SNPs, that we wanted to achieve in the simu-
lated data. Then we randomly selected a set of 30 “causal” SNPs, C, and simulated
effect sizes βj for each of these SNPs independently from an effect size distribu-
tion E (·) (discussed below). Next we computed the value of τ that gives the desired
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value for PVE(β, τ ) in equation (2.10). Finally, we simulated phenotypes for each
individual using yi = ∑

j∈C βjxij + N(0, τ−1).
Unless otherwise stated, for the 10K SNP data sets we run BVSR for 1 million

iterations, and for the 317K and 550K SNP data sets we use 2 million iterations.
Run times for each data set varied from a few minutes to about one day on a single
MAC Pro with 3 GHz processor. (Note that the running time per iteration depends
primarily on the inferred values for |γ |, not the total number of SNPs.)

5.2. Other methods. In results presented below we compare our method with
two other methods: simple single-SNP analysis that tests each SNP one at a
time for association with phenotype, and the penalized regression method LASSO
[Tibshirani (1996)].

For the single SNP analyses we ranked SNPs by their single-SNP Bayes factors,
computed using equation (A.2), with γ in the numerator being the vector with j th
component 1 and all other components 0, and averaging over σa = 0.4,0.2, and 0.1
as in Servin and Stephens (2007). (Using standard single-SNP p values instead of
Bayes Factors gives very similar performance in terms of ranking SNPs.)

The LASSO procedure [Tibshirani (1996)] estimates β by minimizing the pe-
nalized residual sum of squares:

argmin
β

(y − Xβ)t (y − Xβ) + λ
∑
j

|βj |.(5.1)

For sufficiently large penalties, λ, LASSO produces sparse estimates β̂ . Its main
practical advantage over BVSR appears to be computational: for example, one
can efficiently find the global optimal solution path for β as λ varies. To apply the
LASSO procedure, we used the lars package (v. 0.9-7) in R [Efron et al. (2004)].

5.3. Inference of PVE, and its relationship to heritability. The total proportion
of variance in y explained by the relevant covariates Xγ , or PVE, is commonly
used to summarize the results of a linear regression. In GWAS the PVE is, concep-
tually, closely related to the “heritability” of the trait, which is widely used, for bet-
ter or worse, as a summary of how “genetic” the phenotype is. The key difference
between the PVE and heritability is that the PVE reflects the optimal predictive
accuracy that could be achieved for a linear combination of the measured genetic
variants, whereas heritability reflects the accuracy that could be achieved by all ge-
netic variants. In recent GWAS, it has been generally observed, across a range of
different diseases and clinical traits, that the proportion of phenotypic variance ex-
plained by “significant” genetic variants is much lower than previous estimates of
heritability from family-based studies [Maher (2008)]. There are several possible
explanations for this “missing heritability”: for example, it may be that previous
estimates of heritability are inflated for some reason. However, two explanations
have received particular attention: some of the missing heritability could reflect
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genetic variants that were measured but simply did not reach stringent levels of
“significance” in standard analyses, while other parts of the missing heritability
could reflect genetic variants that were unmeasured (and not strongly correlated
with measured variants). Because the measured genetic variants in current GWAS
studies are predominantly “common” genetic variants (those with a population fre-
quency exceeding a few percent), the relative contribution of these two factors is
connected to the contentious topic of the relative contributions of common vs rare
variants to phenotypic variation and disease risk [Pritchard (2001)]. Comparing the
PVE with heritability should provide some insights into the relative contributions
of these two factors. For example, at the simplest level, if the PVE is almost as
big as the heritability, then this suggests that most phenotypic variation is due to
variation at SNPs that are highly correlated with measured genetic variants, and
perhaps that rare genetic variants, which are usually not strongly correlated with
measured common variants, contribute little to phenotypic variation.

An important feature of BVSR that allows it to estimate the PVE, together with
measures of confidence, is its use of Bayesian model averaging (BMA) to average
over uncertainty in which covariates are relevant. This is very different from single
SNP analyses and standard penalized regression approaches, which typically result
in identification of a single set of potentially-relevant covariates, and so do not
naturally provide estimates of the PVE that take account of the fact that this set
may be missing some relevant covariates and include some irrelevant covariates.
Since, as far as we are aware, the ability of BVSR to estimate PVE has not been
examined previously, we performed simulation studies to assess its potential.

For both real and simulated genotype data (described above), we simulated 50
independent sets of phenotype data, each containing 30 randomly-chosen “causal”
SNPs affecting phenotype, varying PVE from 0.01 to 0.5 in steps of 0.01. Our
Bayesian model assumes, through the prior on β , that the effect size distribution
E is normal. To check for robustness to deviations from this assumption, we simu-
lated phenotype data using both E = N(0,1) (as effectively assumed by our model)
and E = DE(1), where DE denotes the double exponential distribution. The results
from these two different distributions were qualitatively similar, and so we show
only the results for E = DE(1).

Figure 1 shows estimates of PVE obtained by our method against the true val-
ues. For both simulated and real SNP data there is a generally good correspondence
between the true and inferred values, and 90% credible intervals (CI) for PVE cov-
ered the true value in 85% of cases. As might be expected, the uncertainty in PVE
is greater when there is a larger number of SNPs, presumably due to the increased
difficulty in reliably identifying relevant variants. In addition, the uncertainty in
PVE tends to be greater when the true PVE is smaller. Our intuition is that when
the data contain no SNPs with strong individual effects, it remains difficult to rule
out the possibility that many SNPs may have very small effects that combine to
produce an appreciable PVE. Nonetheless, even when the true PVE is small, the
inferred posterior interval for PVE does exclude large values, illustrating that even
in this case our method is able to extract information from the data.
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(a) (b)

FIG. 1. Comparison of true and inferred values for the proportion of variance in y explained by
relevant covariates (PVE). Panel (a) shows results for 1,000 individuals with 10,000 independent
simulated SNPs; Panel (b) shows results for 980 individuals with 317K real SNP genotypes. Circles
indicate posterior mean for PVE; vertical bars indicate the symmetric 90% credible interval.

5.4. Many causal SNPs with tiny effects. The simulations above involve 30
causal SNPs explaining in total between 0.01 and 0.5 of the total variance in y. We
note that this is a relatively subtle level of signal: in the following sections we will
see that, for PVE = 0.30, and the sample sizes we used, it is typically not possible
to confidently identify the majority of causal SNPs, nor to achieve the predictive
performance that is similar to one would obtain if one knew the causal variants.
Thus, to estimate the PVE, BVSR must not only identify variants that are confi-
dently associated with y, but also estimate how many additional variants of small
effects it might be missing and what their effect sizes might be. Clearly, there must
be some limit to its ability to accomplish all these tasks: in particular, if there were
very many variants of minuscule effects, then it would be difficult to distinguish
this from the null model in which no variants have any effect. To try to test these
limits, we ran more challenging simulations involving many more SNPs with tiny
individual effects, but a nontrivial overall PVE. Specifically, we considered two
cases: (i) 300 causal SNPs out of the 10K simulated SNPs in 1,000 individuals;
and (ii) 1,000 causal SNPs out of the 317K real SNPs in 980 individuals. In each
case we simulate the effect sizes using a normal distribution. We simulated 10 in-
dependent sets of phenotypes with PVE = 0.3 in each case. For comparison in each
case we also simulated 10 independent sets of phenotypes under a “null” model
with no causal SNPs (PVE = 0).

For these data sets, to give BVSR some chance to identify the large number of
causal SNPs, we increased M , the upper limit on the expected number of nonzero
regression coefficients in our prior on π , to M = 1,000. Plots of 99% and 95%
credible intervals for PVE in each simulation are shown in Figure 2.

Somewhat surprisingly, for the first set of simulations, with 300 causal SNPs
out of 10K and PVE = 0.3, BVSR remains able to provide reasonable estimates of
PVE: for example, for 5 of the 10 simulations the interquartile range of the pos-
terior on PVE spans the true value of PVE = 0.3, and in 7 simulations the 90%
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(a) (b)

FIG. 2. Plots showing estimation of PVE for simulations with large numbers of causal variants
of very small effect. Panels (a) and (b) are for 10K and 317K data sets, respectively. The grey lines
denote 99% CI and colored lines denote 95% CI. The blue color indicates null simulation (PVE = 0),
red indicates alternative simulations (PVE = 0.3). The * denotes the median.

symmetric CI includes PVE = 0.3. Further, there is a clear qualitative difference
between the results of PVE = 0.3 and PVE = 0. Less surprisingly, for the ex-
tremely challenging case of 1,000 causal SNPs out of 317K, the estimates of PVE
are considerably less precise. However, even here, these admittedly limited simu-
lations appear to show systematic differences between PVE = 0.3 and PVE = 0.
For example, for PVE = 0.3, 8 of the 90% CIs cover PVE = 0.2 and 6 CIs cover
PVE = 0.3; whereas for PVE = 0, only 2 of the 90% CIs cover 0.2 and 1 CI covers
0.3.

5.5. Identifying the causal SNPs. In existing GWAS the vast majority of stud-
ies published so far restrict their analysis to the simplest possible approach of
testing each SNP, one at a time, for association with phenotype. One possible ad-
vantage of a multi-SNP analysis like ours is to improve power compared with
this simple single-SNP approach. However, since each SNP is typically correlated
with only a small number of other (nearby) SNPs, and so any two randomly cho-
sen SNPs will be typically uncorrelated, the gain in power might be expected to
be small (at least in the absence of interactions among SNPs). Further, one might
be concerned that if our MCMC scheme does not mix adequately, then the re-
sults of the multi-SNP approach could actually be worse than those from a simpler
analysis.

We performed two types of simulations to investigate these issues, the first us-
ing the 10K data set (independent SNPs), and the second using the chromosome
22 of the 550K data set (9,041 correlated SNPs). In each case we simulated 100
phenotype data sets as described above, with 30 causal SNPs and PVE = 0.25.

For the 10K simulations we compared BVSR, single-SNP analyses, and LASSO
in their ability to identify the causal SNPs as follows. For BVSR and single-SNP
analyses we first computed, for each SNP, a measure of the evidence for associa-
tion with phenotype. For BVSR we used the PIPs [equation (3.2)]; for single-SNP
analysis we used the univariate Bayes Factor as described in Section 5.2. We then
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consider thresholding this measure of evidence: for any given threshold, we con-
sider all causal SNPs exceeding the threshold to be true positives, and all other
SNPs exceeding the cutoff to be false positives. We compare methods by con-
structing curves showing the trade-off between true positives and false positives as
the threshold is varied. For LASSO, we first computed the solution path as λ varies.
Then, for each solution on this path we defined all causal SNPs with nonzero re-
gression coefficients to be true positives, and all other SNPs with nonzero regres-
sion coefficients to be false positives. We then constructed curves showing the
trade-off between true positives and false positives as λ is varied.

For the real (correlated) SNPs we performed a similar comparison, but assessed
the methods in their ability to identify the correct genomic regions rather than
individual SNPs. This is because the three methods differ qualitatively in the way
they identify SNP associations when SNPs are correlated with one another: single-
SNP analyses tend to identify significant associations at any SNP that is strongly
correlated with a causal SNP; LASSO tends instead to select just one or a few
correlated SNPs; and BVSR tends to spread the association signal (the PIPs) out
among correlated SNPs. While it may be important to be aware of these qualita-
tive differences when interpreting results from the methods, they are not our main
interest here, and we assess the methods at the level of regions in an attempt to re-
duce the influence of these qualitative differences. (Further, it could be argued that
identifying regions of interest is the primary goal of GWAS.) To describe the ap-
proach in more detail, we partitioned chromosome 22 into 200 kb nonoverlapping
regions (different choices of region size that we tried produced qualitatively sim-
ilar results). We then used each method to assign each region a “region statistic”
indicating the strength of the evidence for an association in that region. For single
SNP analysis we used the maximum single SNP Bayes factor within each region;
for BVSR we used the sum of the PIP for SNPs in the region; and for LASSO
we used the penalty λ at which any SNP in that region is included in the model.
Similar to the SNP-level comparisons, we plot how true and false positive regions
vary as the threshold on the region statistic is varied. (We averaged results over
two different starting positions for the first window, 0, and 100 kb.)

Figure 3 shows curves of the trade-off between true and false positives for each
method in the two different simulations. Each point on the curve shows the total
true vs false positives across the hundred simulated data sets, using a common
threshold across data sets. (An alternative way to combine data sets is to use a
different threshold in each data set, vary the thresholds in such a way as to produce
the same number of positive findings in each data set; the two different ways to
combine data sets give similar results.)

For a given number of false positives, the multi-SNP approaches (BVSR and
LASSO) always yield as many or more true positives than the single-SNP analy-
sis. For the 10K simulated SNPs BVSR and LASSO perform similarly, whereas
for the real genotypes BVSR is better. (The reasons for this difference are un-
clear to us.) The results demonstrate that, even in the case where single-SNP tests
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(a) (b)

FIG. 3. Graphs showing the trade-off between true positive and false positive SNP identifications
for the different methods: BVSR (blue), LASSO (red), and single SNP analyses (black). Both plots
show results that are summed across 100 data sets (see text for further explanation). Panel (a) is for
independent simulated SNPs; Panel (b) is based on real genotype data for chromosome 22.

might be expected to perform extremely well—that is, independent SNPs with no
interactions—it is still possible to gain slightly in power by performing multi-SNP
analyses. Our intuitive explanation for the gain in power of the multi-SNP ap-
proaches is that, once one identifies a causal variant, controlling for it will improve
power to detect subsequent causal variants. Because the SNPs are independent, this
gain is expected to be small: indeed, if the SNPs were exactly orthogonal, then one
would expect no gain by controlling for identified variants. However, our results
show that even in the case of independent SNPs the gain is measurable because the
finite sample size produces nonzero sample correlations between “independent”
SNPs.

We note that, at least in these simulations, most of the gain from the multi-SNP
methods occurs when the number of false positives is small but nontrivial: that is,
the multi-SNP methods promote some of the moderately-difficult-to-detect causal
SNPs slightly higher in the SNP rankings, but not so far as to put them at the
very top. This suggests that multi-SNP analysis may be most useful when used in
combination with other types of data or analysis that attempt to distinguish true
and false positives among the SNPs near the top of the association rankings [as
in Raychaudhuri et al. (2009), e.g., where information on gene similarities taken
from PubMed abstracts are used in this way].

5.6. Prediction performance. We used the same simulated data as in the previ-
ous section to compare predictive performance of BVSR and LASSO. To measure
predictive accuracy, we use the relative prediction gain, defined at (3.6). For our
method we compute RPG(β̄) where β̄ is the posterior mean for β . For LASSO
we compute the RPG in two ways, which we will refer to as RPG1 and RPG2. For
RPG1 we first compute RPG(β(i)) for each β(i) in the solution path for β output by
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FIG. 4. Comparison of the relative prediction gain (RPG) for BVSR (x-axis) and LASSO (y-axis).
Black circles are results from the optimal LASSO solution without refitting (RPG1); Red crosses are
corresponding results with refitting (RPG2), described in the main text.

the lars package, and take the minimum of these relative prediction errors. Note
that by taking the minimum over λ in this way we are effectively assuming that
an oracle has given us the optimal value for λ; in practice, one would need to ob-
tain λ through other means, such as cross-validation, which would result in worse
accuracy than RPG1. For RPG2 we take a two-stage approach to prediction. First,
we use LASSO to select the SNPs that should have nonzero coefficients (using the
λ used for RPG1), and then we estimate the regression coefficients of these SNPs
using ordinary least squares (βOLS), and compute RPG2 := RPG(βOLS). The mo-
tivation for this procedure is that if LASSO is able to reliably identify the correct
coefficients, then the refitting procedure will improve predictive performance by
avoiding the known tendency for LASSO to overshrink nonzero regression coeffi-
cients; however, as we shall see below, the refitting can be counterproductive when
the correct coefficients are not reliably identified.

Figure 4 compares the RPG obtained from the three methods on 100 simulated
data sets. The RPG from our Bayesian approach is higher than that obtained di-
rectly from the optimal LASSO solution (RPG1) in 82 of the 100 data sets, and
mean RPG is higher (0.315 vs 0.261). The refitting procedure has a substantial
effect on predictive accuracy, and, in particular, it substantially increases the vari-
ance of the performance: for some data sets the refitting procedure improves pre-
dictive performance, but for the majority of data sets it results in much worse RPG.
Indeed, RPG2 is often negative, indicating that predictive performance after refit-
ting is substantially worse than simply using the mean phenotype value, which is
the symptom of “overfitting.” This behavior makes intuitive sense: in cases when
the optimal LASSO solution does a good job of precisely identifying many of the
relevant covariates, and no irrelevant ones, the refitting step improves predictive
performance, but when the first stage includes several false positives the refitting
procedure is counter-productive.

Although our Bayesian model is sparse, our estimated β̄ is not sparse due to the
averaging in (3.4). In some contexts one might want to obtain a sparse predictor,
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so, to examine how this might impact predictive accuracy, we computed the RPG
for each data set using only the P covariates with highest posterior inclusion prob-
abilities (setting other coordinates of β̄ to 0), where P = 10,30,100. The average
RPG for these sparse estimates of β were essentially unchanged from using the
nonsparse estimate β̄ (RPG = 0.313,0.315, and 0.315, resp.).

We also examined the benefits of using Bayesian model averaging (BMA) to
perform prediction, by computing the RPG obtained using only those covariates
with a posterior inclusion probability >t where t = 0.2,0.5,0.8. [When t = 0.5
this is the “median probability model” of Barbieri and Berger (2004).] Specifi-
cally, we computed the RPG for β̂j = I (P̂r(γj = 1) > t)Ê(βj |γj = 1), where the
two quantities on the right-hand side are estimated from (3.2) and (3.4). These
estimates have some shrinkage because E(βj |γj = 1) is a shrinkage estimate of
βj (due to the normal prior on β), but they do not have the additional shrinkage
term Pr(γj = 1) that BMA provides to further shrink variables that are not con-
fidently included in the model. The average RPG’s for these non-BMA estimates
were notably worse than for the BMA-based estimates: 0.244,0.291, and 0.272,
respectively, compared with 0.315 for BMA.

Taken together, these results suggest that BMA is responsible for a moderate
amount of the gain in predictive performance of BVSR compared with RPG1, with
some of the remainder being due to LASSO’s tendency to over-shrink estimates
of the nonzero regression coefficients. One way to think of this is that LASSO has
only a single parameter, λ, that controls both shrinkage and sparsity. In this setting
the true solution is very sparse, so λ needs to be big enough to keep the solution
sufficiently sparse; but having λ this big also creates an overly strong shrinkage
effect. In contrast, BVSR effectively avoids this problem by having two parame-
ters, σa controlling shrinkage, and π controlling sparsity. As we have seen, in this
context the strategy of refitting the β coefficients at the LASSO solution fails to
improve average predictive performance. Other possible ways around this prob-
lem include using a more flexible penalized regression model (e.g., the Elastic Net
[Zou and Hastie (2005)] has two parameters, rather than one), or using a proce-
dure that does not overshrink large effect sizes, for example, SCAD [Fan and Li
(2001)]. Comparisons of these methods with BVSR would be an interesting area
for future work.

5.7. Calibration of the posterior inclusion probabilities. One of the main ad-
vantages of BVSR compared with Bayesian single-SNP analysis methods is that
BVSR allows the hyperparameters π and σa to be estimated from the data, and
thus provides data-driven estimates of the posterior inclusion probabilities (PIPs).
One hope is that estimating these parameters from the data will lead to better-
calibrated estimates of the PIPs than the single-SNP approach which effectively
requires one to supply educated guesses for these parameters. To assess this, Fig-
ure 5(a) shows the calibration of the PIPs from BVSR, for the simulations used in
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FIG. 5. Calibration of the posterior inclusion probabilities (PIPs) from BVSR. The graph was
obtained by binning the PIPs obtained from BVSR in 20 bins of width 0.05. Each point on the graph
represents a single bin, with the x coordinate being the mean of the PIPs within that bin, and the y

coordinate being the proportion of SNPs in that bin that were true positives (i.e., causal SNPs in our
simulations). Vertical bars show ±2 standard errors of the proportions, computed from a binomial
distribution. Panel (a) is the result of BVSR, using the priors described here. The fact that the points
lie near the line y = x indicates that the PIPs are reasonably well calibrated, and thus provide a
reliable assessment of the confidence that each SNP should be included in the regression. Panel (b)
is the result from BVSR fixing π to be either 5× smaller (black star) or 5× larger (blue cross) than
the true value (σa fixed to true value). Panel (c) is the result of fixing σa to be either 5× smaller
(black star) or 5× larger (blue cross) than the true value (π fixed to true value).

the estimation of PVE above (fifty data sets with PVE = 0.01–0.5 for both normal
and exponential effect size distributions). The figure shows that the PIPs are rea-
sonably well calibrated. In particular, SNPs with high PIP have a high probability
of being causal variants in the simulations.

To illustrate the potential benefits of using moderately-diffuse prior distributions
on π and σa , allowing their values to be informed by the data, rather than fixing
them to specific values, we also applied BVSR with either π or σa fixed to an “in-
correct” value (approximately 5 times larger or smaller than the values used in the
simulations). Figure 5(b) and (c) show how, as might be expected, this can result in
poorly-calibrated estimates of the PIP (of course, if one were lucky enough to fix
both π and σa to their “correct” values, then calibration of PIPs will be good, but,
in practice, the correct values are not known). We note that fixing σa to be five-fold
too large seems to have only a limited detrimental effect on calibration, which is
consistent with the fact that in single-SNP analyses, with moderate sample sizes,
BFs are relatively insensitive to choice of σa provided it is not too small [e.g.,
Stephens and Balding (2009), Figure 1]. This suggests that, in specifying priors on
σa , it may be prudent to err on the side of using a distribution with too long a tail
rather than too short a tail. Note that, as in Bayesian single-SNP analyses, although
the numerical value of the PIP is sensitive to choice of π , the ranking of SNPs is
relatively insensitive to choice of π (and, indeed, σa). Consequently, in contrast to
the calibration plot, power plots of the kind shown in Figure 3 are not sensitive to
choice of prior on either π or σa (results not shown).
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5.8. Real data analysis: PARC GWAS for C-reactive protein. We applied
BVSR to analyze a GWAS study to identify genetic variants associated with
plasma C-reactive protein (CRP) concentration. CRP is a protein found in the
blood that is associated with inflammation, and is predictive of future cardiovascu-
lar disease [Ridker et al. (2002)]. The data come from the Pharmocogenetics and
Risk of Cardiovascular Disease (PARC) study [Reiner et al. (2008) and references
therein].

The available genotype data consisted of 1968 individuals genotyped on either
the Illumina 317K chip (980 individuals) or the Illumina 610K SNP chip plus a
custom 13,680 SNP Illumina i-Select chip (988 individuals). These genotype data
had undergone basic quality control filters (e.g., removing SNPs with very high
proportions of missing data, or showing strong departures from Hardy–Weinberg
equilibrium) prior to our analysis. To merge the two data sets, we used genotype
imputation [Servin and Stephens (2007); Marchini et al. (2007)], using the soft-
ware package BIMBAM [Guan and Stephens (2008)] to replace missing or unmea-
sured genotypes with their posterior mean given the observed genotype data [see
Guan and Stephens (2008) for discussion of this strategy]. After imputing miss-
ing genotypes, we removed SNPs with (estimated) minor allele frequency <0.01,
leaving a total of 530,691 SNPs.

The phenotype data consisted of plasma concentrations of CRP, measured mul-
tiple times for each individual, both before and after exposure to statin drugs. These
multiple measures were adjusted for covariates (age, sex, smoking status, and body
mass index), quantile normalized to a standard normal distribution, and averaged to
produce a single summary measure of CRP concentration for each individual (rel-
ative to other individuals in the same study), as described in Reiner et al. (2008).

After removing individuals with missing phenotypes, we had phenotype and
genotype data on a total of 1,682 individuals. We performed four independent
MCMC runs, two with 2 million iterations, and two using 4 million iterations.
These longer runs took approximately 60 and 90 CPU hours on a Mac Pro 3 GHz
desktop. Comparing results among runs, we found three of the runs gave very
good agreement in all aspects we examined, whereas the fourth run showed mild
but noticeably greater departure from the others, suggesting possible convergence
or mixing issues. For example, Figure 6(a) compares the estimated PIPs for each
pair of runs, and Figure 6(b) compares the estimated posterior distribution of PVE
among runs. The remainder of the results in this section are based on pooling the
results from all four runs.

The usual way to summarize single-SNP analyses is to report the SNPs with the
strongest marginal evidence for association. Thus, it might seem natural in a multi-
SNP analysis to focus on the SNPs with the largest posterior inclusion probabilities
(PIPs). However, this can be misleading. For example, if there are many SNPs in
a region that are highly correlated with one another, and all approximately equally
associated with the phenotype, then it may be that the correct conclusion is that
at least one of these SNPs should be included in the model, but there might be
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(a)

FIG. 6. Illustration of the consistency of results across four different runs of the MCMC algorithm
for the CRP data. In panel (a) the (i, j)th plot compares results for runs i and j . Plots in the upper
triangle (j > i) compare estimated posterior inclusion probabilities (PIPs) for each SNP. Plots in
the lower triangle compare estimated posterior expected number of SNPs in 1 Mb regions (so each
point corresponds to a single region). The line y = x is marked in blue. Panel (b) shows posterior
distributions of PVE from the four MCMC runs.

considerable uncertainty about which one. In this case, even though the posterior
probability of at least one SNP being included in the model would be high (near 1),
none of the individual PIPs may be very big, and concentrating on the PIPs alone
would risk missing this signal in the data. To avoid this problem, we prefer to
initially summarize results at the level of regions, as we now illustrate.

We divided the genome into overlapping regions, each 1 Megabase (106 bases)
in length, with the overlap between adjacent regions being 0.5 Megabases. For each
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(b)

FIG. 6. (Continued).

region we computed two quantities: (i) an estimate, E, of the posterior expected
number of SNPs included in the model, being the sum of the estimated PIPs for all
SNPs in the region; (ii) an estimate of the probabilities, P , that the region contains
(a) 1 SNP, (b) 2 SNPs, or (c) more than 2 SNPs included in the model. The latter
quantities (ii) are perhaps the most natural summary of the evidence that the region
harbors genetic variants affecting phenotype, but (i) has the advantage that it can be
easily approximated using Rao–Blackwellization, resulting in lower Monte Carlo
error. Thus, in practice, we suggest examining both quantities, and placing more
trust in (i) where the two disagree.

The results are summarized in Figure 7, which also shows results for a single
permutation of the phenotypes for comparison. The plot clearly identifies two re-
gions with very strong evidence for an association with CRP in both plots (e.g.,
E > 0.95), and a third region with moderately strong evidence (e.g., E > 0.75).
Multiple other regions show modest signals (E = 0.1 to 0.5), that might gener-
ally be considered worthy of follow-up in larger samples, although at this level of
signal the majority are, of course, unlikely to be truly associated with CRP.

The three regions with the strongest association signals contain the genes CRP,
HNF1A, and APOE/APOC, all of which have shown robustly-replicated SNP as-
sociations with C-reactive protein levels in several other GWAS using single-SNP
analyses [e.g., Reiner et al. (2008); Ridker et al. (2008)]. In addition, in these data,
these three regions all contain single SNPs showing strong associations: the largest
single-SNP Bayes factors in each of these regions are 106.2,105.5, and 104.9, re-
spectively. Thus, in this case the identification of regions of interest from BVSR is
largely concordant with what one would have obtained from a single-SNP analy-
sis. However, we highlight two advantages of the BVSR analysis. First, the esti-
mated posterior probabilities obtained for each region are easier to interpret than
the single-SNP Bayes Factors. For example, the estimated posterior probability
that the HNF1A region contains at least one SNP included in the model is 0.96,
and this seems much more helpful than knowing that the largest single-SNP Bayes



BAYESIAN VARIABLE SELECTION REGRESSION FOR GWAS 1805

(a)

(b)

(c)

FIG. 7. For each 1 Mb region we show an estimate from BVSR that the region contains 1 (black),
2 (red), or more than 2 (green with �) SNPs in the regression. The 1 Mb regions overlap by 0.5 Mb,
and so any SNP with a large PIP would cause a signal to occur in 2 adjacent regions on the plot.
Panel (a) shows sum of PIP in each 1 Mb region (truncated at 1). Panel (b) shows estimated probabil-
ities that each genomic region harbors variants associated with CRP levels. In panel (c) we permute
phenotype once and produce the same plot as a comparison.

Factor in the region is 104.9. Similarly, for the next most associated region, which
is on chromosome 10 near the gene FAM13C1, the posterior probability of 0.42
is simpler to interpret than the fact that the largest single-SNP Bayes Factor is
103.9. And while these single-SNP BFs are easily converted to posterior probabili-
ties of association by specifying a prior probability of association (effectively π in
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our model), the multi-SNP analysis reduces the risk of specifying an inappropriate
value for π by learning about π from the data.

A second advantage of BVSR is its ability to estimate the PVE. To illustrate this,
we first consider a typical single-SNP analysis in this context, which estimates the
PVE for “significant” SNPs by performing ordinary least-squares regression on
those SNPs. Applying this approach to these data, using a relatively liberal (by
GWAS standards) threshold for significance (single-SNP BF >104), we find that
significant SNPs explain approximately 6% of the overall variance in CRP after
controlling for covariates. Comparing this with some previous estimates of heri-
tability of CRP in the range 0.35–0.4 [Pankow et al. (2001); Lange et al. (2006)]
suggests that a substantial amount of genetic variation influencing CRP remains
to be identified, a feature that has become known as “missing heritability.” One
question of interest is to what extent this shortfall might be explained by measured
genetic variants that simply failed to pass the significance threshold, vs being ex-
plained by unmeasured genetic variants or other factors. To assess this, we examine
PVE obtained from applying BVSR on measured SNPs. The posterior distribution
for PVE [Figure 6(b)] has mean 0.14, with a symmetric 90% CI of [0.05,0.25].
Note that, as one might expect, the lower part of this CI is similar to the estimated
PVE of “significant” SNPs. Because most of the posterior distribution lies above
0.06, we infer that larger studies of the same set of SNPs might be expected to
uncover considerably more signal than this study. (Consistent with this, a larger
study involving 6,345 women typed at a subset of the SNPs considered here iden-
tified four additional genome regions containing SNPs associated with CRP levels
[Ridker et al. (2008)].) Conversely, the fact that the upper part of the CI (0.25)
remains well short of previous estimates of heritability suggests that not all of the
missing heritability is likely to be explained by simply conducting larger studies of
the same SNPs, and that some alternative factors (e.g., unmeasured rare variants)
may also contribute.

6. Extension to binary phenotypes. Although we have focused here on
quantitative traits, BVSR is also potentially applicable to binary phenotypes, and
this is important for GWAS applications because they often involve binary pheno-
types. In this section we briefly summarize our attempts to extend BVSR in this
way.

A standard approach to applying BVSR to binary phenotypes is to use a pro-
bit link function. In practice, this is usually accomplished by introducing latent
variables z which are assumed to follow the standard linear regression (2.2), and
to be related to the observed outcomes y by yi = 1 (zi > 0) [Albert and Chib
(1993)]. Posterior inference is performed by integrating out z using Markov chain
Monte Carlo, which requires implementation of only one additional update com-
pared with the quantitative trait (an update of the z variables).

A nice feature of this probit-based approach using latent Gaussian variables is
that it would allow us to use the same priors as for quantitative outcomes, except
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that these priors now relate to the unobserved latent (Gaussian) variables, rather
than the observed (binary) outcomes. Furthermore, we can continue to summarize
the overall signal by estimating the PVE of the latent variables. However, the way
we have set things up, with an improper prior on τ , this would lead to improper
posteriors on τ and z [because the likelihood p(y|z) is unchanged by multiplying
z by any positive constant]. This could be rectified in a number of ways. For ex-
ample, we could fix τ [e.g., to 1, as in Albert and Chib (1993)]. Here we instead
choose to impose an identifiability constraint directly on the elements of z, by
constraining them to have (empirical) variance 1, because this allows us to re-use
exactly the same computer code as for the quantitative phenotypes (whereas fixing
τ would necessitate some changes). In addition, in an attempt to improve mixing,
we make the approximation that the marginal distribution of the elements of z will
be normal, which should be a reasonable approximation under the linear regression
model (2.2) provided that there are no very large values for β . Specifically, we re-
strict z1, . . . , zn|y to take a fixed set of values, being the n equally-spaced quantiles
of a standard normal N(0,1) distribution, with the values corresponding to the n0
individuals with yi = 0 being constrained to be the first n0 of these quantiles. The
intuitive motivation for this constraint is that it can reduce the potential to fall into
poor local optima by ruling out implausible configurations of z that correspond to
some SNPs having very large effects. (Of course, this may not be a good idea in
settings where very large effects are more plausible.) With this constraint in place,
local Metropolis–Hastings proposals for z simply involve randomly picking a pair
of individuals (i, j) with the same (binary) phenotype value and proposing to swap
the values of zi and zj . (For long-range proposals, we simply compound this local
proposal randomly many times.)

To provide a brief illustration of the potential for this approach, we applied the
method to some simple simulated data sets. The genotypes were simulated in the
same way described in Section 5.1, using 10,000 independent SNPs genotyped in
n = 1,000 and 6,000 individuals. We simulated latent normal phenotypes by ran-
domly selecting 30 causal SNPs and simulating a quantitative phenotype z with
prespecified PVE as in Section 5.1. We then converted these n quantitative pheno-
types to n binary phenotypes by mapping the largest n/2 z values to y = 1 and the
remainder to y = 0. Figure 8 illustrates how reliably we are able to infer the PVE
of the latent variables from the binary data. More generally, we find that provided
we limit analyses to thousands of SNPs, we are able to obtain generally reliable
results for binary traits (e.g., results from multiple independent runs largely agree
with one another). Thus, for example, we should be able to obtain reliable results
for small genomic regions, such as individual genes, which can itself be of consid-
erable interest [Servin and Stephens (2007)]. However, our experience with larger
real data sets involving hundreds of thousands of SNPs indicates that mixing is,
as one might expect, harder for binary traits than for quantitative traits, and that
to obtain reliable results in practice for GWAS may require longer MCMC runs
and/or further methodological innovation.
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(a) (b)

FIG. 8. Comparison of true and inferred values of PVE for binary phenotypes. The estimated
PVE is on the y-axis and the true PVE on the x-axis. Panels (a) and (b) are for n = 1,000 and
n = 6,000 individuals, respectively. Circles indicate posterior mean for PVE; vertical bars indicate
the symmetric 90% credible interval.

7. Discussion. In this paper we have demonstrated that BVSR can be success-
fully applied to large problems, with a particular focus on genome-wide associa-
tion studies. We have argued that BVSR has several potential benefits compared
with standard single-SNP analyses, among them the ability to obtain data-driven
estimates of hyperparameters that must otherwise be specified more subjectively
by the user, and the ability to estimate the overall signal (PVE) that might be ac-
counted for by relevant covariates, even when confidently identifying the relevant
covariates is not possible. We have also introduced a novel, more interpretable,
approach to prior specification in BVSR, and shown that BVSR can provide a
competitive alternative to the penalized regression procedure LASSO.

However, despite our generally upbeat assessment, there are a number of poten-
tial limitations of the methods we have described here, which present both pitfalls
to be aware of in practice, as well as challenges and opportunities for future work.

One important aspect of analysis of any GWAS is the potential for data quality to
adversely impact results. For example, although modern genotyping technologies
provided very high quality genotypes on average, some SNPs are much harder to
genotype accurately than others, and genotyping error can occur at some SNPs at
an appreciable rate. This can cause false positive associations if genotyping error
is correlated with phenotype (which it can be, particularly in case-control studies
if the DNA quality differs appreciably between cases and controls [Clayton et al.
(2005)]). While quality control is vital to any study, it is of potentially even greater
import in multi-SNP analyses than in single-SNP analyses, because in multi-SNP
analyses the association results at one SNP affect the results at other SNPs, and so
low quality data at a few SNPs may impact estimated associations at other SNPs.
Thus, it seems particularly important to attempt to impose stringent data quality
filters before embarking on a computationally-intensive multi-SNP analysis.

One limitation of the methods we present here is the assumption that effect sizes
are normally distributed. Although our simulations with exponential effect sizes
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suggest a certain amount of robustness to this assumption, it is important to note
that there are some phenotypes where the normality assumption is clearly wrong.
For example, in type 1 diabetes, one region of the genome, the MHC, contains
genetic variants whose effect on phenotype may be substantially greater than any
other region. When such regions of unusually large effect are known, it would
be prudent to run methods like ours both including and excluding data at these
loci, to check for robustness of conclusions. More generally, the robustness of
our BVSR could be improved by replacing the assumption of normally-distributed
effects with a heavy-tailed distribution such as a t with small or moderate degree
of freedom, or indeed with a prior on the degrees of freedom.

Another related issue is that we assume the residual distribution of the pheno-
types to be normal. To improve robustness to this assumption, we typically normal
quantile transform the observed phenotypes to have a normal distribution before
analysis (which while not strictly ensuring that the residuals are normal, does in
our experience limit problems that might otherwise be caused by deviations from
normality, such as occasional outlying values). Again, the use of a t distribution
for the residuals might be preferable.

We view the work presented here as just the very start of what could be done
with BVSR in GWAS. One important extension would be to incorporate additional
information into the prior distribution on which variables are included in the re-
gression (γ in our notation). Here we have assumed that variables are included
in the model, independently, with common probability π . This independence as-
sumption ignores likely local spatial dependence of γ . In particular, it would be
unsurprising to see multiple functional variants occurring in a single gene, and,
indeed, analyses of genetic data in the CRP gene have suggested that it contains
multiple SNPs affecting CRP levels [Verzilli et al. (2008); Stephens and Balding
(2009)]. The independence assumption in the prior we use here makes it overly
skeptical about this possibility. Another important possibility is that one could al-
low the prior probability of each SNP being included in the regression to depend
on annotations of the SNP, such as where it lies relative to a gene, or whether it lies
in a genomic region that is conserved across several species (a sign that the region
may be functional). Of course it is not generally known a priori how much such an-
notations should affect the prior inclusion probabilities. However, with BVSR one
could estimate hyperparameters that affect the prior inclusion probabilities from
the data [Veyrieras et al. (2008)].

Finally, despite our focus on GWAS, many of the issues we have discussed here
have broad relevance. In particular, while the computational challenges of BVSR
remain considerably greater than penalized regression methods, we believe that
the qualitative advantages of BVSR make it worth investing effort into designing
more efficient inference algorithms for BVSR, to be able to better deal with the
very large-scale applications that are becoming increasingly common.
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APPENDIX A: DETAILS OF MCMC SCHEME

We use Markov chain Monte Carlo to obtain samples from the posterior distrib-
ution of (h,π,γ ) on the product space of (0,1) × (0,1) × {0,1}p , which is given
by

p(h,π,γ |y) ∝ p(y|h,γ )p(h)p(γ |π)p(π).(A.1)

Here we are exploiting the fact that the parameters β and τ can be integrated out
analytically to compute the marginal likelihood p(y|h,γ ). Indeed, in the limit for
the hyperparameters λ, κ → 0 and σμ → ∞ that we use here, we have

p(y|h,γ )

p(y|h,γ = 0)
= n1/2||1/2 1

σa(h,γ )|γ |
(yty − ytXγ Xt

γ y

yty − nȳ2

)−n/2

,(A.2)

where  := (σa(h,γ )−2I|γ |+Xt
γ Xγ )−1 and 0 denotes the p-vector of all 0s. [For

derivation, see Servin and Stephens (2007), Protocol S1 equation (13).] Note that
here σa(h,γ ) is given by equation (2.13).

For each sampled values of h,γ from this posterior, we obtain samples from the
posterior distributions of β and τ by sampling from their conditional distributions
given y,γ , h:

τ |y, h,γ ∼ �
(
n/2,2/(yty − ytXγ Xt

γ y)
)
,

βγ |τ,y, h,γ ∼ N
(
Xt

γ y, (1/τ)
)
,(A.3)

β−γ |τ,y, h,γ ∼ δ0.

Our Markov chain Monte Carlo algorithm for sampling h,π,γ is based on a
Metropolis–Hastings algorithm [Metropolis et al. (1953); Hastings (1970)], using
a simple local proposal to jointly update h,π,γ . In outline, the local proposal
proceeds as follows. First a new proposed value of γ , γ ′, is obtained by small
modification of the current value (see below for more details); then a new value of
π is proposed from a Beta(|γ ′|,p − |γ ′| + 1) distribution; finally a proposed new
value for h is obtained by adding a U(−0.1,0.1) random variable to the current
value (reflecting proposed values that lie outside [0,1) about the boundary). The
proposal distribution for π is proportional to its full conditional distribution given
γ ′ inside the finite range of the prior on π [given by (2.8)]; on the infrequent
occasions that the proposed value for π lies outside this range, it is of course
rejected.

In addition to the local proposal described above, we sometimes (with probabil-
ity 0.3 each iteration) make a longer-range proposal by compounding randomly-
many local moves [the number being uniform on (2, . . . ,20)]. This technique,
named “small-world proposal,” improves the theoretical convergence rate of the
MCMC scheme [Guan and Krone (2007)].

We now give details on our update proposal for γ . When adding a covariate
into the model we use a rank based proposal that focuses more attention on co-
variates that are more likely to be included in the model. To do this, we first rank
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the covariates based on their association with phenotype y (specifically we rank
them by the Bayes factor for the model including only that covariate vs the null
model containing no covariates, evaluated at σa = 1). Let Qt be a distribution on
(0, . . . , t −1) which has decreasing probability. Here we choose Qt to be a mixture
Qt = 0.3Ut + 0.7Gt , where Ut is a uniform distribution on {0, . . . , t − 1} and Gt

is a geometric distribution truncated to {0, . . . , t − 1}, with its parameter chosen to
give a mean of 2,000.

Now let γ + denote the set of covariates that are currently in the model, γ + =
{i :γi = 1}. Let γ − denote the complimentary set. We define three different types
of moves, namely, add a covariate, remove a covariate, and exchange a pair of
covariates in and out of the current model. Each move starts by setting γ ′ = γ .
Then we randomly choose among the following:

• Add covariate: Generate r ∼ Qp−k , and find the covariate i ∈ γ − that has rank
r (among covariates in γ −). Set γ ′

i = 1.
• Remove covariate uniformly: Uniformly pick i ∈ γ +, and set γ ′

i = 0.
• Add a covariate and remove another: Pick i uniformly from γ + and j uniformly

from γ −, and set γ ′
i = 0;γ ′

j = 1.

In our current implementation, at each update we randomly select among these
moves with probabilities 0.45, 0.45, and 0.1.

APPENDIX B: CALCULATIONS FOR RAO–BLACKWELLIZED
ESTIMATES

In this appendix we derive the calculations need to compute the terms in equa-
tion (3.2).

Let θ−j denote the parameters (γ−j ,β−j , τ, h,π). Note that

Pr(γj = 1|y, θ−j ) = λ

1 + λ
,(B.1)

where

λ := p(γj = 1|y, θ−j )

p(γj = 0|y, θ−j )

= p(y|γj = 1, θ−j )

p(y|γj = 0, θ−j )

p(β−j |γj = 1, γ−j , τ, h,π)

p(β−j |γj = 0, γ−j , τ, h,π)

p(γj = 1|γ−j , τ, h,π)

p(γj = 0|γ−j , τ, h,π)
(B.2)

= p(y|γj = 1, θ−j )

p(y|γj = 0, θ−j )

p(β−j |γj = 1, γ−j , τ, h)

p(β−j |γj = 0, γ−j , τ, h)

π

1 − π
.

The second term here arises because in our parameterization β−j is not indepen-
dent of γj (because its prior variance, σa , is a function of h,γ ). This term is easily
computed from the fact that β−j |γ , τ, h are i.i.d. ∼ N(0, σ 2(h,γ )/τ ).
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To compute the numerator of the first term note that

y|γj = 1, θ−j ∼ N(Xγ−jβγ−j + μ + Xjβj ,1/τI),(B.3)

with the priors on μ,βj [from (2.3)] being

μ|τ ∼ N(0, σ 2
μ/τ),

(B.4)
βj |τ ∼ N(0, σ 2

a /τ ).

Integrating out μ,βj gives

p(y|γj = 1, τ ) = (2π)−n/2τn/2 ||1/2

σμσa

exp
(
−1

2
(RtR − RtXXtR)τ

)
,(B.5)

where R = y − Xγ−jβγ−j , γ − j denotes the vector obtained by taking γ and

setting the j th coordinate to 0,  = (XtX + ν−1)−1, ν =
(

σ 2
μ

0
0
σ 2

a

)
, and X =

(1,Xj ) is an n × 2 design matrix whose first column is all 1s. [See equation (8)
from Protocol S1 in Servin and Stephens (2007).] The posterior distribution on βj

is given by

βj |y, θ−j ∼ N(XtR,).(B.6)

Similarly, to compute the denominator of the first term, we use

y|γj = 0, θ−j ∼ N
(
Xγ−jβγ−j + μ, (1/τ)I

)
,(B.7)

with priors on μ|τ ∼ N(0, σ 2
μ/τ). Integrate out μ to get

p(y|γj = 0, τ ) = (2π)−n/2τn/2 
1/2
0

σμ

exp
(
−1

2
(RtR − 0n

2R̄2)τ

)
,(B.8)

where 0 = (σ−2
μ + n)−1 and R̄ = 1

n

∑
Ri .

From this we obtain

p(y|γj = 1, θ−j )

p(y|γj = 0, θ−j )
= ||1/2


1/2
0

1

σa

exp
(

τ

2
(RtXXtR − 0n

2R̄2)

)
.(B.9)

In the limit σμ → ∞ we have 0 → n and ν →
(

0
0

0
σ 2

a

)
and the above expression

becomes

p(y|γj = 1, θ−j )

p(y|γj = 0, θ−j )
= ||1/2 n1/2

σa

exp
(

τ

2
(RtXXtR − nR̄2)

)
.(B.10)

Note that this calculation effectively involves a univariate regression of the
residuals R against covariate j . Furthermore, all covariates j /∈ γ + use the same
residuals: only for j ∈ γ + do the residuals need to be recomputed.



BAYESIAN VARIABLE SELECTION REGRESSION FOR GWAS 1813

Acronyms used in the paper.

• BMA: Bayesian model averaging
• BVSR: Bayesian variable selection regression
• GWAS: genome wide association studies
• LASSO: least absolute shrinkage and selection operator, a popular variable se-

lection method
• MCMC: Markov chain Monte Carlo
• PIP: posterior inclusion probability
• PVE: proportion of variance explained
• RPG: relative prediction gain
• SNP: single nucleotide polymorphism
• SIS: sure independence screen, a two-stage variable selection procedure.
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